478 research outputs found

    Flip Distance Between Triangulations of a Planar Point Set is APX-Hard

    Full text link
    In this work we consider triangulations of point sets in the Euclidean plane, i.e., maximal straight-line crossing-free graphs on a finite set of points. Given a triangulation of a point set, an edge flip is the operation of removing one edge and adding another one, such that the resulting graph is again a triangulation. Flips are a major way of locally transforming triangular meshes. We show that, given a point set SS in the Euclidean plane and two triangulations T1T_1 and T2T_2 of SS, it is an APX-hard problem to minimize the number of edge flips to transform T1T_1 to T2T_2.Comment: A previous version only showed NP-completeness of the corresponding decision problem. The current version is the one of the accepted manuscrip

    Convex Hull of Points Lying on Lines in o(n log n) Time after Preprocessing

    Full text link
    Motivated by the desire to cope with data imprecision, we study methods for taking advantage of preliminary information about point sets in order to speed up the computation of certain structures associated with them. In particular, we study the following problem: given a set L of n lines in the plane, we wish to preprocess L such that later, upon receiving a set P of n points, each of which lies on a distinct line of L, we can construct the convex hull of P efficiently. We show that in quadratic time and space it is possible to construct a data structure on L that enables us to compute the convex hull of any such point set P in O(n alpha(n) log* n) expected time. If we further assume that the points are "oblivious" with respect to the data structure, the running time improves to O(n alpha(n)). The analysis applies almost verbatim when L is a set of line-segments, and yields similar asymptotic bounds. We present several extensions, including a trade-off between space and query time and an output-sensitive algorithm. We also study the "dual problem" where we show how to efficiently compute the (<= k)-level of n lines in the plane, each of which lies on a distinct point (given in advance). We complement our results by Omega(n log n) lower bounds under the algebraic computation tree model for several related problems, including sorting a set of points (according to, say, their x-order), each of which lies on a given line known in advance. Therefore, the convex hull problem under our setting is easier than sorting, contrary to the "standard" convex hull and sorting problems, in which the two problems require Theta(n log n) steps in the worst case (under the algebraic computation tree model).Comment: 26 pages, 5 figures, 1 appendix; a preliminary version appeared at SoCG 201

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Happy endings for flip graphs

    Full text link
    We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio

    Towards compatible triangulations

    Get PDF
    AbstractWe state the following conjecture: any two planar n-point sets that agree on the number of convex hull points can be triangulated in a compatible manner, i.e., such that the resulting two triangulations are topologically equivalent. We first describe a class of point sets which can be triangulated compatibly with any other set (that satisfies the obvious size and shape restrictions). The conjecture is then proved true for point sets with at most three interior points. Finally, we demonstrate that adding a small number of extraneous points (the number of interior points minus three) always allows for compatible triangulations. The linear bound extends to point sets of arbitrary size and shape
    • …
    corecore