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Abstract

We state the following conjecture: any two planar n-point sets that agree on the number of
convex hull points can be triangulated in a compatible manner, i.e., such that the resulting two
triangulations are topologically equivalent. We 1rst describe a class of point sets which can be
triangulated compatibly with any other set (that satis1es the obvious size and shape restrictions).
The conjecture is then proved true for point sets with at most three interior points. Finally,
we demonstrate that adding a small number of extraneous points (the number of interior points
minus three) always allows for compatible triangulations. The linear bound extends to point sets
of arbitrary size and shape.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Can any two planar point sets (that agree on the number of points and extreme
points) be triangulated in a compatible manner? This intuitive question is the topic of
the present paper. Apart from the theoretical interest in this basic problem, questions
of this kind arise in various areas of application, including image analysis, morphing,
and cartography.
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Fig. 1. These two triangulations are compatible.

Morphing, i.e., continuous transformation of one shape into another, is a particu-
larly important area due to the wide use in animation, modeling, and computer graphics
where it is also called shape blending or metamorphosis [4,13]. The problem of morph-
ing polygons or planar triangulations has been attracting a lot of research [6–8,14,15].
In [6], Floater and Gotsman introduce an eHcient approach for morphing compati-
ble triangulations, which is further explored by Surazhsky and Gotsman [15]. For an
application in cartography, see [12].
In the present work we state—and give some evidence for—the surprising conjecture

that the obvious necessary conditions for compatible triangulations to exist are also
suHcient. We further show that compatible triangulability can always be achieved by
adding a small number of extraneous points.

1.1. Basic observations

To de1ne the problem in question more rigorously, let S1 and S2 be two 1nite sets
of points in the Euclidean plane. Two triangulations (i.e., two-dimensional simplicial
complexes) T1 of S1 and T2 of S2 are called strongly isomorphic or compatible if
the face lattices formed by their triangles, edges, and vertices (points) are isomorphic.
Fig. 1 depicts an example. An equivalent and more intuitive de1nition is the following:
the triangulations T1 and T2 are compatible if there exists a bijection ’ between S1 and
S2 such that ijk is a triangle in T1, empty of points of S1, if and only if ’(i)’(j)’(k)
is a triangle in T2, empty of points of S2. Compatible triangulations obviously exhibit
isomorphic graphs of edges. The converse is not true, in general. An edge isomorphism
between T1 and T2 need not preserve the external face; see [11] (where Fig. 2 has been
taken from) for a careful discussion of this phenomenon. This led us to prefer the notion
of compatible triangulations to isomorphic triangulations which sometimes has been
used in the literature.
The problem of triangulating two given point sets compatibly comes in two Javors,

namely where the bijection between the points of S1 and S2 is either 1xed in advance,
or variable. The case of 1xed correspondence is a known problem which has been
studied by Saalfeld [12]. He pointed out that compatible triangulations do not always
exist and proposed several heuristic approaches for their construction. A challenging
problem left open in this context is to determine the complexity of the related decision
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Fig. 2. Edge isomorphism need not preserve the external face.

problem, which so far is neither known to be NP-complete nor to be polynomially
solvable.
The problem becomes easier if S1 and S2 are the (ordered) sets of vertices on the

boundary of two simple n-gons. Given a bijection between the polygon vertices (there
are only 2n cyclic shifts to choose from) the existence can be decided in time O(n2),
and compatible triangulability of the polygons can always be achieved by adding O(n2)
extraneous points (so-called Steiner points) in each polygon; see [3]. Improvements
which take into account the number of reJex vertices or the quality of the angles of
the produced triangles exist. See [10,15], respectively.
The present paper is concerned with the problem of 1nding compatible triangulations

without 1xed point correspondence. In other words, we ask whether there exists a
bijection between two point sets S1 and S2 which allows compatible triangulations. To
our knowledge this problem has not been studied before. The main question is, of
course, under which propositions compatible triangulations do exist. It is clear that (1)
in both sets S1 and S2 the number n of points must be the same, as has to be the
number h of extreme points (points on their convex hulls CH (S1) and CH (S2)), by
the well-known formula e=3n − h − 3 on the number e of edges of a triangulation.
Moreover, (2) extreme points necessarily map to extreme points, and their cyclic order
on the convex hulls is preserved. Also, (3) for each point, the sorted order of its
adjacent points in the triangulation is preserved.
Properties (2) and (3) follow from a more general fact pointed out by Saalfeld [12]:

(4) If two triangulations are compatible then any two corresponding (empty) triangles
ijk and ’(i)’(j)’(k) must have the same orientation, either clockwise or counter-
clockwise. (We ignore the symmetric case where the orientation is reversed for each
matching pair of triangles.) Intuitively speaking, this means that the underlying point
sets S1 and S2 locally exhibit the same order type, as de1ned by Goodman and Pollack
[9]. The order type of a 1nite point set is a mapping that assigns an orientation to each
ordered triple of points. It is interesting to note that Properties (2)–(4) need not hold
if only graph isomorphism rather than compatibility of the triangulations is required;
compare Fig. 2.
We will assume throughout the paper that all point sets considered are in general

position, meaning that no three points within a set lie on a common straight line. There
are simple examples of point sets not in general position that do not admit compatible
triangulations even if the propositions mentioned above are all met. Fig. 3 displays
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Fig. 3. No compatible triangulations exist.

such an example. All edges shown in the left-hand side triangulation are unavoidable,
in the sense that they have to appear in every triangulation of the point set S1. In
particular, the complete graph K4 on the four interior (i.e., non-extreme) points of
S1 is unavoidable. For the point set S2, however, we cannot create such a K4 without
introducing edge crossings, because the four interior points of S2 are in convex position.

1.2. The conjectures

Throughout, let |CH (S)| denote the number of extreme points in a point set S. Our
main conjecture can be formulated in the following way.

Conjecture 1 (Main conjecture on compatible triangulations). Let S1 and S2 be two
sets of points in the plane, without 8xed correspondence. Then compatible triangula-
tions for S1 and S2 exist if these sets ful8ll the following properties:
• |S1|= |S2|,
• |CH (S1)|= |CH (S2)|, and
• S1 and S2 are in general position.

We also consider an extended version of the compatible triangulation problem, where
the correspondence between the extreme points (but not between the interior points) in
the two sets is prescribed. The status of the extended problem is unresolved as well.

Conjecture 2 (Extended conjecture on compatible triangulations). Conjecture 1 still
holds if the bijection between the extreme points of S1 and S2 is prescribed by a
cyclically shifted labeling.

The motivation for stating the extended conjecture stems from the attempt to prove
Conjecture 1 by induction, which naturally leads to assuming the stronger version as
a hypothesis.
The intention of the present paper is to undertake 1rst steps towards proving the

conjectures above. In fact, obtaining an aHrmative answer would be a strong theoretical
result, showing that all planar point sets of the same size and hull size are ‘topologically
equivalent’ in this very sense. The result, if true, gains in importance in view of the
huge number of inequivalent order types for n points; see [1] for the exact numbers
of order types for n610.
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The paper is organized as follows. Section 2 exhibits a family of point sets each of
whose members allows for a compatible triangulation with any other point set (within
the evident size and hull restrictions). In Section 3 we prove Conjecture 2 provided the
number of interior points in either set is three or less. These restricted cases already
reJect part of the intrinsic complexity of the problem: the orientation of the three
interior points need to be reversed to allow for a solution in certain cases. Section 4
shows that compatible triangulability can always be achieved by adding at most k − 3
Steiner points, where k denotes the number of interior points. In fact, a linear number
of Steiner points suHces for point sets of arbitrary size and shape. This contrasts the
afore-mentioned situation for simple polygons (see [3]) where a quadratic number of
Steiner points is necessary in the worst case, and is a result of practical relevance.
Finally, Section 5 concludes the paper with some related remarks.

2. A family of universal sets

A point set U is called weak universal if for every point set S with |S|= |U | and
|CH (S)|= |CH (U )| there is a triangulation of S compatible with a triangulation of U .
The set U is called universal if, in addition, the bijection between the extreme points
of S and U may be prescribed by a cyclic shift. The existence of a (weak) universal
point set does not resolve our conjectures, because the compatibility relation is not
transitive. Conjecture 2, if true, states that all point sets are universal. Here we prove
that certain point sets are indeed universal.
Let U be a point set with extreme points u1; : : : ; uh (as they appear counter-clockwise

on the convex hull) and internal points uh+1; : : : ; un such that, for some 16m6h− 2,
• the subset U\{u1; : : : ; um} is in convex position, and
• the internal set {uh+1; : : : ; un} lies to the left of both uhum and u1um+1; see Fig. 4.
We are going to prove that U is a universal set. The proof of the result requires a

preliminary lemma.
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Lemma 1. Let P be a convex polygon with vertices v1; : : : ; vh in counter-clockwise
order, and let I be an arbitrary 8nite point set interior to P. For any choice of
indices 16i; j6h with i6j − 2 there exists a simple path � of edges such that
(a) path � connects vi; I , and vj (in this order) and these are the only vertices

of �;
(b) the simple polygon bounded by � and vivi+1 : : : vj can be triangulated without

using an edge that connects two vertices of �.

Proof. By induction on d= j− i¿2, the distance between vi and vj on P’s boundary.
For d=2 the result is trivial: sort I ∪{vi; vj} radially around vi+1, to produce a path
star-shaped as seen from vi+1, and triangulate by connecting all points in I to this
vertex.
Let now d¿2. If the set I is totally to the right of vi+2vj then connect vi and

vi+2 and slice oQ P the triangle vivi+1vi+2 which cannot contain any point in I . Apply
induction to the remaining convex polygon; the boundary distance between vi and vj
is now d− 1.
If, on the other hand, there are points of I to the left of vi+2vj then let among

those p be the one maximizing the angle vivi+1p; see Fig. 5. Connect p to vi+1 and
vi+2 and observe that the resulting triangle encloses no points of I . Now consider the
convex polygon Q=pvi+2 : : : vj (shaded in Fig. 5). Let I ′ and I ′′ be the subsets of I
exterior and interior to Q, respectively. By construction, no point of I ′ lies to the right
of vi+1p. So, as done for the case d=2 above, construct the path �′ for I ′ ∪{vi; p}
that is star-shaped as seen from vi+1, and build the corresponding triangulation. Finally,
apply induction to the polygon Q whose boundary distance between p and vj is d−1.
This yields a simple path �′′ for I ′′ ∪{p; vj} whose concatenation with �′ obviously
is still simple and satis1es the statement of the lemma.

Theorem 1. Let U be a set as described above. Then U is a universal set.
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Proof. Let S be any point set with |S|= |U |= n and with extreme points v1; : : : ; vh
in counter-clockwise order. We construct for CH (S) the path � from vh to vm+1, and
the associated triangulation T (�) on �’s right-hand side, whose existence is given by
Lemma 1. (Note that the index m is given from U and that the counter-clockwise
boundary distance between vh and vm+1 is at least two.) The crucial property is that
T (�) can be reproduced on the simple polygon uh : : : unum+1um : : : u1: only edges be-
tween non-consecutive vertices of the path uh : : : unum+1 lie outside this polygon, but
those correspond to edges outruled by the de1nition of T (�). It remains to be observed
that any triangulation of CH (S) on �’s left-hand side can be put on top of the convex
polygon um+1um+2 : : : un, making compatible the global triangulations.

3. Few interior points

Below we prove Conjecture 2 for point sets with at most three interior points. Even
in these seemingly simple situations, the illusion of a quick proof is destroyed by the
fact that the orientation of the three interior points might have to be reversed to achieve
compatibility. We 1rst focus on the following class of point sets.

Lemma 2. Let S be a point set containing an extreme point p such that S\{p} is
in convex position. Then S is universal.

Proof. The set S ful1lls the requirements for the set U in Section 2 for m=1 and
thus is a universal set by Theorem 1.

Theorem 2. Let S1 and S2 be two n-point sets each of which contains k63 interior
points. Then Conjecture 2 is true.

Proof. The cases k =0, where S1 and S2 are in convex position, and k =1, where
star-like compatible triangulations always exist, are trivial.
The case k =2 is still easy. Consider two extreme points u and v of S1 which lie on

diQerent sides of the line through the two interior points of S1. Then u and v can be
chosen such that the corresponding (extreme) points of S2 lie on diQerent sides of the
line through the two interior points of S2 as well. (Otherwise, by the same cyclic order
of extreme points, one of S1 and S2 totally would lie on a 1xed side of the respective
line, which is impossible.) We build two triangles for S1 by joining its interior points
x and y and connecting u and v to both of them. The remaining extreme points can
be connected to either x or y accordingly. Doing the same for S2 results in compatible
triangulations.
The case k =3 is more intriguing. Let us refer to the triangle formed by the three

interior points of S1 (or S2) as the interior triangle of S1 (or S2). We distinguish
between two situations I and II below. The former is similar to the case k =2, in that
the solution can be forced to contain the interior triangles. Let xyz be this triangle for
S1. Consider three extreme points of S1, labeled u; v, and w say, such that the four
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triangles uxy; vyz; wzx and xyz pairwise do not overlap. Observe that such points
always exist.
Case I: The points labeled u; v, and w above can be chosen such that, for the four

triangles spanned by the corresponding points in S2 and the interior triangle in S2, no
overlap occurs as well. In this case, we integrate these four triangles for both sets. For
extreme points with labels intermediate to u; v, and w, edges can be drawn now to a
unique interior point, in a compatible manner and much like the case k =2.
Case II: Otherwise. The solution we are going to construct will not contain the

interior triangle xyz. (In fact, no such solution exists.) Let Dx be the subset of S1
not on x’s side of the line through y and z. De1ne subsets Dy and Dz analogously;
see Fig. 6(a). Since labels as in I do not exist, the subsets of S2 that correspond to
Dx; Dy, and Dz have to look as in Fig. 6(b). Two subsets are totally contained in the
same trilateral region, whereas the third subset covers the rest of the convex hull of S2.
Without loss of generality, let the third subset correspond to Dz. We wish to reduce
Dx; Dy, and Dz in size so as to become disjoint sets, by introducing ’breakpoint’ labels
a; b, and c such that Dx ranges from a+ 1 to b; Dy ranges from b+ 1 to c, and Dz

ranges from c + 1 to a. This is always possible unless two of the sets are singletons
consisting of the same point p. In this case, however, removal of p leaves the set
S1\{p} in convex position, and compatible triangulations exist by Lemma 2. Otherwise,
we assign labels x; y, and z to the interior triangle of S2 and draw compatible edges
as shown in Fig. 7. Note that the orientation of xyz has been reversed for S2. The
two shaded polygons for S1 are convex and thus can be triangulated compatibly with
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their counterparts for S2. It remains to partition the still untriangulated area for S1 into
convex parts. Possible reJex angles may occur at x or y. If, as in Fig. 7, this happens
for x then there must exist a point labeled d in Dz\Dy which makes this angle convex.
(If d would not exist then all extreme points of S2 would lie on the same side of the
line through x and z.) The situation for y is similar. This completes the construction
of compatible triangulations.

4. When Steiner points are allowed

Since it is still left open whether Conjectures 1 and 2 are true, the question of
whether compatibility can be always achieved by adding a reasonably small num-
ber of extraneous points (called Steiner points) suggests itself. We demonstrate below
that, unlike the case for polygon triangulations (where a quadratic lower bound ex-
ists, see [3]) a linear number of Steiner points suHces. An eHcient algorithm for
1nding compatible triangulations, which is of practical relevance, is implicit in the
proofs.
There is a helpful property which stems from geometric arguments.

Lemma 3. Let A and B be two point sets with triangular convex hulls in 8xed corre-
spondence, and with k and ‘ interior points, respectively. There exist sets A′ ⊃A and
B′ ⊃B with k + ‘ interior points, such that every triangulation of A′ is compatible to
some triangulation for B′.

Proof. Let % be the unique orientation preserving aHne transformation that maps
CH (A) to CH (B) by respecting the given bijection between the hull points. Let
B′ =B∪%(A) and A′ =A∪%−1(B). Then A′ and B′ are of the same order type. There-
fore, any triangulation for A′ maps to a valid (compatible) triangulation for B.

Now consider two point sets S1 and S2 with the same number h¿3 of extreme points,
but with possibly diQerent numbers k1 and k2 of interior points. Construct compatible
triangulations for their convex hulls CH (S1) and CH (S2). Then, apply Lemma 3 to
each corresponding pair of triangles in these triangulations. This generates compatible
triangulations for S1 and S2 with at most max{k1; k2} Steiner points. More generally, if
the numbers of extreme points of two point sets do not agree, we can 1rst add Steiner
points to adapt in size the smaller convex hull to the larger one, and then proceed as
before. We obtain the following general assertion.

Theorem 3. For i=1; 2 let Si be a point set with hi extreme points and ki inte-
rior points. Then S1 and S2 can be triangulated compatibly by introducing at most
|h1 − h2|+max{k1; k2} Steiner points per set. The total number of introduced points
is at most |h1 − h2|+ k1 + k2.

Theorem 3 is tight for the construction it is based on, but can be slightly improved
in certain cases by exploiting Theorem 2.
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Theorem 4. Let S1 and S2 be two n-point sets whose n − k extreme points are in
8xed correspondence. For k¿3, there exist compatible triangulations using at most
k − 3 Steiner points per set.

Proof. Recall from Theorem 2 that no Steiner points are needed if k63. Let us assume
k¿4. Select any two triples T1 and T2 of interior points in S1 and S2, respectively.
Construct compatible triangulations for S1 ∪T1 and S2 ∪T2, following the proof of
Theorem 2. Applying Lemma 3 now yields at most k − 3 Steiner points, since 3
interior points have already been used in the previous construction step.

5. Remarks

It is a challenging open problem to prove our conjectures for general point sets.
Unfortunately, the constructions in the proof of Theorem 2 do not seem to general-
ize easily to the case of more interior points. Approaches to prove Conjecture 2 by
induction suQer from the lack of appropriate methods for splitting the problem. Here
is a discouraging related fact: given two quadrilaterals, one convex and the other star-
shaped, plus one interior point for each, it may not be possible to triangulate them
compatibly if the correspondence between their boundary vertices is 1xed by a cyclic
shift. See Fig. 8, where all triangulation edges for the star-shaped polygon are unavoid-
able, and the corresponding edges for the convex polygon cross.
We tested Conjecture 2 for small point set sizes, utilizing a database of combinato-

rially inequivalent point sets (i.e., order types); see [1,2]. If two point sets exhibit the
same order type then every triangulation of one set also leads to a compatible trian-
gulation for the other. By checking all diQerent pairs of order types we could verify
the conjecture for up to 9 points. Although our database provides all order types of
size up to 10, exhaustive tests turned out to be time consuming and are still incom-
plete for size 10. In fact, determining the time complexity of computing compatible
triangulations, if they exist, for two given n-point sets is an open problem.
Finally, we pose the problem of triangulating compatibly two point sets in 8xed

correspondence when Steiner points are allowed. In view of the applications mentioned
in [12], a fast algorithm using a small number of Steiner points would be of practical
relevance.
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