26 research outputs found

    Impact of Residual Transmit RF Impairments on Training-Based MIMO Systems

    Get PDF
    Radio-frequency (RF) impairments, that exist intimately in wireless communications systems, can severely degrade the performance of traditional multiple-input multiple-output (MIMO) systems. Although compensation schemes can cancel out part of these RF impairments, there still remains a certain amount of impairments. These residual impairments have fundamental impact on the MIMO system performance. However, most of the previous works have neglected this factor. In this paper, a training-based MIMO system with residual transmit RF impairments (RTRI) is considered. In particular, we derive a new channel estimator for the proposed model, and find that RTRI can create an irreducible estimation error floor. Moreover, we show that, in the presence of RTRI, the optimal training sequence length can be larger than the number of transmit antennas, especially in the low and high signal-to-noise ratio (SNR) regimes. An increase in the proposed approximated achievable rate is also observed by adopting the optimal training sequence length. When the training and data symbol powers are required to be equal, we demonstrate that, at high SNRs, systems with RTRI demand more training, whereas at low SNRs, such demands are nearly the same for all practical levels of RTRI.Comment: Accepted for publication at the IEEE International Conference on Communications (ICC 2014), 6 pages, 5 figure

    Differential Amplify-and-Forward Relaying in Time-Varying Rayleigh Fading Channels

    Full text link
    This paper considers the performance of differential amplify-and-forward (D-AF) relaying over time-varying Rayleigh fading channels. Using the auto-regressive time-series model to characterize the time-varying nature of the wireless channels, new weights for the maximum ratio combining (MRC) of the received signals at the destination are proposed. Expression for the pair-wise error probability (PEP) is provided and used to obtain an approximation of the total average bit error probability (BEP). The obtained BEP approximation clearly shows how the system performance depends on the auto-correlation of the direct and the cascaded channels and an irreducible error floor exists at high signal-to-noise ratio (SNR). Simulation results also demonstrate that, for fast-fading channels, the new MRC weights lead to a better performance when compared to the classical combining scheme. Our analysis is verified with simulation results in different fading scenarios

    Hardware Impairments in Large-scale MISO Systems: Energy Efficiency, Estimation, and Capacity Limits

    Full text link
    The use of large-scale antenna arrays has the potential to bring substantial improvements in energy efficiency and/or spectral efficiency to future wireless systems, due to the greatly improved spatial beamforming resolution. Recent asymptotic results show that by increasing the number of antennas one can achieve a large array gain and at the same time naturally decorrelate the user channels; thus, the available energy can be focused very accurately at the intended destinations without causing much inter-user interference. Since these results rely on asymptotics, it is important to investigate whether the conventional system models are still reasonable in the asymptotic regimes. This paper analyzes the fundamental limits of large-scale multiple-input single-output (MISO) communication systems using a generalized system model that accounts for transceiver hardware impairments. As opposed to the case of ideal hardware, we show that these practical impairments create finite ceilings on the estimation accuracy and capacity of large-scale MISO systems. Surprisingly, the performance is only limited by the hardware at the single-antenna user terminal, while the impact of impairments at the large-scale array vanishes asymptotically. Furthermore, we show that an arbitrarily high energy efficiency can be achieved by reducing the power while increasing the number of antennas.Comment: Published at International Conference on Digital Signal Processing (DSP 2013), 6 pages, 5 figure

    A Tractable Product Channel Model for Line-of-Sight Scenarios

    Get PDF
    We present a general and tractable fading model for line-of-sight (LOS) scenarios, which is based on the product of two independent and non-identically distributed κ\kappa-μ\mu shadowed random variables. Simple closed-form expressions for the probability density function, cumulative distribution function and moment-generating function are derived, which are as tractable as the corresponding expressions derived from a product of Nakagami-mm random variables. This model simplifies the challenging characterization of LOS product channels, as well as combinations of LOS channels with non-LOS ones. We leverage these results to analyze performance measures of interest in the contexts of wireless powered and backscatter communications, where both forward and reverse links are inherently of LOS nature, as well as in device-to-device communications subject to composite fading. In these contexts, the model shows a higher flexibility when fitting field measurements with respect to conventional approaches based on product distributions with deterministic LOS, together with a more complete physical interpretation of the underlying propagation characteristics.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore