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Abstract—We present a general and tractable fading model
for line-of-sight (LOS) scenarios, which is based on the product
of two independent and non-identically distributed κ-µ shad-
owed power envelopes. Simple closed-form expressions for the
probability density function, cumulative distribution function and
moment-generating function are derived, which are as tractable
as the corresponding expressions derived from a product of
Nakagami-m random variables. This model simplifies the chal-
lenging characterization of LOS product channels, as well as
combinations of LOS channels with non-LOS ones. We leverage
these results to analyze performance measures of interest in the
contexts of wireless powered and backscatter communications,
where both forward and reverse links are inherently of LOS
nature, as well as in device-to-device communications subject to
composite fading. In these contexts, the proposed model shows
a higher flexibility when fitting field measurements with respect
to conventional approaches based on product distributions with
deterministic LOS, together with a more complete physical
interpretation of the underlying propagation characteristics.

Index Terms—Backscatter communications, fading channels,
κ-µ shadowed fading, product channel, statistics, wireless pow-
ered communications, composite fading.

I. INTRODUCTION

A. Motivation and related literature

The statistical characterization of products of random vari-
ables (RVs) plays an important role in a wide range of
applications, including statistical testing [2], hydrology [3],
cosmology [4] and wireless communications [5]. Even for
the simplest case where only two RVs are considered, i.e.,
Z = XY , with X and Y being independent, the statistical
characterization of Z is usually much more involved that the
individual distributions of X and Y .

In wireless communications, and more specifically in the
context of wireless channel modeling, Z is usually referred to
as product channel or cascaded channel. The product channel
naturally arises in the context of communication systems
assisted by relays [6], when modeling propagation effects
such as keyholes [7], diffraction [8] and composite fading
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[9], or turbulence-induced scintillation in free-space optical
communications [10]. Further scenarios on which the product
channel characterization is essential also include wireless pow-
ered communications (WPC) [11–13] and backscatter commu-
nications [14, 15]. Thus, the statistical characterization of the
product channel is of paramount relevance for understanding
the performance limits of wireless communication systems
operating in these scenarios, either in line-of-sight (LOS) or
non-LOS (NLOS) propagation conditions.

Taking a deeper look into the literature, one alternative in
many scenarios relies on approximating the resulting product
channel as a product of two NLOS fading channels [11–15]
regardless of the propagation conditions. The main motivation
behind this approach is defining a tractable framework, since
the characterization of LOS product (or LOSxLOS) channels
is very challenging and, up to now, has not been given in
closed-form, but in terms of double infinite sums of special
functions [16]. Therefore, for the sake of tractability, some
authors have approximated both LOS links as NLOS ones,
which have closed-form characterization [6, 8]. Indeed, using
the Nakagami-m distribution for approximating the Rician
distribution is a classical approach which can simplify the
characterization of some scenarios [17, 18]. In other scenar-
ios, however, the results derived therein can give inaccurate
approximations when the propagation conditions are clearly
LOS. Moreover, the approximation of the Rician distribution
through a Nakagami-m distribution has severe limitations
related to the different diversity order of such distributions
[19]; this is especially relevant in the high signal-to-noise-ratio
(SNR) regime, which is of key importance when analyzing
system performances. Recent results extend the characteri-
zation of the LOS product channel distributions to the κ-µ
case [20, 21], as well as combinations of LOS and NLOS
cases involving products of κ-µ and η-µ or α-µ channels
[22]. In all these works, the probability density function (PDF)
and cumulative distribution function (CDF) have complicated
forms similar to those involving Rician product channels.

On a related note, the consideration of product channels in
scenarios on which the LOS component randomly fluctuates
(e.g., due to human-body shadowing) allows for additional
flexibility from a physical perspective, at the expense of
an increased mathematical complexity. This is the case, for
instance, of the product channel model analyzed in [23], on
which a Rician shadowed product distribution is analyzed in
the context of satellite communications. Despite its interesting
features that allow an improved physically-based modeling, an
exact characterization of the PDF and CDF was unattainable.
Hence, only approximate expressions for the PDF and CDF
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were proposed based on the Meijer G-function. With all these
considerations, the literature is lacking LOS product channel
models which are analytically tractable.

B. Main contributions and organization

In this paper, we aim to characterize product channels in
LOS scenarios. For the sake of generality, we consider the
case of fluctuating LOS components, which in turn will help
simplifying the problem from an analytical perspective. We
will introduce a product channel model based on the κ-µ
shadowed fading distribution [24, 25], built as the product
of two independent and non-identically distributed (INID) κ-
µ shadowed power envelopes with integer fading parameters.
This includes the Rician shadowed product, the Rician product
and the κ-µ product (or composite) models as a special cases.
For the sake of shorthand notation, we will refer to this
new fading distribution as the P-distribution (where P stands
for product). The P-distribution inherits the same physical
characteristics inherent to the κ-µ shadowed fading model
from which it originates and, most notably, its ability to model
random fluctuations on the LOS components. The results
here presented for the κ-µ shadowed product channel can
unify the analysis of a vast set of product models as special
cases, including LOSxLOS product channels based on the κ-µ
distribution, as well as LOSxNLOS and NLOSxNLOS product
channels based on the Nakagami-m and Rayleigh distributions
[26]. The key contributions of this paper can be summarized
as:
• We introduce a product channel distribution, namely the
P-distribution, well-suited for LOS scenarios on which
the LOS components may be potentially subject to ran-
dom fluctuations.

• Compared to state-of-the-art alternatives [16, 20–23], the
P-distribution brings a threefold benefit: (a) reduced
analytical complexity, similar to that of the Nakagami-
m product case (not requiring infinite summations or
evaluations of Meijer-G functions); (b) improved physical
underpinnings (due to its ability to incorporate random
fluctuations of the LOS components together with the
clustering of multipath waves); (c) better fit to field
meaurements (which is supported by practical evidences
in different scenarios).

• We exemplify its applicability in rather dissimilar scenar-
ios, ranging from WPC, to backscatter communications
and device-to-device (D2D) communications.

The remainder of this paper is structured as follows. The
chief probability functions of the P-distribution are introduced
in Section II. Then, the application of this distribution to
several scenarios of interest is addressed in Section III: WPC,
backscatter and D2D communications. Numerical results are
presented in Section IV, and main conclusions are drawn in
Section V.

II. STATISTICAL CHARACTERIZATION

In this section, we will derive the chief probability functions
characterizing the P-distribution, which is built from the prod-
uct of two INID κ-µ shadowed RVs. Throughout this paper,

we will consider the distributions associated to the power
envelope in κ-µ shadowed fading channels (or equivalently, the
instantaneous receive SNR γ). The distribution of the received
signal envelope r can be easily computed through a simple
change of variables, assuming that γ ∝ r2.

A. Preliminary results

We will first present some preliminary results that will
become relevant for the following derivations.

Lemma 1 (SNR distribution under κ-µ shadowed fading with
integer parameters [27]): Let γ be a squared κ-µ shadowed
RV with mean γ̄ and shape parameters κ, µ and m [24]. If the
parameters µ and m are restricted to be positive integers, then
for any arbitrary non-negative real κ the PDF and CDF of γ
are given by [27, eq. (4-10)]

fS (x) =
M∑
j=0

Cj
xm j−1e

− x
Ω j

Ω
m j

j

(
mj − 1

)
!︸            ︷︷            ︸
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Cje
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(
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)r
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where M and the set of parameters {Cj,mj,Ωj}j=1,...,M are
expressed in terms of γ̄, κ, µ and m according to Table I.
In (1), fK (·) represents the PDF of a squared Nakagami-m
distribution, (i.e., a Gamma distribution).

Note here that, according to Lemma 1, the distribution of
the SNR under κ-µ shadowed fading with integer parameters
m and µ can be expressed as a finite mixture of squared
Nakagami-m (or Gamma) distributions. To theoretically obtain
the κ-µ distribution as a special case, we let m → ∞. The
Rician distribution arises then as a special case by setting
µ = 1.

Lemma 2 (Product of Two Squared Nakagami-m RVs): Let
ZNak = WŴ be the product of two INID squared Nakagami-m
RVs W and Ŵ with means Ω and Ω̂, where the corresponding
shape parameters m and m̂ are arbitrary positive integer
numbers. Then, the corresponding PDF and CDF are given
by
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)
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where Kν is the modified Bessel function of the second kind,
and Γ(·) is the Gamma function.

Proof: The PDF follows from the corresponding expres-
sion given in [6], or as a special case of [28, eq. (16)], after
performing a simple random variable transformation of the
type Y = X2. The CDF is a particular case of [12, eq. 8].

The distribution described in Lemma 2 is essentially a
Gamma-Gamma (ΓΓ) distribution, up to a trivial re-scaling
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TABLE I
PARAMETER VALUES FOR THE SNR DISTRIBUTION UNDER κ-µ SHADOWED FADING WITH INTEGER µ AND m,

Case µ > m Case µ ≤ m
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by Ω. For the sake of notation simplicity, in this work we will
refer to this distribution as a ΓΓ distribution.

B. Main results

By means of the previous results and considerations, we will
now characterize the distribution of the product of two INID
κ-µ shadowed fading RVs with integer fading parameters.

Proposition 1 (The P-distribution as a finite mixture of ΓΓ
distributions): Let Z be the product of two INID squared κ-µ
shadowed RVs X and X̂ with means γ̄ and γ̃, respectively.
The corresponding shape parameters κ and κ̂ are arbitrary non-
negative real numbers and the remainder shape parameters µ
and m for X , and µ̂ and m̂ for X̂ , are positive integers. Under
these conditions, Z = X X̂ is distributed as a ΓΓ finite mixture
with the following PDF

fZ (z) =
M∑
j=0

M̂∑
h=0

CjĈh×

2 z
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)
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(5)

where the parameters M and {Cj,mj,Ωj}j=1,...,M are
computed thanks to Table I. For the parameters M̂ and
{Ĉh, m̂h, Ω̂h}h=1,...,M̂ , we can also employ Table I when one
substitutes γ̄, κ, µ and m by γ̃, κ̂, µ̂ and m̂, respectively.

Proof: See Appendix A.
Proposition 1 states that the P-distribution can be expressed

in closed-form as a finite sum of well-known special functions.
For µ = µ̂ = 1, a Rician Shadowed product distribution
is obtained as a special case. We also note that a simplified
form for the PDF of the κ-µ product (or composite) channel
distribution recently derived in [21] arises as a special case of
(5). This is formally stated in the following corollary:

Corollary 1 (The κ-µ product distribution): Let us consider
the PDF expression for the P-distribution in (5). Then, when

{m, m̂} → ∞ and for arbitrary non-negative real κ, κ̂, µ and µ̂
the PDF of the κ-µ product distribution is obtained as follows:

fZ (z) =
∞∑
j=0
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2 z

mj+m̂h
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(6)

with Cj = e−κµ (µκ)
j

j! , Ĉh = e−κ̂µ̂ (µ̂κ̂)
h

h! , Ω = γ̄
µ(1+κ) , Ω̂ =

γ̃
µ̂(1+κ̂) ,

mj = µ + j, m̂h = µ̂ + h, which is equivalent to that given in
[21, eq. (5)], although in a simpler form, and coincides with
that in [20, eq. (8)].

Proof: See Appendix B.
We see that the P-distribution is more general and simpler

than the state-of-the-art product distributions [16, 20, 21],
which also arise as special cases when {m, m̂} → ∞. Hence,
we advocate for its use as the reference product channel
model in a communication-theoretic context. This will be
later supported by both theoretical and practical evidences in
different scenarios of interest.

The effect of the fading parameters in this model is in-
herited from the underlying κ-µ shadowed distributions from
which it’s built, and has been well-documented in the related
literature [24–27]. In the next set of figures, we exemplify the
impact of the different parameters of the P-distribution on the
shape of the PDF. Monte Carlo (MC) simulations are included
in all instances.

We first set fixed values for the parameters µ = 1, µ̂ = 2,
m = 5, m̂ = 10 and let κ and κ̂ vary to generate Fig. 1. In
this situation, as the magnitude of the specular components
associated to LOS propagation becomes dominant (i.e., a
larger value of κ or κ̂), the probability of having a low SNR
is decreased and the shape of the PDF around zero changes
to reflect such behavior.

In Fig. 2, the parameter values κ = 4, κ̂ = 2, m = 5, and
m̂ = 10 are set and now µ and µ̂ change. As the number of
clusters rises, which implies a milder multipath fading, the
probability of having a better SNR is increased. Again, the
shape of the PDF is modified accordingly.
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Fig. 1. Normalized power envelope P-distribution for different values of κ
and κ̂, with µ = 1, µ̂ = 2, m = 5 and m̂ = 10. Solid lines correspond to
the exact PDF derived from eq. (5) in the paper, markers correspond to MC
simulations.
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Fig. 2. Normalized power envelope P-distribution for different values of µ
and µ̂, with κ = 4, κ̂ = 2, m = 5, and m̂ = 10. Solid lines correspond to
the exact PDF derived from eq. (5) in the paper, markers correspond to MC
simulations.

Finally, we consider µ = 1, µ̂ = 2, κ = 10, κ̂ = 3, and
modify m and m̂. When the dominant specular components
severely fluctuate (i.e., very low values of m and m̂), the
probability of having a low SNR grows. In this situation, the
shape of the PDF resembles that of the case with low {κ, κ̂}
in Fig. 1 or low {µ, µ̂} in Fig. 2. As these fluctuations are
reduced, i.e., m and m̂ are increased, the probability of having
a better SNR is also increased.

Proposition 2 (CDF of the P-distribution as a finite mix-
ture): Let Z be the product of two INID squared κ-µ shadowed
RVs X and X̂ with means γ̄ and γ̃, respectively. The corre-
sponding shape parameters κ and κ̂ are arbitrary non-negative
real numbers and the remainder shape parameters µ and m
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Fig. 3. Normalized power envelope P-distribution for different values of m
and m̂, with µ = 1, µ̂ = 2, κ = 10 and κ̂ = 3. Solid lines correspond to
the exact PDF derived from eq. (5) in the paper, markers correspond to MC
simulations.

for X , and µ̂ and m̂ for X̂ , are positive integers. Under these
conditions Z = X X̂ has the following CDF

FZ (z) =
M∑
j=0

M̂∑
h=0

CjĈh×1 −
m j−1∑
k=0

2
k!Γ (m̂h)

(
z

ΩjΩ̂h

) k+m̂h
2

× Km̂h−k

(√
4 z

ΩjΩ̂h

)︸                                                                     ︷︷                                                                     ︸
FΓΓ(z;{Ω j ,m j };{Ω̂h ,m̂h})

(7)
where the parameters M and {Cj,mj,Ωj}j=1,...,M , M̂ and
{Ĉh, m̂h, Ω̂h}h=1,...,M̂ are those indicated in Proposition 1.

Proof: The CDF can be derived from the PDF such as

FZ (z) =
∫ z

0
fZ (t)dt. (8)

From Proposition 1, we have

FZ (z) =
M∑
j=0

M̂∑
h=0

CjĈhFΓΓ
(
z;

{
Ωj,mj

}
;
{
Ω̂h, m̂h

})
(9)

where FΓΓ(·) is given by equation (4).
Thus, the CDF of the P-distribution is also given in a
simple closed-form. This expression has important relevance
in practice, since the CDF of the product of INID Rician
and κ-µ RVs has a very complicated form, which involves a
double infinite sum of Meijer G-functions [29, eq. (23)] [21,
eq. (11)]. Here, the P-distribution function is only given in
terms of finite sums of modified Bessel functions of the second
kind. Moreover, this expression also simplifies the CDF of the
product built from independent Rayleigh and Rician RVs [29].
It is also possible to obtain an alternative expression for the
CDF of the κ-µ product distribution by letting {m, m̂} → ∞,
as stated in the following corollary:
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Corollary 2 (CDF of the κ-µ product distribution): Let us
consider the PDF expression for the κ-µ product distribution
in (6). Then, for integer µ and arbitrary non-negative real κ, κ̂
and µ̂, the CDF of the κ-µ product distribution is given by:

FZ (z) =
∞∑
j=0

∞∑
h=0

CjĈh

×

1 −
m j−1∑
k=0

2
k!Γ (m̂h)

(
z

ΩΩ̂

) k+m̂h
2

× Km̂h−k

(√
4 z

ΩΩ̂

)︸                                                               ︷︷                                                               ︸
FΓΓ(z;{Ω,m j };{Ω̂,m̂h})

(10)
where the parameters {Cj,mj,Ω} and {Ĉh, m̂h, Ω̂} are those
indicated in Corollary 1.

Proof: The proof is equivalent to that of Proposition 2,
but starting from the PDF expression in Corollary 1.

Also note that a similar expression can be given for the
moment-generating function (MGF), as well as the central mo-
ments, which are very useful for certain wireless applications.
For the sake of attaining a complete statistical characterization
of the P-distribution, these expressions are provided in the
following propositions.

Proposition 3 (MGF of the P-distribution as a finite mix-
ture): Let Z be the product of two INID squared κ-µ shadowed
RVs X and X̂ with means γ̄ and γ̃. The corresponding shape
parameters κ and κ̂ are arbitrary non-negative real numbers and
the remainder shape parameters µ and m for X , and µ̂ and m̂
for X̂ , are positive integers. Under these conditions Z = X X̂
has the following MGF

MZ (s) =
M∑
j=0

M̂∑
h=0

CjĈh
e
− 1

2s Ω j Ω̂h(
−sΩjΩ̂h

) mj+m̂h−1
2

×W
−

mj+m̂h−1
2 ,

mj−m̂h
2

(
−

1
sΩjΩ̂h

) (11)

where Wa,b(·) denotes the Whittaker function [30, eq.
9.220.4], which can be expressed in terms of the Tricomi
hypergeometric function.

Proof: From (3), the MGF of a ΓΓ RV can be expressed
as

MΓΓ (s) = 2

(ΩΩ̂)
m+m̂

2 Γ(m)Γ(m̂)

∫ ∞

0
x
m+m̂

2 −1esxKm−m̂

(√
4 x
ΩΩ̂

)
dx.

(12)
Applying [31, eq. 4.17.37] to (12) and considering Proposition
1 completes the proof.

Proposition 4 (Central moments of the P-distribution): Let
Z be the product of two INID squared κ-µ shadowed RVs
X and X̂ with means γ̄ and γ̃. The corresponding shape
parameters κ and κ̂ are arbitrary non-negative real numbers
and the remainder shape parameters µ and m for X , and µ̂
and m̂ for X̂ , are positive integers. Under these conditions,
Z = X X̂ has the following central moments

E [Zn] =

M∑
j=0

M̂∑
h=0

CjĈh
(Ω j Ω̂h)

n

Γ(m j )Γ(m̂h )

(
mj + n − 1

)
! (m̂h + n − 1)!.

(13)

g

Fig. 4. System Model for Wireless Powered Communications.

Proof: See Appendix C.

III. APPLICATIONS

We here present different applications of the main results.
They can be divided into three parts, since they are associated
to different types of communication systems. First, we employ
the results in the context of wireless powered communications.
Then, we focus on backscatter communications, where we
define two particular set-ups: 1) RF modulated backscatter,
and 2) dyadic backscatter systems. Finally, we exemplify
the applicability of the P-distribution in the context of D2D
communications.

A. Wireless Powered Communications

Wireless communication systems have been classically an-
alyzed under the assumption of ideal power availability for
transmitting and receiving signals. However, in many scenar-
ios such as wireless sensor networks or RFID systems, the
autonomy (and therefore performance) of mobile devices is
limited in practice by the finite capacity of their batteries.
Even though batteries can be replaced or recharged, the cost
in time, money and flexibility is not acceptable in many
situations, and therefore other alternatives relying on ambient
energy harvesting are considered. Besides solar or wind, the
use of RF energy is recently being considered as an alternative
for the operation of wirelessly powered devices. Specifically,
wireless powered communications are a promising solution to
overcome such limitations, by using dedicated power beacons
(PBs) that wirelessly convey the required energy to the net-
work elements to enable their operation [32].

Let us consider the scenario in Fig. 4 [11, 12], on which a
source S communicates with a destination D with the help of
dedicated PBs that wirelessly transfer energy to S. Both S and
D are equipped with a single antenna, while PBs are equipped
with N antennas. The system operation follows a harvest-then-
transmit-like policy for every time transmission interval T , as
follows: during the first τT seconds (with 0 < τ < 1), the
source S harvests energy from the PBs. During the energy
harvesting phase, the received signal at S can be expressed as

yS =

√
P
dα1

hxS + nS (14)

where P is the transmit power at the PB, d1 denotes the
distance between PB and S, α is the path loss exponent, h is an
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N-dimensional row vector and xS is an N-dimensional column
vector, which denote the channel response and the transmitted
symbols, respectively, and nS is the additive white Gaussian
noise (AWGN) with variance N0. The elements of h = [hi]
(i = 1 . . . N) are assumed to be independent and identically
distributed (IID) with unitary variance. Assuming xS is formed
with optimal beamforming and nS can be neglected during the
harvesting phase, the total energy received at the end of the
first phase is [11, eq. (5)]

En =
η ‖h‖2 PτT

dα1
(15)

where 0 < η < 1 is the energy conversion efficiency.
In the second phase, S transmits information to D using the

energy harvested in the first phase during (1 − τ)T seconds.
Hence, the received signal yD at D is given by

yD =

√
En

(1 − τ)Tdα2
gs0 + nd (16)

where d2 denotes the distance between S and D, g is the
channel response following an arbitrary fading distribution
with unit variance, s0 is the information symbol with unit
energy, and nd is AWGN with variance N0. Therefore, the
instantaneous end-to-end signal to noise ratio (SNR) can be
computed as

γ =
τη ‖h‖2 |g |2 P
(1 − τ) dα1 dα2 N0

. (17)

Direct inspection of (17) reveals that the distribution of γ
is that of the product of ‖h‖2 and |g |2, which is ultimately
related to the distribution of the product of the underlying
fading channels between PBs and S, and between S and D.
As argued in [11], the link between PBs and S is inherently
LOS because of the relatively short distance between both
agents. However, the consideration of the Rician distribution to
model the small-scale fading in the PBs-S link is associated to
a higher mathematical complexity. For this reason, the Rician
distribution was approximated by the Nakagami-m distribution
in [11], with m = (1+K)2/(1+2K). In turn, the S-D link will be
NLOS or LOS depending on the specific set-up: both situations
were addressed in [11] and [12] by resorting to Rayleigh and
Nakagami-m fading, respectively.

In the most general set-up for the system model in Fig.
4, both the PBs-S and the S-D links are LOS, and therefore
the product channel associated to LOS scenarios is the natural
choice for characterizing the behavior of the end-to-end SNR.
We here propose the use of the P-distribution introduced in
Section II for this application, as a workaround to characterize
the distribution of γ when the Rician distribution is considered.
Because ‖h‖2 can be expressed as the sum of N squared
Rician RVs (i.e., a κ-µ distribution with κ = K and µ = N),
and assuming |g |2 to be Rician distributed, the distribution
of γ is that of the product of κ-µ and Rician RVs. Thus, it
arises as a special case of the P-distribution. Compared to the
approximation in [11], our approach has a number of benefits
which can be summarized as follows:
• The Rician shadowed distribution (κ-µ shadowed distri-

bution with µ = 1) and the Rician distribution have a

diversity order equal to one, as opposed to the Nakagami-
m distribution, for which the diversity order is m. Thus,
approximating the Rician distribution by the Rician shad-
owed distribution does not affect the diversity order. As
we will later see, this has an impact on the asymptotic
performance for low SNR values.

• In practice, LOS channels will not be purely Rician
because of the inherent fluctuation of the LOS component
[33]. In fact, the κ-µ shadowed fading model always
provides a better fit to real measurements than the Rician
fading model alone, just because the latter is a special
case of the former. Thus, the P-distribution is not only
simpler and more general than the Rician product distri-
bution, but also closer to the real behavior of the fading
channel.

With all the above considerations, the performance of WPC
systems in LOS scenarios can be easily evaluated when
considering the P-distribution. Assuming that S transmits at
a constant rate Rc , which may be subjected to outage due to
fading, the average throughput can be evaluated as

RDC = (1 − Pout) Rc (1 − τ) (18)

where Pout = Pr {γ < γth} is the outage probability, being γth
the minimum SNR required for a reliable communication. As
previously stated, the distribution of the product ‖h‖2 · |g |2
can be modeled as a product of two independent squared κ-µ
shadowed variables with a proper choice of parameters. Thus,
the outage probability can be obtained from Proposition 2 as

Pout = Fγ

(
(1 − τ) dα1 dα2 N0

τηP
γth

)
. (19)

B. Backscatter Communications

Backscatter radio systems base their operation in the ability
to detecting power from specular reflections, and can be traced
back to the late 40’s [34]. These systems have been widely
used in tropospheric communications or radar, evolving to
other applications such as RFID [29] and RF modulated
backscatter (RFMB), also known as modulated radar cross
section or sigma modulation [14].

Here, we revisit the results provided in [14] [29] and
[35], where backscatter communications are modeled with
Rician product channels. We will see that employing the
P-distribution simplifies the theoretical analysis, while also
improving the accuracy when fitting to real channel measure-
ments.

1) RF Modulated Backscatter Systems:
RFMB, also known as modulated radar cross section or
sigma modulation, is an RF technique useful for short range,
typically 1 − 15m, and low data rate applications, i.e., up
to tens of kbps [36]. Since this technique does not employ
amplifiers, service life for system batteries is largely improved.
This technique has several applications, including nonstop toll
collection, electronic shelf tags, freight container identification
and chassis identification in automobile manufacturing [14].

Its operation principle can be illustrated by Fig. 5. The RF
carrier is modulated at the low-power modulator, which gives
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Fig. 5. System Model for RFMB.

a reflected signal, also known as backscattered signal. The
exact characterization of such resulting channel involves the
product of two LOS RVs, i.e., one can express the received
signal power PR as [29, eq. (12)]

PR = P̄R |h f |
2 |hb |2 (20)

where P̄R is average power received by the receiver antenna,
while h f and hb are the normalized fading coefficients of
each link. From (20), we observe that the resulting channel
is equivalent to a cascade of two channels due to the forward
and reverse links, so we can use the P-distribution to describe
the channel behavior. For instance, the missed detection
probability (or equivalently, the outage probability) in this
scenario, i.e., the probability that the backscattered received
signal is below a certain sensitivity threshold SR, can be
calculated by simply evaluating the derived expression for the
CDF as

D , Pr{PR < SR} = FPR (SR) . (21)

2) Dyadic Backscatter Systems:
When compared to the previous backscatter system presented,
the so-called dyadic ones employ multiple antennas in both
forward an reverse links to reduce the fading severity. The
most general set-up comprises an M-antenna reader trans-
mitter, L RF tags and an N-antenna reader receiver, and the
equivalent channel model is usually referred to as the dyadic
backscatter channel (DBC) [15, 35]. The use of multiple
RF tags effectively reduces the severity of fading in NLOS
scenarios, as the equivalent channel can be seen as a product
channel built from the sum of products of Rayleigh channels,
thus taking advantage of the pinhole diversity as L increases
[15, 35].

The theoretical formulation of the DBC is based on the
Rayleigh product distribution, mainly due to tractability rea-
sons. However, in these scenarios the forward and reverse links
are inherently LOS, as argued before. Thus, a better fit to field
measurements is exhibited when considering a DBC built from
the product of Rician fading channels.

Let us consider the system model in Fig. 6. The transmitter
unit is equipped with M antennas and the receiver unit has

Fig. 6. System Model for Dyadic Backscatter Channel.

N antennas. The resulting channel is the cascade of two
channels, due to the forward and backscatter links. We denote
it M × L × N channel. The signal amplitude yj received at the
jth antenna is proportional to the sum of M products of the
form

yj ∝ (h1 + h2 + ... + hM ) gj (22)

where hi and gj are the forward and backscatter channel
responses from antennas i and j, modeled as complex Gaus-
sian circularly symmetric RVs with variances σ2

f and σ2
b
,

respectively. Assuming independency among the hi elements,
the sum (h1 + h2 + ... + hM ) is also a complex Gaussian
variable but of variance Mσ2

f . The effect of using M antennas
translates into a scaling of the overall power received at the j-
th antenna port by M . Thus, yj is proportional to a product of
two complex Gaussian variables. In a general LOS scenario,
the signal envelope

��yj �� will be the product of two Rician
variables. As in the previous sections, we can characterize such
product with the P-distribution, and characterize the outage
performance in such scenario by direct evaluation of the CDF
as in (21).

C. D2D communications

Very recently, a composite κ-µ fading model was used
in [21] in the context of D2D communications operating in
the 5.8 GHz band. Different indoor and outdoor scenarios
covering LOS and NLOS conditions were considered, and the
composite κ-µ fading model was shown to provide a good fit
to field measurements1. However, as the authors in [21] point
out, some counterintuitive results were obtained for the cases
on which LOS propagation was considered. Specifically, the
value for the parameter κ was lower than one despite the clear
LOS set-up. A plausible explanation for this was that the LOS
was affected by human-body shadowing caused by the random
movements of the test subjects, causing a partial obstruction
of the dominant signal component. Motivated by the ability
of the P-distribution to model this sort of physical effect, we
will later show how both the LOS condition of the link and

1Details on the specific measurement set-up can be found in [21], and are
not reproduced here for the sake of compactness.
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the fluctuation on the LOS component are captured by our
model, while also providing a good fit to field measurements.

IV. NUMERICAL RESULTS

This section contains all the numerical results regarding the
wireless communication applications presented in the previous
section. For the sake of clarity, we have mirrored the structure
of the previous section, i.e., we have divided this section
in three main parts corresponding to the wireless powered,
backscatter and D2D communication numerical results.

A. Wireless Powered Communications
We now use the analytical expressions in Section III-A to

study the system performance of WPC systems operating in
LOS conditions. Our aim is to evaluate to what extent the
classical approximation of the Rician distribution through a
Nakagami-m distribution [17, 18] can be used in the context of
WPC scenarios. For the sake of comparison and in coherence
with those used in [11], the following set of parameters is
considered: Rc = 1 bps/Hz, which implies an outage SNR
threshold given by γth = 2Rc − 1 = 1, the harvesting time is
set to 50% of the interval T , the energy conversion efficiency
is set to η = 0.4, the path loss exponent is set to α = 2.5, and
distances are set to be d1 = 8 m and d2 = 15 m, respectively.

In Fig. 7, the throughput obtained from (18) is evaluated as a
function of the average SNR, for different numbers of antennas
at the PBs. Because of the beamforming strategy used by the
PBs, the distribution of ‖h‖2 is that of a squared κ-µ RV. We
first assume that the channel between the source S and the
destination D is NLOS as in [11], so it can be safely modeled
by a Rayleigh fading channel. Thus, we here compare two
alternatives for evaluating (18): the first one is approximating
‖h‖2 by a squared Nakagami-m (gamma) distribution with m =
(1 + K)2/(1 + 2K) · N as in [11], and then using the statistics
of a Nakagami-Rayleigh product channel; the second one is
using the P-distribution with κ = K , µ = N , κ̂ = 0, µ̂ = 1, and
sufficiently large m and m̂ (i.e., m = m̂ = 20). We consider
K = 3+

√
12 as in [11]. We observe that both approaches yield

very similar results for the set of parameters here considered.
Thus, the approximation can be safely used when considering
a product channel built from a LOS and a NLOS individual
channels, for the evaluation of (18) for the whole range of
P/N0 values here considered.

However, things change when both channels are considered
to be LOS. In Fig. 8, the S-D link is also assumed to be LOS
with equal K parameter as in Fig. 7. For higher values of P/N0,
we now see a noticeable difference between the approximation
in [11] and the exact result using the P-distribution with
κ = κ̂ = K , µ = N , µ̂ = 1 and m = m̂ = 20, which
perfectly matches the MC simulations run for the Rician
product case. This becomes even more evident when analyzing
the asymptotic behavior of the outage probability in Fig.
9, where the different diversity orders of the Nakagami-m
distribution and the Rician distribution can be observed. Thus,
it is not recommended to use the Nakagami-m product channel
as an approximation of the Rician product channel, due to
the lack of accuracy when modeling LOSxLOS channels,
especially in the high-SNR regime.
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Fig. 7. Average Throughput RDC vs. average SNR, for different values of
N . LOS×NLOS scenario. MC simulations correspond to the Rician-Rayleigh
case.
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case.

B. Backscatter Communications

We here employ the theoretical expressions from Section
III-B to exemplify the advantages of our model with respect
to other approaches available in the literature for different
backscatter communication systems. We will discuss the ac-
curacy of the proposed model, as well as we will quantify
its most relevant characteristics, with a special focus on its
flexibility for fitting purposes.

1) RF Modulated Backscatter Systems:
We here consider the scenario in [14], which has been de-
scribed in Section III-B1. Like [14], we assume that both
forward and reverse links have the same statistics. Fig. 10
shows a comparison between the CDF measurement performed
in [14], the Rician-Rician fitting provided in [14] and the cor-
responding theoretical curve obtained with the P-distribution.
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In addition to simplifying the characterization of such product
LOS channel, we highlight that there is an outstanding agree-
ment between measurements and the theoretical analysis with
the P-distribution. Although the Rician model is theoretically
obtained by tending m to infinity, we obtain the best fit with
a moderate value of the shadowing parameter (m = 4) and a
slightly larger κ. This is justified in Appendix D, where we
see that the CDF under κ-µ fading is almost identical to the
κ-µ shadowed fading CDF with finite m > µ and larger κ. By
only evaluating 64 (3 nested finite sums of 4 terms) modified
Bessel of second kind, which is immediate, we see a slightly
better fitting with our P-distribution than the corresponding
one with the Rician product model in [14]. To evaluate the
improvement, we use an error factor ε based on a modified
version of the Kolmogorov-Smirnov (KS) statistic, i.e.,

ε , max
x
| log10 F̃Z (x) − log10 FZ (x)| (23)

where F̃Z (x) and FZ (x) are the empirical and theoretical CDFs,
respectively. Note that the ε factor is defined as in [37]
using the log-CDF, in order to preponderate those regions
corresponding to low SNRs, and which ultimately determine
the performance measures of interest in communication theory.
With the above definition, a value of ε = 1 corresponds to a
difference of one order of magnitude between empirical and
theoretical CDFs.

The procedure followed for the fitting is described as
follows: we bound the maximum value of m to be considered
in the fitting (m ≤ 30), and then we find the values of κ and µ
that minimize the KS statistic for a given integer m. We finally
choose the set of parameters κ, µ and m that achieve a minimal
value of the KS statistic, which in this case are κ = 2.6 and
m = 4, with µ = 1 as in the Rician case. With such KS
statistic, the error factor value for the fitting proposed in [14]
with the Rician product model is εRician = 0.0882, while the
corresponding one with the P-distribution is εP = 0.0793.

Therefore, the advantages of using the P-distribution in-
stead of the classical Rician product distribution are evident.
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Fig. 10. Empirical vs. theoretical CDFs of RF modulated backscatter system.
Rician-Rician fitting with K = 1.90 (i.e., K = 2.8dB) in [14].

The analysis of systems that involve two different communica-
tion LOS links is simplified, which facilitates the computation
of relevant performance measures, and, at the same time, using
the P-distribution does not compromise the accuracy when
fitting measurements, but rather improves it.

2) Dyadic Backscatter Systems:
Three different DBCs are here considered: 1× 1× 1, 1× 2× 1
and 1×2×2 configurations, i.e., we consider single-tag (STAG)
and double-tag (DTAG) configurations, with a single antenna
at the transmitter side, and one or two antennas at the receiver
side. There are two sets of measurements, which correspond
to the different configurations for the STAG and DTAG cases.
Using the original notation in [35], they are referred to as Rx1,
Rx2 and MRC (since maximal ratio combining is performed
in the 2-receive antenna configuration) in Fig. 11 and Fig.
12, respectively. Further details on the specific measurement
set-up can be found in [35].

Figs. 11 and 12 present the empirical results for the DBC
provided in [35, Fig. 8a] and [35, Fig. 8b]. They also depict
two different fittings with the Rician product (i.e., m → ∞)
and the P distributions. Specifically, the empirical CDFs from
measured data are represented using dotted lines, whereas the
Rician product and the P distribution fittings are represented
using dashed and solid lines, respectively. Different colors
have been used to identify the CDFs at Rx1, Rx2 and after
MRC. We see that the empirical CDFs are well modeled with
both LOS product models. To quantify the goodness of each
fitting, we have computed the KS error factor defined in (23).
Table II presents the values of this error factor for each case,
as well as the distribution parameters used for the fitting in
each case. In general terms, we observe that the simpler P-
distribution always provides a better fit than the Rician product
distribution. In some cases, e.g, in the DTAG scenario in Fig.
12, we see that the fitted CDFs are practically overlapped for
the single antenna configurations. However, the KS error factor
obtained for the P-distribution is always better than that of
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TABLE II
PARAMETER VALUES AND KS ERROR FACTOR ε FOR FIGS. 11 AND 12

.

STAG DTAG
Rx1 Rx2 MRC Rx1 Rx2 MRC

Rician K = 7, K̂ = 7 K = 5, K̂ = 4.9 K = 8.1, K̂ = 8.2 K = 8, K̂ = 7.9 K = 7.9, K̂ = 7.9 K = 11, K̂ = 15
P κ = 12, κ̂ = 12.1 κ = 8, κ̂ = 8.1 κ = 10.1, κ̂ = 12 κ = 10, κ̂ = 9.9 κ = 11, κ̂ = 11 κ = 12, κ̂ = 15

µ = 1, µ̂ = 1 µ = 1, µ̂ = 1 µ = 1, µ̂ = 2 µ = 1, µ̂ = 1 µ = 1, µ̂ = 1 µ = 1, µ̂ = 2
m = 9, m̂ = 9 m = 8, m̂ = 8 m = 8, m̂ = 10 m = 20, m̂ = 21 m = 15, m̂ = 15 m = 30, m̂ = 20

εRician 0.1135 0.3848 0.3255 0.2107 0.2589 0.3282
εP 0.1067 0.3542 0.3172 0.2086 0.2555 0.2660
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Fig. 11. Empirical vs. theoretical CDFs in [35, Fig. 8a] for a STAG
configuration. Colored lines indicate the CDFs at Rx1 (black), Rx2 (teal)
and after MRC (red). Parameter values for the fitting with Rician product and
P-distribution are summarized in Table II.

the Rician product case, especially in the STAG scenario. We
also see that an improved fit is obtained for the dual-antenna
configuration using MRC when considering the P-distribution
with µ̂ = 2. This is coherent with the underlying physical set-
up, as using two receive antennas with MRC is equivalent to
considering two clusters, which is naturally captured by the
P-distribution. We also see that for the DTAG configuration,
the use of two tags is not translated into a value of µ = 2
in the equivalent channel. This is also explained by the fact
that in the presence of a LOS component larger than 3dB,
the pinhole diversity attained by having multiple RF tags is
reduced due to correlation and hence the distribution of the
equivalent channel is well-approximated by that of a single
RF tag [38].

Hence, we see that the use of the P-distribution in this
context renders a threefold benefit: first, it provides a better fit
to measurements than the Rician product distribution. Second,
while the difference in the fitting performance may not be
significant in some cases, we note that the use of the P-
distribution is always mathematically less complex. Third, it
incorporates additional parameters that are linked to physical
propagation conditions, which allows for a better coherence
of the fitting parameters and the scenario under analysis (e.g.,
as previously stated in the DTAG configuration)
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Fig. 12. Empirical vs. theoretical CDFs in [35, Fig. 8b] for a DTAG
configuration. Colored lines indicate the CDFs at Rx1 (black), Rx2 (teal)
and after MRC (red). Parameter values for the fitting with Rician product and
P-distribution are summarized in Table II.

C. D2D communications

We use the set of field measurements in [21] for the indoor
and outdoor LOS configurations, in order to determine whether
the P-distribution fits well empirical data while allowing a
plausible physical interpretation of the channel fading pa-
rameters. As suggested in [21] from the observation of the
fitting procedure, a single cluster of multipath waves is enough
to characterize this component both in indoor and outdoor
environments. Hence, and in coherence with the physical
models of the κ-µ and κ-µ shadowed distributions (which
assume an integer number of clusters), we fix the parameters
µ = µ̂ = 1. Note that in this situation, both the composite κ-µ
and the P-distribution have four shape parameters, so that the
use of the latter does not grant any benefits from having extra
parameters.

Following the procedure described in [21], the composite
fading model is built as the product of two independent RVs
for which the receive signal envelope rcomp = r · r̂ , where
it is assumed without loss of generality that E{r} = 1, with
E{r̂} = r̃ . We obtain the envelope PDF of the P-distribution by
using a simple transformation of random variables. Using the
empirical PDFs given in [21], we obtain the optimal parameter
estimates for the P-distribution that minimize the mean-square
error (MSE) between the empirical and target PDF. These are
summarized in Table III and Fig. 13, and compared to those
obtained using the composite κ-µ fading model.
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TABLE III
PARAMETER ESTIMATES FOR THE P-DISTRIBUTION VS. THE COMPOSITE κ-µ DISTRIBUTION FITTED TO MEASURED DATA.

Channel type κ µ m κ̂ µ̂ m̂ r̃ MSE(%)
Indoor LOS P 4.79 1 10 5.25 1 1 0.90 1.02%

Indoor LOS [21] 3.94 0.67 ∞ 0.72 1.18 ∞ 0.89 1.23%
Outdoor LOS P 1.87 1 19 1.67 1 6 0.93 1.66%

Outdoor LOS [21] 1.41 1.08 ∞ 1.00 1.14 ∞ 0.93 1.94%
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Fig. 13. Empirical and theoretical PDFs of the P-distribution fitted to the
D2D channel measurements in [21] for LOS indoor and outdoor environments.
The receive signal envelope is normalized to the sample global mean.

We note that both the P-distribution and the κ-µ prod-
uct (or composite) distribution offer a very good fit to the
empirical PDFs in the indoor and outdoor scenario. Observe
that according to Table III, the MSE between the empirical
and fitted PDFs in all instances is below 2%, being the error
corresponding to the P-distribution slightly lower than in the
κ-µ case. Now, and besides the additional benefits in terms
of tractability of using the P-distribution instead of the κ-
µ product distribution (which needs to be truncated due to
the double-infinite summation form of its PDF), there is one
additional reason why the use of the P-distribution is recom-
mended: physical justification of the estimated parameters.

The use of the P-distribution effectively captures the severe
fluctuation on the LOS component in the indoor set-up, an
aspect that was suggested by the authors of [21] in order to
justify the apparent lack of coherence of having an estimated
parameter κ̂ < 1 in a LOS-set-up. We see that a parameter
m = 1 is obtained with κ̂ > 1, which is in coherence with
a LOS scenario with severe LOS shadowing. Neglecting the
effect of the LOS fluctuation causes that the parameter κ̂ is
underestimated by the composite κ-µ fading model. For the
rest of scenarios, we see that a larger value of κ and κ̂ is
obtained compared to the deterministic LOS case, which is
compensated by a finite value of m and m̂ (i.e., some LOS
fluctuation). Fig. 13 shows that in both cases, the fitting to
empirical data yields rather similar PDFs. However, the use
of the P-distribution is more consistent with the underlying
physical model (LOS with random fluctuations and a single

cluster), and also simpler from an analytical perspective. We
believe that these aspects have more relevance than the slight
improvement obtained in the fitting procedure alone.

V. CONCLUSIONS

We introduced a new model based on the product of two
INID κ-µ shadowed RVs, which has allowed us to characterize
LOS product channels with simple closed-form expressions.
The usefulness of the results have been exemplified through
the analysis of WPC, backscatter and D2D communication
systems. Specifically, we have observed that previous channel
approximations based on the Nakagami-m distribution failed
to provide good accuracy for outage measures in LOSxLOS
scenarios. Moreover, besides its reduced complexity and its
ability to recreate a wider range of propagation conditions, our
model has better flexibility when fitting experimental results,
which makes the P-distribution the most suitable choice to
model LOS product channels.

APPENDIX A
PROOF OF PROPOSITION 1

The MGF of Z can be computed as

MZ (s) , E
[
eXX̂s

]
=

∫ ∞

0
E

[
exX̂s |X = x

]
fX (x) dx

=

∫ ∞

0
fX (x)MX̂ (sx) dx.

(24)

Now, according to Lemma 1, the MGF of X̂ in (24) can be
expressed in terms of the squared Nakagami-m MGF MK as
follows

MX̂ (sx) =
M̂∑
h=0

ĈhMK

(
Ω̂h; m̂h; sx

)
. (25)

Using (1) and (25) in (24) and expanding the integrand yields

MZ (s) =
M∑
j=0

M̂∑
h=0

CjĈh

∫ ∞

0
fK

(
Ωj ; mj ; x

)
MK

(
Ω̂h; m̂h; sx

)
dx︸                                                ︷︷                                                ︸

MΓΓ(s;{Ω j ,m j };{Ω̂h ,m̂h })
(26)

whereMΓΓ
(
s;

{
Ωj,mj

}
; {Ω̂h, m̂h}

)
is given in (12). Thus, ap-

plying the inverse Laplace Transform in (26) and considering
(3) completes the proof.

APPENDIX B
PROOF OF COROLLARY 1

Let us consider the expression for the PDF of the κ-
µ shadowed distribution in (1) for m > µ. After some
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manipulations, and noting that the dependence on j for Ωj

is dropped, we conveniently express such PDF as:

fS(γ̄; κ, µ,m; x) =
m−µ∑
i=0

Ci
xm−i−1e−x/Ω

Ωm−i(m − i − 1)!

=

m−µ∑
i=0

(
m − µ

i

) (
m

µκ + m

) i (
µκ

µκ+m

)m−µ−i
xm−i−1e−x/Ω

Ωm−i (m−i−1)!

=

m−µ∑
i=0

(
m − µ

i

) (
m

µκ+m

) i (
µκ

µκ+m

)m−µ−i
×(

m
µκ+m

)m−i (
µ(1+κ)
γ̄

)m−i
xm−i−1e−x/Ω

(m−i−1)! .

Now, changing the sum index j = m− µ− i and rearranging
some of the terms, we obtain

fS(γ̄; κ, µ,m; x) =
m−µ∑
j=0

(
m − µ

m − µ − j

) (
mm

(µκ+m)m+ j

)
︸                          ︷︷                          ︸

T0

(µκ)j
(
µ(1+κ)
γ̄

) j+µ
x j+µ−1e−x/Ω

(j+µ−1)! ,

and reordering T0

T0 =
1
j!

(
(m−µ)·(m−µ−1)·...(m−µ−j+1)

(µκ+m) j

)
︸                             ︷︷                             ︸

T1

(
1

(1+µκ/m)m

)
︸         ︷︷         ︸

T2

. (27)

Taking into account that limm→∞ T1 = 1, limm→∞ T2 = e−µκ ,
limm→∞Ωj =

γ̄
µ(1+κ) = Ω, and expressing ( j+µ−1)! as Γ( j+µ)

in a more general form, we obtain

lim
m→∞

fS(γ̄; κ, µ,m; x) =
∞∑
j=0

(µκ)je−µκ

j!︸      ︷︷      ︸
C j

·
x j+µ−1e−x/Ω

Γ( j + µ)Ωj+µ︸           ︷︷           ︸
fK (Ω;µ+j;x)

,
(28)

which is equivalent to that in [21, eq.(5)]. Note that the
restriction of µ being an integer is vanished when m → ∞.
Following the same steps as in Appendix A the proof is
completed.

APPENDIX C
PROOF OF PROPOSITION 4

The central moments of the product of two INID squared
Nakagami-m RVs are given by

E
[
Zn
ΓΓ

]
= 2

(ΩΩ̂)
m+m̂

2 Γ(m)Γ(m̂)

∫ ∞

0
x

2n+m+m̂
2 −1Km−m̂

(√
4x

ΩΩ̂

)
dx.

(29)
In order to solve the integral in (29), let us consider the

following function

Λ (t) ,
∫

t2q+p−1Kp (t) dt, (30)

where q ≥ 1 and p ≥ 0 are integer numbers. Taking into
account that [39, eq. 11.3.27]

d
dz

zνKν (z) = −zνKν−1 (z) , (ν > 0) (31)

and iteratively integrating by parts in (30), the following
formula is obtained for Λ (t)

Λ (t) = −
m∑
r=1

2r−1 (q − 1)!
(q − r)!

t2(q−r)tp+rKp+r (t). (32)

Using [39, eq. 9.7.2], it follows that Λ (∞) = 0. On the other
hand, after considering [39, eq. 9.6.8] and [39, eq. 9.6.9], the
value for Λ (t) in t = 0 is given by

Λ (0) = −2q−1 (q − 1)! (p + q − 1)!2p+q−1. (33)

Since Kν = K−ν , without loss of generality we can consider
m ≥ m̂ in the integral of (29) and we can work with K |ν |
instead of Kν . Thus, after the change of variable 4

ΩΩ̂
x = t2,

setting p = |m − m̂| and q = m̂, we can obtain

E
[
Zn
ΓΓ

]
=

(
ΩΩ̂

)n
Γ (m) Γ (m̂)

(n + m − 1)! (n + m̂ − 1)!. (34)

After considering Proposition 1, the proof is complete.

APPENDIX D
CDF APPROXIMATIONS FOR THE κ-µ DISTRIBUTION.

In this appendix, we exemplify how LOS distributions
arising from the κ-µ shadowed distributions can be used for
approximating the CDF of the κ-µ distribution2. For the sake
of notational convenience, the fading parameters for the latter
will be denoted as K and µ, whereas the fading parameters
for the former will be denoted as κ, µ and m.

Let us express the asymptotic approximation for the CDF
of the κ-µ shadowed distribution in [24, eq. (13)] using the
standard nomenclature in [19] as

Fκµm(γ) ≈
a1

t + 1

(
γ

γ̄

) t+1
, (35)

with

a1 =
µµ(1 + κ)µ

Γ(µ + 1)

(
m

κµ + m

)m
(36)

and t = µ− 1. Note that the parameter t is related to the slope
behavior of the CDF (i.e., the diversity order), whereas the
parameter a1 can be regarded as a power offset. Because the κ-
µ shadowed distribution and the κ-µ distribution have the same
diversity order for equal µ [27], an asymptotic approximation
for the κ-µ distribution will have the same t as in (35). Thus,
we can approximate the CDF of the κ-µ distribution by letting
m→∞ in (36) yielding

Fκµ(γ) ≈
a2

t + 1

(
γ

γ̄

) t+1
, (37)

with

a2 =
µµ(1 + K)µe−Kµ

Γ(µ + 1)
. (38)

Indeed, the approximations in (35) and (37) are equal for
κ = K as both distributions converge ∀γ [27]. However, both
approximations are also coincident provided that a1 = a2. This
implies that for a given K there are infinite pairs of {κ,m}

2For µ = 1, this is equivalent to using the Rician shadowed distribution to
approximate the Rician distribution.
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Fig. 14. CDF approximations for the κ-µ distribution (κ = K = 10, m→∞))
using the κ-µ shadowed distribution with different pairs of values of κ and
m. Parameter value µ = 1. Tail approximation uses (35) or, equivalently, (37).

that lead to the same asymptotic behavior. Such values can be
obtained from (36) and (38) that must satisfy:

e−K (K + 1) = (κ + 1)
(

m
µκ + m

)m/µ
, (39)

Note that K = κ and m → ∞ satisfies the previous equation,
as e , limn→∞

(
1 + 1

n

)n
. For a finite m > µ, the value

of κ that achieves the same asymptotic behavior as the K-
µ distribution is necessarily κ > K . This can be interpreted
from the underlying physical meaning of the fading parameters
as a trade-off between LOS power and LOS fluctuation: by
allowing the LOS component to randomly fluctuate, the fading
severity is increased. This effect is compensated by rising κ,
in order for both CDFs to asymptotically coincide. Similarly,
neglecting the fluctuation of the LOS component (i.e., m→∞)
may lead to underestimating the K parameter [21], when
compared to the case of considering a finite m.

The accuracy of this approach is exemplified in Figs. 14
and 15. In general terms, a larger K requires for a larger m in
order for both distributions to behave more similarly. However,
setting a value of m = 15 with κ = 14.95 is enough for
practically overlapping with the CDF of κ = 10 and m→ ∞.
As the LOS power is increased (i.e., a higher K), the value
of m required for both distributions to coincide is reduced.
Note that all CDFs in the figures have the same asymptotic
behavior, indicated by the dashed black line curve

This rationale justifies to approximate the distribution of κ-
µ (or Rician) product channels by means of the distribution
of κ-µ shadowed (or Rician shadowed) product channels, here
referred to as the P-distribution.
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