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Abstract—Radio-frequency (RF) impairments, that exist inti-
mately in wireless communications systems, can severely degrade
the performance of traditional multiple-input multiple-output
(MIMO) systems. Although compensation schemes can cancel
out part of these RF impairments, there still remains a certain
amount of impairments. These residual impairments have fun-
damental impact on the MIMO system performance. However,
most of the previous works have neglected this factor. In this
paper, a training-based MIMO system with residual transmit RF
impairments (RTRI) is considered. In particular, we derive a new
channel estimator for the proposed model, and find that RTRI
can create an irreducible estimation error floor. Moreover, we
show that, in the presence of RTRI, the optimal training sequence
length can be larger than the number of transmit antennas,
especially in the low and high signal-to-noise ratio (SNR) regimes.
An increase in the proposed approximated achievable rate is also
observed by adopting the optimal training sequence length. When
the training and data symbol powers are required to be equal,
we demonstrate that, at high SNRs, systems with RTRI demand
more training, whereas at low SNRs, such demands are nearly
the same for all practical levels of RTRI.

I. INTRODUCTION

MIMO point-to-point systems offer wireless communication

with high data rates, without requiring additional bandwidth or

transmit power. The pioneering works of [1] and [2] illustrated

a linear growth in capacity in rich scattering environments by

deploying more antennas at both the transmitter and receiver

sides. However, to fully reap the advantages that MIMO

systems can offer, instantaneous channel state information

(CSI) is essential, especially at the receiver.

In practical systems, a training-based (or pilot-based) trans-

mission scheme is usually utilized to estimate the channel and

thereafter to transmit/receive data. This area is well covered

in the literature (e.g., [3]–[8]); however, most of these works

assume ideal RF hardware, which is quite unrealistic in prac-

tice. RF impairments, such as in-phase/quadrature-phase (I/Q)

imbalance, high power amplifier non-linearities, and oscillator

phase noise, are known to have a detrimental impact on

practical MIMO systems [9], [10]. Even though one can resort

to calibration schemes to mitigate part of these impairments

[9], there still remains a certain amount of residual distortions

unaccounted for. These residual impairments stem from, for

example, inaccurate models which are used to characterize

the impairments, as well as, errors in the estimation of

impairments’ parameters. To the best of our knowledge, the

only paper that considers training-based MIMO systems with

residual impairments is [11]. The authors therein analyzed the

impact of impairments on the uplink channel estimation in

a massive MIMO configuration. They reported an estimation

error floor, and observed that by increasing the number of

pilot symbols, one can average out the impact of impairments.

However, they did not provide detailed power allocation and

training sequence schemes, which are of pivotal importance in

training-based point-to-point communication systems.

Motivated by the above discussion, we hereafter assess

the impact of RTRI on training-based MIMO systems. More

specifically, we first evaluate how RTRI affect channel esti-

mation in the estimation phase, and observe an estimation

error floor in the high SNR regime, which is analytically

deduced. After that, we analyze an approximation for the

achievable rate, using the classical technique of [3], in the

presence of channel estimation errors, as well as, residual

distortions in the data transmission phase. Through optimizing

power allocation and training sequence length, we find that,

the optimal training duration can be larger than the number

of transmit antennas, especially for low and high SNR values.

Moreover, for more practical systems, which have the same

transmit power per channel use during the estimation and data

transmission phases, our results indicate that systems with

higher RTRI require more training at high SNRs, whilst at low

SNRs, the training demands almost the same for all practical

levels of RTRI.

Notation: Upper and lower case boldface letters denote

matrices and vectors, respectively. The trace of a matrix is

expressed by tr {·}. The n× n identity matrix is represented

by In. The expectation operation is E[·], while the matrix

determinant is denoted by det(·). The superscripts (·)H and

(·)−1 stand for Hermitian transposition and matrix inverse,

respectively. The Frobenius norm is denoted by ‖·‖2F . The

symbol CN (m,Σ) denotes a circularly-symmetric complex

multi-variate Gaussian distribution with mean m and covari-

ance Σ, while � refers to “is defined as”.



II. SIGNAL AND SYSTEM MODELS

In this paper, we consider a block fading channel with a

coherence time of T channel uses. During each block, the

channel is constant, and is a realization of the uncorrelated

Rayleigh fading model. Channel realizations between different

blocks are assumed to be independent.

A. System Model With Residual Transmit RF Impairments

RF impairments exist widely in practical wireless commu-

nication systems. Due to these impairments, the transmitted

signal is distorted during the transmission processing, hence

cause a mismatch between the intended signal and what is

actually transmitted. Even though compensation schemes are

usually adopted to mitigate the effects of these impairments,

there is always some amount of residual impairments. In [9],

[10], the authors have shown that these residual impairments

on the transmit side act as additive noise. Furthermore, exper-

imental results in [10] revealed that such RTRI behave like

zero-mean complex Gaussian noise, but with the important

property that their average power is proportional to the average

signal power. For sufficient decoupling between different RF

chains, such impairments are statistically independent across

the antennas. Moreover, impairments during different channel

uses are also assumed to be independent. We now denote the

RTRI noise as Δ. Then, the input-output relationship of a

training-based MIMO system with Nt transmit antennas and

Nr receive antennas within a block of T symbols, can be

expressed as

Y = H(S+Δ) +V, (1)

where S ∈ C
Nt×T is the transmitted signal with power equally

allocated to all transmit antennas, E
[
SSH

]
= ρT

Nt
INt

, and

H ∈ C
Nr×Nt is the channel matrix. The receiver noise and

the received signal are denoted as V ∈ C
Nr×T and Y ∈

C
Nr×T , respectively. Each element of H and V follows an

independent CN (0, 1) distribution. We also assume that the

entries of S have unit variance, so that ρ is the average received

SNR at each receive antenna. At last, according to the above

discussion, we can characterize the RTRI noise Δ ∈ C
Nt×T

as

Δ(i) ∼ CN (
0, δ2INt

)
,E

[
Δ(i)Δ

H
(j)

]
= 0

i, j = 1, 2, . . . , T, i �= j, (2)

where Δ(i) denotes the i-th column of Δ. The proportionality

parameter δ characterizes the level of residual impairments in

the transmitter. Note that δ appears in practical applications as

the error vector magnitude (EVM) [12], which is commonly

used to measure the quality of RF transceivers. For instance,

3GPP LTE has EVM requirements in the range [0.08, 0.175]
[12]. The relationship between δ and EVM is defined as

EVM �

√√√√√EΔ

[
‖Δ‖2F

]
ES

[
‖S‖2F

] = δ. (3)

When δ = 0, it indicates ideal hardware implementation.

We can now decompose the system model in (1) into

training phase and data transmission phase as follows:

1) Training Phase:

Yp = H (Sp +Δp) +Vp,

tr{SH
p Sp} = NtTp, (4)

where Sp ∈ C
Nt×Tp is the deterministic matrix of training

sequences with equal transmit power allocation to all Nt

antennas, and is known by the receiver, ρp is the SNR during

the training phase, and Yd is the Nr × Tp received matrix.

The distortion noise caused by the RTRI is characterized as

Δp(i) ∼ CN (
0, δ2INt

)
,E

[
Δp(i)Δp

H
(i) = 0

]
,

i, j = 1, 2, . . . , Tp, i �= j. (5)

Note that this model is mathematically similar to the systems

which use a superimposed pilot scheme [6], where part of the

data symbol is conveyed during the training phase, and acts

like noise.

2) Data Transmission Phase:

Yd = H (Sd +Δd) +Vd,

E

[
tr{SH

d Sd}
]
= NtTd, (6)

where Sd ∈ C
Nt×Td is the matrix of data symbols sent over

Td channel uses, with equal transmit power allocation to all

Nt streams, ρd is the SNR during the data transmission phase,

and Yd is the Nr × Td received signal matrix. The distortion

noise caused by the RTRI during this phase is characterized

as

Δd(i) ∼ CN (
0, δ2INt

)
,E

[
Δd(i)Δd

H
(j) = 0

]
,

i, j = 1, 2, . . . , Td, i �= j. (7)

Recall that conservation of time and energy yields

T = Tp + Td, ρT = ρpTp + ρdTd. (8)

The models in (1), (4), and (6) include the characteristics of

RTRI, and enable us to identify some fundamental differences

in the training-based MIMO systems as compared to the ideal

hardware case of [3].

III. LMMSE CHANNEL ESTIMATION

In this section, we analyze the impact of RTRI on the

channel estimation phase. Channel estimation is carried out

during the first Tp channel uses. Within each block, the

estimator compares the received signal Yp with the predefined

training sequence matrix Sp. The classical results on training-

based channel estimation consider Rayleigh fading channels,

which have independent complex Gaussian noise with known

statistics [3], [7]. However this is not the case herein since

the distortion noise Δp depends on the unknown random

channel H through the multiplication HΔp. Although the

distortion noise is Gaussian when conditioned on a channel

realization, the effective distortion is the product of Gaussian



variables. Thus, it has a complex double Gaussian distribution
[13], which does not admit tractable manipulations.

We now derive the LMMSE estimator of H under the model

in (4), which is given by the following lemma.

Lemma 1: Given the received signal Yp and the RTRI level

δ, the LMMSE estimator of H is

Ĥ = Yp

(
SH
p Sp +

(
δ2ρp + 1

)
ITp

)−1

SH
p . (9)

Proof: Since the rows of Yp are independent and i-

dentically distributed (i.i.d.), we can write the LMMSE es-

timator in the general form Ĥ = YpA, where A should

minimize the mean square error (MSE), which is defined as

MSE � E [tr (Ce)]. Herein, Ce � E
[
HH

e He

]
is defined as

the estimation error covariance matrix, where He � H−Ĥ is

the estimation error matrix. The estimator in (9) is found by

taking the first derivative of the MSE with respect to A, and

equating the result to zero.

Corollary 1: The training sequence matrix Sp that mini-

mizes the MSE should satisfy

SpS
H
p = TpINt

(10)

and the corresponding MSE is given by

MSE =
NrNt

1 + g
with g � ρpTp

Nt(ρpδ2 + 1)
. (11)

Proof: This corollary can be proved by applying the

Lagrange multiplier method [14] on the MSE, subject to the

power constraint tr{SH
p Sp} = NtTp. The resulting estimation

error covariance matrix becomes

Ce =
Nr

1 + g
INt

. (12)

Since He has zero mean, the variance of its entries can

be expressed as σ2
He

= 1
NrNt

E [tr{Ce}] = 1
1+g , which is also

defined as the normalized MSE. By the orthogonality principle

of LMMSE estimators [15], each element in Ĥ has a variance

of σ2
Ĥ

= 1− σ2
He

= g
1+g .

Figure 1 shows the normalized MSE, σ2
He

, of a 4×4 MIMO

system for different levels of impairments. In this case, we use

Tp = 4 channel uses to transmit pilot symbols, which is the

minimum length required to estimate all channel dimensions.

Without the existence of RTRI, increasing the transmit power

decreases the MSE monotonically towards zero. However, in

the presence of RTRI, we observe a fundamentally different

behavior. Specifically, when the transmit power becomes high,

impairments will generate an irreducible error floor, which is

explicitly provided in the following corollary.

Corollary 2: Asymptotically as ρp → ∞, the normalized

MSE approaches the limit

MSE
ρp→∞
normalized =

1

1 +
Tp

Ntδ2

. (13)

Proof: This corollary is simply achieved by making ρp in

(11) large and normalize the MSE with respect to the number

of transmit and receive antennas.
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Fig. 1. Normalized mean square error (MSE) for different levels of
impairments (Nt = Nr = 4, T = 100, Tp = 4).

Obviously, the value of this floor depends on the level

of impairments; in general, large RTRI will cause severe

degradation of the channel estimates. We can also see from

(13) that, for a fixed level of RTRI, an increase in the training

sequence length Tp decreases the MSE monotonically. As

expected, for low SNR values, impairments have only limited

impact, which is in line with the results of [11].

IV. DATA TRANSMISSION

This section analyzes the achievable rate of the non-ideal

training-based MIMO system. The results in [3], under the

assumption of ideal hardware, are frequently used as reference.

During the data transmission phase, the estimated channel

Ĥ is available at the receiver. The receiver uses Ĥ as if it were

the true channel realization to recover the intended signal Sd.

Recalling that H=Ĥ+He, we may rewrite the received signal

as

Yd = Ĥ (Sd +Δd) +He (Sd +Δd) +Vd

= ĤSd + ĤΔd +HeSd +HeΔd +Vd︸ ︷︷ ︸
Ṽ

, (14)

where Ṽ is the “effective noise” matrix. Note that each entry

of Ṽ has zero-mean and the variance

σ2
Ṽ

=
1

NrTd
E

[
tr
{
ṼHṼ

}]
=

(
1

1 + g
+ δ2

)
ρd + 1. (15)

On a similar note, we can define H̄ � 1
σ2
Ĥ

Ĥ, which has

uncorrelated and approximately CN (0, 1) entries. 1

Given that Ĥ is known to the receiver, it is straightforward

to prove that Sd and Ṽ are uncorrelated. From [3], we know

1As we have emphasized in Section III, Ĥ contains the multiplicative
term HΔp, which is complex double Gaussian distributed. This additional
distortion, however, is insignificant for practical levels of RTRI; thus, the
assumption of Gaussian distribution on the elements of Ĥ is rather realistic.



that the worst-case effective noise is circularly-symmetric

complex Gaussian distributed, with the same covariance as Ṽ,

Then, we can straightforwardly obtain a capacity lower bound

as in [3, Theorem 1].
In the considered case though, where the channel estimate

(9) contains the multiplicative term HΔp, Ĥ is only approx-

imately Gaussian. Then, we can work out the approximated

achievable rate according to

R̃ =
Td

T
E

[
log2 det

(
INr

+ ρeff
H̄H̄H

Nt

)]
, (16)

where ρeff denotes the effective SNR,

ρeff �
ρdσ

2
Ĥ

σ2
Ṽ

(17)

=
ρdρpTp

Nt(1 + ρpδ2)(1 + ρd + ρdδ2) + ρpTp + ρdρpTpδ2
.

(18)

A. Optimizing over Power Allocation
First, we optimize the power allocation to maximize the

effective SNR ρeff .
Let α denote the fraction of the total transmit power that is

assigned to the data transmission phase. Then, we have

ρdTd = αρT, ρpTp = (1− α)ρT, 0 < α < 1. (19)

Proposition 1: The optimal power allocation α� ρdTd

ρT in a

training-based MIMO system with RTRI is given by

αopt =

{
r−√

r2−rs
s , for s �= 0

1
2 , for s = 0

(20)

where for concision, we have defined

r � ρT +
NtρTδ

2

Tp
+Nt,

s � ρT +
NtρTδ

2

Tp
− NtρT (1 + δ2)

Td
.

Proof: Substituting ρp=
(1−α)ρT

Tp
and ρd=

αρT
Td

into (18),

then taking the first and second derivatives of ρeff with respect

to α and equating the result to be zero, the proof follows

immediately.
Specifically, for high and low SNRs, we have
Corollary 3: At high and low SNRs, the optimal power

allocation α reduces to

• At high SNRs, as ρ → ∞

αopt =

(
1 + Ntδ

2

Tp

)(
1 +

√
Nt(1+δ2)

Td

)
1 + Ntδ2

Tp
− Nt(1+δ2)

Td

, (21)

• At low SNRs, as ρ → 0

αopt =
1

2
. (22)

Clearly, at low SNR, half of the transmit power should be

assigned to the training phase, which is consistent with the

results of [3]. With the help of (20), we can further optimize

the training length to maximize the approximated achievable

rate.

B. Optimizing over Tp

In this part, we seek to determine the optimal training length

Tp. Recall from [3] that, for ideal hardware systems over i.i.d.

Rayleigh fading channels, it is always optimal to use as few

channel uses as possible (i.e., Nt) for pilot symbols, regardless

of the values of ρ and T . However, for non-ideal hardware

systems, we will show that this is no longer the case, since

the optimal training length could be larger than Nt.

The standard way of finding the optimal training sequence

length Tp requires to substitute the optimal power allocation

scheme αopt back to the approximated achievable rate in

(16), and then take the derivative of R̃ with respect to Tp.

Unfortunately, this is not analytically tractable. To overcome

this problem, we first derive the approximated achievable rate

in (16) in closed-form, which only depends on the values of

SNR and Tp for a given system setup (Nt, Nr, and T ). Then,

for each value of SNR, we can perform an exhaustive search

over the integer Tp to find the global optimum.

To facilitate our analysis, we herein present the following

proposition.

Proposition 2: The approximated achievable rate in (16), is

analytically given by

R̃ =
qKTd

ln(2)T

q∑
n=1

q∑
m=1

(−1)
n+m

det (Ω)Γ (t) e
Nt
ρeff

×
t∑

k=1

Γ
(
−t+ k, Nt

ρeff

)
(

ρeff

Nt

)t−k

(23)

where q � min(Nr, Nt), p � max(Nr, Nt) and t � n+m+

p − q − 1. Also, K =
[∏q

i=1(p− i)!
∏q

j=1(q − j)!
]−1

is a

normalization constant. Moreover, Γ(x) and Γ(y, z) denote the

Gamma function [16, Eq. (8.310.1)] and the upper incomplete

Gamma function [16, Eq. (8.350.2)], respectively. Finally, Ω
is a (q − 1)× (q − 1) matrix whose (i, j)-th element is given

by

Ωi,j =
(
γ
(n)(m)
i,j + p− q

)
! q−

1
q−1

where

γ
(n)(m)
i,j �

⎧⎪⎨
⎪⎩
i+ j − 2, if i < n and j < m

i+ j, if i ≥ n and j ≥ m

i+ j − 1, otherwise.

(24)

Proof: We can rewrite (16) as

R̃ =
Td

T
E

[
log2det

(
Iq +

ρeff
Nt

W

)]
, (25)

where W is defined as

W �
{
H̄H̄H , if Nr ≤ Nt,

H̄HH̄, if Nr > Nt.
(26)

Note that W is a q × q random, non-negative definite matrix

following the complex Wishart distribution. Thus, it has real

non-negative eigenvalues and the probability density function



(PDF) of its unordered eigenvalue, λ, is found in [17, Eq. (38)]

to be

pλ(λ) = K

q∑
n=1

q∑
m=1

(−1)m+nλn+m+p−q−2

eλ
det (Ω) . (27)

By exploiting the eigenvalue properties, we can now alter-

natively express the approximated achievable rate in (25) as

R̃ =
qTd

T

∞∫
0

log2

(
1 +

ρeff
Nt

λ

)
pλ(λ)dλ. (28)

This integral can be evaluated using the integral identity in

[18, Eq. (40)]. The expression in (23) then follows after some

simple algebraic manipulations.

Based on (23), we perform an exhaustive search over the

integer Tp for different SNR values. Figure 2 compares the

optimal training sequence length, T opt
p , for the ideal and

impaired systems. For the ideal hardware system, the optimal

training length is always equal to the number of transmit

antennas, which has already been proved in [3]. For the non-

ideal hardware systems with RTRI, however, the optimal train-

ing sequence length may become larger than Nt. Generally

speaking, higher impairment levels impose longer training

sequences. At high SNRs, the effective SNR saturates, thus

the overall performance cannot be improved by increasing

the power; however, we can benefit by extending the training

period. This is because the total pilot power is spread over Tp

channel uses, hence the impact of the temporally uncorrelated

RTRI will be averaged over Tp as well. It is also worth

mentioning that in the low SNR regime, where thermal noise

dominates the system performance, there is still an increase

in achievable rate by improving the channel estimation with

longer training sequences. The above results are valid for

different number of antennas, and can be extended to massive

MIMO systems with large receive antenna arrays.

In Fig. 3, we have plotted the approximated achievable rate

with the optimal power allocation scheme. For each SNR

value, we choose the best training sequence length T opt
p .

It is noteworthy that, for the hardware impaired systems,

the achievable rate saturates when SNR becomes high, even

though we have used the optimized scheme. This behavior

remains even if we have perfect CSI as in [19], thus it is a

fundamental effect of hardware impairments. In Fig. 4, we

plot the relative rate gain by adopting the optimal training

sequence length T opt
p . The relative rate gain is defined as

relative rate gain �
RT opt

p
−RTp=Nt

RTp=Nt

× 100%, (29)

where RT opt
p

and RTp=Nt
refer to the approximated achievable

rate (23) when Tp obtains its optimal value and Tp = Nt,

respectively. We can conclude from this figure that, the relative

rate gain provided by utilizing the optimal training sequence

length, varies according to the level of RTRI. Systems with

higher level of impairments benefit far more from the opti-

mization over Tp.
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C. Equal Training and Data Power

In practice, communication systems do not often have the

freedom of varying the transmit powers during the training

phase and data transmission phase. As such, the transmit

power for pilot and data symbols is always the same, i.e.,

ρp = ρd = ρ. In this case, the effective SNR in (18) becomes

ρeff =
ρ2Tp

Nt(1 + ρδ2)(1 + ρ+ ρδ2) + (ρ2δ2 + ρ)Tp
. (30)

The corresponding analytical approximated achievable rate

follows straightforward by inserting (30) into (23). Using the

obtained analytical rate expression, we can, once more, resort

to exhaustive search to find the optimal training sequence

length.

Figure 5 depicts the optimal Tp for a 4× 4 MIMO system

with coherence time T = 100. As we can see, for all cases, the

demand for training is especially high at low SNRs, whilst this
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Nr = 4, T = 100).
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Fig. 5. Optimal training sequence length for different levels of impairments
when only the training sequence length is optimized (Nt = Nr = 4, T =
100, ρp = ρd = ρ).

demand decreases as the SNR scales up. Generally speaking,

higher level of RTRI require longer training length in the high

SNR regime, whereas such demands are nearly the same for

all practical levels of impairments at low SNRs.

V. CONCLUSIONS

In this paper, we analyzed the impact of residual transmit

RF impairments on training-based MIMO systems. We derived

a new LMMSE channel estimator for systems with RTRI, and

then found that such residual impairments create an irreducible

estimation error floor. Moreover, the optimal power allocation

scheme and optimal training sequence length were thereafter

investigated. We showed that the optimal training sequence

length may be larger than the number of transmit antennas,

and increases with the level of impairments. An increase in

the relative rate is observed by adopting the optimal training

sequence length. We also investigated the optimal training

sequence length when there is no freedom of varying the

transmit power during the estimation and data transmission

phases, and concluded that the demand for training is the same

at low SNRs, while more training was needed at high SNRs

when the system experiences RTRI.
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