8,226 research outputs found

    Design of a ROIC for scanning type HgCdTe LWIR focal plane arrays

    Get PDF
    Design of a silicon readout integrated circuit (ROIC) for LWIR HgCdTe Focal Plane is presented. ROIC incorporates time delay integration (TDI) functionality over seven elements with a supersampling rate of three, increasing SNR and the spatial resolution. Novelty of this topology is inside TDI stage; integration of charges in TDI stage implemented in current domain by using switched current structures that reduces required area for chip and improves linearity performance. ROIC, in terms of functionality, is capable of bidirectional scan, programmable integration time and 5 gain settings at the input. Programming can be done parallel or serially with digital interface. ROIC can handle up to 3.5V dynamic range with the input stage to be direct injection (DI) type. With the load being 10pF capacitive in parallel with 1MΩ resistance, output settling time is less than 250nsec enabling the clock frequency up to 4MHz. The manufacturing technology is 0.35μm, double poly-Si, four-metal (3 metals and 1 top metal) 5V CMOS process

    Investigation of charge coupled device correlation techniques

    Get PDF
    Analog Charge Transfer Devices (CTD's) offer unique advantages to signal processing systems, which often have large development costs, making it desirable to define those devices which can be developed for general system's use. Such devices are best identified and developed early to give system's designers some interchangeable subsystem blocks, not requiring additional individual development for each new signal processing system. The objective of this work is to describe a discrete analog signal processing device with a reasonably broad system use and to implement its design, fabrication, and testing

    A SiGe HEMT Mixer IC with Low Conversion Loss

    Get PDF
    The authors present the first SiGe HEMT mixer integrated circuit. The active mixer stage, operating up to 10GHz RF, has been designed and realized using a 0.1µ µµ µm gate length transistor technology. The design is based on a new large-signal simulation model developed for the SiGe HEMT. Good agreement between simulation and measurement is reached. The mixer exhibits 4.0dB and 4.7dB conversion loss when down-converting 3.0GHz and 6.0GHz signals, respectively, to an intermediate frequency of 500MHz using high-side injection of 5dBm local oscillator power. Conversion loss is less than 8dB for RF frequencies up to 10GHz with a mixer linearity of –8.8dBm input related 1dB compression point

    Design of High-Bandwidth and High-Linearity Input Buffers for ADCs

    Get PDF
    Nowadays on-chip Input Buffers (IBs) for direct conversion front-ends are realized with a higher voltage supply than that of the core voltage of the technology, mainly for linearity purposes. This, in turn, makes it mandatory to have more than one voltage source to supply a single chip in addition to having devices capable of handling higher voltages. This work explores the possibility of having IBs supplied with the technology’s core voltage to standardize all of the devices and reducing the different voltage supply sources and/or voltage regulators needed for operating the front-end drivers of the Analog to Digital Converters (ADCs). A new input buffer architecture will be presented and compared to some prior input buffer implementations in the same conditions. This new architecture presents good linearity and bandwidth results and can be used for input buffers with the added benefit of not needing higher voltages nor special devices. This new architecture is based off an existing one with another feedback loop to improved high-frequency peaking and linearity issues. This architecture achieves better results in bandwidth, a SNDR of 58 dB with and output voltage of 600 mV peak-to-peak differential. Furthermore, this buffer achieves a better efficiency linearity-wise when comparing to other buffers in the same conditions

    Embedded 5V-to-3.3V Voltage Regulator for Supplying Digital ICs in 3.3V CMOS Technology

    Get PDF
    A fully integrated 5 V-to-3.3 V supply voltage regulator for application in digital IC's has been designed in a 3.3 V 0.5 μm CMOS process. The regulator is able to deliver peak current transients of 300 mA, while the output voltage remains within a margin of 10% around the nominal value. The circuit draw's a static quiescent current of 750 μA during normal operation, and includes a power-down mode with only 10 μA current consumption. The die area is 1 mm2, and can be scaled proportional to the maximum peak current. Special precautions have been taken to allow 5 V in the 3.3 V process
    corecore