29,100 research outputs found

    Graphs with few Hamiltonian Cycles

    Full text link
    We describe an algorithm for the exhaustive generation of non-isomorphic graphs with a given number k0k \ge 0 of hamiltonian cycles, which is especially efficient for small kk. Our main findings, combining applications of this algorithm and existing algorithms with new theoretical results, revolve around graphs containing exactly one hamiltonian cycle (1H) or exactly three hamiltonian cycles (3H). Motivated by a classic result of Smith and recent work of Royle, we show that there exist nearly cubic 1H graphs of order nn iff n18n \ge 18 is even. This gives the strongest form of a theorem of Entringer and Swart, and sheds light on a question of Fleischner originally settled by Seamone. We prove equivalent formulations of the conjecture of Bondy and Jackson that every planar 1H graph contains two vertices of degree 2, verify it up to order 16, and show that its toric analogue does not hold. We treat Thomassen's conjecture that every hamiltonian graph of minimum degree at least 33 contains an edge such that both its removal and its contraction yield hamiltonian graphs. We also verify up to order 21 the conjecture of Sheehan that there is no 4-regular 1H graph. Extending work of Schwenk, we describe all orders for which cubic 3H triangle-free graphs exist. We verify up to order 4848 Cantoni's conjecture that every planar cubic 3H graph contains a triangle, and show that there exist infinitely many planar cyclically 4-edge-connected cubic graphs with exactly four hamiltonian cycles, thereby answering a question of Chia and Thomassen. Finally, complementing work of Sheehan on 1H graphs of maximum size, we determine the maximum size of graphs containing exactly one hamiltonian path and give, for every order nn, the exact number of such graphs on nn vertices and of maximum size.Comment: 29 pages; to appear in Mathematics of Computatio

    Extremal problems on special graph colorings

    Get PDF
    In this thesis, we study several extremal problems on graph colorings. In particular, we study monochromatic connected matchings, paths, and cycles in 2-edge colored graphs, packing colorings of subcubic graphs, and directed intersection number of digraphs. In Chapter 2, we consider monochromatic structures in 2-edge colored graphs. A matching M in a graph G is connected if all the edges of M are in the same component of G. Following Łuczak, there are a number of results using the existence of large connected matchings in cluster graphs with respect to regular partitions of large graphs to show the existence of long paths and other structures in these graphs. We prove exact Ramsey-type bounds on the sizes of monochromatic connected matchings in 2-edge-colored multipartite graphs. In addition, we prove a stability theorem for such matchings, which is used to find necessary and sufficient conditions on the existence of monochromatic paths and cycles: for every fixed s and large n, we describe all values of n_1, ...,n_s such that for every 2-edge-coloring of the complete s-partite graph K_{n_1, ...,n_s} there exists a monochromatic (i) cycle C_{2n} with 2n vertices, (ii) cycle C_{at least 2n} with at least 2n vertices, (iii) path P_{2n} with 2n vertices, and (iv) path P_{2n+1} with 2n+1 vertices. Our results also imply for large n of the conjecture by Gyárfás, Ruszinkó, Sárkőzy and Szemerédi that for every 2-edge-coloring of the complete 3-partite graph K_{n,n,n} there is a monochromatic path P_{2n+1}. Moreover, we prove that for every sufficiently large n, if n = 3t+r where r in {0,1,2} and G is an n-vertex graph with minimum degree at least (3n-1)/4, then for every 2-edge-coloring of G, either there are cycles of every length {3, 4, 5, ..., 2t+r} of the same color, or there are cycles of every even length {4, 6, 8, ..., 2t+2} of the same color. This result is tight and implies the conjecture of Schelp that for every sufficiently large n, every (3n-1)-vertex graph G with minimum degree larger than 3|V(G)|/4, in each 2-edge-coloring of G there exists a monochromatic path P_{2n} with 2n vertices. It also implies for sufficiently large n the conjecture by Benevides, Łuczak, Scott, Skokan and White that for every positive integer n of the form n=3t+r where r in {0,1,2} and every n-vertex graph G with minimum degree at least 3n/4, in each 2-edge-coloring of G there exists a monochromatic cycle of length at least 2t+r. In Chapter 3, we consider a collection of special vertex colorings called packing colorings. For a sequence of non-decreasing positive integers S = (s_1, ..., s_k), a packing S-coloring is a partition of V(G) into sets V_1, ..., V_k such that for each integer i in {1, ..., k} the distance between any two distinct x,y in V_i is at least s_i+1. The smallest k such that G has a packing (1,2, ..., k)-coloring is called the packing chromatic number of G and is denoted by \chi_p(G). The question whether the packing chromatic number of subcubic graphs is bounded appears in several papers. We show that for every fixed k and g at least 2k+2, almost every n-vertex cubic graph of girth at least g has the packing chromatic number greater than k, which answers the previous question in the negative. Moreover, we work towards the conjecture of Brešar, Klavžar, Rall and Wash that the packing chromatic number of 1-subdivision of subcubic graphs are bounded above by 5. In particular, we show that every subcubic graph is (1,1,2,2,3,3,k)-colorable for every integer k at least 4 via a coloring in which color k is used at most once, every 2-degenerate subcubic graph is (1,1,2,2,3,3)-colorable, and every subcubic graph with maximum average degree less than 30/11 is packing (1,1,2,2)-colorable. Furthermore, while proving the packing chromatic number of subcubic graphs is unbounded, we also consider improving upper bound on the independence ratio, alpha(G)/n, of cubic n-vertex graphs of large girth. We show that ``almost all" cubic labeled graphs of girth at least 16 have independence ratio at most 0.454. In Chapter 4, we introduce and study the directed intersection representation of digraphs. A directed intersection representation is an assignment of a color set to each vertex in a digraph such that two vertices form an edge if and only if their color sets share at least one color and the tail vertex has a strictly smaller color set than the head. The smallest possible size of the union of the color sets is defined to be the directed intersection number (DIN). We show that the directed intersection representation is well-defined for all directed acyclic graphs and the maximum DIN among all n vertex acyclic digraphs is at most 5n^2/8 + O(n) and at least 9n^2/16 + O(n)

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Generation and Properties of Snarks

    Full text link
    For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is sufficient to prove them for \emph{snarks}, the class of nontrivial 3-regular graphs which cannot be 3-edge coloured. In the first part of this paper we present a new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous programs for generating snarks, and 29 times faster for generating weak snarks. Using this program we have generated all non-isomorphic snarks on n36n\leq 36 vertices. Previously lists up to n=28n=28 vertices have been published. In the second part of the paper we analyze the sets of generated snarks with respect to a number of properties and conjectures. We find that some of the strongest versions of the cycle double cover conjecture hold for all snarks of these orders, as does Jaeger's Petersen colouring conjecture, which in turn implies that Fulkerson's conjecture has no small counterexamples. In contrast to these positive results we also find counterexamples to eight previously published conjectures concerning cycle coverings and the general cycle structure of cubic graphs.Comment: Submitted for publication V2: various corrections V3: Figures updated and typos corrected. This version differs from the published one in that the Arxiv-version has data about the automorphisms of snarks; Journal of Combinatorial Theory. Series B. 201

    On disjoint matchings in cubic graphs

    Get PDF
    For i=2,3i=2,3 and a cubic graph GG let νi(G)\nu_{i}(G) denote the maximum number of edges that can be covered by ii matchings. We show that ν2(G)4/5V(G)\nu_{2}(G)\geq {4/5}| V(G)| and ν3(G)7/6V(G)\nu_{3}(G)\geq {7/6}| V(G)| . Moreover, it turns out that ν2(G)V(G)+2ν3(G)4\nu_{2}(G)\leq \frac{|V(G)|+2\nu_{3}(G)}{4}.Comment: 41 pages, 8 figures, minor chage
    corecore