51 research outputs found

    Nonexistence of almost Moore digraphs of degrees 4 and 5 with self-repeats

    Get PDF
    An almost Moore (d,k)-digraph is a regular digraph of degree d>1, diameter k>1 and order N(d,k)=d+d2+⋯+dk. So far, their existence has only been shown for k=2, whilst it is known that there are no such digraphs for k=3, 4 and for d=2, 3 when k≥3. Furthermore, under certain assumptions, the nonexistence for the remaining cases has also been shown. In this paper, we prove that (4,k) and (5,k)-almost Moore digraphs with self-repeats do not exist for k≥5.Nacho López: Supported in part by grants PID2020-115442RB-I00 and 2021 SGR-00434. Arnau Messegué: Supported in part by grants Margarita Sala and 2021SGR-00434. Josep M. Miret: Supported in part by grants PID2021-124613OB-I00 and 2021 SGR-00434.Peer ReviewedPostprint (published version

    On Total Regularity of Mixed Graphs with Order Close to the Moore Bound

    Get PDF
    The undirected degree/diameter and degree/girth problems and their directed analogues have been studied for many decades in the search for efficient network topologies. Recently such questions have received much attention in the setting of mixed graphs, i.e. networks that admit both undirected edges and directed arcs. The degree/diameter problem for mixed graphs asks for the largest possible order of a network with diameter kk, maximum undirected degree ≤r\leq r and maximum directed out-degree ≤z\leq z. Similarly one can search for the smallest possible kk-geodetic mixed graphs with minimum undirected degree ≥r\geq r and minimum directed out-degree ≥z\geq z. A simple counting argument reveals the existence of a natural bound, the Moore bound, on the order of such graphs; a graph that meets this limit is a mixed Moore graph. Mixed Moore graphs can exist only for k=2k = 2 and even in this case it is known that they are extremely rare. It is therefore of interest to search for graphs with order one away from the Moore bound. Such graphs must be out-regular; a much more difficult question is whether they must be totally regular. For k=2k = 2, we answer this question in the affirmative, thereby resolving an open problem stated in a recent paper of Lopez and Miret. We also present partial results for larger kk. We finally put these results to practical use by proving the uniqueness of a 2-geodetic mixed graph with order exceeding the Moore bound by one

    Graphs and subgraphs with bounded degree

    Get PDF
    "The topology of a network (such as a telecommunications, multiprocessor, or local area network, to name just a few) is usually modelled by a graph in which vertices represent 'nodes' (stations or processors) while undirected or directed edges stand for 'links' or other types of connections, physical or virtual. A cycle that contains every vertex of a graph is called a hamiltonian cycle and a graph which contains a hamiltonian cycle is called a hamiltonian graph. The problem of the existence of a hamiltonian cycle is closely related to the well known problem of a travelling salesman. These problems are NP-complete and NP-hard, respectively. While some necessary and sufficient conditions are known, to date, no practical characterization of hamiltonian graphs has been found. There are several ways to generalize the notion of a hamiltonian cycle. In this thesis we make original contributions in two of them, namely k-walks and r-trestles." --Abstract.Doctor of Philosoph

    Digraphs of small defect or excess

    Get PDF

    Structural properties and labeling of graphs

    Get PDF
    The complexity in building massive scale parallel processing systems has re- sulted in a growing interest in the study of interconnection networks design. Network design affects the performance, cost, scalability, and availability of parallel computers. Therefore, discovering a good structure of the network is one of the basic issues. From modeling point of view, the structure of networks can be naturally stud- ied in terms of graph theory. Several common desirable features of networks, such as large number of processing elements, good throughput, short data com- munication delay, modularity, good fault tolerance and diameter vulnerability correspond to properties of the underlying graphs of networks, including large number of vertices, small diameter, high connectivity and overall balance (or regularity) of the graph or digraph. The first part of this thesis deals with the issue of interconnection networks ad- dressing system. From graph theory point of view, this issue is mainly related to a graph labeling. We investigate a special family of graph labeling, namely antimagic labeling of a class of disconnected graphs. We present new results in super (a; d)-edge antimagic total labeling for disjoint union of multiple copies of special families of graphs. The second part of this thesis deals with the issue of regularity of digraphs with the number of vertices close to the upper bound, called the Moore bound, which is unobtainable for most values of out-degree and diameter. Regularity of the underlying graph of a network is often considered to be essential since the flow of messages and exchange of data between processing elements will be on average faster if there is a similar number of interconnections coming in and going out of each processing element. This means that the in-degree and out-degree of each processing element must be the same or almost the same. Our new results show that digraphs of order two less than Moore bound are either diregular or almost diregular.Doctor of Philosoph

    On the structure of graphs without short cycles

    Get PDF
    The objective of this thesis is to study cages, constructions and properties of such families of graphs. For this, the study of graphs without short cycles plays a fundamental role in order to develop some knowledge on their structure, so we can later deal with the problems on cages. Cages were introduced by Tutte in 1947. In 1963, Erdös and Sachs proved that (k, g) -cages exist for any given values of k and g. Since then, large amount of research in cages has been devoted to their construction. In this work we study structural properties such as the connectivity, diameter, and degree regularity of graphs without short cycles. In some sense, connectivity is a measure of the reliability of a network. Two graphs with the same edge-connectivity, may be considered to have different reliabilities, as a more refined index than the edge-connectivity, edge-superconnectivity is proposed together with some other parameters called restricted connectivities. By relaxing the conditions that are imposed for the graphs to be cages, we can achieve more refined connectivity properties on these families and also we have an approach to structural properties of the family of graphs with more restrictions (i.e., the cages). Our aim, by studying such structural properties of cages is to get a deeper insight into their structure so we can attack the problem of their construction. By way of example, we studied a condition on the diameter in relation to the girth pair of a graph, and as a corollary we obtained a result guaranteeing restricted connectivity of a special family of graphs arising from geometry, such as polarity graphs. Also, we obtained a result proving the edge superconnectivity of semiregular cages. Based on these studies it was possible to develop the study of cages. Therefore obtaining a relevant result with respect to the connectivity of cages, that is, cages are k/2-connected. And also arising from the previous work on girth pairs we obtained constructions for girth pair cages that proves a bound conjectured by Harary and Kovács, relating the order of girth pair cages with the one for cages. Concerning the degree and the diameter, there is the concept of a Moore graph, it was introduced by Hoffman and Singleton after Edward F. Moore, who posed the question of describing and classifying these graphs. As well as having the maximum possible number of vertices for a given combination of degree and diameter, Moore graphs have the minimum possible number of vertices for a regular graph with given degree and girth. That is, any Moore graph is a cage. The formula for the number of vertices in a Moore graph can be generalized to allow a definition of Moore graphs with even girth (bipartite Moore graphs) as well as odd girth, and again these graphs are cages. Thus, Moore graphs give a lower bound for the order of cages, but they are known to exist only for very specific values of k, therefore it is interesting to study how far a cage is from this bound, this value is called the excess of a cage. We studied the excess of graphs and give a contribution, in the sense of the work of Biggs and Ito, relating the bipartition of girth 6 cages with their orders. Entire families of cages can be obtained from finite geometries, for example, the graphs of incidence of projective planes of order q a prime power, are (q+1, 6)-cages. Also by using other incidence structures such as the generalized quadrangles or generalized hexagons, it can be obtained families of cages of girths 8 and 12. In this thesis, we present a construction of an entire family of girth 7 cages that arises from some combinatorial properties of the incidence graphs of generalized quadrangles of order (q,q)

    Dynamic cage survey

    Get PDF

    Subject Index Volumes 1–200

    Get PDF
    • …
    corecore