Nonexistence of almost Moore digraphs of degrees 4 and 5 with self-repeats

Nacho López*

Arnau Messegué[†]

Departament de Matemàtica Universitat de Lleida Lleida, Spain Departament de Ciències de la Computació Universitat Politècnica de Catalunya Barcelona, Spain

nacho.lopez@udl.cat

arnau.messegue@upc.edu

Josep M. Miret[‡]

Departament de Matemàtica Universitat de Lleida Lleida, Spain

josepmaria.miret@udl.cat

Submitted: Jun 17, 2022; Accepted: Feb 11, 2023; Published: Mar 24, 2023 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

An almost Moore (d, k)-digraph is a regular digraph of degree d > 1, diameter k > 1 and order $N(d, k) = d + d^2 + \cdots + d^k$. So far, their existence has only been shown for k = 2, whilst it is known that there are no such digraphs for k = 3, 4 and for d = 2, 3 when $k \ge 3$. Furthermore, under certain assumptions, the nonexistence for the remaining cases has also been shown. In this paper, we prove that (4, k) and (5, k)-almost Moore digraphs with self-repeats do not exist for $k \ge 5$.

Mathematics Subject Classifications: 05C35, 05C20, 05C50

1 Introduction

Given two natural numbers d and k, the degree/diameter problem asks for the largest possible number of vertices in a [directed] graph with maximum [out-]degree d and diameter k (a survey is given by Miller and Širáň in [18]). Plesník and Znám in [19] and later Bridges and Toueg in [6] proved that the number of vertices in a digraph is less than the

^{*}Supported in part by grants PID2020-115442RB-I00 and 2021SGR-00434.

[†]Supported in part by grants Margarita Sala and 2021SGR-00434.

 $^{^{\}ddagger}\mathrm{Supported}$ in part by grants PID2021-124613OB-I00 and 2021SGR-00434.

Moore bound, $M(d, k) = 1 + d + \cdots + d^k$ unless d = 1 or k = 1. Then, the question of finding for which values of d > 1 and k > 1 there exist digraphs of order

$$N(d,k) = M(d,k) - 1 = d + d^2 + \dots + d^k$$

becomes an interesting problem. Regular digraphs of degree d > 1, diameter k > 1 and order N(d, k) are called *almost Moore* (d, k)-*digraphs* (or (d, k)-*digraphs* for short). These digraphs turn out to be *d*-regular [17].

Concerning the existence of such (d, k)-digraphs, Fiol et al. showed in [12] that (d, 2)digraphs do exist for any degree d > 1 and Gimbert completed their classification for k = 2 in [14]. But so far, it seems that they do not exist for the remaining values of the diameter. Nevertheless, nonexistence has been proven only for a few cases. Conde et al. in [9, 10] showed the nonexistence of (d, 3) and (d, 4)-digraphs. On the other hand, Miller and Fris in [16] proved that there are no (2, k)-digraphs with $k \ge 3$ and Baskoro et al. showed in [5] the nonexistence of (3, k)-digraphs for $k \ge 3$. In [11], Conde et al. proved that there are infinitely many primes k for which (4, k)-digraphs and (5, k)-digraphs do not exist.

Also we have to mention that there exist two conjectures such that, assuming that either of them is true, the nonexistence of (d, k)-digraphs for any $d \ge 4$ and $k \ge 5$ is proven. One of them is based on the structure of the out-neighbours of the k-type vertices, those whose distance to its repeat is k (see [1, 2]). From it Cholily in [7] proved the nonexistence. The other conjecture was given by Gimbert in [13] and it is related to the factorization in $\mathbb{Q}[x]$ of the polynomials $F_{n,k}(x) = \Phi_n(1 + x + \cdots + x^k), \Phi_n(x)$ being the *n*th cyclotomic polynomial. In [8] the nonexistence is also proven assuming this conjecture.

In this paper, we prove that almost Moore digraphs of degree d = 4 and d = 5 with self-repeats do not exist for any diameter $k \ge 5$. To do this we take advantage of the cycle structure of the permutation of repeats given by Sillasen in [20] for such degrees.

2 Permutation cycle structures of (4, k) and (5, k)-digraphs

Given a digraph G, we will denote by V(G) the set of its vertices and by E(G) the set of its arcs. If u and v are vertices of G and (u, v) is an arc, it is said that u is *adjacent* to v. A walk of length ℓ from u to v is a sequence of vertices $u = w_0, w_1, \ldots, w_{\ell-1}, w_{\ell} = v$ such that each (w_{i-1}, w_i) is an arc. A digraph with maximum out-degree at most d > 1, diameter at most k > 1 and order $N = d + d^2 + \cdots + d^k$ must have all vertices with out-degree d and its diameter must be k (see [12]). Moreover, its in-degrees are also d(see [17]). Such a digraph is called (d, k)-digraph.

A (d, k)-digraph G has the property that for each vertex $v \in V(G)$ there exists only a vertex $u \in V(G)$, called the *repeat* of v and denoted by r(v), such that there are exactly two walks from v to r(v) of length at most k (one of them of length k). If r(v) = v, the vertex v is called a *self-repeat* of G. The map r, which assigns to each vertex $v \in V(G)$ the vertex r(v), is an automorphism of G (see [3]). For any $t \ge 1$, we can define $r^t(v) = r(r^{t-1}(v))$, with $r^0(v) = v$. Then, the smallest integer $t \ge 1$ such that

Figure 1: Repeat of a vertex in a (d, k)-digraph

 $r^{t}(v) = v$ is called the *order* of v. In Figure 1, we can see graphically the notion of repeat of a vertex v, showing the different possibilities for the level in which r(v) belongs.

Note that a (d, k)-digraph does not contain cycles of length less than k and in case that v is a vertex belonging in a cycle of length k then v is a self-repeat vertex.

Given a (d, k)-digraph G, its adjacency matrix A satisfies the equation

$$I + A + \dots + A^k = J + P \tag{1}$$

where J denotes the all-one matrix and $P = (p_{ij})$ is the (0,1)-matrix associated with the map r, which is equivalent to saying $p_{ij} = 1$ iff r(i) = j. The map r, which is a permutation of the set of vertices $V(G) = \{1, \ldots, N\}$, has a cycle structure which corresponds to its unique decomposition into disjoint cycles. The number of permutation cycles of r of each length $i \leq N$, will be denoted by m_i and the vector

$$(m_1, m_2, \ldots, m_N)$$

will be referred as the permutation cycle structure of G. It means that there are m_1 self-repeats, $2m_2$ vertices of order 2 under the permutation r and so on. Hence

$$\sum_{i=1}^{N} im_i = N.$$

We will consider (4, k) and (5, k)-digraphs G with diameter $k \ge 5$. For these cases, the possible cycle structures of the permutation of repeats are given by Sillasen [20]. The corresponding structures containing self-repeats have also been deduced in [2] by Baskoro et al.

Proposition 1. Let G be a (d, k)-digraph, d = 4 or d = 5, with order $N = d + d^2 + \cdots + d^k$. The permutation cycle structure of G must be one of these forms:

• If d = 4: $(k, 0, m_3, 0, \dots, 0), \quad k + 3m_3 = N,$ $(0, \dots, 0, m_i, 0, \dots, 0), \quad im_i = N, \ i \ge 2.$

- If d = 5:
 - $\begin{array}{ll} (k, m_2, 0, \dots, 0), & k+2m_2 = N, \\ (k, 0, 0, m_4, 0, \dots, 0) & k+4m_4 = N, \\ (0, \dots, 0, m_i, 0, \dots, 0), & im_i = N, \ i \ge 2, \\ (0, \dots, 0, m_j, 0, \dots, m_{2j}, 0, \dots, 0), & jm_j + 2jm_{2j} = N, \ j \ge 2, \ with \ either \\ k+2 \ vertices \ of \ order \ j \ and \ N-k-2 \ of \ order \ 2j, \ or \\ M(3, k) + 1 \ vertices \ of \ order \ j \ and \ N-M(3, k) 1 \ of \ order \ 2j. \end{array}$

We will see that (d, k)-digraphs, $k \ge 5$, with these permutation cycle structures with $m_1 = k$ do not exist either when d = 4 or d = 5.

Proposition 2. The adjacency matrix A of a (d,k)-digraph, d = 4 or d = 5, with permutation cycle structure with $m_1 = k$ satisfies

$$\operatorname{Tr} \boldsymbol{A}^{i} = 0, \ 1 \leqslant i \leqslant k - 1, \quad \operatorname{Tr} \boldsymbol{A}^{k} = k, \quad \operatorname{Tr} \boldsymbol{P} \boldsymbol{A} = 0, \quad \operatorname{Tr} \boldsymbol{A}^{k+1} = dN - k.$$

Proof. Since G has no cycles of length less than k, its adjacency matrix A satisfies

Tr
$$A^i = 0$$
 for $i = 1, 2, ..., k - 1$.

Since $\operatorname{Tr} \mathbf{P} = m_1 = k$, we have in our case $\operatorname{Tr} \mathbf{A}^k = \operatorname{Tr} \mathbf{P} = k$. From (1), we have that $\mathbf{A} + \mathbf{A}^2 + \cdots + \mathbf{A}^{k+1} = \mathbf{J}\mathbf{A} + \mathbf{P}\mathbf{A}$. Then, taking into account $\mathbf{J}\mathbf{A} = d\mathbf{J}$ because G is diregular, we deduce

$$\operatorname{Tr} \boldsymbol{A}^{k} + \operatorname{Tr} \boldsymbol{A}^{k+1} = dN + \operatorname{Tr} \boldsymbol{P} \boldsymbol{A}.$$
(2)

It is known that $\operatorname{Tr} \boldsymbol{P} \boldsymbol{A} = |R(G)|$ (see [13], Section 3), where

$$R(G) = \{ v \in V(G) \mid (r(v), v) \in E(G) \}.$$
(3)

Besides, in [13], Proposition 3, Gimbert showed that there exists a partition of the set R(G), $R(G) = C_1 \cup C_2 \cup \ldots \cup C_h$, such that each $C_i = \{v_i, r(v_i), \ldots, r^{t_i-1}(v_i)\}$, where $v_i \in R(G)$ has order $t_i \ge k + 1$ as an element of the permutation r. Nevertheless, in our case, taking into account the permutation cycle structures with $m_1 = k$ given in Proposition 1, we get a contradiction. Indeed, if d = 4 all vertices have order ≤ 3 (since $m_i = 0, \forall i \ge 4$) whereas if d = 5 all vertices have order ≤ 4 (since $m_i = 0, \forall i \ge 5$). Thus, since we are considering diameter $k \ge 5$, we have $R(G) = \emptyset$ and hence Tr $\mathbf{PA} = 0$. Therefore Tr $\mathbf{A}^{k+1} = dN - k$.

2.1 Computing some traces of PA^{ℓ}

In order to compute the traces of \mathbf{PA}^{ℓ} , $\ell \ge 1$, we generalize the set R(G) defined in (3). Note that

$$(\boldsymbol{P}\boldsymbol{A}^{\ell})_{ii} = \sum_{j=1}^{N} \boldsymbol{P}_{ij} \boldsymbol{A}_{ji}^{\ell} = \boldsymbol{A}_{r(i)i}^{\ell}.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(1) (2023), #P1.56

Taking into account that the entry uv of the matrix \mathbf{A}^{ℓ} is precisely the number of walks of length ℓ from u to v, then Tr \mathbf{PA}^{ℓ} is the number of vertices u such that there is a walk of length ℓ from r(u) to u, where each vertex u is counted according to the number of $r(u) \to u$ walks of length ℓ . This is precisely the cardinality of the multiset

$$R_{\ell}(G) = \{ u \in V(G) \mid \text{ there is a } r(u) \to u \text{ walk of length } \ell \}.$$

Note that $R_1(G)$ is the set R(G) defined above.

Proposition 3. Let $(m_1, m_2, \ldots, m_s, 0, \ldots, 0)$ be the permutation cycle structure of a (d, k)-digraph. If $R_{\ell}(G) \neq \emptyset$, then $\ell \geq \frac{k+1}{s}$.

Proof. Let $u \in R_{\ell}(G)$ and let us denote by $r(u), w_1, \ldots, w_{\ell-1}, u$ a walk of length ℓ from r(u) to u in G. Let t be the order of u as an element of the permutation r. Since r is an automorphism of G, we have that the sequences $r^{t'+1}(u), r^{t'}(w_1), \ldots, r^{t'}(w_{\ell-1}), r^{t'}(u)$ for all $1 \leq t' < t$, are sequences of arcs in G. Finally, the sequence

$$u = r^{t}(u), r^{t-1}(w_{1}), \dots, r^{t-1}(w_{\ell-1}), r^{t-1}(u), \dots, r(u), \dots, u$$

is a cycle of length ℓt if $r^{t'}(w_i) \neq r^{t''}(w_j)$ for all $i \neq j$ and $t' \neq t''$. Otherwise, shorter cycles appear inside this sequence. Taking into account that a (d, k)-digraph contains no cycles of length less than k and contains at most a cycle of length k consisting of its self-repeats, then $\ell s \geq \ell t \geq k + 1$ and the result follows.

Recall that Tr $\mathbf{PA}^{\ell} = |R_{\ell}(G)|$. Then we have the following result:

Corollary 4. Let A be the adjacency matrix of a (d,k)-digraph with permutation matrix P and $(m_1, m_2, \ldots, m_s, 0, \ldots, 0)$ being the permutation cycle structure. Then

$$\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}^{\ell} = 0, \quad 1 \leqslant \ell < \frac{k+1}{s}.$$

Considering our permutation cycle structures for degree d = 4 and diameter $k \ge 5$ given in Proposition 1 we have:

Corollary 5. The adjacency matrix \mathbf{A} of a (4, k)-digraph with permutation matrix \mathbf{P} and permutation cycle structure with $m_1 = k$ satisfies

Tr
$$\mathbf{P}\mathbf{A}^{\ell} = 0$$
, Tr $\mathbf{A}^{k+\ell} = d^{k+\ell} - d^{\ell}$, $1 < \ell < \frac{k+1}{3}$.

Proof. Since for degree d = 4 the unique permutation cycle structure with $m_1 = k$ is $(k, 0, m_3, 0, \ldots, 0)$, from Corollary 4 we have $\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}^{\ell} = 0$, for $1 \leq \ell < \frac{k+1}{s}$ with s = 3. Concerning $\operatorname{Tr} \boldsymbol{A}^{k+\ell}$, note that for $\ell = 2$ (in which case $k \geq 6$) we have from (1) that

$$\operatorname{Tr} \boldsymbol{A}^{k} + \operatorname{Tr} \boldsymbol{A}^{k+1} + \operatorname{Tr} \boldsymbol{A}^{k+2} = \operatorname{Tr} \boldsymbol{J} \boldsymbol{A}^{2} + \operatorname{Tr} \boldsymbol{P} \boldsymbol{A}^{2} = d^{2} N.$$

Then, from Proposition 2, it turns out that $\operatorname{Tr} \mathbf{A}^{k+2} = d^2 N - \operatorname{Tr} \mathbf{A}^k - \operatorname{Tr} \mathbf{A}^{k+1} = d^2 N - dN = d^{k+2} - d^2$. Now we can derive the claim for $2 < \ell < \frac{k+1}{3}$ by strong induction on ℓ . Indeed, assuming $\operatorname{Tr} \mathbf{A}^{k+i} = d^{k+i} - d^i$ holds for $2 \leq i < \ell$, it turns out that $\operatorname{Tr} \mathbf{A}^{k+\ell} = d^\ell N - \sum_{i=0}^{\ell-1} \operatorname{Tr} \mathbf{A}^{k+i} = d^\ell N - d^{\ell-1} N = d^{k+\ell} - d^\ell$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(1) (2023), #P1.56

Moreover, taking into account that for the cycle structure $(k, 0, m_3, 0, ..., 0)$ the permutation matrix \mathbf{P} and the automorphism r satisfy, respectively, $\mathbf{P}^2 = \mathbf{P}^{-1}$ and $r^2 = r^{-1}$, we can extend the previous result as follows:

Corollary 6. The adjacency matrix \mathbf{A} of a (4, k)-digraph with permutation matrix \mathbf{P} and permutation cycle structure with $m_1 = k$ satisfies

Tr
$$\boldsymbol{P}^2 \boldsymbol{A}^\ell = 0, \quad 1 \leqslant \ell < \frac{k+1}{3}.$$

Proof. In this case,

$$(\mathbf{P}^2 \mathbf{A}^\ell)_{ii} = \sum_{j=1}^N \mathbf{P}_{ij}^2 \mathbf{A}_{ji}^\ell = \sum_{j=1}^N \mathbf{P}_{ij}^{-1} \mathbf{A}_{ji}^\ell = \mathbf{A}_{r^{-1}(i)i}^\ell,$$

which coincides with the cardinality of

$$R'_{\ell}(G) = \{ u \in V(G) \mid \text{ there is a } r^{-1}(u) \to u \text{ walk of length } \ell \}.$$

As in the proof of Proposition 3, the order t of $u \in R'_{\ell}(G)$ satisfies $\ell t \ge k+1$, that is $\ell \ge (k+1)/t$. Since the order t of each vertex is $\leqslant 3$, it turns out $R'_{\ell}(G) = \emptyset$ when $\ell < (k+1)/3$ and hence $\operatorname{Tr} \mathbf{P}^2 \mathbf{A}^{\ell} = 0$.

3 On the characteristic polynomial of (4, k) and (5, k)-digraphs

Given a permutation matrix \boldsymbol{P} of order N and the all-one matrix \boldsymbol{J} , the characteristic polynomial of $\boldsymbol{J} + \boldsymbol{P}$ is (see[4])

$$\phi(\mathbf{J} + \mathbf{P}, x) = \det(x\mathbf{I} - (\mathbf{J} + \mathbf{P})) = (x - (N+1))(x - 1)^{m_1 - 1} \prod_{i=2}^{N} (x^i - 1)^{m_i},$$

where (m_1, m_2, \ldots, m_N) is the permutation cycle structure of \boldsymbol{P} . Its factorization in $\mathbb{Q}[x]$ in terms of cyclotomic polynomials $\Phi_n(x)$ is given by:

$$\phi(\mathbf{J} + \mathbf{P}, x) = (x - (N+1))(x - 1)^{m(1)-1} \prod_{n=2}^{N} \Phi_n(x)^{m(n)},$$
(4)

where $m(n) = \sum_{n|i} m_i$ represents the total number of permutation cycles of order multiple of n. Notice that $\mathbf{J} + \mathbf{P}$ is a diagonalizable matrix in \mathbb{C} and its minimal polynomial is

$$m(\mathbf{J} + \mathbf{P}, x) = (x - (N+1))(x-1) \prod_{m(n) \neq 0} \Phi_n(x).$$
(5)

Lemma 7. The adjacency matrix \mathbf{A} of a (d, k)-digraph G is a diagonalizable matrix in \mathbb{C} .

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(1) (2023), #P1.56

Proof. If G has permutation matrix P, taking into account the adjacency matrix A satisfies the identity $I + A + \cdots + A^k = J + P$ and substituting x by $1 + x + \cdots + x^k$ in m(J + P, x) we get a new polynomial p(x), which vanishes at A. Since the factors $x(1+x+\cdots+x^{k-1})$ and $\Phi_n(1+x+\cdots+x^k)$ have no multiple roots, the claim follows. \Box

From equations (1) and (4), the problem of the factorization of the characteristic polynomial of G, $\phi(G, x) = \det(xI - A)$ in $\mathbb{Q}[x]$ is related to the study of factorization in $\mathbb{Q}[x]$ of the polynomial:

$$F_{n,k}(x) = \Phi_n(1 + x + \dots + x^k), \ n \ge 2.$$

If $F_{n,k}(x)$ is irreducible in $\mathbb{Q}[x]$, then $F_{n,k}(x)$ is a factor of $\phi(G, x)$ and its multiplicity is m(n)/k (see [13]). More than this, the "cyclotomic conjecture" proposed by Gimbert gives the factorization in $\mathbb{Q}[x]$ of the polynomials $F_{n,k}(x)$. Assuming this conjecture, the nonexistence of (d, k)-digraphs is proven in [8].

From (5) we derive the following result:

Lemma 8. The adjacency matrix \mathbf{A} of a (d, k)-digraph, d = 4, 5, satisfies $p(\mathbf{A}) = 0$, where

• if d = 4 with permutation cycle structure $(k, 0, m_3, 0, \dots, 0)$, $N = k + 3m_3$,

$$p(x) = (x - d)x(x^{k-1} + \dots + x + 1)F_{3,k}(x),$$
(6)

with $F_{3,k}(x) = (x^k + \dots + x + 1)^2 + (x^k + \dots + x + 1) + 1.$

• if d = 5 with permutation cycle structure $(k, m_2, 0, \dots, 0)$, $N = k + 2m_2$,

$$p(x) = (x - d)x(x^{k-1} + \dots + x + 1)F_{2,k}(x),$$
(7)

with $F_{2,k}(x) = x^k + \dots + x + 2$.

• if d = 5 with permutation cycle structure $(k, 0, 0, m_4, 0, \dots, 0)$, $N = k + 4m_4$,

$$p(x) = (x - d)x(x^{k-1} + \dots + x + 1)F_{2,k}(x)F_{4,k}(x),$$
(8)

with $F_{4,k}(x) = (x^k + \dots + x + 1)^2 + 1.$

4 Nonexistence of (4, k)-digraphs with self-repeats

In this section we consider (d, k)-digraphs with d = 4 and $k \ge 5$ containing self-repeats, that is, whose permutation cycle structure is $(k, 0, m_3, 0, \ldots, 0)$.

Proposition 9. Almost Moore digraphs of degree d = 4 and diameter k with self-repeats do not exist in the following cases:

- $k \ge 5$ is an odd number.
- $k \ge 6$ is an even number of the form k = 2(p-1) where p is a prime number.

Proof. Notice that 4N is precisely the number of arcs in a (4, k)-digraph G, hence Equation (2) together with the condition $\operatorname{Tr} \mathbf{PA} = 0$ shows that each arc of the digraph G belongs to exactly one cycle of G of length k or k + 1. This means that there exists a positive integer $t \in \mathbb{Z}^+$ such that

$$4N = k + t(k+1). (9)$$

Clearly this is impossible for any odd number $k \ge 5$. More in general, since $N = 4 + 4^2 + \cdots + 4^k = \frac{4}{3}(4^k - 1)$, we have from (9) that

$$t = \frac{4^{k+2} - 13}{3(k+1)} - 1$$

and consequently, a necessary condition for the existence of G is

$$4^{k+2} \equiv 13 \pmod{3(k+1)}$$
(10)

Let k = 2s. We show next that $4^{2s} \equiv 1 \pmod{3(2s+1)}$ whenever s = p-1 being p a prime number. Indeed, clearly $4^{p-1} \equiv 1 \pmod{3}$ and since $4^{p-1} \equiv 1 \pmod{p}$ we have that $4^{p-1} \equiv 1 \pmod{3p}$. Any prime number p > 2 is an odd number p = 2s + 1, hence $4^{2s} \equiv 1 \pmod{3(2s+1)}$.

Remark 10. We performed an exhaustive computer search for all values of k with $5 \leq k < 10^6$ satisfying Equation (10) and we found that there are none satisfying this condition. Hence (4, k)-digraphs do not exist for this range of values of k.

4.1 Matrix approach

Let A be the adjacency matrix of a (4, k)-digraph, $k \ge 5$, whose permutation cycle structure is $(k, 0, m_3, 0, \dots, 0)$. Since A is a diagonalizable matrix (see Lemma 7), A can be expressed in a basis of eigenvectors as a diagonal matrix with eigenvalues (see [13]),

- *d* with multiplicity 1;
- $\lambda_i, 1 \leq i \leq m_3 + k 1$, roots of the factor $x^k + \cdots + x^2 + x$;
- α_i , $1 \leq i \leq m_3$, roots of the factor $x^k + \cdots + x^2 + x + 1 \rho$, ρ being a primitive cubic root of unity; and
- $\beta_i, 1 \leq i \leq m_3$, conjugates of α_i , that is, roots of the factor $x^k + \cdots + x^2 + x + 1 \rho^2$.

That is, in such a basis,

$$\boldsymbol{A} = \begin{pmatrix} d & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \lambda_1 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n_3} & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \alpha_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & \alpha_{m_3} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & \beta_1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & \beta_{m_3} \end{pmatrix},$$

with $n_3 = m_3 + k - 1$. In the same basis, the matrices of \boldsymbol{J} and \boldsymbol{P} are:

$$\boldsymbol{J} = \begin{pmatrix} N & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \quad \text{and} \quad \boldsymbol{P} = \begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & \rho & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & \rho^2 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & \rho^2 \end{pmatrix}.$$

From this, $\text{Tr} \boldsymbol{J} = N$, $\text{Tr} \boldsymbol{P} = k + m_3 + m_3(\rho + \rho^2) = k$, and the trace of \boldsymbol{A} , which is the sum of the roots of its characteristic polynomial, can be written as follows

Tr
$$(\mathbf{A}) = d + \sum_{i=1}^{m_3+k-1} \lambda_i + \sum_{i=1}^{m_3} \alpha_i + \sum_{i=1}^{m_3} \beta_i = 0.$$

Since A is a diagonalizable matrix (see Lemma 7), so is A^{ℓ} in the same basis of eigenvectors. Thus,

$$\operatorname{Tr}(\mathbf{A}^{\ell}) = d^{\ell} + \sum_{i=1}^{m_3+k-1} \lambda_i^{\ell} + \sum_{i=1}^{m_3} \alpha_i^{\ell} + \sum_{i=1}^{m_3} \beta_i^{\ell}, \qquad 1 \leq \ell < k.$$
(11)

Note that we can express

$$\sum_{i=1}^{m_3} \alpha_i^{\ell} = a_{\ell} + b_{\ell} \rho \quad \text{and} \quad \sum_{i=1}^{m_3} \beta_i^{\ell} = a_{\ell} + b_{\ell} \rho^2, \qquad a_{\ell}, b_{\ell} \in \mathbb{Z}.$$
(12)

Indeed, $\sum_{i=1}^{m_3} \alpha_i^{\ell}$ corresponds to the sum of the ℓ th powers of all roots of some irreducible factors of $x^k + \cdots + x^2 + x + 1 - \rho$ in $\mathbb{Q}(\rho)$. Then according to Newton-Girard formulas these sums only depend on the coefficients of their terms. The sum $\sum_{i=1}^{m_3} \beta_i^{\ell}$ is the conjugate of $\sum_{i=1}^{m_3} \alpha_i^{\ell}$.

The electronic journal of combinatorics 30(1) (2023), #P1.56

Proposition 11. Let G be a (4, k)-digraph with self-repeats. Then

$$0 = \text{Tr}(\mathbf{A}^{\ell}) = d^{\ell} + \sum_{i=1}^{m_3+k-1} \lambda_i^{\ell}, \quad 1 \le \ell < \frac{k+1}{3}.$$
 (13)

Proof. Taking into account identities (11) and (12) we have

$$0 = \operatorname{Tr} (\mathbf{A}^{\ell}) = d^{\ell} + \sum_{i=1}^{m_3+k-1} \lambda_i^{\ell} + (a_{\ell} + b_{\ell}\rho) + (a_{\ell} + b_{\ell}\rho^2).$$

From Corollary 5 we also have

$$0 = \operatorname{Tr}(\boldsymbol{P}\boldsymbol{A}^{\ell}) = d^{\ell} + \sum_{i=1}^{m_3+k-1} \lambda_i^{\ell} + (a_{\ell}\rho + b_{\ell}\rho^2) + (a_{\ell}\rho^2 + b_{\ell}\rho).$$

Subtracting one equation from the other we get $a_{\ell} = 0$. Besides,

$$0 = \operatorname{Tr} \left(\mathbf{P}^{2} \mathbf{A}^{\ell} \right) = d^{\ell} + \sum_{i=1}^{m_{3}+k-1} \lambda_{i}^{\ell} + b_{\ell} \rho^{3} + b_{\ell} \rho^{3},$$

from where, it turns out $b_{\ell} = 0$ and the claim follows.

Concerning the sums $\sum_{i=1}^{m_3+k-1} \lambda_i^{\ell}$, we know the eigenvalues λ_i , $1 \leq i \leq m_3+k-1$, are roots of the factor $x^k + \dots + x^2 + x - x \prod \Phi(x)$

$$x^k + \dots + x^2 + x = x \prod_{n \neq 1 \ n \mid k} \Phi_n(x).$$

Since the cyclotomic polynomials $\Phi_n(x)$ are irreducible in $\mathbb{Q}[x]$, it follows that there exist nonnegative integers a_n such that

$$\sum_{i=1}^{m_3+k-1} \lambda_i^{\ell} = \sum_{n \neq 1, n \mid k} a_n S_{\ell}(\Phi_n(x)), \tag{14}$$

where $S_{\ell}(a(x))$ denotes the sum of the ℓ th powers of all roots of a(x).

The sums $S_{\ell}(\Phi_n(x))$ are known as *Ramanujan sums* and can be computed as follows (see [15]):

Lemma 12. Let n and ℓ be two positive integers. Then

$$S_{\ell}(\Phi_n(x)) = \sum_{j \mid \text{gcd}(n,\ell)} \mu\left(\frac{n}{j}\right) j,$$

where $\mu(n)$ denotes the Möbius function.

Theorem 13. Almost Moore digraphs of degree d = 4 with self-repeats do not exist for diameter $k \ge 5$.

The electronic journal of combinatorics $\mathbf{30(1)}$ (2023), #P1.56

Proof. Let G be an (4, k)-digraph with self-repeats. From (13) and (14), its adjacency matrix \boldsymbol{A} satisfies

$$0 = \operatorname{Tr} \mathbf{A}^{\ell} = d^{\ell} + \sum_{n \neq 1, n \mid k} a_n S_{\ell}(\Phi_n(x)), \quad 1 \leq \ell < \frac{k+1}{3}.$$

Note if ℓ and k are relatively prime then for every $n \mid k$ we have

$$S_{\ell}(\Phi_n(x)) = \mu(n). \tag{15}$$

In particular, if there exists an integer ℓ such that

$$gcd(\ell, k) = 1$$
 and $1 < \ell < \frac{k+1}{3}$, (16)

then $S_{\ell}(\Phi_n(x)) = S_1(\Phi_n(x))$ for all n with $n \mid k$, which would imply that

$$\operatorname{Tr} \boldsymbol{A}^{\ell} - \operatorname{Tr} \boldsymbol{A} = d^{k} - d = 0,$$

which is impossible unless d = 1 or k = 1.

Now, we will prove that there exists an integer ℓ satisfying (16) if $k \ge 20$ (see Remark 10 for the remaining values of k). More precisely, we show that if $k \ge 20$ then there exists a positive integer ℓ with $1 < \ell < (k+1)/3$ such that $gcd(k, \ell) = 1$. Consider the distinct consecutive prime numbers until $\frac{k+1}{3}$:

$$2 = p_1 < p_2 < \dots < p_r < \frac{k+1}{3} \le p_{r+1}.$$

If for the contrary, $gcd(k, \ell) > 1$ for every positive integer ℓ with $1 < \ell < \frac{k+1}{3}$, then it means that

$$k = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}, \quad \alpha_i \ge 1.$$

If $k \ge 20$ then $(k+1)/3 \ge 7$ and therefore $r \ge 3$. Hence

$$\lfloor (k+1)/3 \rfloor = p_1^{\alpha_1} p_2^{\alpha_2 - 1} p_3^{\alpha_3} \dots p_r^{\alpha_r} \ge 2p_r.$$
(17)

Recall now that Ramanujan primes are the smallest integers R_n for which there are at least n primes between x/2 and x, for all $x \ge R_n$. Then, since 2 is the 1st Ramanujan prime, there exists a prime number between p_r and $2p_r$. Thus, $p_{r+1} < 2p_r$ and it turns out

$$\lfloor (k+1)/3 \rfloor \leqslant p_{r+1} < 2p_r,$$

which is a contradiction with (17).

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(1) (2023), #P1.56

11

5 Nonexistence of (5, k)-digraphs with self-repeats

We will consider the permutation cycle structures given in Proposition 1 for (5, k)digraphs, $k \ge 5$, with $m_1 = k$ self-repeats, that is,

$$(k, m_2, 0, \ldots, 0)$$
 and $(k, 0, 0, m_4, 0, \ldots, 0)$.

Theorem 14. Almost Moore digraphs of degree d = 5 with permutation cycle structure $(k, m_2, 0, ..., 0)$ do not exist for diameter $k \ge 5$.

Proof. Let G be a (5, k)-digraph with structure $(k, m_2, 0, \ldots, 0)$. Note that such a structure is not possible. Indeed, in this case the unique factor $F_{n,k}(x)$ appearing in the characteristic polynomial $\phi(G, x)$ is according to (7),

$$F_{2,k}(x) = \Phi_2(1 + x + \dots + x^k) = 2 + x + x^2 + \dots + x^k,$$

which is irreducible in $\mathbb{Q}[x]$ [13]. Hence the cyclotomic conjecture holds in this particular case (see [13]). Therefore such a digraph does not exist (see [8], Theorem 2). Indeed, the characteristic polynomial factorizes as

$$\phi(G,x) = (x-5)x^{a_0} \prod_{n|k, n \neq 1} \Phi_n(x)^{a_n} F_{2,k}(x)^{m_2/k}, \qquad a_0 + \sum_{n|k, n \neq 1} \varphi(n)a_n = k + m_2 - 1.$$

Since the trace of \mathbf{A}^{ℓ} , whith \mathbf{A} the adjacency matrix of G and $1 \leq \ell \leq k$, is the sum of the ℓ th powers of all roots of $\phi(G, x)$, we have

$$0 = \operatorname{Tr} \mathbf{A}^{\ell} = 5^{\ell} + \sum_{n|k, n\neq 1} a_n S_{\ell}(\Phi_n(x)) + \frac{m_2}{k} S_{\ell}(F_{2,k}(x)).$$

Taking $\ell = 1$ and another value for ℓ less than k and relatively prime with k, it follows from (15) that $S_1(\Phi_n(x)) = S_\ell(\Phi_n(x)) = \mu(n)$ and from Lemma 3 in [8] that $S_1(F_{2,k}(x)) = S_\ell(F_{2,k}(x)) = -\varphi(n)$. Therefore

$$0 = \operatorname{Tr} \boldsymbol{A}^{\ell} - \operatorname{Tr} \boldsymbol{A} = 5^{\ell} - 5,$$

which is impossible.

Theorem 15. Almost Moore digraphs of degree d = 5 with permutation cycle structure $(k, 0, 0, m_4, 0, \ldots, 0)$ do not exist for diameter $k \ge 5$.

Proof. Concerning the structure $(k, 0, 0, m_4, 0, ..., 0)$, we have $m(2) = m_4$. Then, since as before the factor $F_{2,k}(x)$ (which appears in the characteristic polynomial, see (8)) is irreducible, we get $k \mid m_4$. Therefore, taking $h = m_4/k$, it turns out $k(1 + 4h) = 5 + 5^2 + \cdots + 5^k = 5(5^k - 1)/4$, that is,

$$5^k \equiv 1 \pmod{4k}.\tag{18}$$

The electronic journal of combinatorics $\mathbf{30(1)}$ (2023), #P1.56

12

If k = p > 2 is a prime number, since $5^p \equiv 5 \pmod{p}$, we have $5 \equiv 1 \pmod{k}$, which is not possible. If k is an odd composite number with prime factorization

$$k = p_1^{r_1} p_2^{r_2} \dots p_s^{r_s}, \quad 2 < p_1 < p_2 < \dots < p_s,$$

from (18) we also derive $5^k \equiv 1 \pmod{p_1}$. Using Fermat's Little Theorem

$$1 = 5^k = 5^{\frac{k}{p_1}p_1} = 5^{\frac{k}{p_1}} \equiv 5^{k/p_1^{r_1}} \pmod{p_1}$$

Consider $d = \gcd(p_1 - 1, k/p_1^{r_1})$. Since $p_1 < p_2, \ldots, p_s$ it turns out d = 1. Thus, there exist two integers x, y such that

$$(p_1 - 1)x + (k/p_1^{r_1})y = 1.$$

Hence

$$5 = 5^{(p_1-1)x + (k/p_1^{r_1})y} = (5^{p_1-1})^x \cdot (5^{k/p_1^{r_1}})^y \equiv 1 \pmod{p_1}.$$

Therefore $5 \equiv 1 \pmod{p_1}$ so that $p_1 = 2$, which is a contradiction in the case k odd.

In the case k even with $v_2(k) = \alpha \ge 1$, we can see by induction that $v_2(5^k - 1) = \alpha + 2$. Now, we will prove there is no even integer k satisfying

$$5(5^k - 1) = 4k(1 + 4h).$$
(19)

Assume that first $k = 2^{\alpha}$. By induction we can prove

$$(5^{2^{\alpha}} - 1)/2^{\alpha+2} \equiv 3 \pmod{4},$$
 (20)

which is a contradiction with (19). Indeed, for $\alpha = 1$ we get $(5^2 - 1)/2^3 = 3$. Assuming true for α , for $\alpha + 1$ we have

$$(5^{2^{\alpha+1}}-1)/2^{\alpha+3} = ((5^{2^{\alpha}}-1)/2^{\alpha+2})((5^{2^{\alpha}}+1)/2) \equiv 3 \pmod{4}.$$

Note that congruence (20) can be extended to an integer $k = 2^{\alpha}k'$, with $\alpha \ge 1$ and $2 \nmid k'$, as follows

$$(5^{2^{\alpha}k'} - 1)/2^{\alpha+2} \equiv k' + 2 \pmod{4},$$

which contradicts equality (19).

We have seen (5, k)-digraphs with permutation cycle structures $(k, m_2, 0, \ldots, 0)$ and $(k, 0, 0, m_4, 0, \ldots, 0)$ do not exist for diameter $k \ge 5$. Since they are the unique structures containing selfrepeteats for d = 5, the nonexistence of them can be concluded.

Acknowledgements

The authors would like to thank the anonymous referees, whose comments highly improved the quality of this paper.

The electronic journal of combinatorics 30(1) (2023), #P1.56

References

- E.T. Baskoro, Y.M. Cholily and M. Miller, Structure of selfrepeat cycles in almost Moore digraphs with selfrepeats and diameter 3, *Bull. Inst. Combin. Appl.* 46: 99– 109, 2006.
- [2] E.T. Baskoro, Y.M. Cholily, M. Miller, Enumeration of vertex orders of almost Moore digraphs with selfrepeats, *Discrete Math.* 308(1): 123–128, 2008.
- [3] E.T. Baskoro, M. Miller and J. Plesník, On the structure of digraphs with order close to the Moore bound, *Graphs Combin.* 14: 109–119, 1998.
- [4] E.T. Baskoro, M. Miller, J. Plesník and Š. Znám, Regular digraphs of diameter 2 and maximum order, Australas. J. Combin. 9: 291–306, 1994.
- [5] E.T. Baskoro, M. Miller, J. Širáň and M. Sutton, Complete characterisation of almost Moore digraphs of degree three, J. Graph Theory 48(2): 112–126, 2005.
- [6] W.G. Bridges and S. Toueg, On the impossibility of directed Moore graphs, J. Combin. Theory Ser. B 29: 339–341, 1980.
- Y.M. Cholily, A conjecture on the existence of almost Moore digraphs, Adv. Appl. Discrete Math. 8(1): 57–64, 2011.
- [8] J. Conde, J. Gimbert, J. González, M. Miller and J. Miret, On the nonexistence of almost Moore digraphs, *European J. Combin.*, 39: 170–177, 2014.
- [9] J. Conde, J. Gimbert, J. González, J. Miret and R. Moreno, Nonexistence of almost Moore digraphs of diameter three, *Electron. J. Combin.* 15:#R87, 2008.
- [10] J. Conde, J. Gimbert, J. González, J. Miret and R. Moreno, Nonexistence of almost Moore digraphs of diameter four, *Electron. J. Combin.* 20(1):#P75, 2013.
- [11] J. Conde, M. Miller, J. Miret, K. Saurav, On the nonexistence of almost Moore digraphs of degree four and five, *Math. Comput. Sci.* 9(2): 145–149, 2015.
- [12] M.A. Fiol, I. Alegre and J.L.A. Yebra, Line digraphs iterations and the (d, k) problem for directed graphs, Proc. 10th Int. Symp. Comput. Arch., 174–177, 1983.
- [13] J. Gimbert, On the existence of (d, k)-digraphs, *Discrete Math.* 197/198: 375–391, 1999.
- [14] J. Gimbert, Enumeration of almost Moore digraphs of diameter two, *Discrete Math.*, 231: 177–190, 2001.
- [15] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, The Clarendon Press, Oxford University Press, New York, 1979.
- [16] M. Miller and I. Fris, Maximum order digraphs for diameter 2 or degree 2, Graphs, matrices, and designs, Lecture Notes in Pure and Appl. Math. 139: 269–278, 1993.
- [17] M. Miller, J. Gimbert, J. Širáň and Slamin, Almost Moore digraphs are diregular, Discrete Math. 218: 265–270, 2000.
- [18] M. Miller and I. Siráň, Moore graphs and beyond: A survey, Electron. J. Combin, #DS14, 2005.

- [19] J. Plesník and Š. Znám, Strongly geodetic directed graphs, Acta Fac. Rerum Natur. Univ. Comenian. Math. 29: 29–34, 1974.
- [20] A.A. Sillasen, Subdigraphs of almost Moore digraphs induced by fixpoints of an automorphism, *Electron. J. Graph Theory Appl.* 3(1): 1–7, 2015.