Nonexistence of almost Moore digraphs of degrees 4 and 5 with self-repeats

Nacho López*
Departament de Matemàtica
Universitat de Lleida Lleida, Spain
nacho.lopez@udl.cat

Arnau Messegué ${ }^{\dagger}$
Departament de Ciències de la Computació
Universitat Politècnica de Catalunya Barcelona, Spain
arnau.messegue@upc.edu

Josep M. Miret ${ }^{\ddagger}$
Departament de Matemàtica
Universitat de Lleida
Lleida, Spain
josepmaria.miret@udl.cat

Submitted: Jun 17, 2022; Accepted: Feb 11, 2023; Published: Mar 24, 2023
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

An almost Moore (d, k)-digraph is a regular digraph of degree $d>1$, diameter $k>1$ and order $N(d, k)=d+d^{2}+\cdots+d^{k}$. So far, their existence has only been shown for $k=2$, whilst it is known that there are no such digraphs for $k=3,4$ and for $d=2,3$ when $k \geqslant 3$. Furthermore, under certain assumptions, the nonexistence for the remaining cases has also been shown. In this paper, we prove that $(4, k)$ and ($5, k$)-almost Moore digraphs with self-repeats do not exist for $k \geqslant 5$.

Mathematics Subject Classifications: 05C35, 05C20, 05C50

1 Introduction

Given two natural numbers d and k, the degree/diameter problem asks for the largest possible number of vertices in a [directed] graph with maximum [out-]degree d and diameter k (a survey is given by Miller and Širán in [18]). Plesník and Znám in [19] and later Bridges and Toueg in [6] proved that the number of vertices in a digraph is less than the

[^0]Moore bound, $M(d, k)=1+d+\cdots+d^{k}$ unless $d=1$ or $k=1$. Then, the question of finding for which values of $d>1$ and $k>1$ there exist digraphs of order

$$
N(d, k)=M(d, k)-1=d+d^{2}+\cdots+d^{k}
$$

becomes an interesting problem. Regular digraphs of degree $d>1$, diameter $k>1$ and order $N(d, k)$ are called almost Moore (d, k)-digraphs (or (d, k)-digraphs for short). These digraphs turn out to be d-regular [17].

Concerning the existence of such (d, k)-digraphs, Fiol et al. showed in [12] that $(d, 2)$ digraphs do exist for any degree $d>1$ and Gimbert completed their classification for $k=2$ in [14]. But so far, it seems that they do not exist for the remaining values of the diameter. Nevertheless, nonexistence has been proven only for a few cases. Conde et al. in $[9,10]$ showed the nonexistence of $(d, 3)$ and $(d, 4)$-digraphs. On the other hand, Miller and Fris in [16] proved that there are no ($2, k$)-digraphs with $k \geqslant 3$ and Baskoro et al. showed in [5] the nonexistence of ($3, k$)-digraphs for $k \geqslant 3$. In [11], Conde et al. proved that there are infinitely many primes k for which $(4, k)$-digraphs and $(5, k)$-digraphs do not exist.

Also we have to mention that there exist two conjectures such that, assuming that either of them is true, the nonexistence of (d, k)-digraphs for any $d \geqslant 4$ and $k \geqslant 5$ is proven. One of them is based on the structure of the out-neighbours of the k-type vertices, those whose distance to its repeat is k (see [1, 2]). From it Cholily in [7] proved the nonexistence. The other conjecture was given by Gimbert in [13] and it is related to the factorization in $\mathbb{Q}[x]$ of the polynomials $F_{n, k}(x)=\Phi_{n}\left(1+x+\cdots+x^{k}\right), \Phi_{n}(x)$ being the nth cyclotomic polynomial. In [8] the nonexistence is also proven assuming this conjecture.

In this paper, we prove that almost Moore digraphs of degree $d=4$ and $d=5$ with self-repeats do not exist for any diameter $k \geqslant 5$. To do this we take advantage of the cycle structure of the permutation of repeats given by Sillasen in [20] for such degrees.

2 Permutation cycle structures of $(4, k)$ and ($5, k$)-digraphs

Given a digraph G, we will denote by $V(G)$ the set of its vertices and by $E(G)$ the set of its arcs. If u and v are vertices of G and (u, v) is an arc, it is said that u is adjacent to v. A walk of length ℓ from u to v is a sequence of vertices $u=w_{0}, w_{1}, \ldots, w_{\ell-1}, w_{\ell}=v$ such that each $\left(w_{i-1}, w_{i}\right)$ is an arc. A digraph with maximum out-degree at most $d>1$, diameter at most $k>1$ and order $N=d+d^{2}+\cdots+d^{k}$ must have all vertices with out-degree d and its diameter must be k (see [12]). Moreover, its in-degrees are also d (see [17]). Such a digraph is called (d, k)-digraph.

A (d, k)-digraph G has the property that for each vertex $v \in V(G)$ there exists only a vertex $u \in V(G)$, called the repeat of v and denoted by $r(v)$, such that there are exactly two walks from v to $r(v)$ of length at most k (one of them of length k). If $r(v)=v$, the vertex v is called a self-repeat of G. The map r, which assigns to each vertex $v \in V(G)$ the vertex $r(v)$, is an automorphism of G (see [3]). For any $t \geqslant 1$, we can define $r^{t}(v)=r\left(r^{t-1}(v)\right)$, with $r^{0}(v)=v$. Then, the smallest integer $t \geqslant 1$ such that

Figure 1: Repeat of a vertex in a (d, k)-digraph
$r^{t}(v)=v$ is called the order of v. In Figure 1, we can see graphically the notion of repeat of a vertex v, showing the different possibilities for the level in which $r(v)$ belongs.

Note that a (d, k)-digraph does not contain cycles of length less than k and in case that v is a vertex belonging in a cycle of length k then v is a self-repeat vertex.

Given a (d, k)-digraph G, its adjacency matrix \boldsymbol{A} satisfies the equation

$$
\begin{equation*}
\boldsymbol{I}+\boldsymbol{A}+\cdots+\boldsymbol{A}^{k}=\boldsymbol{J}+\boldsymbol{P} \tag{1}
\end{equation*}
$$

where \boldsymbol{J} denotes the all-one matrix and $\boldsymbol{P}=\left(p_{i j}\right)$ is the $(0,1)$-matrix associated with the map r, which is equivalent to saying $p_{i j}=1 \mathrm{iff} r(i)=j$. The map r, which is a permutation of the set of vertices $V(G)=\{1, \ldots, N\}$, has a cycle structure which corresponds to its unique decomposition into disjoint cycles. The number of permutation cycles of r of each length $i \leqslant N$, will be denoted by m_{i} and the vector

$$
\left(m_{1}, m_{2}, \ldots, m_{N}\right)
$$

will be referred as the permutation cycle structure of G. It means that there are m_{1} self-repeats, $2 m_{2}$ vertices of order 2 under the permutation r and so on. Hence

$$
\sum_{i=1}^{N} i m_{i}=N
$$

We will consider $(4, k)$ and $(5, k)$-digraphs G with diameter $k \geqslant 5$. For these cases, the possible cycle structures of the permutation of repeats are given by Sillasen [20]. The corresponding structures containing self-repeats have also been deduced in [2] by Baskoro et al.

Proposition 1. Let G be a (d, k)-digraph, $d=4$ or $d=5$, with order $N=d+d^{2}+\cdots+d^{k}$. The permutation cycle structure of G must be one of these forms:

- If $d=4$:

$$
\begin{array}{ll}
\left(k, 0, m_{3}, 0, \ldots, 0\right), & k+3 m_{3}=N \\
\left(0, \ldots, 0, m_{i}, 0, \ldots, 0\right), & i m_{i}=N, i \geqslant 2 .
\end{array}
$$

- If $d=5$:

$$
\begin{array}{ll}
\left(k, m_{2}, 0, \ldots, 0\right), & k+2 m_{2}=N, \\
\left(k, 0,0, m_{4}, 0, \ldots, 0\right) & k+4 m_{4}=N, \\
\left(0, \ldots, 0, m_{i}, 0, \ldots, 0\right), & i m_{i}=N, i \geqslant 2, \\
\left(0, \ldots, 0, m_{j}, 0, \ldots, m_{2 j}, 0, \ldots, 0\right), & j m_{j}+2 j m_{2 j}=N, j \geqslant 2 \text {, with either } \\
k+2 \text { vertices of order } j \text { and } N-k-2 \text { of order } 2 j \text {, or } \\
M(3, k)+1 \text { vertices of order } j \text { and } N-M(3, k)-1 \text { of order } 2 j .
\end{array}
$$

We will see that (d, k)-digraphs, $k \geqslant 5$, with these permutation cycle structures with $m_{1}=k$ do not exist either when $d=4$ or $d=5$.

Proposition 2. The adjacency matrix \boldsymbol{A} of $a(d, k)$-digraph, $d=4$ or $d=5$, with permutation cycle structure with $m_{1}=k$ satisfies

$$
\operatorname{Tr} \boldsymbol{A}^{i}=0,1 \leqslant i \leqslant k-1, \quad \operatorname{Tr} \boldsymbol{A}^{k}=k, \quad \operatorname{Tr} \boldsymbol{P} \boldsymbol{A}=0, \quad \operatorname{Tr} \boldsymbol{A}^{k+1}=d N-k
$$

Proof. Since G has no cycles of length less than k, its adjacency matrix \boldsymbol{A} satisfies

$$
\operatorname{Tr} \boldsymbol{A}^{i}=0 \text { for } i=1,2, \ldots, k-1 .
$$

Since $\operatorname{Tr} \boldsymbol{P}=m_{1}=k$, we have in our case $\operatorname{Tr} \boldsymbol{A}^{k}=\operatorname{Tr} \boldsymbol{P}=k$. From (1), we have that $\boldsymbol{A}+\boldsymbol{A}^{2}+\cdots+\boldsymbol{A}^{k+1}=\boldsymbol{J} \boldsymbol{A}+\boldsymbol{P} \boldsymbol{A}$. Then, taking into account $\boldsymbol{J} \boldsymbol{A}=d \boldsymbol{J}$ because G is diregular, we deduce

$$
\begin{equation*}
\operatorname{Tr} \boldsymbol{A}^{k}+\operatorname{Tr} \boldsymbol{A}^{k+1}=d N+\operatorname{Tr} \boldsymbol{P} \boldsymbol{A} . \tag{2}
\end{equation*}
$$

It is known that $\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}=|R(G)|$ (see [13], Section 3), where

$$
\begin{equation*}
R(G)=\{v \in V(G) \mid(r(v), v) \in E(G)\} . \tag{3}
\end{equation*}
$$

Besides, in [13], Proposition 3, Gimbert showed that there exists a partition of the set $R(G), R(G)=C_{1} \cup C_{2} \cup \ldots \cup C_{h}$, such that each $C_{i}=\left\{v_{i}, r\left(v_{i}\right), \ldots, r^{t_{i}-1}\left(v_{i}\right)\right\}$, where $v_{i} \in R(G)$ has order $t_{i} \geqslant k+1$ as an element of the permutation r. Nevertheless, in our case, taking into account the permutation cycle structures with $m_{1}=k$ given in Proposition 1, we get a contradiction. Indeed, if $d=4$ all vertices have order $\leqslant 3$ (since $m_{i}=0, \forall i \geqslant 4$) whereas if $d=5$ all vertices have order $\leqslant 4$ (since $m_{i}=0, \forall i \geqslant 5$). Thus, since we are considering diameter $k \geqslant 5$, we have $R(G)=\emptyset$ and hence $\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}=0$. Therefore $\operatorname{Tr} \boldsymbol{A}^{k+1}=d N-k$.

2.1 Computing some traces of $P A^{\ell}$

In order to compute the traces of $\boldsymbol{P} \boldsymbol{A}^{\ell}, \ell \geqslant 1$, we generalize the set $R(G)$ defined in (3). Note that

$$
\left(\boldsymbol{P} \boldsymbol{A}^{\ell}\right)_{i i}=\sum_{j=1}^{N} \boldsymbol{P}_{i j} \boldsymbol{A}_{j i}^{\ell}=\boldsymbol{A}_{r(i) i}^{\ell} .
$$

Taking into account that the entry $u v$ of the matrix \boldsymbol{A}^{ℓ} is precisely the number of walks of length ℓ from u to v, then $\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}^{\ell}$ is the number of vertices u such that there is a walk of length ℓ from $r(u)$ to u, where each vertex u is counted according to the number of $r(u) \rightarrow u$ walks of length ℓ. This is precisely the cardinality of the multiset

$$
R_{\ell}(G)=\{u \in V(G) \mid \text { there is a } r(u) \rightarrow u \text { walk of length } \ell\} .
$$

Note that $R_{1}(G)$ is the set $R(G)$ defined above.
Proposition 3. Let $\left(m_{1}, m_{2}, \ldots, m_{s}, 0, \ldots, 0\right)$ be the permutation cycle structure of a (d, k)-digraph. If $R_{\ell}(G) \neq \emptyset$, then $\ell \geqslant \frac{k+1}{s}$.
Proof. Let $u \in R_{\ell}(G)$ and let us denote by $r(u), w_{1}, \ldots, w_{\ell-1}, u$ a walk of length ℓ from $r(u)$ to u in G. Let t be the order of u as an element of the permutation r. Since r is an automorphism of G, we have that the sequences $r^{t^{\prime}+1}(u), r^{t^{\prime}}\left(w_{1}\right), \ldots, r^{t^{\prime}}\left(w_{\ell-1}\right), r^{t^{\prime}}(u)$ for all $1 \leqslant t^{\prime}<t$, are sequences of arcs in G. Finally, the sequence

$$
u=r^{t}(u), r^{t-1}\left(w_{1}\right), \ldots, r^{t-1}\left(w_{\ell-1}\right), r^{t-1}(u), \ldots, r(u), \ldots, u
$$

is a cycle of length ℓt if $r^{t^{\prime}}\left(w_{i}\right) \neq r^{t^{\prime \prime}}\left(w_{j}\right)$ for all $i \neq j$ and $t^{\prime} \neq t^{\prime \prime}$. Otherwise, shorter cycles appear inside this sequence. Taking into account that a (d, k) -digraph contains no cycles of length less than k and contains at most a cycle of length k consisting of its self-repeats, then $\ell s \geqslant \ell \geqslant k+1$ and the result follows.

Recall that $\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}^{\ell}=\left|R_{\ell}(G)\right|$. Then we have the following result:
Corollary 4. Let \boldsymbol{A} be the adjacency matrix of a (d, k)-digraph with permutation matrix \boldsymbol{P} and $\left(m_{1}, m_{2}, \ldots, m_{s}, 0, \ldots, 0\right)$ being the permutation cycle structure. Then

$$
\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}^{\ell}=0, \quad 1 \leqslant \ell<\frac{k+1}{s} .
$$

Considering our permutation cycle structures for degree $d=4$ and diameter $k \geqslant 5$ given in Proposition 1 we have:

Corollary 5. The adjacency matrix \boldsymbol{A} of $a(4, k)$-digraph with permutation matrix \boldsymbol{P} and permutation cycle structure with $m_{1}=k$ satisfies

$$
\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}^{\ell}=0, \quad \operatorname{Tr} \boldsymbol{A}^{k+\ell}=d^{k+\ell}-d^{\ell}, \quad 1<\ell<\frac{k+1}{3} .
$$

Proof. Since for degree $d=4$ the unique permutation cycle structure with $m_{1}=k$ is $\left(k, 0, m_{3}, 0, \ldots, 0\right)$, from Corollary 4 we have $\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}^{\ell}=0$, for $1 \leqslant \ell<\frac{k+1}{s}$ with $s=3$. Concerning $\operatorname{Tr} \boldsymbol{A}^{k+\ell}$, note that for $\ell=2$ (in which case $k \geqslant 6$) we have from (1) that

$$
\operatorname{Tr} \boldsymbol{A}^{k}+\operatorname{Tr} \boldsymbol{A}^{k+1}+\operatorname{Tr} \boldsymbol{A}^{k+2}=\operatorname{Tr} \boldsymbol{J} \boldsymbol{A}^{2}+\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}^{2}=d^{2} N .
$$

Then, from Proposition 2, it turns out that $\operatorname{Tr} \boldsymbol{A}^{k+2}=d^{2} N-\operatorname{Tr} \boldsymbol{A}^{k}-\operatorname{Tr} \boldsymbol{A}^{k+1}=d^{2} N-$ $d N=d^{k+2}-d^{2}$. Now we can derive the claim for $2<\ell<\frac{k+1}{3}$ by strong induction on ℓ. Indeed, assuming $\operatorname{Tr} \boldsymbol{A}^{k+i}=d^{k+i}-d^{i}$ holds for $2 \leqslant i<\ell$, it turns out that $\operatorname{Tr} \boldsymbol{A}^{k+\ell}=d^{\ell} N-\sum_{i=0}^{\ell-1} \operatorname{Tr} \boldsymbol{A}^{k+i}=d^{\ell} N-d^{\ell-1} N=d^{k+\ell}-d^{\ell}$.

Moreover, taking into account that for the cycle structure $\left(k, 0, m_{3}, 0, \ldots, 0\right)$ the permutation matrix \boldsymbol{P} and the automorphism r satisfy, respectively, $\boldsymbol{P}^{2}=\boldsymbol{P}^{-1}$ and $r^{2}=r^{-1}$, we can extend the previous result as follows:

Corollary 6. The adjacency matrix \boldsymbol{A} of $a(4, k)$-digraph with permutation matrix \boldsymbol{P} and permutation cycle structure with $m_{1}=k$ satisfies

$$
\operatorname{Tr} \boldsymbol{P}^{2} \boldsymbol{A}^{\ell}=0, \quad 1 \leqslant \ell<\frac{k+1}{3}
$$

Proof. In this case,

$$
\left(\boldsymbol{P}^{2} \boldsymbol{A}^{\ell}\right)_{i i}=\sum_{j=1}^{N} \boldsymbol{P}_{i j}^{2} \boldsymbol{A}_{j i}^{\ell}=\sum_{j=1}^{N} \boldsymbol{P}_{i j}^{-1} \boldsymbol{A}_{j i}^{\ell}=\boldsymbol{A}_{r^{-1}(i) i}^{\ell}
$$

which coincides with the cardinality of

$$
R_{\ell}^{\prime}(G)=\left\{u \in V(G) \mid \text { there is a } r^{-1}(u) \rightarrow u \text { walk of length } \ell\right\}
$$

As in the proof of Proposition 3, the order t of $u \in R_{\ell}^{\prime}(G)$ satisfies $\ell t \geqslant k+1$, that is $\ell \geqslant(k+1) / t$. Since the order t of each vertex is $\leqslant 3$, it turns out $R_{\ell}^{\prime}(G)=\emptyset$ when $\ell<(k+1) / 3$ and hence $\operatorname{Tr} \boldsymbol{P}^{2} \boldsymbol{A}^{\ell}=0$.

3 On the characteristic polynomial of $(4, k)$ and $(5, k)$-digraphs

Given a permutation matrix \boldsymbol{P} of order N and the all-one matrix \boldsymbol{J}, the characteristic polynomial of $\boldsymbol{J}+\boldsymbol{P}$ is (see[4])

$$
\phi(\boldsymbol{J}+\boldsymbol{P}, x)=\operatorname{det}(x \boldsymbol{I}-(\boldsymbol{J}+\boldsymbol{P}))=(x-(N+1))(x-1)^{m_{1}-1} \prod_{i=2}^{N}\left(x^{i}-1\right)^{m_{i}}
$$

where $\left(m_{1}, m_{2}, \ldots, m_{N}\right)$ is the permutation cycle structure of \boldsymbol{P}. Its factorization in $\mathbb{Q}[x]$ in terms of cyclotomic polynomials $\Phi_{n}(x)$ is given by:

$$
\begin{equation*}
\phi(\boldsymbol{J}+\boldsymbol{P}, x)=(x-(N+1))(x-1)^{m(1)-1} \prod_{n=2}^{N} \Phi_{n}(x)^{m(n)} \tag{4}
\end{equation*}
$$

where $m(n)=\sum_{n \mid i} m_{i}$ represents the total number of permutation cycles of order multiple of n. Notice that $\boldsymbol{J}+\boldsymbol{P}$ is a diagonalizable matrix in \mathbb{C} and its minimal polynomial is

$$
\begin{equation*}
m(\boldsymbol{J}+\boldsymbol{P}, x)=(x-(N+1))(x-1) \prod_{m(n) \neq 0} \Phi_{n}(x) . \tag{5}
\end{equation*}
$$

Lemma 7. The adjacency matrix \boldsymbol{A} of a (d, k)-digraph G is a diagonalizable matrix in \mathbb{C}.

Proof. If G has permutation matrix \boldsymbol{P}, taking into account the adjacency matrix \boldsymbol{A} satisfies the identity $\boldsymbol{I}+\boldsymbol{A}+\cdots+\boldsymbol{A}^{k}=\boldsymbol{J}+\boldsymbol{P}$ and substituting x by $1+x+\cdots+x^{k}$ in $m(\boldsymbol{J}+\boldsymbol{P}, x)$ we get a new polynomial $p(x)$, which vanishes at \boldsymbol{A}. Since the factors $x\left(1+x+\cdots+x^{k-1}\right)$ and $\Phi_{n}\left(1+x+\cdots+x^{k}\right)$ have no multiple roots, the claim follows.

From equations (1) and (4), the problem of the factorization of the characteristic polynomial of $G, \phi(G, x)=\operatorname{det}(x \boldsymbol{I}-\boldsymbol{A})$ in $\mathbb{Q}[x]$ is related to the study of factorization in $\mathbb{Q}[x]$ of the polynomial:

$$
F_{n, k}(x)=\Phi_{n}\left(1+x+\cdots+x^{k}\right), n \geqslant 2 .
$$

If $F_{n, k}(x)$ is irreducible in $\mathbb{Q}[x]$, then $F_{n, k}(x)$ is a factor of $\phi(G, x)$ and its multiplicity is $m(n) / k$ (see [13]). More than this, the "cyclotomic conjecture" proposed by Gimbert gives the factorization in $\mathbb{Q}[x]$ of the polynomials $F_{n, k}(x)$. Assuming this conjecture, the nonexistence of (d, k)-digraphs is proven in [8].

From (5) we derive the following result:
Lemma 8. The adjacency matrix \boldsymbol{A} of a (d, k)-digraph, $d=4,5$, satisfies $p(\boldsymbol{A})=0$, where

- if $d=4$ with permutation cycle structure $\left(k, 0, m_{3}, 0, \ldots, 0\right), N=k+3 m_{3}$,

$$
\begin{equation*}
p(x)=(x-d) x\left(x^{k-1}+\cdots+x+1\right) F_{3, k}(x) \tag{6}
\end{equation*}
$$

with $F_{3, k}(x)=\left(x^{k}+\cdots+x+1\right)^{2}+\left(x^{k}+\cdots+x+1\right)+1$.

- if $d=5$ with permutation cycle structure ($k, m_{2}, 0, \ldots, 0$), $N=k+2 m_{2}$,

$$
\begin{equation*}
p(x)=(x-d) x\left(x^{k-1}+\cdots+x+1\right) F_{2, k}(x) \tag{7}
\end{equation*}
$$

with $F_{2, k}(x)=x^{k}+\cdots+x+2$.

- if $d=5$ with permutation cycle structure $\left(k, 0,0, m_{4}, 0, \ldots, 0\right), N=k+4 m_{4}$,

$$
\begin{equation*}
p(x)=(x-d) x\left(x^{k-1}+\cdots+x+1\right) F_{2, k}(x) F_{4, k}(x), \tag{8}
\end{equation*}
$$

with $F_{4, k}(x)=\left(x^{k}+\cdots+x+1\right)^{2}+1$.

4 Nonexistence of ($4, k$)-digraphs with self-repeats

In this section we consider (d, k)-digraphs with $d=4$ and $k \geqslant 5$ containing self-repeats, that is, whose permutation cycle structure is $\left(k, 0, m_{3}, 0, \ldots, 0\right)$.

Proposition 9. Almost Moore digraphs of degree $d=4$ and diameter k with self-repeats do not exist in the following cases:

- $k \geqslant 5$ is an odd number.
- $k \geqslant 6$ is an even number of the form $k=2(p-1)$ where p is a prime number.

Proof. Notice that $4 N$ is precisely the number of arcs in a $(4, k)$-digraph G, hence Equation (2) together with the condition $\operatorname{Tr} \boldsymbol{P} \boldsymbol{A}=0$ shows that each arc of the digraph G belongs to exactly one cycle of G of length k or $k+1$. This means that there exists a positive integer $t \in \mathbb{Z}^{+}$such that

$$
\begin{equation*}
4 N=k+t(k+1) . \tag{9}
\end{equation*}
$$

Clearly this is impossible for any odd number $k \geqslant 5$. More in general, since $N=$ $4+4^{2}+\cdots+4^{k}=\frac{4}{3}\left(4^{k}-1\right)$, we have from (9) that

$$
t=\frac{4^{k+2}-13}{3(k+1)}-1
$$

and consequently, a necessary condition for the existence of G is

$$
\begin{equation*}
4^{k+2} \equiv 13 \quad(\bmod 3(k+1)) \tag{10}
\end{equation*}
$$

Let $k=2 s$. We show next that $4^{2 s} \equiv 1(\bmod 3(2 s+1))$ whenever $s=p-1$ being p a prime number. Indeed, clearly $4^{p-1} \equiv 1(\bmod 3)$ and since $4^{p-1} \equiv 1(\bmod p)$ we have that $4^{p-1} \equiv 1(\bmod 3 p)$. Any prime number $p>2$ is an odd number $p=2 s+1$, hence $4^{2 s} \equiv 1(\bmod 3(2 s+1))$.

Remark 10. We performed an exhaustive computer search for all values of k with $5 \leqslant k<$ 10^{6} satisfying Equation (10) and we found that there are none satisfying this condition. Hence $(4, k)$-digraphs do not exist for this range of values of k.

4.1 Matrix approach

Let \boldsymbol{A} be the adjacency matrix of a $(4, k)$-digraph, $k \geqslant 5$, whose permutation cycle structure is $\left(k, 0, m_{3}, 0, \ldots, 0\right)$. Since \boldsymbol{A} is a diagonalizable matrix (see Lemma 7), \boldsymbol{A} can be expressed in a basis of eigenvectors as a diagonal matrix with eigenvalues (see [13]),

- d with multiplicity 1 ;
- $\lambda_{i}, 1 \leqslant i \leqslant m_{3}+k-1$, roots of the factor $x^{k}+\cdots+x^{2}+x$;
- $\alpha_{i}, 1 \leqslant i \leqslant m_{3}$, roots of the factor $x^{k}+\cdots+x^{2}+x+1-\rho, \rho$ being a primitive cubic root of unity; and
- $\beta_{i}, 1 \leqslant i \leqslant m_{3}$, conjugates of α_{i}, that is, roots of the factor $x^{k}+\cdots+x^{2}+x+1-\rho^{2}$.

That is, in such a basis,

$$
\boldsymbol{A}=\left(\begin{array}{cccccccccc}
d & 0 & \ldots & 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & \lambda_{1} & \ldots & 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n_{3}} & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & \alpha_{1} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & \ldots & \alpha_{m_{3}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 & \beta_{1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 & 0 & \ldots & \beta_{m_{3}}
\end{array}\right),
$$

with $n_{3}=m_{3}+k-1$. In the same basis, the matrices of \boldsymbol{J} and \boldsymbol{P} are:

$$
\boldsymbol{J}=\left(\begin{array}{cccc}
N & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \quad \text { and } \quad \boldsymbol{P}=\left(\begin{array}{ccccccccc}
1 & \ldots & 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & \rho & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & \rho & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 & \rho^{2} & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0 & 0 & \ldots & \rho^{2}
\end{array}\right) .
$$

From this, $\operatorname{Tr} \boldsymbol{J}=N, \operatorname{Tr} \boldsymbol{P}=k+m_{3}+m_{3}\left(\rho+\rho^{2}\right)=k$, and the trace of \boldsymbol{A}, which is the sum of the roots of its characteristic polynomial, can be written as follows

$$
\operatorname{Tr}(\boldsymbol{A})=d+\sum_{i=1}^{m_{3}+k-1} \lambda_{i}+\sum_{i=1}^{m_{3}} \alpha_{i}+\sum_{i=1}^{m_{3}} \beta_{i}=0 .
$$

Since \boldsymbol{A} is a diagonalizable matrix (see Lemma 7), so is \boldsymbol{A}^{ℓ} in the same basis of eigenvectors. Thus,

$$
\begin{equation*}
\operatorname{Tr}\left(\boldsymbol{A}^{\ell}\right)=d^{\ell}+\sum_{i=1}^{m_{3}+k-1} \lambda_{i}^{\ell}+\sum_{i=1}^{m_{3}} \alpha_{i}^{\ell}+\sum_{i=1}^{m_{3}} \beta_{i}^{\ell}, \quad 1 \leqslant \ell<k \tag{11}
\end{equation*}
$$

Note that we can express

$$
\begin{equation*}
\sum_{i=1}^{m_{3}} \alpha_{i}^{\ell}=a_{\ell}+b_{\ell} \rho \quad \text { and } \quad \sum_{i=1}^{m_{3}} \beta_{i}^{\ell}=a_{\ell}+b_{\ell} \rho^{2}, \quad a_{\ell}, b_{\ell} \in \mathbb{Z} \tag{12}
\end{equation*}
$$

Indeed, $\sum_{i=1}^{m_{3}} \alpha_{i}^{\ell}$ corresponds to the sum of the ℓ th powers of all roots of some irreducible factors of $x^{k}+\cdots+x^{2}+x+1-\rho$ in $\mathbb{Q}(\rho)$. Then according to Newton-Girard formulas these sums only depend on the coefficients of their terms. The sum $\sum_{i=1}^{m_{3}} \beta_{i}^{\ell}$ is the conjugate of $\sum_{i=1}^{m_{3}} \alpha_{i}^{\ell}$.

Proposition 11. Let G be a $(4, k)$-digraph with self-repeats. Then

$$
\begin{equation*}
0=\operatorname{Tr}\left(\boldsymbol{A}^{\ell}\right)=d^{\ell}+\sum_{i=1}^{m_{3}+k-1} \lambda_{i}^{\ell}, \quad 1 \leqslant \ell<\frac{k+1}{3} . \tag{13}
\end{equation*}
$$

Proof. Taking into account identities (11) and (12) we have

$$
0=\operatorname{Tr}\left(\boldsymbol{A}^{\ell}\right)=d^{\ell}+\sum_{i=1}^{m_{3}+k-1} \lambda_{i}^{\ell}+\left(a_{\ell}+b_{\ell} \rho\right)+\left(a_{\ell}+b_{\ell} \rho^{2}\right) .
$$

From Corollary 5 we also have

$$
0=\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{A}^{\ell}\right)=d^{\ell}+\sum_{i=1}^{m_{3}+k-1} \lambda_{i}^{\ell}+\left(a_{\ell} \rho+b_{\ell} \rho^{2}\right)+\left(a_{\ell} \rho^{2}+b_{\ell} \rho\right) .
$$

Subtracting one equation from the other we get $a_{\ell}=0$. Besides,

$$
0=\operatorname{Tr}\left(\boldsymbol{P}^{2} \boldsymbol{A}^{\ell}\right)=d^{\ell}+\sum_{i=1}^{m_{3}+k-1} \lambda_{i}^{\ell}+b_{\ell} \rho^{3}+b_{\ell} \rho^{3},
$$

from where, it turns out $b_{\ell}=0$ and the claim follows.
Concerning the sums $\sum_{i=1}^{m_{3}+k-1} \lambda_{i}^{\ell}$, we know the eigenvalues $\lambda_{i}, 1 \leqslant i \leqslant m_{3}+k-1$, are roots of the factor

$$
x^{k}+\cdots+x^{2}+x=x \prod_{n \neq 1 n \mid k} \Phi_{n}(x) .
$$

Since the cyclotomic polynomials $\Phi_{n}(x)$ are irreducible in $\mathbb{Q}[x]$, it follows that there exist nonnegative integers a_{n} such that

$$
\begin{equation*}
\sum_{i=1}^{m_{3}+k-1} \lambda_{i}^{\ell}=\sum_{n \neq 1, n \mid k} a_{n} S_{\ell}\left(\Phi_{n}(x)\right) \tag{14}
\end{equation*}
$$

where $S_{\ell}(a(x))$ denotes the sum of the ℓ th powers of all roots of $a(x)$.
The sums $S_{\ell}\left(\Phi_{n}(x)\right)$ are known as Ramanujan sums and can be computed as follows (see [15]):

Lemma 12. Let n and ℓ be two positive integers. Then

$$
S_{\ell}\left(\Phi_{n}(x)\right)=\sum_{j \mid \operatorname{gcd}(n, \ell)} \mu\left(\frac{n}{j}\right) j,
$$

where $\mu(n)$ denotes the Möbius function.
Theorem 13. Almost Moore digraphs of degree $d=4$ with self-repeats do not exist for diameter $k \geqslant 5$.

Proof. Let G be an (4,k)-digraph with self-repeats. From (13) and (14), its adjacency matrix \boldsymbol{A} satisfies

$$
0=\operatorname{Tr} \boldsymbol{A}^{\ell}=d^{\ell}+\sum_{n \neq 1, n \mid k} a_{n} S_{\ell}\left(\Phi_{n}(x)\right), \quad 1 \leqslant \ell<\frac{k+1}{3} .
$$

Note if ℓ and k are relatively prime then for every $n \mid k$ we have

$$
\begin{equation*}
S_{\ell}\left(\Phi_{n}(x)\right)=\mu(n) . \tag{15}
\end{equation*}
$$

In particular, if there exists an integer ℓ such that

$$
\begin{equation*}
\operatorname{gcd}(\ell, k)=1 \quad \text { and } \quad 1<\ell<\frac{k+1}{3} \tag{16}
\end{equation*}
$$

then $S_{\ell}\left(\Phi_{n}(x)\right)=S_{1}\left(\Phi_{n}(x)\right)$ for all n with $n \mid k$, which would imply that

$$
\operatorname{Tr} \boldsymbol{A}^{\ell}-\operatorname{Tr} \boldsymbol{A}=d^{k}-d=0,
$$

which is impossible unless $d=1$ or $k=1$.
Now, we will prove that there exists an integer ℓ satisfying (16) if $k \geqslant 20$ (see Remark 10 for the remaining values of k). More precisely, we show that if $k \geqslant 20$ then there exists a positive integer ℓ with $1<\ell<(k+1) / 3$ such that $\operatorname{gcd}(k, \ell)=1$. Consider the distinct consecutive prime numbers until $\frac{k+1}{3}$:

$$
2=p_{1}<p_{2}<\cdots<p_{r}<\frac{k+1}{3} \leqslant p_{r+1} .
$$

If for the contrary, $\operatorname{gcd}(k, \ell)>1$ for every positive integer ℓ with $1<\ell<\frac{k+1}{3}$, then it means that

$$
k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}, \quad \alpha_{i} \geqslant 1
$$

If $k \geqslant 20$ then $(k+1) / 3 \geqslant 7$ and therefore $r \geqslant 3$. Hence

$$
\begin{equation*}
\lfloor(k+1) / 3\rfloor=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}-1} p_{3}^{\alpha_{3}} \ldots p_{r}^{\alpha_{r}} \geqslant 2 p_{r} . \tag{17}
\end{equation*}
$$

Recall now that Ramanujan primes are the smallest integers R_{n} for which there are at least n primes between $x / 2$ and x, for all $x \geqslant R_{n}$. Then, since 2 is the 1st Ramanujan prime, there exists a prime number between p_{r} and $2 p_{r}$. Thus, $p_{r+1}<2 p_{r}$ and it turns out

$$
\lfloor(k+1) / 3\rfloor \leqslant p_{r+1}<2 p_{r},
$$

which is a contradiction with (17).

5 Nonexistence of (5,k)-digraphs with self-repeats

We will consider the permutation cycle structures given in Proposition 1 for $(5, k)$ digraphs, $k \geqslant 5$, with $m_{1}=k$ self-repeats, that is,

$$
\left(k, m_{2}, 0, \ldots, 0\right) \quad \text { and } \quad\left(k, 0,0, m_{4}, 0, \ldots, 0\right)
$$

Theorem 14. Almost Moore digraphs of degree $d=5$ with permutation cycle structure $\left(k, m_{2}, 0, \ldots, 0\right)$ do not exist for diameter $k \geqslant 5$.

Proof. Let G be a $(5, k)$-digraph with structure $\left(k, m_{2}, 0, \ldots, 0\right)$. Note that such a structure is not possible. Indeed, in this case the unique factor $F_{n, k}(x)$ appearing in the characteristic polynomial $\phi(G, x)$ is according to (7),

$$
F_{2, k}(x)=\Phi_{2}\left(1+x+\cdots+x^{k}\right)=2+x+x^{2}+\cdots+x^{k}
$$

which is irreducible in $\mathbb{Q}[x][13]$. Hence the cyclotomic conjecture holds in this particular case (see [13]). Therefore such a digraph does not exist (see [8], Theorem 2). Indeed, the characteristic polynomial factorizes as

$$
\phi(G, x)=(x-5) x^{a_{0}} \prod_{n \mid k, n \neq 1} \Phi_{n}(x)^{a_{n}} F_{2, k}(x)^{m_{2} / k}, \quad a_{0}+\sum_{n \mid k, n \neq 1} \varphi(n) a_{n}=k+m_{2}-1 .
$$

Since the trace of \boldsymbol{A}^{ℓ}, whith \boldsymbol{A} the adjacency matrix of G and $1 \leqslant \ell \leqslant k$, is the sum of the ℓ th powers of all roots of $\phi(G, x)$, we have

$$
0=\operatorname{Tr} \boldsymbol{A}^{\ell}=5^{\ell}+\sum_{n \mid k, n \neq 1} a_{n} S_{\ell}\left(\Phi_{n}(x)\right)+\frac{m_{2}}{k} S_{\ell}\left(F_{2, k}(x)\right)
$$

Taking $\ell=1$ and another value for ℓ less than k and relatively prime with k, it follows from (15) that $S_{1}\left(\Phi_{n}(x)\right)=S_{\ell}\left(\Phi_{n}(x)\right)=\mu(n)$ and from Lemma 3 in [8] that $S_{1}\left(F_{2, k}(x)\right)=$ $S_{\ell}\left(F_{2, k}(x)\right)=-\varphi(n)$. Therefore

$$
0=\operatorname{Tr} \boldsymbol{A}^{\ell}-\operatorname{Tr} \boldsymbol{A}=5^{\ell}-5
$$

which is impossible.
Theorem 15. Almost Moore digraphs of degree $d=5$ with permutation cycle structure $\left(k, 0,0, m_{4}, 0, \ldots, 0\right)$ do not exist for diameter $k \geqslant 5$.

Proof. Concerning the structure $\left(k, 0,0, m_{4}, 0, \ldots, 0\right)$, we have $m(2)=m_{4}$. Then, since as before the factor $F_{2, k}(x)$ (which appears in the characteristic polynomial, see (8)) is irreducible, we get $k \mid m_{4}$. Therefore, taking $h=m_{4} / k$, it turns out $k(1+4 h)=$ $5+5^{2}+\cdots+5^{k}=5\left(5^{k}-1\right) / 4$, that is,

$$
\begin{equation*}
5^{k} \equiv 1 \quad(\bmod 4 k) \tag{18}
\end{equation*}
$$

If $k=p>2$ is a prime number, since $5^{p} \equiv 5(\bmod p)$, we have $5 \equiv 1(\bmod k)$, which is not possible. If k is an odd composite number with prime factorization

$$
k=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{s}^{r_{s}}, \quad 2<p_{1}<p_{2}<\ldots<p_{s}
$$

from (18) we also derive $5^{k} \equiv 1\left(\bmod p_{1}\right)$. Using Fermat's Little Theorem

$$
1=5^{k}=5^{\frac{k}{p_{1}} p_{1}}=5^{\frac{k}{p_{1}}} \equiv 5^{k / p_{1}^{r_{1}}} \quad\left(\bmod p_{1}\right) .
$$

Consider $d=\operatorname{gcd}\left(p_{1}-1, k / p_{1}^{r_{1}}\right)$. Since $p_{1}<p_{2}, \ldots, p_{s}$ it turns out $d=1$. Thus, there exist two integers x, y such that

$$
\left(p_{1}-1\right) x+\left(k / p_{1}^{r_{1}}\right) y=1
$$

Hence

$$
5=5^{\left(p_{1}-1\right) x+\left(k / p_{1}^{r_{1}}\right) y}=\left(5^{p_{1}-1}\right)^{x} \cdot\left(5^{k / p_{1}^{r_{1}}}\right)^{y} \equiv 1 \quad\left(\bmod p_{1}\right)
$$

Therefore $5 \equiv 1\left(\bmod p_{1}\right)$ so that $p_{1}=2$, which is a contradiction in the case k odd.
In the case k even with $v_{2}(k)=\alpha \geqslant 1$, we can see by induction that $v_{2}\left(5^{k}-1\right)=\alpha+2$. Now, we will prove there is no even integer k satisfying

$$
\begin{equation*}
5\left(5^{k}-1\right)=4 k(1+4 h) \tag{19}
\end{equation*}
$$

Assume that first $k=2^{\alpha}$. By induction we can prove

$$
\begin{equation*}
\left(5^{2^{\alpha}}-1\right) / 2^{\alpha+2} \equiv 3 \quad(\bmod 4) \tag{20}
\end{equation*}
$$

which is a contradiction with (19). Indeed, for $\alpha=1$ we get $\left(5^{2}-1\right) / 2^{3}=3$. Assuming true for α, for $\alpha+1$ we have

$$
\left(5^{2^{\alpha+1}}-1\right) / 2^{\alpha+3}=\left(\left(5^{2^{\alpha}}-1\right) / 2^{\alpha+2}\right)\left(\left(5^{2^{\alpha}}+1\right) / 2\right) \equiv 3 \quad(\bmod 4) .
$$

Note that congruence (20) can be extended to an integer $k=2^{\alpha} k^{\prime}$, with $\alpha \geqslant 1$ and $2 \nmid k^{\prime}$, as follows

$$
\left(5^{2^{\alpha} k^{\prime}}-1\right) / 2^{\alpha+2} \equiv k^{\prime}+2 \quad(\bmod 4)
$$

which contradicts equality (19).
We have seen ($5, k$)-digraphs with permutation cycle structures $\left(k, m_{2}, 0, \ldots, 0\right)$ and $\left(k, 0,0, m_{4}, 0, \ldots, 0\right)$ do not exist for diameter $k \geqslant 5$. Since they are the unique structures containing selfrepeteats for $d=5$, the nonexistence of them can be concluded.

Acknowledgements

The authors would like to thank the anonymous referees, whose comments highly improved the quality of this paper.

References

[1] E.T. Baskoro, Y.M. Cholily and M. Miller, Structure of selfrepeat cycles in almost Moore digraphs with selfrepeats and diameter 3, Bull. Inst. Combin. Appl. 46: 99109, 2006.
[2] E.T. Baskoro, Y.M. Cholily, M. Miller, Enumeration of vertex orders of almost Moore digraphs with selfrepeats, Discrete Math. 308(1): 123-128, 2008.
[3] E.T. Baskoro, M. Miller and J. Plesník, On the structure of digraphs with order close to the Moore bound, Graphs Combin. 14: 109-119, 1998.
[4] E.T. Baskoro, M. Miller, J. Plesník and Š. Znám, Regular digraphs of diameter 2 and maximum order, Australas. J. Combin. 9: 291-306, 1994.
[5] E.T. Baskoro, M. Miller, J. Širáň and M. Sutton, Complete characterisation of almost Moore digraphs of degree three, J. Graph Theory 48(2): 112-126, 2005.
[6] W.G. Bridges and S. Toueg, On the impossibility of directed Moore graphs, J. Combin. Theory Ser. B 29: 339-341, 1980.
[7] Y.M. Cholily, A conjecture on the existence of almost Moore digraphs, Adv. Appl. Discrete Math. 8(1): 57-64, 2011.
[8] J. Conde, J. Gimbert, J. González, M. Miller and J. Miret, On the nonexistence of almost Moore digraphs, European J. Combin., 39: 170-177, 2014.
[9] J. Conde, J. Gimbert, J. González, J. Miret and R. Moreno, Nonexistence of almost Moore digraphs of diameter three, Electron. J. Combin. 15:\#R87, 2008.
[10] J. Conde, J. Gimbert, J. González, J. Miret and R. Moreno, Nonexistence of almost Moore digraphs of diameter four, Electron. J. Combin. 20(1):\#P75, 2013.
[11] J. Conde, M. Miller, J. Miret, K. Saurav, On the nonexistence of almost Moore digraphs of degree four and five, Math. Comput. Sci. 9(2): 145-149, 2015.
[12] M.A. Fiol, I. Alegre and J.L.A. Yebra, Line digraphs iterations and the (d, k) problem for directed graphs, Proc. 10th Int. Symp. Comput. Arch., 174-177, 1983.
[13] J. Gimbert, On the existence of (d, k)-digraphs, Discrete Math. 197/198: 375-391, 1999.
[14] J. Gimbert, Enumeration of almost Moore digraphs of diameter two, Discrete Math., 231: 177-190, 2001.
[15] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, The Clarendon Press, Oxford University Press, New York, 1979.
[16] M. Miller and I. Fris, Maximum order digraphs for diameter 2 or degree 2, Graphs, matrices, and designs, Lecture Notes in Pure and Appl. Math. 139: 269-278, 1993.
[17] M. Miller, J. Gimbert, J. Širáň and Slamin, Almost Moore digraphs are diregular, Discrete Math. 218: 265-270, 2000.
[18] M. Miller and I. Širáň, Moore graphs and beyond: A survey, Electron. J. Combin, \#DS14, 2005.
[19] J. Plesník and Š. Znám, Strongly geodetic directed graphs, Acta Fac. Rerum Natur. Univ. Comenian. Math. 29: 29-34, 1974.
[20] A.A. Sillasen, Subdigraphs of almost Moore digraphs induced by fixpoints of an automorphism, Electron. J. Graph Theory Appl. 3(1): 1-7, 2015.

[^0]: *Supported in part by grants PID2020-115442RB-I00 and 2021SGR-00434.
 ${ }^{\dagger}$ Supported in part by grants Margarita Sala and 2021SGR-00434.
 ${ }^{\ddagger}$ Supported in part by grants PID2021-124613OB-I00 and 2021SGR-00434.

