600 research outputs found

    On the non-minimality of the largest weight codewords in the binary Reed-Muller codes

    Get PDF
    The study of minimal codewords in linear codes was motivated by Massey who described how minimal codewords of a linear code define access structures for secret sharing schemes. As a consequence of his article, Borissov, Manev, and Nikova initiated the study of minimal codewords in the binary Reed-Muller codes. They counted the number of non-minimal codewords of weight 2d in the binary Reed-Muller codes RM(r, in), and also gave results on the non-minimality of codewords of large weight in the binary Reed-Muller codes RM(r, in). The results of Borissov, Manev, and Nikova regarding the counting of the number of non-minimal codewords of small weight in RM(r,m) were improved by Schillewaert, Storme, and Thas who counted the number of non-minimal codewords of weight smaller than 3d in RM(r,m). This article now presents new results on the non-minimality of large weight codewords in RM(r, m)

    Minimal codewords in Reed-Muller codes

    Get PDF
    Minimal codewords were introduced by Massey (Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp 276-279, 1993) for cryptographical purposes. They are used in particular secret sharing schemes, to model the access structures. We study minimal codewords of weight smaller than 3 center dot 2 (m-r) in binary Reed-Muller codes RM(r, m) and translate our problem into a geometrical one, using a classification result of Kasami and Tokura (IEEE Trans Inf Theory 16:752-759, 1970) and Kasami et al. (Inf Control 30(4):380-395, 1976) on Boolean functions. In this geometrical setting, we calculate numbers of non-minimal codewords. So we obtain the number of minimal codewords in the cases where we have information about the weight distribution of the code RM(r, m). The presented results improve previous results obtained theoretically by Borissov et al. (Discrete Appl Math 128(1), 65-74, 2003), and computer aided results of Borissov and Manev (Serdica Math J 30(2-3), 303-324, 2004). This paper is in fact an extended abstract. Full proofs can be found on the arXiv

    Algebraic Properties of Polar Codes From a New Polynomial Formalism

    Get PDF
    Polar codes form a very powerful family of codes with a low complexity decoding algorithm that attain many information theoretic limits in error correction and source coding. These codes are closely related to Reed-Muller codes because both can be described with the same algebraic formalism, namely they are generated by evaluations of monomials. However, finding the right set of generating monomials for a polar code which optimises the decoding performances is a hard task and channel dependent. The purpose of this paper is to reveal some universal properties of these monomials. We will namely prove that there is a way to define a nontrivial (partial) order on monomials so that the monomials generating a polar code devised fo a binary-input symmetric channel always form a decreasing set. This property turns out to have rather deep consequences on the structure of the polar code. Indeed, the permutation group of a decreasing monomial code contains a large group called lower triangular affine group. Furthermore, the codewords of minimum weight correspond exactly to the orbits of the minimum weight codewords that are obtained from (evaluations) of monomials of the generating set. In particular, it gives an efficient way of counting the number of minimum weight codewords of a decreasing monomial code and henceforth of a polar code.Comment: 14 pages * A reference to the work of Bernhard Geiger has been added (arXiv:1506.05231) * Lemma 3 has been changed a little bit in order to prove that Proposition 7.1 in arXiv:1506.05231 holds for any binary input symmetric channe

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree ≤r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code C′C', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then C′C' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let H∗H^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code C⊥C^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(H∗),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201

    Symmetries of weight enumerators and applications to Reed-Muller codes

    Get PDF
    Gleason's 1970 theorem on weight enumerators of self-dual codes has played a crucial role for research in coding theory during the last four decades. Plenty of generalizations have been proved but, to our knowledge, they are all based on the symmetries given by MacWilliams' identities. This paper is intended to be a first step towards a more general investigation of symmetries of weight enumerators. We list the possible groups of symmetries, dealing both with the finite and infinite case, we develop a new algorithm to compute the group of symmetries of a given weight enumerator and apply these methods to the family of Reed-Muller codes, giving, in the binary case, an analogue of Gleason's theorem for all parameters.Comment: 14 pages. Improved and extended version of arXiv:1511.00803. To appear in Advances in Mathematics of Communication

    On complexity of trellis structure of linear block codes

    Get PDF
    The trellis structure of linear block codes (LBCs) is discussed. The state and branch complexities of a trellis diagram (TD) for a LBC is investigated. The TD with the minimum number of states is said to be minimal. The branch complexity of a minimal TD for a LBC is expressed in terms of the dimensions of specific subcodes of the given code. Then upper and lower bounds are derived on the number of states of a minimal TD for a LBC, and it is shown that a cyclic (or shortened cyclic) code is the worst in terms of the state complexity among the LBCs of the same length and dimension. Furthermore, it is shown that the structural complexity of a minimal TD for a LBC depends on the order of its bit positions. This fact suggests that an appropriate permutation of the bit positions of a code may result in an equivalent code with a much simpler minimal TD. Boolean polynomial representation of codewords of a LBC is also considered. This representation helps in study of the trellis structure of the code. Boolean polynomial representation of a code is applied to construct its minimal TD. Particularly, the construction of minimal trellises for Reed-Muller codes and the extended and permuted binary primitive BCH codes which contain Reed-Muller as subcodes is emphasized. Finally, the structural complexity of minimal trellises for the extended and permuted, and double-error-correcting BCH codes is analyzed and presented. It is shown that these codes have relatively simple trellis structure and hence can be decoded with the Viterbi decoding algorithm

    Association schemes related to universally optimal configurations, Kerdock codes and extremal Euclidean line-sets

    Full text link
    H. Cohn et. al. proposed an association scheme of 64 points in R^{14} which is conjectured to be a universally optimal code. We show that this scheme has a generalization in terms of Kerdock codes, as well as in terms of maximal real mutually unbiased bases. These schemes also related to extremal line-sets in Euclidean spaces and Barnes-Wall lattices. D. de Caen and E. R. van Dam constructed two infinite series of formally dual 3-class association schemes. We explain this formal duality by constructing two dual abelian schemes related to quaternary linear Kerdock and Preparata codes.Comment: 16 page
    • …
    corecore