119 research outputs found

    Model-Based Diagnosis using Structured System Descriptions

    Full text link
    This paper presents a comprehensive approach for model-based diagnosis which includes proposals for characterizing and computing preferred diagnoses, assuming that the system description is augmented with a system structure (a directed graph explicating the interconnections between system components). Specifically, we first introduce the notion of a consequence, which is a syntactically unconstrained propositional sentence that characterizes all consistency-based diagnoses and show that standard characterizations of diagnoses, such as minimal conflicts, correspond to syntactic variations on a consequence. Second, we propose a new syntactic variation on the consequence known as negation normal form (NNF) and discuss its merits compared to standard variations. Third, we introduce a basic algorithm for computing consequences in NNF given a structured system description. We show that if the system structure does not contain cycles, then there is always a linear-size consequence in NNF which can be computed in linear time. For arbitrary system structures, we show a precise connection between the complexity of computing consequences and the topology of the underlying system structure. Finally, we present an algorithm that enumerates the preferred diagnoses characterized by a consequence. The algorithm is shown to take linear time in the size of the consequence if the preference criterion satisfies some general conditions.Comment: See http://www.jair.org/ for any accompanying file

    An Efficient Methodology for Learning Bayesian Networks

    Get PDF
    Statistics from the National Cancer Institute indicate that 1 in 8 women will develop Breast cancer in their lifetime. Researchers have developed numerous statistical models to predict breast cancer risk however physicians are hesitant to use these models because of disparities in the predictions they produce. In an effort to reduce these disparities, we use Bayesian networks to capture the joint distribution of risk factors, and simulate artificial patient populations (clinical avatars) for interrogating the existing risk prediction models. The challenge in this effort has been to produce a Bayesian network whose dependencies agree with literature and are good estimates of the joint distribution of risk factors. In this work, we propose a methodology for learning Bayesian networks that uses prior knowledge to guide a collection of search algorithms in identifying an optimum structure. Using data from the breast cancer surveillance consortium we have shown that our methodology produces a Bayesian network with consistent dependencies and a better estimate of the distribution of risk factors compared with existing method

    Temporal networks

    Get PDF
    Integrace plánování rozvrhování vyžaduje hledání nových přístupů problému rozvrhování. Rozvrhovací systém musí být schopen poskytnout užitečné informace plánovači, aby se zabránilo vytvářní neuskutečnitelných plánů. Pro rozvrhování založené na splňování omezujících podmínek je možné de novat vlastní fi ltrační pravidla a tak zefektivnit řešící algoritmus. Pokud filtrační pravidla využívají informace sdělené plánovačem a rozvrhovacím systémem (např. precedenční a nebo temporální podmínky), výstup těchto pravidel je mozné poskytnout plánovači, který je může s výhodou využít. V této práci je navržena filtrační metoda, která využívá temporální vztahy mezi aktivitami alokovanými na jeden nebo více disjunktivních zdrojů. Práce také popisuje sadu propagačnch pravidel založených na kombinaci ruzných fi ltračních technik.Integration of planning and scheduling requires new approaches to the scheduling problem. The scheduler must be able to provide useful information for the planner in order to avoid generation of unfeasible plans. In constraint-based scheduling it is possible to de ne custom ltering rules that improve the solving procedure. If the ltering rules exploit the information shared by the planner and the scheduler (e.g. precedence or temporal constraints), the outcome of these rules can be used to provide useful hints for the planner. This work presents a ltering technique that exploits temporal relations between a set of activities allocated to one or more disjunctive resources. The work also presents a set of propagation rules for constraint-based scheduling based on various ltering techniqes.Department of Theoretical Computer Science and Mathematical LogicKatedra teoretické informatiky a matematické logikyFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Effectively Enforcing Minimality During Backtrack Search

    Get PDF
    Constraint Processing is an expressive and powerful framework for modeling and solving combinatorial decision problems. Enforcing consistency during backtrack search is an effective technique for reducing thrashing in a large search tree. The higher the level of the consistency enforced, the stronger the pruning of inconsistent subtrees. Recently, high-level consistencies (HLC) were shown to be instrumental for solving difficult instances. In particular, minimality, which is guaranteed to prune all inconsistent branches, is advantageous even when enforced locally. In this thesis, we study two algorithms for computing minimality and propose three new mechanisms that significantly improve performance. Then, we integrate the resulting algorithms in a portfolio that operates both locally and dynamically during search. Finally, we empirically evaluate the performance of our approach on benchmark problems. Adviser: Berthe Y. Choueir

    On Path Consistency for Binary Constraint Satisfaction Problems

    Get PDF
    Constraint satisfaction problems (CSPs) provide a flexible and powerful framework for modeling and solving many decision problems of practical importance. Consistency properties and the algorithms for enforcing them on a problem instance are at the heart of Constraint Processing and best distinguish this area from other areas concerned with the same combinatorial problems. In this thesis, we study path consistency (PC) and investigate several algorithms for enforcing it on binary finite CSPs. We also study algorithms for enforcing consistency properties that are related to PC but are stronger or weaker than PC. We identify and correct errors in the literature and settle an open question. We propose two improvements that we apply to the well-known algorithms PC-8 and PC-2001, yielding PC-8+ and PC-2001+. Further, we propose a new algorithm for enforcing partial path consistency, σ-∆-PPC, which generalizes features of the well-known algorithms DPC and PPC. We evaluate over fifteen different algorithms on both benchmark and randomly generated binary problems to empirically demonstrate the effectiveness of our approach. Adviser: Berthe Y. Choueir

    On the input/output behavior of argumentation frameworks

    Get PDF
    This paper tackles the fundamental questions arising when looking at argumentation frameworks as interacting components, characterized by an Input/Output behavior, rather than as isolated monolithical entities. This modeling stance arises naturally in some application contexts, like multi-agent systems, but, more importantly, has a crucial impact on several general application-independent issues, like argumentation dynamics, argument summarization and explanation, incremental computation, and inter-formalism translation. Pursuing this research direction, the paper introduces a general modeling approach and provides a comprehensive set of theoretical results putting the intuitive notion of Input/Output behavior of argumentation frameworks on a solid formal ground. This is achieved by combining three main ingredients. First, several novel notions are introduced at the representation level, notably those of argumentation framework with input, of argumentation multipole, and of replacement of multipoles within a traditional argumentation framework. Second, several relevant features of argumentation semantics are identified and formally characterized. In particular, the canonical local function provides an input-aware semantics characterization and a suite of decomposability properties are introduced, concerning the correspondences between semantics outcomes at global and local level. The third ingredient glues the former ones, as it consists of the investigation of some semantics-dependent properties of the newly introduced entities, namely S-equivalence of multipoles, S-legitimacy and S-safeness of replacements, and transparency of a semantics with respect to replacements. Altogether they provide the basis and draw the limits of sound interchangeability of multipoles within traditional frameworks. The paper develops an extensive analysis of all the concepts listed above, covering seven well-known literature semantics and taking into account various, more or less constrained, ways of partitioning an argumentation framework. Diverse examples, taken from the literature, are used to illustrate the application of the results obtained and, finally, an extensive discussion of the related literature is provided

    Spatial multicriteria decision analysis for the siting of on-shore wind power in Kemiönsaari

    Get PDF
    Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.Siirretty Doriast

    A Graph Based Backtracking Algorithm for Solving General CSPs

    Get PDF
    Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches
    corecore