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Constraint satisfaction problems (CSPs) provide a flexible and powerful framework

for modeling and solving many decision problems of practical importance. Consis-

tency properties and the algorithms for enforcing them on a problem instance are

at the heart of Constraint Processing and best distinguish this area from other ar-

eas concerned with the same combinatorial problems. In this thesis, we study path

consistency (PC) and investigate several algorithms for enforcing it on binary finite

CSPs. We also study algorithms for enforcing consistency properties that are related

to PC but are stronger or weaker than PC.

We identify and correct errors in the literature and settle an open question. We

propose two improvements that we apply to the well-known algorithms PC-8 and

PC-2001, yielding PC-8+ and PC-2001+. Further, we propose a new algorithm for

enforcing partial path consistency, σ-∆-PPC, which generalizes features of the well-

known algorithms DPC and PPC. We evaluate over fifteen different algorithms on

both benchmark and randomly generated binary problems to empirically demonstrate

the effectiveness of our approach.
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Chapter 1

Introduction

Constraint satisfaction problems (CSPs) provide a flexible and powerful framework

for modeling many decision problems of practical importance. In order to find a

solution to a CSP, a solver must, in general, incorporate search because CSPs are

NP-complete. A solver will usually run consistency algorithms as a pre-processing

step and/or during search in order to reduce the cost of the search. Consistency

algorithms operate by removing values from the domains of the variables and/or

tuples from the relations of the constraints. As a result, they reduce the size of the

search space.

In this thesis, we study the recent developments of the algorithms for path consis-

tency (PC) and propose new efficient variations of these algorithms, thus improving

on the state of the art.

1.1 Motivation

While consistency algorithms are at the heart of constraint processing, most of the

research has focused on developing efficient algorithms for enforcing arc consistency
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on binary CSPs and generalized arc consistency (GAC) on non-binary CSPs. This

situation remains the case even today with new generic algorithms for GAC being

proposed in the main conferences. Algorithms for enforcing path consistency (PC)

have been considered too expensive to use in practice. Three main trends have revived

our interest in path consistency:

1. First, Bliek and Sam-Haroud [1999] proposed an algorithm for enforcing par-

tial path consistency (PPC) that operates on arbitrary binary finite-constraints.

Xu and Choueiry [2003] proposed the ∆STP algorithm which applied the same

idea as DPC to efficiently solve the simple temporal problem. Planken et al.

[2008] proposed the P3C algorithm, which improved the worst case performance

of ∆STP. Long et al. [2016] proposed DPC+, which specialized P3C for dis-

tributive spacio-temporal constraints. They generalized the scalar operators

to relational ones (i.e., addition and minimum to composition and intersec-

tion, respectively). ∆STP and its improved versions have become a staple for

processing time in planning problems [Yorke-Smith, 2005] and in multi-agent

systems [Boerkoel Jr. and Durfee, 2013]. It is important to return to PPC, the

original algorithm by Bliek and Sam-Haroud [1999] in order to correct it and

improve its practical performance.

2. Second, in recent years, the Constraint Systems Laboratory has developed new

algorithms for relational consistency that operate by filtering constraints (e.g.,

R(∗,m)C using PerTuple [Karakashian et al., 2010; 2013], R(∗,m)C using

PerFB [Schneider et al., 2014], R(∗,m)C using AllSol [Geschwender et al.,

2016], RNIC [Woodward et al., 2011; 2012], Living-STR [Woodward et al.,

2014]). Those algorithms were shown to effectively solve many difficult bench-

mark problems. However, the properties enforced by those algorithms are based
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on inverse consistency and are, in general, not comparable to PPC. Before we

can empirically compare the two ‘flavors’ of consistency property, we need to

study the PPC property and its proposed algorithm in detail.1

3. Finally, directional path consistency can be viewed as an efficient approximation

of the more general variable-elimination mechanism [Dechter, 2003]. In fact,

resolution steps that generate new binary clauses have become a key component

of successful SAT solvers [Eén and Biere, 2005].

The above three reasons are the main motivations that justify our efforts.

1.2 Contributions

Below, we list the contributions of this thesis:

1. We provide a concise and uniform description of the main known algorithms for

path consistency and its approximations (both weak and strong).

2. We identify and correct errors that have appeared in the literature concerning

the definition of the property of partial path consistency, the algorithm for

enforcing it, and a proposition about it reported in the literature.

3. We settle an open question that appeared in the literature concerning whether

or not partial path consistency and path consistency are equivalent with respect

to detecting the insolubility of a CSP.

4. We introduce two improvements to the well-known PC-8 algorithm [Chmeiss

and Jégou, 1998], yielding a new algorithm, which we call PC-8+.

1The comparison between inverse consistency properties and PPC is beyond the scope of this
thesis.
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5. We study the known PPC algorithm [Bliek and Sam-Haroud, 1999], and propose

two new variations, namely ∆PPC and σ-∆PPC.

6. We conduct extensive empirical evaluations on both on randomly generated

CSPs and on benchmark problems to compare the performance of over 15 algo-

rithms: PC-2 [Mackworth and Freuder, 1984], DPC [Dechter and Pearl, 1988],

PC-8 [Chmeiss and Jégou, 1998], PC-2001 [Bessière et al., 2005], PPC+AP (a

correction of PPC [Bliek and Sam-Haroud, 1999]), sCDC1 [Lecoutre et al.,

2007a], sDC2 [Lecoutre et al., 2007b], PC-8-Flag, PC-8-Ordering, PC-

8+, PC-2001-Flag, PC-2001-Ordering, PC-2001+, ∆PPC, σ-∆PPC, and

σ-∆PPCsup .

Finally, we identify directions for future research.

1.3 Outline of Thesis

This thesis is structured as follows. Chapter 2 introduces CSPs, discusses main

consistency properties, and reviews in great detail various algorithms for enforcing

local consistencies. Chapter 3 highlights errors that we have encountered in the

literature. Chapter 4 discusses the new algorithms that we introduce. Chapter 5

discusses our empirical evaluations. Finally, Chapter 6 concludes this thesis.
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Chapter 2

Background

In this chapter, we first define constraint satisfaction problems and review their repre-

sentation in terms of constraint graphs. Then, we discuss local consistency properties

and some selected consistency-enforcing algorithms. Finally, we give a comprehensive

review of the main path-consistency algorithms that have appeared in the literature.

2.1 Constraint Satisfaction Problem: Problem

Definition

A constraint satisfaction problem (CSP) is defined as P = (V ,D, C), where V is a set

of variables, D is a set of domains, where a domain is a set of values that a variable

can take, and C is a set of constraints restricting the combinations of values that

variables can take at the same time. A solution to a CSP is an assignment of values

to variables such that all the constraints are satisfied. Deciding the existence of a

solution is NP-complete.

Each variable Vi ∈ V has a finite domain Di ∈ D, which is a set of values that the

variable can take. A variable-value pair (vvp) (Vi, a) is the association of a variable
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Vi to a value a ∈ Di. Each variable is constrained by a subset of the constraints in C.

Each constraint Ci ∈ C is defined as Ci = 〈Si, Ri〉, where

• The scope of a constraint Ci, scope(Ci) ⊆ V , is the set of variables to which Ci

applies. The arity of Ci is the cardinality of the scope, |scope(Ci)|.

• The relation of Ci, Ri = rel(Ci), is defined as a subset of the Cartesian product

of the domains of the variables in scope(Ci). Relations are defined either in

intension (i.e., as a set builder) or in extension as a set of tuples (e.g., table

constraints, tries, or multi-valued decision diagrams).

A tuple ti ∈ rel(Ci) specifies a combination of values that are either allowed (i.e.,

support) or forbidden (i.e., conflict or no-good) by Ci. A constraint is satisfied when

every variable in its scope is assigned a value from its respective domain that is

allowed by the constraint. A universal binary constraint is a constraint between two

variables that allows all combinations of values in the domains of the two variables.

The neighbors of a variable are those variables that appear with the variable in

the scope of some constraint.

In this thesis, we restrict ourselves to CSPs with binary constraints (i.e., arity

2) and to table constraints specified with supports (i.e., positive table constraints).

Further, we denote the constraint defined over the two variables Vi and Vj as Ci,j and

assume that Ci,j = Cj,i.

Example 2.1.1 provides a simple example of a CSP instance.

Example 2.1.1. Consider the following CSP:

• V = {V1, V2, V3}

• D1 = D2 = D3 = {1, 2, 3}
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• ∀ i, j ∈ {1, 2, 3}, i 6= j, Ri,j = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)} is the set

of support tuples.

• A solution to this CSP is {(V1, 1), (V2, 3), (V3, 2)}.

2.2 Solving CSPs

CSPs are typically solved with some combination of backtrack search and constraint

propagation.

Backtrack search is a systematic, exhaustive exploration of the search space ob-

tained by instantiating variables. Search proceeds by building a solution incremen-

tally, instantiating one variable at a time and ensuring that the partial solution is

consistent (i.e., does not break any of the constraints defined over the variables in the

partial solution). When a partial solution cannot be extended to the next considered

variable, the last assignment is undone by backtracking and a new instantiation is

attempted. Because search proceeds in a depth-first manner, i.e., maintaining a single

partial solution, it requires linear space. However, it requires exponential time in the

number of variables of the CSP (i.e., O(dn) where d is the maximum domain size and

n the number of variables). The order in which the variables are considered for in-

stantiation, the instantiation order , may greatly affect the performance of backtrack

search. Conventional wisdom dictates to instantiate the ‘most constrained’ variable

first.

Constraint propagation is the process of locally enforcing some level of consistency

on combinations of variables (or constraints) and propagating the effect of such an

operation across the network until reaching a fixpoint (see below for more details).
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2.3 Graphical Representation

A CSP is often graphically represented as a constraint network (CN).1 A constraint

network represents the variables as vertices and the constraints as edges connecting

the variables in their scopes. Figure 2.1 shows the constraint graph of the CSP from

Example 2.1.1.

≠ 

{1,2,3} 

≠ 

≠ V1 

{1,2,3} 

{1,2,3} 

V2 

V3 

Figure 2.1: A simple, binary CSP with three variables

An ordering of a graph is a total ordering of the vertices of a graph. The parents

of a vertex are the neighbors that appear before it in the ordering. The width of a

vertex is the number of its parents. The width of an ordering is the maximum vertex

width. The width of a graph, denoted w, is the minimum width of all its possible

orderings, and can be found in quadratic time in the number of vertices in the graph

[Freuder, 1982].

A graph is triangulated , or chordal , iff every cycle of length four or more in

the graph has a chord, which is an edge between two non-consecutive vertices. To

triangulate a graph, chords are added to chordless cycles of length four or more. The

added chords are called fill edges. Minimizing the number of fill edges is NP-hard

[Yannakakis, 1981]. A triangulated graph (i.e., moralized graph) is obtained when

each pair of parents of every vertex are connected (i.e., moralizing the vertex by

marrying its parents), whose width is called the induced width, denoted w∗, of the

ordering used.
1The terms constraint graph and constraint hypergraph are also commonly used in the literature

for binary and non-binary CSPs, respectively.
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A perfect elimination ordering (PEO) of a graph is “an ordering of the vertices of

the graph such that, for each vertex V , V and the neighbors of V that occur after V

in the order form a clique. A graph is chordal iff it has a perfect elimination ordering”

[Fulkerson and Gross, 1965]. Figure 2.2 shows a PEO of a graph with six vertices.

V5 

V4 

V2 V3 

V1 

V6 

V6 

V5 

V4 

V1 

V3 

V2 

In
st

an
tia

tio
n 

or
de

r 
E

lim
in

at
io

n 
or

de
r 

Figure 2.2: The constraint network of a simple binary CSP and a PEO of this network

The induced width of a graph is the minimum induced width of all orderings. Find-

ing a graph’s induced width and its ordering is NP-hard [Arnborg, 1985]. However,

a good approximation of a graph’s induced width is the width of a PEO of the graph

triangulated using the Min-Fill heuristic [Kjærulff, 1990]. Note that if a graph is

triangulated, the width of the graph is the width any PEO of the graph.

2.4 Global Consistency Properties

The main global consistency properties are consistency, minimality, and decompos-

ability.

• Consistency is simply another term for solvability of the CSP.
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• Montanari [1974] introduced Minimality as the “central problem.” Stated in-

formally, the minimal network network is the one where the relations are as

tight as can be, that is, each tuple in a relation can be extended to a solution

to the CSP. We give the formal definition as formulated by Dechter [2003].

Definition 2.4.1. Minimality [Dechter, 2003]. Given a CSP P0, let {P1, . . . ,Pl}

be the set of all networks equivalent to P0. Then the minimal network M of P0

is defined by M(P0) = ∩li=1Pi.

Gottlob [2011] showed that not only is enforcing minimality NP-complete but

also that solving a minimal CSP remains NP-complete.

• Montanari [1974] also introduced decomposability , which guarantees that every

assignment of any number of variables in the CSP that is consistent with the

constraints defined over these variables can be extended to a complete solution

of the CSP.

Decomposability guarantees backtrack-free search and it also guarantees minimality.

In turn, minimality guarantees consistency, which is NP-complete.

2.5 Local Consistency Properties

A CSP with at least one solution is solvable (or consistent). Because determining the

consistency of a CSP is NP-complete, and thus likely intractable, significant research

has been invested in defining local consistency properties. Local consistency proper-

ties are defined on sub-problems of the original problem that have a pre-determined

fixed size (e.g., two variables or two constraints). Because the size is fixed, enforcing

local consistencies is usually tractable. Below, we review some basic local consistency
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properties. Then, we recall more ‘advanced’ consistency properties that are relevant

to our research.

2.5.1 Basic Local Consistency Properties for Binary CSPs

We first recall the most basic and common local consistency properties for binary

CSPs, namely, arc consistency, path consistency, directional path consistency, and

(strong) k-consistency.

2.5.1.1 Arc Consistency (AC)

A problem is arc consistent when every value in the domain of each variable is con-

sistent with all of the variable’s neighbors. Meaning that, given a variable that has

taken a value, at least one value can be found in each of the variable’s neighbors’

domains that is allowed by the constraint between the two variables.

Definition 2.5.1. Arc Consistency (AC) [Mackworth, 1977]. Given a CSP P , with

Ci,j ∈ C a variable Vi is arc consistent relative to Vj iff for every value a ∈ Di there

exists some value b ∈ Dj such that (a, b) ∈ Ri,j. The arc (Vi, Vj) is arc consistent iff

Vi is arc consistent relative to Vj and Vj is arc consistent relative to Vi. P is said to

be arc consistent iff all of its arcs are arc consistent.

2.5.1.2 Path Consistency (PC)

Montanari [1974] originally introduced the property of path consistency as a tractable

approximation of minimality (see Section 2.4). Mackworth [1977] later restated it as

follows:
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• A path in a CSP is a sequence (Vi, . . . , Vj) of variables of P s.t. Vi 6= Vj. Note

that two adjacent variables in the path do not have to have an edge between

them in the constraint network.

• An instantiation {(Vi, a), (Vj, b)} is consistent along a path (Vi, . . . , Vj) if (a, b) ∈

Ri,j and there exists a value for each variable in the path that satisfies the

binary constraints along the path. Note that a variable can appear multiple

times in the path and may take different values each time.2 Further, if there

is no constraint in C for two variables adjacent in the path, then the (binary)

universal constraint applies.

• A path (Vi, . . . , Vj) is consistent iff ∀ (a, b) ∈ Ri,j, {(Vi, a), (Vj, b)} is a consistent

instantiation.

• A CSP is path consistent iff every path in its constraint graph is consistent.

Because enumerating all paths is not practical, the following equivalent definition of

path consistency is used. It requires that every arc consistent assignment to any two

variables can be extended to every third variable in a consistent way.

Definition 2.5.2. Path Consistency (PC) [Dechter, 2003]. Given a CSP P , the vari-

ables Vi and Vj are path consistent relative to a variable Vk iff for every consistent

assignment {(Vi, a), (Vj, b)} there is some value c ∈ Dk such that both the assign-

ments {(Vi, a), (Vk, c)} and {(Vj, b), (Vk, c)} are consistent. P is path consistent iff

∀Vi, Vj, Vk ∈ V with k 6= i 6= j, Vi and Vj are path consistent relative to Vk.

Given a consistent assignment {(Vi, a), (Vj, b)} and a value c ∈ Dk such that both

the assignments {(Vi, a), (Vk, c)} and {(Vj, b), (Vk, c)} are consistent, we say that the

2See both the text and the footnote on page 109 [Montanari, 1974].
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value c ∈ Dk as well as the tuples (a, c) ∈ Ri,k and (b, c) ∈ Rj,k support the tuple

(a, b) ∈ Ri,j

Example 2.1.1 (see also Figure 2.1) shows a CSP that is both arc consistent and

path consistent. Note that path consistency does not imply arc consistency. The two

examples in Figure 2.3 are path consistent but are not arc consistent.

≠ 

{1} 

≠ 

V1 

{1,2} 

{1} 

V2 

V3 

{1,2,3} 

R12={(1,3)} V1 

{1,2,3} 

{1,2,3} 

V2 

V3 

R13={(1,2)} R23={(3,2)} 

Figure 2.3: Two simple CSPs that are PC, but not AC

For the left example, the variable V3 is not arc consistent relative to V1 since there

does not exist a value a ∈ D1 such that (a, 1) ∈ R1,3.
3 For the right example, all

three variables are mutually arc inconsistent. For example, V1 is not arc consistent

relative to V2 since there does not exist a value a ∈ D2 such that (2, a) ∈ R1,2.

2.5.1.3 k-Consistency and Strong k-Consistency

We recall the k -consistency property in a similar manner to arc consistency (which

is 2-consistency) and path consistency (which is 3-consistency) [Freuder, 1978]. Ba-

sically, a problem is k-consistent if every consistent assignment to every combination

of k − 1 variables can be consistently extended to any kth variable.

Note that k-consistency does not guarantee (k − 1)-consistency (e.g., see Fig-

ure 2.3). The property strong k-consistency guarantees that the problem is j-consistent

for all j ≤ k. Further, strong n-consistency, where n is the number of variables in the

CSP, is equivalent to decomposability, which was defined in Section 2.4.

3The same holds for V3 relative to V2.
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Importantly, Freuder showed that any network with width j that is (j + 1)-

consistent can be solved in a backtrack-free manner [1982].

2.5.1.4 Directional Path Consistency (DPC)

Dechter and Pearl [1988] defined the notion of directional k-consistency along a given

ordering of the variables as a restricted form of k-consistency. We recall the definition

of directional path consistency, for which we will give an algorithm in Section 2.8.2.

Definition 2.5.3. Directional Path Consistency (DPC) [Dechter and Pearl, 1988].

A CSP is directional path consistent relative to order ord = (V1, V2, . . . , Vn), iff for

every k ≥ i, j, the two variables Vi and Vj are path consistent relative to Vk.

In Figure 2.4, we illustrate DPC, which guarantees that every consistent assign-

ment to Vi and Vj can be extended to Vk.

Vk 

Vj 

Vi 

O
rd

er
in

g 
or

d 

Figure 2.4: Illustrating DPC: for every tuple (a, b) ∈ Ri,j (the dashed line), there is a value
c ∈ Dk so that (a, c) ∈ Ri,k and (b, c) ∈ Rj,k (the solid lines)

Importantly, Dechter and Pearl showed that, when given a CSP, P , and an order-

ing, ord, of the variables of P , if P is strong DPC along ord and the induced width

of ord is two, then P can be solved in a backtrack-free manner along ord [1988].
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2.5.2 Other Local Consistency Properties for Binary CSPs

In recent years, new local consistency properties have been introduced in the liter-

ature. We recall conservative path consistency [Debruyne, 1999] and partial path

consistency [Bliek and Sam-Haroud, 1999], which were introduced the same year. We

also recall singleton arc consistency [Debruyne and Bessière, 1997], dual consistency

[Lecoutre et al., 2007a], and conservative dual consistency [Lecoutre et al., 2007a].

2.5.2.1 Conservative Path Consistency (CPC)

We first recall conservative path consistency, which is a restriction of path consistency

to the existing constraints of a problem. If there is no Ci,j ∈ C then Vi and Vj are

always conservative path consistent.

Definition 2.5.4. Conservative Path Consistency (CPC) [Debruyne, 1999]. An as-

signment to two variables Vi and Vj such that there is no constraint Ci,j ∈ C is conser-

vative path consistent. If ∃Ci,j ∈ C, the assignment {(Vi, a), (Vj, b)} is conservative

path consistent iff (a, b) ∈ Ri,j and ∀Vi, Vj, Vk ∈ V with k 6= i 6= j, Ci,k, Cj,k ∈ C ⇒

∃ c ∈ Dk such that (a, c) ∈ Ri,k and (b, c) ∈ Rj,k. A constraint Ci,j ∈ C is conserva-

tive path consistent iff for all the tuples (a, b) ∈ Ri,j, the assignment {(Vi, a), (Vj, b)}

is conservative path consistent. A CSP is conservative path consistent iff it is arc

consistent and ∀Ci,j ∈ C, Ci,j is conservative path consistent.

2.5.2.2 Partial Path Consistency (PPC)

We now recall partial path consistency [Bliek and Sam-Haroud, 1999], which was

introduced in the same year as CPC. As we argue in Section 3.1, the definition of

PPC in the original paper is incomplete and likely flawed. Below, we report the
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definition of PPC stated by Lecoutre et al. [2011]. Lecoutre et al. first introduce the

definition of graph-path and closed (graph-)path respectively as follows:

• A graph-path of a constraint graph is a path (V1, . . . , Vk) of the graph s.t. ∀i ∈

{1, . . . , k − 1},∃Ci,i+1 ∈ C. Informally, the graph-path can only use existing

edges in the graph.

• A closed (graph-)path of a constraint graph is a (graph-)path (V1, . . . , Vk) of

the graph s.t. ∃C1,k ∈ C. Informally, there must be an edge between the two

endpoints of the path. Note that a closed graph-path is a cycle in the constraint

graph.

Definition 2.5.5. Partial Path Consistency (PPC) [Lecoutre et al., 2011]. A CSP is

partially path consistent iff every closed graph-path of its constraint graph is consis-

tent.

We introduce the following proposition, not reported in the literature:

Proposition 2.5.1. DPC defined along any ordering is strictly weaker than PPC.

Sketch Proof: PPC guarantees that every closed path of any length is path consistent.

DPC requires that the edges of the triangles along the ordering be consistent but not

those along the reverse ordering. �

2.5.2.3 Singleton Arc Consistency (SAC)

Debruyne and Bessière [1997] introduced singleton consistency. It takes advantage of

the fact that if a vvp (Vi, a) is consistent (i.e., appears in a solution), then the CSP

obtained by restricting the domain of Vi to the singleton a is consistent (i.e., has a

solution). We denote the CSP obtained by assigning the value a to the variable Vi
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as P|Di={a} = P|Vi=a. Debruyne and Bessière [1997] noticed that if P|Di=a is incon-

sistent, then a can safely be removed from Di. A singleton test4 consists of assigning

a value to a given variable and enforcing a consistency algorithm. If the algorithm

fails, then the value is removed because it cannot appear in any solution. Singleton

consistency can be combined with any second consistency property. Enforcing the

second consistency property on every CSP obtained after the singleton assignment

will not yield an inconsistent problem. For example, singleton arc consistency is

defined relative to arc consistency:

Definition 2.5.6. Singleton Arc Consistency (SAC) [Bessiere, 2006]. A CSP is sin-

gleton arc consistent iff ∀Vi ∈ V , a ∈ Di, P |Di={a} is not arc inconsistent.

2.5.2.4 Dual Consistency (DC) and Conservative Dual Consistency

(CDC)

Lecoutre et al. [2011] introduced dual consistency and conservative dual consistency.

Dual consistency is defined using arc consistency:

Definition 2.5.7. Dual Consistency (DC) [Lecoutre et al., 2011]. Given a CSP, P ,

an assignment {(Vi, a), (Vj, b)} is dual consistent iff (Vj, b) ∈ AC(P|Vi=a) and (Vi, a) ∈

AC(P|Vj=b). P is dual consistent iff every consistent assignment {(Vi, a), (Vj, b)} is

dual consistent.

Conservative dual consistency distinguishes between pairs of variables that are

connected and those that are not:

Definition 2.5.8. Conservative Dual Consistency (CDC) [Lecoutre et al., 2007a].

Given a CSP, P , an assignment {(Vi, a), (Vj, b)} is conservative dual consistent iff

4A singleton test is called probing in SAT solvers.
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(Ci,j /∈ C) ∨ ((Vj, b) ∈ AC(P|Vi=a) ∧ (Vi, a) ∈ AC(P|Vj=b)). P is conservative dual

consistent iff every consistent assignment {(Vi, a), (Vj, b)} is conservative dual consis-

tent.

PC, DC, and CDC can be combined with AC to yield the corresponding strong

consistency properties sPC, sDC, and sCDC.

Proposition 2.5.2. Strong Conservative Dual Consistency (sCDC) is equivalent to

SAC+CDC [Lecoutre et al., 2011].

2.5.3 Comparing Local Consistency Properties

Table 2.1 summarizes the consistency properties discussed in Sections 2.4 and 2.5.

Table 2.1: Summary of the studied consistency properties

Acronym Consistency property Original paper

Minimality [Montanari, 1974]

Decomposability [Montanari, 1974]

(strong) k-consistency [Freuder, 1978]

AC Arc Consistency [Mackworth, 1977]

PC Path Consistency [Montanari, 1974]

sPC (AC∧PC) strong Path Consistency [Freuder, 1978]

DPC Directional Path Consistency [Dechter and Pearl, 1988]

PPC Partial Path Consistency [Bliek and Sam-Haroud, 1999]

CPC Conservative Path Consistency [Debruyne, 1999]

DC Dual Consistency [Lecoutre et al., 2011]∗
sDC (AC∧DC) strong Dual Consistency [Lecoutre et al., 2011]∗
CDC Conservative Dual Consistency [Lecoutre et al., 2011]∗
SAC Singleton Arc Consistency [Debruyne and Bessière, 1997]

sCDC (SAC∧CDC) strong Conservative Dual Consistency [Lecoutre et al., 2011]∗
∗ Definitions were introduced by Lecoutre et al. [2007a; 2007b] and

later corrected by Lecoutre et al. [2011].

Using the terminology introduced by Debruyne and Bessière [1997], we say that a

local consistency property LC is stronger than another local consistency property LC ′

if in any CSP where LC holds, LC ′ also holds. Further, LC is strictly stronger than
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LC ′ if LC is stronger than the LC ′ and there exists at least one CSP in which LC ′

holds but LC does not. Finally, LC and LC ′ are equivalent when LC is stronger than

LC ′ and vice versa [Bessière et al., 2008]. In practice, when a consistency property

is stronger (respectively, weaker) than another, enforcing the former never yields less

(respectively, more) pruning than enforcing the latter on the same problem does.

Figure 2.5 shows the relationships between the local consistency properties rele-

vant to this thesis. The proofs can be found in [Lecoutre et al., 2011]. Each arrow

points from a property that is stronger to a property that is weaker.

DC = PC	


CDC	


PPC	


CPC	


sCDC = SAC+CDC	


sDC = sPC	


Figure 2.5: Partial order of some consistency properties [Lecoutre et al., 2011]

2.6 Algorithms for Local Consistency

A consistency algorithm enforces a given consistency property on a CSP. Typically, a

consistency enforcing algorithm operates by either removing values from the variables’

domains (i.e., domain filtering) or by removing tuples from the constraints’ relations

(i.e., relation filtering). Some algorithms may do both domain and relation filtering.

The local consistency property being enforced guarantees that any value (or tuple)

removed does not participate in any solution to the CSP. Thus, enforcing a given

consistency property never sacrifices solutions.
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More than one algorithm may exist for enforcing a given consistency property. For

example, arc consistency is enforced by AC-1 [Mackworth and Freuder, 1984], AC-3

[Mackworth and Freuder, 1984], AC-4 [Mohr and Henderson, 1986], and AC-2001

[Bessière et al., 2005]. Similarly, path consistency is enforced by PC-1 [Montanari,

1974], PC-2 [Mackworth and Freuder, 1984], PC-8 [Chmeiss and Jégou, 1998], and

PC-2001 [Bessière et al., 2005].

Algorithms that enforce the same consistency property may use different book-

keeping data-structures to avoid repeated consistency checks (e.g., whether or not a

tuple appears in a relation), thus trading space for time.

2.7 An Algorithm for Arc Consistency: AC-2001

In this section, we discuss AC-2001 (Algorithm 1) [Bessière and Régin, 2001; Zhang

and Yap, 2001; Bessière et al., 2005], currently the best and most widely used generic

algorithm for enforcing arc consistency.

Algorithm 1: AC-2001(P) Adapted from [Bessière et al., 2005]

Input: P = (V ,D, C)
Output: Arc consistent P
foreach Vi ∈ V do1

foreach Vj ∈ V such that Ci,j ∈ C do2

foreach a ∈ Di do Last((Vi, a), Vj)← ∅3

AC-2001-core(P ,V)4

return P5

This algorithm requires that the problem’s domains be totally ordered. AC-2001

uses the function Next on the ordered domains. Next(Di, a) yields the value after

a in Di. When a is nil, Next(Di, nil) returns the first element in Di. When a is

the last element in Di, Next(Di, a) returns nil. Like its predecessors, (e.g., AC-1
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Algorithm 2: AC-2001-core(P,X ) Adapted from [Bessière et al., 2005]

Input: P = (V ,D, C),X ⊆ V
Output: Arc consistent P
Q ← ∅1

foreach Vi ∈ X do2

foreach Vj ∈ V such that Ci,j ∈ C do Q ← Q∪ {(Vj, Vi)}3

while Q do4

(Vi, Vj)← Pop(Q)5

if Revise-2001(Vi, Vj) then6

foreach Vk ∈ V such that Ci,k ∈ C ∧ (k 6= j) ∧ (k 6= i) do7

Q ← Q∪ {(Vk, Vi)}8

return P9

Algorithm 3: Revise-2001(Vi, Vj) Adapted from [Bessière et al., 2005]

Input: Vi, Vj ∈ V
Output: true if Di has been revised, false otherwise
revised ← false1

foreach a ∈ Di do2

b← Last((Vi, a), Vj)3

if b /∈ Dj then4

b←Next(Dj, b)5

while b do6

if (a, b) ∈ Ri,j then7

Last((Vi, a), Vj)← b8

break9

b←Next(Dj, b)10

if not b then11

Di ← Di \ {a}12

revised ← true13

return revised14

and AC-3), AC-2001 loops through all ordered pairs of variables, (Vi, Vj), that share

a constraint Ci,j and revises the domain of Vi given Ri,j. Revise-2001 (Algorithm 3)

updates Di by removing the values that have no supporting value in Dj given Ri,j.

The particularity of AC-2001 is that for every value a in Di it keeps track of the
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first value in Dj that supports (Vi, a). As long as the supporting value remains in

the domain of Dj, the support is ‘active,’ and reused in future calls to Revise-2001.

The data structure used for this bookkeeping is Last((Vi, a), Vj). In practice, this

simple structure saves many constraint-checking operations. Its space complexity is

O(end), where e is the number of binary constraints, n is the number of variables in

the problem, and d is the maximal domain size.

{2,3} 
V1 

{1,2} 
V2 

{1} 
V3 

V1 > V2 

V2 > V3 

Figure 2.6: A three-
variable example

Revising . . .
(V2, V1) (V1, V2) (V3, V2) (V2, V3) (V1, V2)

((V1,2),V2) nil nil 1 1 1 nil

((V1,3),V2) nil nil 1 1 1 2

((V2,1),V1) nil 2 2 2 2 2

((V2,2),V1) nil 3 3 3 3 3

((V2,1),V3) nil nil nil nil nil nil

((V2,2),V3) nil nil nil nil 1 1

((V3,1),V2) nil nil nil 2 2 2

Figure 2.7: ProcessingQ, updated values are shown in gray

We illustrate the operation of AC-2001 on the example shown in Figure 2.6.

First, AC-2001 initializes the contents of Last to nil. The first column of Figure 2.7

shows the elements of Last and the second column shows the initial nil values. As the

algorithm proceeds, Revise-2001 updates Last elements to new values as illustrated

in columns 3–7 of Figure 2.7. The figure highlights values that are updated by showing

them in gray.

AC-2001-core (Algorithm 2) initializes the propagation queue, Q, to: Q ←

{(V2, V1), (V1, V2), (V3, V2), (V2, V3)}. It then passes each queue element to Revise-

2001. Figure 2.7 has a column for each element of Q and the updates to Last are

shown there.

When Revise-2001 is passed (V2, V3), it finds no support for (V2,1) in D3. As a
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result, Revise-2001 removes the value 1 from the domain of D2 and returns true.

AC-2001-core adds (V1, V2) to the queue.

For the last element of the queue, (V1, V2), Last has non-nil values for the two

elements we are concerned with (see the top two rows of Figure 2.7). The Last

value for the element ((V1, 2), V2) is 1, but 1 /∈ D2. Thus, Revise-2001 searches

for a new support starting from Next(D2, 1), but none is found and 2 is removed

from D1. Next, Revise-2001 seeks a support for (V1, 3) in V2, but we already saw

that Last((V1, 3), V2) = 1 /∈ D2. This time, it finds a new support, the value 2, and

updates Last((V1, 3), V2)← 2. At this point, the queue becomes empty and AC-2001

terminates successfully.

Throughout this thesis, we enforce AC using the AC-2001 algorithm.

2.8 Algorithms Related to Path Consistency

We now discuss several algorithms that enforce or approximate path consistency. The

algorithms are listed in Table 2.2; their properties are summarized in Table 2.3; their

data structures and propagation queues are given in Table 2.4.

Table 2.2: List of the studied algorithms

Algorithm Section Original publication

PC-2 Section 2.8.1 [Mackworth and Freuder, 1984]

DPC Section 2.8.2 [Dechter and Pearl, 1988]

PC-8 Section 2.8.3 [Chmeiss and Jégou, 1998]

PC-2001 Section 2.8.4 [Bessière et al., 2005]

BSH-PPC Section 2.8.5 [Bliek and Sam-Haroud, 1999]

sCDC1 Section 2.8.6 [Lecoutre et al., 2007a]

sDC2 Section 2.8.7 [Lecoutre et al., 2007b]

Although more algorithms for path consistency are reported in the literature (e.g.,
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PC-1 [Montanari, 1974], PC-3 [Mohr and Henderson, 1986], PC-4 [Han and Lee, 1988],

PC-5 and PC-5++ [Singh, 1996], PC-6 [Chmeiss, 1996], PC-7 [Chmeiss and Jégou,

1996]), we choose to study only the latest ones as well as PC-2.5

sCDC1 and sDC2 were not formally introduced as path-consistency algorithms

but instead as dual-consistency algorithms. In fact, they do not operate by composing

constraints (like all the other PC-algorithms do), but instead they operate by running

an arc-consistency algorithm.

In Table 2.3, we identify the following properties of the chosen algorithms: the

constraint graph on which they operate, their pruning power with respect to PC-2,

and their time and space complexity. Notice that sCDC1 is the only algorithm that

does not modify the constraint network but instead operates on the original graph.

5Han and Lee [1988] found an error in PC-3 [Mohr and Henderson, 1986], which they fixed in
PC-4. Chmeiss and Jégou [1996] showed that ‘PC-4 is really inefficient in practice’ [Chmeiss and
Jégou, 1998]. Finally, Chmeiss and Jégou [1998] showed that ‘PC-8 often outperforms’ both PC-5
and PC-6.
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Table 2.3: Properties of the studied algorithms

Constraint Enforces Pruning Complexity
graph consistency w.r.t. Time Space

property PC-2 Constraints Data structures

PC-1 Completed Strong PC More O(n5d5) O(n2d2) O(d2)
PC-2 Completed PC Same O(n3d5) O(n2d2) O(n3)

DPC Triangulated Strong DPC Less
O(n3d3) O(e′d2) O(1)O(w2

peond
3)

PC-8 Completed PC Same O(n3d4) O(n2d2) O(n2d)
PC-2001 Completed PC Same O(n3d3) O(n2d2) O(n3d2)
BSH-PPC Triangulated PPC Less O(δ(e+ e′)d5) O(e′d2) O(n3 + e+ e′) = O(n3)
sCDC1 Original sCDC Incomparable O(λend3) O(1) O(ed2)
sDC2 Completed Strong PC More O(λn3d3) O(n2d2) O(n2d2)

d: Maximum domain size, Max(|Di|)
n: Number of variables, |V|
e: Number of constraints before graph is altered, |C|
e′: Number of edges added by a triangulation of the graph
wpeo : Width of the triangulated graph in the peo ordering
δ: The maximum degree of the graph
λ: Number of allowed tuples in all the constraints of P ,

i.e., λ =
∑

Ci∈C |Ri| and is bounded by O(n2d2) and O(ed2)
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In Table 2.4, we state whether or not each algorithm uses support structures and

a propagation queue, and provide pointers to the constituent functions and their

pseudocode.

Table 2.4: Data structures and propagation queues for the studied algorithms

Supports Queue element Pseudocode

PC-1 None None -

PC-2 None
(Vi, Vj, Vk) with
i < k, i 6= j 6= k

PC-2 (Algorithm 4)
Revise-3 (Algorithm 5)

PC-8 None ((Vi, Vj), Vk) PC-8 (Algorithm 8)
PC-2001 Last((Vi, a),(Vj, b),Vk) ← c ((Vi, Vj), Vk) PC-2001 (Algorithm 9)

BSH-PPC None Ci,j
BSH-PPC (Algorithm 10)
Revise-3 (Algorithm 5)

DPC None None
DPC (Algorithm 6)
Revise-3 (Algorithm 5)
Filter-Dom (Algorithm 7)

sCDC1 None, embedded AC may None

sCDC1 (Algorithm 11)
sCDC1-Check (Algorithm 12)
Revise-2001 (Algorithm 3)
AC-2001 (Algorithm 1)
AC-2001-core (Algorithm 2)

sDC2 None, embedded AC may None

sDC2 (Algorithm 13)
sDC2-Check (Algorithm 14)
Revise-2001 (Algorithm 3)
AC-2001 (Algorithm 1)
AC-2001-core(Algorithm 2)
FC-2001 (Algorithm 15)

Below we review the operation of each of the studied algorithms.
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2.8.1 Basic Path Consistency Algorithm (PC-2)

PC-2 is the first improvement on the first and most basic PC algorithm, PC-1,

which was proposed by Montanari [1974]. The PC-2 algorithm proposed by Mack-

worth [1977] enforces strong path consistency (sPC). That is, in addition to updating

relations to enforce path consistency it also updates the domains of the variables to

enforce arc consistency. However, the PC-2 algorithm (Algorithm 4) that we discuss

below is based on the version described by Dechter [2003], and enforces only path

consistency.

Algorithm 4: PC-2(P) Adapted from [Dechter, 2003]

Input: P = (V ,D, C) with a complete constraint graph
Output: Path consistent P
Q ← ∅1

foreach Vi, Vk, Vj ∈ V , (i < j) ∧ (i 6= k) ∧ (j 6= k) do2

Q ← Q∪ {(Vi, Vk, Vj)}3

while Q do4

(Vi, Vk, Vj)←Pop(Q)5

if Revise-3(Vi, Vj, Vk) then6

foreach Vm ∈ V , (m 6= i) ∧ (m 6= j) do7

Q ← Q∪


if m < i < j then {(Vm, Vi, Vj), (Vm, Vj, Vi)}
if i < m < j then {(Vm, Vi, Vj), (Vi, Vj, Vm)}
if i < j < m then {(Vj, Vi, Vm), (Vi, Vj, Vm)}8

return P9

Like PC-1, PC-2 operates on a constraint graph that is complete, meaning that

there is a constraint between every pair of variables. If the original constraint graph

is not complete, the missing edges are added as universal binary constraints.

PC-2 improves the performance of PC-1 by using a more sophisticated propagation

queue. The propagation queue begins with triplets of distinct variables:

Q ← {(Vi, Vk, Vj) s.t. (i < j) ∧ (i 6= k) ∧ (j 6= k)}
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Algorithm 5: Revise-3(Vi, Vj , Vk) Adapted from [Dechter, 2003]

Input: Vi, Vj, Vk ∈ V
Output: Td the set of removed tuples from Ri,j

Td ← ∅1

foreach (a, b) ∈ Ri,j do2

if @ c ∈ Dk such that ((a, c) ∈ Ri,k) ∧ ((b, c) ∈ Rj,k) then3

Ri,j ← Ri,j \ {(a, b)}4

Td ← Td ∪ {(a, b)}5

return Td6

For each element in Q, Revise-3 (Algorithm 5) revises Ri,j given Ri,k, Rk,j, and Dk.

After any revision PC-2 adds only the triplets that may be affected by the revision

back into the queue.6

We illustrate the operation of PC-2 on the example shown in Figure 2.8. We give

the constraints in intension on the left and in extension on the right. On the left of

Figure 2.8 the solid lines represent constraints with initial relations and the dashed

lines represent two binary universal relations. PC-2 initializes the propagation queue

{3,4} {1,2,3} 
V2 V3 

{3,4} 

{2,3,5} 

V1 

V4 

V3<V1 

V3<V4 V4<V2 

V1<V2 

R1,2

3 4

R1,3

3 1

3 2

4 1

4 2

4 3

R1,4

3 2

3 3

3 5

4 2

4 3

4 5

R2,3

3 1

3 2

3 3

4 1

4 2

4 3

R2,4

3 2

4 2

4 3

R3,4

1 2

1 3

1 5

2 3

2 5

3 5

Figure 2.8: Left : Dashed lines in the constraint graph denote universal constraints. Right :
The relations of the CSP. PC-2 removes the tuples are shown in gray

6Line 8 of PC-2 (Algorithm 4) is a correction of line 6 of the algorithm reported by Dechter [2003]

(Figure 3.11 [2003]). The corrected line adds to the propagation queue triplets (i, k, j) exclusively
with i < j, excluding triplets with i > j. Indeed, (i, k, j) and (j, k, i) effectuate the same consistency
checking, and including both triplets in the propagation queue duplicates the constraint-checking
effort.
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with these 12 triplets (lines 1–3):

Q ← {(V1, V3, V2), (V1, V4, V2), (V1, V2, V3), (V1, V4, V3), (V1, V2, V4), (V1, V3, V4),

(V2, V1, V3), (V2, V4, V3), (V2, V1, V4), (V2, V3, V4), (V3, V1, V4), (V3, V2, V4)}

Table 2.5 summarizes the first 12 steps of PC-2’s main loop (lines 1–8). Each row

in this table shows:

1. The triplet (Vi, Vk, Vj) that is popped from the queue at line 5.

2. The revisions Revise-3 makes to Ri,j, when applicable.

3. The triplets PC-2 adds to the propagation queue at line 8.

Table 2.5: PC-2’s first 12 steps on the example in Figure 2.8

Step Triplet Relation update Additions to Q
1 (V1, V3, V2) none -
2 (V1, V4, V2) none -
3 (V1, V2, V3) R1,3 ← {(3, 1), (3, 2)} {(V1, V3, V2)}
4 (V1, V4, V3) none -
5 (V1, V2, V4) R1,4 ← {(3, 2), (3, 3)} {(V1, V4, V2), (V1, V4, V3)}
6 (V1, V3, V4) none -
7 (V2, V1, V3) R2,3 ← {(4, 1), (4, 2)} {(V1, V2, V3)}
8 (V2, V4, V3) none -
9 (V2, V1, V4) R2,4 ← {(4, 2), (4, 3)} {(V1, V2, V4), (V2, V4, V3)}
10 (V2, V3, V4) none -
11 (V3, V1, V4) R3,4 ← {(1, 2)(1, 3), (2, 3)} {(V1, V3, V4), (V2, V3, V4)}
12 (V3, V2, V4) none -

The fourth column in Table 2.5 indicates the only eight items inQ after the first 12

steps. PC-2 continues without yielding any further revisions or queue additions, at

which point it terminates with an empty queue.
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2.8.2 Directional Path Consistency (DPC)

Dechter and Pearl [1988] proposed the DPC algorithm to compute the DPC network

given a CSP and an instantiation ordering of the variables.7 As the algorithm pro-

ceeds, it adds edges to the graph (i.e., new constraints to the CSP), which corresponds

to moralizing the graph along the given ordering.

The DPC algorithm (Algorithm 6) that we discuss below takes as input a CSP

that has had its constraint graph triangulated and the instantiation ordering ord

corresponding to the inverse of a perfect elimination ordering of the vertices of the

graph.8 Typically DPC considers fewer constraints than PC-2, because DPC operates

on a triangulation of the constraint graph while PC-2 operates on the complete graph.

Algorithm 6: DPC(P, ord) Adapted from [Dechter and Pearl, 1988]

Input: P = (V ,D, C) with a triangulated constraint graph,
ord : an instantiation ordering of V

Output: Strong directional path consistent P in the direction of ord
for k ← |V| downto 2 by -1 do1

for i← 1 to k − 1 such that Ci,k ∈ C do Revise(Di, {Ci,k})2

for i← 1 to k − 2 such that Ci,k ∈ C do3

for j ← i+ 1 to k − 1 such that Ci,j ∈ C do Revise-3(Vi, Vj, Vk)4

return P5

DPC loops through the variables starting with the last variable in the instantiation

order ord . As it visits each variable Vk, it first enforces directional arc consistency

on all the variables Vi preceding Vk in the ordering. That is, for all i < k DPC

uses Filter-Dom (Algorithm 7) to revise Di given the relation Ri,k. Then, for all

7In the instantiation ordering the variables are numbered from 1 to n.
8In order to triangulate the graph, we use the Min-Fill heuristic, and add, as universal con-

straints, the fill edges generated by Min-Fill [Kjærulff, 1990].
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i < j < k, where Ci,k and Cj,k exist, DPC uses Revise-3 (Algorithm 5) to revise Ri,j

given Ri,k, Rj,k, and Dk Figure 2.4 in Section 2.5.1.4 illustrates DPC’s filtering.

Algorithm 7: Filter-Dom(Di, Ci)
Input: Di: Domain of variable Vi,

Ci: Set of constraints incident to variable Vi
Output: true if Di was updated, false otherwise
Dold

i ← Di1

foreach C ∈ Ci do Di ← Di ∩ π{Vi}(rel(C))2

return Dold
i 6= Di3

We illustrate the operation of DPC on the example shown in Figure 2.9. First, we

triangulate the problem by adding a universal constraint between V2 and V3, which

is shown as a dashed line in Figure 2.10.

{3,4} ≠ {3,4} {1,2,3} 
V5 V2 V3 

{3,4} 

{2,3,5} 

V1 

V4 

V3<V1 

V3<V4 V4<V2 

V1<V2 

Figure 2.9: A five-variable example

{3,4} ≠ {3,4} {1,2,3} 
V5 V2 V3 

{3,4} 

{2,3,5} 
V4 

V3<V1 

V3<V4 V4<V2 

V1<V2 

V1 

Figure 2.10: A triangulation of the constraint
graph

DPC uses the ordering V1, V2, . . . , V5, as shown in Figure 2.11, and executes the

following steps:

1. DPC first considers V5, and updates the domain D2 given R2,5 (no filtering).

2. DPC then ‘moves up to’ V4 by setting k to 4 at line 1. It updates D2 and D3

givenR2,4 andR3,4 respectively (no filtering), and updatesR2,3 ← {(3, 1), (4, 1), (4, 2)}

given R2,4 and R3,4.
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V5 

V4 

V1 

V3 

V2 

or
d 

Figure 2.11: The ordering used

{3,4} ≠ {3,4} {1,2,3} 
V5 V2 V3 

{3} 

{2,3,5} 
V4 

V3<V1 

V3<V4 V4<V2 

V1<V2 

V1 

R2,3={(3,1),(4,1),(4,2)} 

Figure 2.12: After running DPC

3. Moving up to V3, it updates D1 and D2 given R1,3 and R2,3 respectively (no

filtering). It updates R1,2 given R1,3 and R2,3 (no filtering).

4. Finally, moving up to V2, it updates D1 ← {3} given R1,2.

DPC makes two updates to the problem, namelyD1 ← {3} andR2,3 ← {(3, 1), (4, 1), (4, 2)}.

Figure 2.12 depicts the final constraint graph.

2.8.3 Iterating Over Variables’ Domains (PC-8)

Chmeiss and Jégou [1998] proposed PC-8 (Algorithm 8) to enforce PC on a CSP’s

completed constraint graph. We compare PC-8 to PC-2. The consistency-checking

operations of PC-8 (lines 3–5 and lines 10–12) operate similarly to Revise-3 (Algo-

rithm 5), which is used in PC-2 (Algorithm 4). However, PC-8’s propagation queue

is different than PC-2’s, which stores triplets of variables (Vi, Vk, Vj). PC-2 uses

Revise-3 which iterates over every tuple in Ri,j to ensure the existence of a support-

ing value in Dk with corresponding supporting tuples in Ri,k and Rj,k. In contrast,

PC-8’s queue stores elements of the following form:

Q ← {((Vi, a), Vk) s.t. (i 6= k)}
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Algorithm 8: PC-8(P) Adapted from [Chmeiss and Jégou, 1998]

Input: P = (V ,D, C) with a complete constraint graph
Output: Path consistent P
Q ← ∅1

foreach Vi, Vj, Vk ∈ V such that (i < j) ∧ (i 6= k) ∧ (j 6= k) do2

foreach (a, b) ∈ Ri,j do3

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then4

Ri,j ← Ri,j \ {(a, b)}5

Q ← Q∪ {((Vi, a), Vj), ((Vj, b), Vi)}6

while Q do7

((Vi, a), Vk)← Pop(Q)8

foreach Vj ∈ V such that (j 6= i) ∧ (j 6= k) do9

foreach (a, b) ∈ Ri,j do10

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then11

Ri,j ← Ri,j \ {(a, b)}12

Q ← Q∪ {((Vi, a), Vj), ((Vj, b), Vi)}13

return P14

The elements are tuples ((Vi, a), Vk) where (Vi, a) is a variable-value pair and Vk is a

variable. PC-8 considers every third variable, Vj (line 9), but instead of looping over

every tuple in Ri,j it only considers those where Vi ← a (line 10). Every tuple (a, b)

that lacks supports in Ri,k, Rj,k and Dk is removed from Ri,j. Note that line 10 of

Algorithm 8 appears as follows in the original paper:

foreach b ∈ Dj such that (a, b) ∈ Ri,j do

However, executing such an instruction adds unnecessary constraint checks for each

value in Dj to the cost of the algorithm in practice. For this reason, we reformulated

the instruction as appears our proposed pseudocode.

We illustrate the operation of PC-8 on the example shown in Figure 2.13. The tu-

ples removed by PC-8’s initial pass (lines 1–6) are shown in gray. As PC-8 deletes tu-
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Figure 2.13: Left : A CSP where the dashed line denotes a universal constraint Right :
Relations of the CSP with tuples removed by PC-8’s lines 1–6 shown in gray

ples in the course of its initial pass (lines 1–6) elements are added to the queue(line 6),

and after the initial pass the queue has the following tuples:

Q ← {((V1, 2), V2), ((V2, 4), V1), ((V1, 3), V2), ((V2, 2), V1), ((V1, 2), V3), ((V3, 4), V1),

((V2, 4), V4), ((V4, 3), V2), ((V3, 4), V4), ((V3, 6), V4), ((V4, 3), V3), ((V1, 2), V4),

((V1, 3), V4), ((V1, 4), V4), ((V4, 1), V1), ((V4, 3), V1), ((V2, 4), V3), ((V3, 6), V2)}

PC-8 continues by popping elements off of the queue (line 8) and checking for the ex-

istence of supporting tuples. For the first element, ((V1, 2), V2), tuples in the relations

between V1 and every third variable in the problem, that is, V3 then V4 are consid-

ered, where V1 ← 2 as illustrated in Figure 2.14. There is no such tuple (2, ∗) ∈ R1,3

and no further checks are made to determine if any tuples need to be removed from

R1,3. The same holds for R1,4. All other queue elements yield similar results until

((V4, 3), V2) is considered. The tuples where V4 ← 3, (∗, 3) ∈ R2,4, are checked against

V1 as illustrated in Figure 2.15. When no support is found in D1 the tuple (1, 3) is

removed from R1,4.

The processing continues without further updates until the queue is empty, at

which point PC-8 terminates. Figure 2.16 shows the updated relations after PC-8
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Figure 2.14: Left : Seeking supports for (2, ∗) ∈ R1,3 in D2. Right : Seeking supports for
(2, ∗) ∈ R1,4 in D2
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Figure 2.15: PC-8 seeks supports for (∗, 3) ∈ R1,4 in D2. The tuple (1, 3) is removed from
R1,4 because no support exists in D2
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Figure 2.16: Path-consistent relations of the CSP in Figure 2.8 after execution of PC-8

2.8.4 Introducing Support Bookkeeping (PC-2001)

In this section, we discuss PC-2001 (Algorithm 9) [Bessière et al., 2005]. This algo-

rithm extends, to path consistency, the idea of bookkeeping supports introduced in

AC-2001 [Bessière and Régin, 2001; Zhang and Yap, 2001] (see Section 2.7).

PC-2001 operates on the complete constraint graph like the previously studied

PC algorithms, PC-2 and PC-8. Like AC-2001, PC-2001 requires that the variables’
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Algorithm 9: PC-2001(P) Adapted from [Bessière et al., 2005]

Input: P = (V ,D, C) with a complete constraint graph
Output: Path consistent P
Q ← ∅1

foreach Vi, Vj, Vk ∈ V such that (i < j) ∧ (i 6= k) ∧ (j 6= k) do2

foreach (a, b) ∈ Ri,j do3

foreach c ∈ Dk do4

if (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then5

Last((Vi, a), (Vj, b), Vk)← {c}6

break7

if not Last((Vi, a), (Vj, b), Vk) then8

Ri,j ← Ri,j \ {(a, b)}9

Q ← Q∪ {((Vi, a), Vj), ((Vj, b), Vi)}10

while Q do /* REVISE PATH [Bessière et al., 2005] */11

((Vi, a), Vk)← Pop(Q)12

foreach Vj ∈ V such that (i 6= j) ∧ (k 6= j) do13

foreach (a, b) ∈ Ri,j do14

if i < j then c← Last((Vi, a), (Vj, b), Vk) else15

c← Last((Vj, a), (Vi, b), Vk)16

found ← false17

while c ≤ Final(Dk) do18

if (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then19

if i < j then Last((Vi, a), (Vj, b), Vk)← c else20

Last((Vj, a), (Vi, b), Vk)← c21

found ← true22

break23

c←Next(Dk, c)24

if not found then25

Ri,j ← Ri,j \ {(a, b)}26

Q ← Q∪ {((Vi, a), Vj), ((Vj, b), Vi)}27

return P28

domains be totally ordered, and it also uses Next(Di, a) to obtain the value after a

in Di. The function Final(Di) yields the last element in Di.

PC-2001 uses a different Last structure than AC-2001. Last((Vi, a), (Vj, b), Vk)
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points to the value in Dk that supports the assignments {(Vi, a), (Vj, b)} (i.e., the

tuple (a, b) ∈ Ri,j). This data structure incurs a large space overhead. Indeed, the

space complexity of PC-2001 is O(n3d2), where n is the number of variables in the

problem and d is the maximal domain size [Bessière et al., 2005].

PC-2001 begins by initializing the Last structure, as well as making an initial

pass through all of the relations and updating the queue (lines 1–10). PC-2001’s

first pass does the same relation updates and queue additions as PC-8’s first pass

(lines 1–6). PC-2001 also makes the same revisions and queue additions in the rest

of the algorithm (lines 11–27) as are done in the rest of PC-8 (lines 7–13). PC-2001’s

advantage is that the Last structure saves some constraint checks after the initial

pass.

We illustrate the operation of PC-2001 on the example shown in Figure 2.13 of

Section 2.8.3. When ((V2, 2), V1) is removed from the queue and a support is sought

in V1 for the tuple (2, 6) ∈ R2,3, Last((V2, 2), (V3, 6), V1) stores, or points to, the value

4 ∈ D1. After that, when seeking a support for the tuple (2, 6) ∈ R2,3 in D1, the

values that precede 4 ∈ D1 are ignored, thus saving some consistency-checking effort.

2.8.5 Partial Path Consistency (BSH-PPC)

Bliek and Sam-Haroud [1999] proposed the BSH-PPC algorithm (Algorithm 10) to

enforce PPC on a CSP with a triangulated graph. BSH-PPC uses a queue consisting

of constraints, which it initializes to hold hall of the constraints. BSH-PPC removes

each constraint, Ci,j, from the queue and identifies each triangle in the constraint

graph that Ci,j participates in (line 4). For each triangle (Vi, Vj, Vk), first, Revise-3

(Algorithm 5) is used to revise Ci,j with respect to Vk, second, Ci,k with respect to

Vj, and finally, Cj,k with respect to Vi. BSH-PPC adds any revised constraint to the
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Algorithm 10: BSH-PPC(P) Adapted from [Bliek and Sam-Haroud, 1999]

Input: P = (V ,D, C) with a triangulated constraint graph
Output: Partially path consistent P
Q ← C1

while Q do2

Ci,j ←Pop(Q)3

foreach (Vi, Vk, Vj) ∈ V such that (Ci,k ∈ C) ∧ (Cj,k ∈ C) do4

if Revise-3(Vi, Vj, Vk) then Q ← Q∪ {Ci,j}5

if Revise-3(Vi, Vk, Vj) then Q ← Q∪ {Ci,k}6

if Revise-3(Vj, Vk, Vi) then Q ← Q∪ {Cj,k}7

return P8

queue.

We illustrate the operation of BSH-PPC on the example of the triangulated CSP

shown in Figure 2.17 (Figures 2.9 and 2.10 previously contained this same example).

First, the queue is initialized with all the constraints in the problem.

{3,4} ≠ {3,4} {1,2,3} 
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1 5
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Figure 2.17: Left : A triangulated graph, the dashed line is a universal constraint. Right :
The relations of the CSP. BSH-PPC removes the tuples shown in gray

Q ← {C1,2, C1,3, C2,3, C2,4, C2,5, C3,4}.

1. The first item C1,2 is popped from the queue. The only triplet considered is

(V1, V3, V2). We revise R1,2 given V3, but no tuple is removed from R1,2. Then,

we examine R1,3 against V2 followed by R2,3 against V1. The tuples of R1,3 and

R2,3 shown in gray in Figure 2.17 are removed at this time. We attempt to add
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C1,3 and C2,3 to Q, but they are already in the queue, which remains unchanged:

Q ← {C1,3, C2,3, C2,4, C2,5, C3,4}.

2. The second item, C1,3, is popped from the queue. The only triplet considered

is (V1, V2, V3). No revision takes place, and no new constraint is added to the

queue:

Q ← {C2,3, C2,4, C2,5, C3,4}.

3. C2,3 is popped from the queue. Two triplets are considered: (V2, V3, V1) and

(V2, V4, V3). The examination of (V2, V3, V1) yields no change. The examination

of (V2, V4, V3) updates the R2,4 and R3,4 by removing the tuples shown in gray

in Figure 2.17. We attempt to add C2,4 and C3,4 to Q, but they are already in

the queue:

Q ← {C2,4, C2,5, C3,4}.

4. C2,4 is popped from the queue. The tuple (V2, V3, V4), is considered. No revision

takes place. The queue is now:

Q ← {C2,5, C3,4}.

5. C2,5 is popped from the queue. Because the constraint is not part of any triangle

no constraint is examined. The queue is now:

Q ← {C3,4}.

6. C3,4 is popped from the queue. The tuple (V3, V2, V4), is considered. No revision
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takes place. The algorithm terminates.

BSH-PPC considers both of the triangles (V1, V3, V2) and (V2, V4, V3) three times each,

which is wasteful. We introduce ∆PPC in Section 4.2 to improve on this behavior.

2.8.6 Strong Conservative Dual Consistency (sCDC1)

Lecoutre et al. [2007a] proposed the sCDC1 algorithm (Algorithm 11), which enforces

strong conservative dual consistency by filtering both the domains and the relations

of the CSP.

Algorithm 11: sCDC1(P) Adapted from [Lecoutre et al., 2007a]

Input: P = (V ,D, C) /* Unaltered constraint graph */

Output: Strong conservative dual consistent P
AC-2001(P)1

ind ← 12

marker ← 13

repeat4

if sDC1-Check(P , V ar(ind)) then5

AC-2001-core(P , {V ar(ind)})6

marker ← ind7

ind ← ind + 18

if ind > |V| then ind ← 19

until ind = marker10

return P11

sCDC1 is conservative, meaning it does not require the input problem to be

triangulated, completed, or otherwise changed. It does not add any edges to the

graph. It does assume that the variables are ordered and given an index starting with

1 and going to n. It uses the following data structures and functions:

• Index(Vi) yields the index of the variable Vi.

• Var(ind) is a vector that facilitates accessing each variable by its index ind .



41

Algorithm 12: sCDC1-Check(P, Vx) Adapted from [Lecoutre et al., 2007a]

Input: P = (V ,D, C), Vx ∈ V
Output: true if Dx was updated, false otherwise
modified ← false1

foreach a ∈ Dx do2

P ′ = (V ′,D′, C ′)←Copy(P)3

V ′x ← a4

AC-2001-core(P ′, {V ′x})5

if P ′ is consistent then6

foreach Vy ∈ V such that Cx,y ∈ C do7

foreach b ∈ Dy such that b /∈ D′y do8

if (a, b) ∈ Rx,y then9

Rx,y ← Rx,y \ {(a, b)}10

modified ← true11

else12

Dx ← Dx \ {a}13

modified ← true14

return modified15

• Copy(P) generates a copy of all the variables, domains, and constraints of P .9

sCDC1 uses two position pointers, ind and marker , which are initialized to 1. marker

records the index of the last variable that caused an update, and ind keeps the index

of the current variable.

The main loop of sCDC1 (lines 4–10) continues until the next variable to process

is the last one that made an update. sCDC1 begins by enforcing AC on the entire

problem. However, to illustrate the operation of sCDC1, we run it on the example

in Figure 2.18 without first enforcing AC in order to maintain the simplicity of the

example. (Otherwise, sCDC1 does not yield any filtering beyond that done by AC on

this example.) First, sCDC1 passes sCDC1-Check (Algorithm 12) the variable V1.

9In practice, we found it is more efficient to keep only one copy of the problem in memory and
to apply the AC algorithm while keeping undo records. We use AC2001 in our implementation and
restore the domains in memory using the undo records after each singleton test, as well as using
undo records for the Last structure.



42

{3,4} {1,2,3} 
V2 V3 

{3,4} 

{2,3,5} 

V1 

V4 

V3<V1 

V3<V4 V4<V2 

V1<V2 

R1,2

3 4

R1,3

3 1

3 2

4 1

4 2

4 3

R2,4

3 2

4 2

4 3

R3,4

1 2

1 3

1 5

2 3

2 5

3 5

{4} {1,2} 
V2 V3 

{3} 

{2,3} 

V1 

V4 

Figure 2.18: Left : The CSP before processing. Middle: Relations as revised by sCDC1,
removed tuples are shown in gray. Right : The CSP after processing

sCDC1-Check makes instantiation V ′1 ← 3 in P ′’. AC determines that the resulting

problem, P ′ is consistent and updates the domains D′2 = {4}, D′3 = {1, 2}, D′4 =

{2, 3}. Line 7 examines V2 then V3, which are the neighbors of V1. Because the tuple

(3, 3) does not appear in R1,2, the relation is not altered; the same applies for R1,3

(lines 8–11). When considering V ′1 ← 4, AC determines inconsistency and value 4 is

removed from D1 (the original domain).

Next, we call sCDC1-Check on V2. There, we first consider V ′2 ← 3. AC

determines inconsistency. Thus, the original domain gets updated, D2 ← {4}. Then,

we consider V ′2 ← 4. sCDC1-Check proceeds without updating any domain or

relation.

Next, V3 is passed to sDC1-Check. First, we consider V ′3 ← 1. AC determines

P ′ is consistent and updates the domains D′1 = {3}, D′2 = {4}, D′4 = {2, 3}. Note

that value 5 is removed from D′4 = {2, 3}. Thus, the tuple (1, 5) is removed from

R3,4. Moving to V ′3 ← 2, we determine that the tuple (2, 5) must be removed from

R3,4. Finally, considering V ′3 ← 3, AC yields failure, and D3 ← {1, 2}.

Next, sDC1-Check is passed V4. There, no filtering occurs when considering

V ′4 ← 2 and V ′4 ← 3. When considering V ′4 ← 5, AC detects inconsistency and

D4 ← {2, 3}.
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Then, sDC1-Check is passed V1, V2, and V3 in sequence without causing any up-

dates. Thus, sDC1-Check does not need to be passed V4 again. And the algorithm

terminates.

2.8.7 Strong Dual Consistency (sDC2)

McGregor [1979] proposed an algorithm for enforcing strong path consistency by using

arc consistency as a ‘basic tool.’ Lecoutre et al. [2007b] incorporated this mechanism

into their algorithm sDC2 (Algorithm 13), which enforces strong dual consistency on

the completed graph. sDC2 operates by running two singleton tests on each of the

two variable-value pairs of a tuple that is consistent with the constraint defined over

the two variables (i.e., a support tuple).

It is difficult to provide a simple walk through the pseudocode of sDC2. It

suffices to say that, in addition to singleton checks, sDC2 calls a forward-checking

procedure (FC-2001, Algorithm 15) and an arc-consistency procedure (AC-2001-

core, Algorithm 2).

Further, in addition to the functions and data structures used by sCDC1 (see

Section 2.8.6), sDC2 uses dom(ind), which gives the domain of the variable whose

index is ind . Like sCDC1, sDC2 uses marker that allows it to continue iterating

over the variables in the problem until it completes a revolution over the variables

without causing an update. It introduces a LastModified structure to keep track of

when each variable was last affected by a change, where a change is either an update

of its domain or that of the relation of any constraint defined over the variable. At

lines 9 and 10 of sDC2, totalvals stores the total number of values in the variables’

domains. At lines 14–17, if the total the number of values has changed, every variable

is marked as modified. It would be possible to mark a smaller set of variables, but
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Algorithm 13: sDC2(P) Adapted from [Lecoutre et al., 2007b]

Input: P = (V ,D, C) with a complete constraint graph
Output: Strong dual consistent P
AC-2001(P)1

ind ← 02

marker ← 03

count ← 04

foreach Vi ∈ V do LastModified(Vi)← 05

repeat6

count ← count + 17

if |dom(ind)| > 1 then8

totalvals ← 09

foreach Di ∈ D do totalvals ← totalvals + |Di|10

if sDC2-Check(P ,Var(ind), count) then11

LastModified(Var(ind))← count12

AC-2001-core(P , {Var(ind)})13

newtotalvals ← 014

foreach Di ∈ D do newtotalvals ← newtotalvals + |Di|15

if totalvals 6= newtotalvals then16

foreach Vi ∈ V do LastModified(Vi)← count17

marker ← ind18

ind ← ind + 119

if ind ≥ |V| then ind ← 020

until ind 6= marker21

return P22

Lecoutre et al. [2007b] found that this operation would increase complexity of the

implementation without any noticeable effect.

Whenever sDC2 calls sDC2-Check (Algorithm 14) on a given variable Vx, AC-

2001 is run on a copy of the problem the first time that sDC2-Check is passed Vx.

After this step, forward checking is done on all the variables connected to Vx. Then,

AC-2001-core only needs to be run on variables that have changed since they were

last passed to sDC2-Check.
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Algorithm 14: sDC2-Check(P, Vx, count) Adapted from [Lecoutre et al., 2007b]

Input: P = (V ,D, C), Vx, count
Output: true if Dx or any constraint of Vx is modified, false otherwise
modified ← false1

foreach a ∈ Dx do2

P ′ = (V ′,D′, C ′)←Copy(P)3

V ′x ← a /* Variable assignment */4

if count ≤ |V| then AC-2001-core(P ′, {V ′x})5

else6

FC-2001(P ′, {V ′x})7

if P ′ is consistent then8

Y ← ∅9

foreach Vy ∈ V do10

if count − LastModified(Vy) < |V| then Y ← Y ∪ {Vy}11

AC-2001-core(P ′,Y)12

if P ′ is consistent then13

foreach Vy ∈ V such that Cx,y ∈ C do14

foreach b ∈ Vy such that (b /∈ V ′y) do15

if {a, b} ∈ Rx,y then16

Rx,y ← Rx,y \ {(a, b)}17

LastModified(Vy)← count18

modified ← true19

else20

Dx ← Dx \ {a}21

modified ← true22

return modified23

Algorithm 15: FC-2001(P, Vx) Adapted from [Lecoutre et al., 2007b]

Input: P = (V ,D, C), Vx
Output: Forward-checked P
Q ← ∅1

foreach Vi ∈ V such that Ci,x ∈ C do Q ← Q∪ {(Vi, Vx)}2

while Q do3

(Vi, Vj)←Pop(Q)4

Revise-2001(Vi, Vj)5

return P6



46

2.9 Path Consistency Algorithms in Practice

Look-ahead techniques, which enforce consistency during search, typically use arc-

consistency but not path-consistency algorithms because the latter are typically com-

putationally expensive and modify the structure of the constraint graph.

Temporal networks with convex constraints are the only constraint networks that

path consistency is enforced on in practice. For convex constraints it is known that

partial path consistency guarantees path consistency [Bliek and Sam-Haroud, 1999]

and that path consistency guarantees that the problem can be solved in a backtrack-

free manner Dechter:91:

1. Indeed, Xu and Choueiry [2003] proposed the algorithm ∆STP to solve the the

Simple Temporal Problem by improving the operation of the BSH-PPC algo-

rithm of Bliek and Sam-Haroud [1999] and specializing it to the STP. Further,

they noted the dependency of the performance of ∆STP on the ordering of the

triangles in the propagation queue. They attribute to a private communica-

tion with Nic Wilson in 2005 the realization that a perfect elimination ordering

of the vertices of the graph and a tree decomposition control the performance

∆STP and can be used to predict a tight bound for time complexity [Bui et al.,

2007].

2. Planken et al. proposed P3C as an improvement of ∆STP [2008]. Further, they

provided the theoretical characterization of the complexity of the algorithm

exploiting a perfect elimination ordering.

3. Recently, Long et al. [2016] generalized P3C into DPC+, which they applied to

qualitative constraint networks for spatio-temporal reasoning.10

10DPC+ simply replaces the scalar minimum and addition operators of ∆STP with the relational
operators intersection and composition respectively.
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In Boolean satisfiability (SAT), the generation of binary clauses for variable elim-

ination by resolution is equivalent to a path-consistency operation and the basis of

the powerful pre-processing in modern SAT solvers [Eén and Biere, 2005].

In this thesis, we consider algorithms that operate on arbitrary constraints and

do not restrict ourselves to any type of constraints.

Summary

In this chapter, we reviewed background information about CSPs. In particular, we

discussed several consistency properties and reviewed in great detail the consistency

algorithms that we use in our empirical evaluation.



48

Chapter 3

Gaps in the Literature

In this chapter, we discuss various imprecisions and errors that have appeared in

the literature and that are relevant to anyone interested in path consistency and

algorithms for enforcing it.

In particular, we discuss the definition of the partial path consistency property.

We show that conservative path consistency and partial path consistency are not

equivalent on triangulated graphs, contrary to what is stated by Lecoutre et al. [2011].

We report an error in the pseudocode of the PPC algorithm reported by Bliek and

Sam-Haroud [1999].1 Finally, we give an example where PC detects inconsistency but

PPC fails to (a case that was never encountered in practice before).

3.1 On the Definition of PPC

In order to introduce PPC, Bliek and Sam-Haroud [1999] distinguish between enforc-

ing PC on a CSP and on the constraint graph. They state the following propositions:

1Note that the error was fixed in the implementation of Bliek and Sam-Haroud [1999] and, thus,
does not affect their experiments (private communication).
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1. A constraint graph is PC iff all paths in the graph are PC [Montanari, 1974;

Mackworth, 1977].

2. A CSP is PC if the completion of its constraint graph is PC [Montanari, 1974;

Mackworth, 1977].

3. A CSP is PPC if its (original) constraint graph is PC.

4. A triangulated constraint graph is PC iff every path of length two is PC.

Then, the authors give an algorithm, which we call BSH-PPC,2 that takes a constraint

graph as input, and triangulates the graph while ensuring that every path of length

two in the triangulated graph is PC. Thus, the algorithm ensures that the triangulated

constraint graph is PC and, consequently, the CSP is PPC.

If we run BSH-PPC on the example shown in Figure 3.1, the algorithm deter-

mines that the CSP is PPC. Thus, we should expect that all paths in the graph are

{1,2} 
V1 

{1,2} 
V2 

{1,2} 
V3 

{3} < 

< 

< 
≠ 

≠ 

V4 

Figure 3.1: A CSP that is PPC because every closed graph-path is PC

PC. However, if we consider the instantiation {(V1, 1), (V3, 2)} we can easily see that

it is not consistent along the path (V1, V2, V3). Consequently, we conclude that the

definitions of Bliek and Sam-Haroud [1999] do not correctly characterize the consis-

tency property PPC, and we choose to use instead the definition of Lecoutre et al.
2See Section 2.8.5.
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[2011],3 which restricts the paths on which the PC property must hold to only closed

graph-paths.

3.2 CPC and PPC on Triangulated Graphs

Below, we report two errors by Lecoutre et al. [2011].

3.2.1 Incorrect Example

Lecoutre et al. [2011] provided the example shown in Figure 3.2 to illustrate a

constraint network where “every 2-length graph-path is [. . .] consistent.”4 How-

ever, the path (V2, V3, V5) is not consistent for the locally consistent instantiation

{(V2, b), (V5, b)}.

V3 {a,b} 

{a,b} 

V1 

V2 

{a,b} ≠ 

≠ 

= 

{a,b} 

V5 

V4 

{a,b} 

= 

R3,5={(a,a),(b,a)} 

R3,4={(a,a),(b,a)} 

Figure 3.2: An incorrect example
with the inconsistent two-length path
(V2, V3, V5) [Lecoutre et al., 2011]

V3 {a,b} 

{a} 

V1 

V2 

{a} ≠ 

≠ 

= 

{a} 

V5 

V4 

{a} 

= 

R3,5={(a,a),(b,a)} 

R3,4={(a,a),(b,a)} 

Figure 3.3: A triangulated CSP that is
CPC, but not PPC

We propose to correct this example by setting D1 = D2 = D4 = D5 = {a}, as

shown in Figure 3.3.

3See Definition 2.5.5 in Section 2.5.2.
4See Figure 4 on page 185 [Lecoutre et al., 2011].
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3.2.2 Incorrect Proposition

Further, Lecoutre et al. [2011] state an incorrect proposition:5

Proposition 4. (Bliek & Sam-Haroud 1999) Let P be a binary CN P

with a triangulated constraint graph. P is PPC-consistent iff P is CPC-

consistent.

This proposition has the following errors:

1. First, no such statement appears in the paper of Bliek and Sam-Haroud [1999].

2. Second, the CSP shown in Figure 3.3 is a counterexample to Proposition 4 of

Lecoutre et al. [2011]. Indeed, the CSP is triangulated and CPC but it is not

PPC because the closed graph-path (V3, V1, V3, V4) is not path consistent for the

assignment ((V3, a), (V4, a)).

Thus, it is incorrect to say that PPC and CPC are equivalent on triangulated graphs.

3.3 Imprecision in the Pseudocode of BSH-PPC

The pseudocode of BSH-PPC provided by Bliek and Sam-Haroud [1999] iterates over

every combination of three connected variables (Vi, Vk, Vj), called Related-Triplets,“that

correspond to actual triangles in” the constraint graph. It is not clear whether or not

two vertices in this triangle can be equal.

• If we consider that the three vertices must be distinct, then the algorithm fails

to detect the inconsistency of the example shown in Figure 3.4.

5See Proposition 4 on page 186 [Lecoutre et al., 2011].
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{1,2} 

V1 

{1,2} 

{1,2} V2 V3 

R12={(1,1)} R13={(2,1)} 

Figure 3.4: BSH-PPC cannot detect the inconsistency of the instantiation {(V2, 1), (V1, 1)}
along the path (V2, V1, V3, V1) if it considers only triangles with distinct vertices

• If we allow two vertices to be the same, then processing the triangle (V1, V2, V1)

updates D1 ← {1}. Further, processing the triangle (V1, V3, V1) updates D1 ←

∅, thus detecting inconsistency.

However, considering all triangles with two variables that are the same is not neces-

sary. Instead, we should simply pay special attention to edges incident to articulation

points in the triangulated graph. Thus, assuming that all triplets considered are de-

fined over distinct variables, then the algorithm can be fixed by enforcing arc consis-

tency on edges incident to articulation points6 as we do in PPC+AP (Algorithm 16)

in Section 4.1, Chapter 4.

A private communication with the authors confirmed that, indeed, their code

singles out articulation points and that their reported experimental results are correct .

They acknowledged the shortcoming of the pseudocode in the paper.

Note that this imprecision was not detected by previous research adapting BSH-

PPC because they are restricted to temporal constraint networks, which ignore the

variables’ domains [Xu and Choueiry, 2003; Planken et al., 2008].

6This problem was first identified by Christopher Thiel in Spring 2008.
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3.4 Comparing PC and PPC

Lecoutre et al. [2011] showed that PC is strictly stronger than CDC, and that CDC

is strictly stronger than PPC. They provide the example in Figure 3.5 that is PPC

but not CDC.7 Applying a PC or CDC algorithm to this instance removes the tuple

(1, 2) from the relation R1,2, whereas enforcing PPC yields no filtering.

V1 

V4 

V3 

V5 

V2 

D1 = D2 = D3 = D4 = {1, 2} D5 = {1, 2, 3}

R1,2

1 1
1 2
2 1
2 2

R1,3

1 1
2 1
2 2

R1,4

1 1
2 1
2 2

R2,3

1 1
2 1
2 2

R2,4

1 1
1 2
2 1
2 2

R2,5

1 2
1 3
2 1
2 2

R3,4

1 1
1 2
2 1

R3,5

1 2
1 3
2 1

R4,5

1 1
1 3
2 2
2 3

Figure 3.5: A binary CSP that is PPC but not CDC

In practice, enforcing either PPC or PC on a CSP was found to detect inconsis-

tency on exactly the same instances as noted by Bliek and Sam-Haroud [1999] and

also in our experiments. Indeed, Bliek and Sam-Haroud wrote:

For the tests conducted on random problems, insolubility detected by PC

was also detected by PPC.

Since 1999, it was an open question whether or not a PC algorithm can detect in-

consistency of an instance that is PPC. The example in Figure 3.6, with the relation

definitions reported in Figure 3.7, provides, for the first time, a counterexample that

settles this question.

7Figure 9 of their paper.
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V1 

V2 

V9 V10 

V11 

V13 V12 

V14 

V4 
V5 

V3 

V8 

V6 

V7 

∀i ∈ {1, 2, 3, 4, 6, 7, 9, 10, 12, 13}Di = {1, 2}
D5 = D8 = D11 = D14 = {1, 2, 3}

Figure 3.6: Enforcing PC uncovers the inconsistency of the CSP, but enforcing PPC yields
no filtering

R1,2

1 1
1 2
2 1
2 2

R1,3

1 1
2 1
2 2

R2,5

1 3
2 1
2 2

R3,4

1 1
1 2
2 1

R3,5

1 2
1 3
2 1

R4,5

1 1
1 3
2 2
2 3

R2,8

1 1
1 2
2 2
2 3

R1,2 = R2,4 = R2,7 = R2,10 = R2,13 = {1, 2} × {1, 2}
R1,3 = R1,4 = R1,6 = R1,7 = R2,3 = R2,12 = {(1, 1), (2, 1), (2, 2)}
R2,5 = R2,14 = {(1, 3), (2, 1), (2, 2)}
R3,4 = R6,7 = R9,10 = R12,13 = R1,9 = R1,10 = R1,12 = R1,13 =

R2,6 = R2,9 = {(1, 1), (1, 2), (2, 1)}
R3,5 = R6,8 = R9,11 = R12,14 = {(1, 2), (1, 3), (2, 1)}
R4,5 = R7,8 = R10,11 = R13,14 = {(1, 1), (1, 3), (2, 2), (2, 3)}
R2,8 = R2,11 = {(1, 1), (1, 2), (2, 2), (2, 3)}

Figure 3.7: Relations of the CSP in Figure 3.6
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Summary

In this chapter, we cleared various imprecisions, errors, and omissions that appeared

in the literature concerning path consistency and its closely related properties.
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Chapter 4

New Algorithms for (Partial) Path

Consistency

In this chapter, we introduce new algorithms for enforcing PPC and PC. The prop-

erties and characteristics of those algorithms are summarized in Tables 4.1 and 4.2.

Table 4.1: Summary of the introduced algorithms

Section Graph Property Pruning w.r.t. PC-2

PPC+AP Section 4.1 Triangulated PPC Less than PC-2, more than
BSH-PPC

∆PPC Section 4.2 Triangulated PPC Less than PC-2, more than
BSH-PPC

σ-∆PPC Section 4.3 Triangulated PPC Less than PC-2, more than
BSH-PPC

PC-8+ Section 4.4 Complete PC same as PC-2

PPC+AP corrects the error of the BSH-PPC algorithm (Section 2.8.5); ∆PPC

improves the performance of PPC+AP by processing all the edges of a triangle at

once; σ-∆PPC follows a perfect elimination ordering for processing the triangles in

the triangulated graph and uses support structures to reduce the number of con-
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Table 4.2: Data structures and propagation queues of the introduced algorithms

Supports Element Pseudocode
of queue

PPC+AP None Ci,j

PPC+AP (Algorithm 16)
Revise-3+AP (Algorithm 19)
Propagate-APs (Algorithm 17)
Filter-Dom (Algorithm 7)
Filter-Rels (Algorithm 18)

∆PPC None
(Vi, Vj, Vk)
i < j < k

∆PPC (Algorithm 20)
Revise-Triangle (Algorithm 21)
Revise-3+AP (Algorithm 19)
Propagate-APs (Algorithm 17)
Filter-Dom (Algorithm 7)
Filter-Rels (Algorithm 18)

σ-∆PPC A set of three tuples
(Vk, Vj, Vi)
i < j < k

σ-∆PPC (Algorithm 23)
Init-Triangle-Vector (Algorithm 22)
Revise-Triangle (Algorithm 21)
Revise-3+AP (Algorithm 19)
Propagate-APs (Algorithm 17)
Filter-Dom (Algorithm 7)
Filter-Rels (Algorithm 18)

PC-8+ (Vi, a, Vj, b) ((Vi, a), Vk)

Revise-PC-8-Flag (Algorithm 25)
PC-8-Flag (Algorithm 24)
PC-8-Ordering (Algorithm 26)
PC-8+ (Algorithm 27)

straint checks; finally, PC-8+ introduces two improvements for the PC-8 algorithm

(Section 2.8.3).

We first discuss each algorithm, then we discuss the time and space complexities

of all introduced algorithms.

4.1 Correcting BSH-PPC (PPC+AP)

PPC+AP (Algorithm 16) is our proposed correction of the BSH-PPC algorithm.
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Like BSH-PPC, PPC+AP requires that the constraint graph of the input problem

be triangulated and iterates over a propagation queue of edges. Correcting BSH-

PPC, PPC+AP ensures the correct propagation across the articulation points and

the cut edges in the graph.1

Algorithm 16: PPC+AP(P)

Input: P = (V ,D, C) with a triangulated constraint graph
Output: Partial-path consistent P
Q ← C1

Apoints ←Articulation-Points(P)2

QAP ← Apoints3

Propagate-APs(Apoints,QAP )4

while Q do5

Ci,j ←Pop(Q)6

foreach (Vi, Vk, Vj) ∈ V such that (Ci,k ∈ C) ∧ (Cj,k ∈ C) do7

Q ← Q ∪ Revise-3+AP(Vi, Vj, Vk,Apoints)8

Q ← Q ∪ Revise-3+AP(Vi, Vk, Vj,Apoints)9

Q ← Q ∪ Revise-3+AP(Vj, Vk, Vi,Apoints)10

return P11

More specifically, PPC+AP first identifies the articulation points (line 2). Then,

Propagate-APs (Algorithm 17) ‘synchronizes’ the domains of the articulation points

with the relations of the constraints incident to them using the functions Filter-

Dom (Algorithm 7) and Filter-Rels (Algorithm 18), which implement the projec-

tion and selection operations. Propagate-APs handles also propagation along any

cut edges.

For every constraint in the propagation queue, PPC+AP calls Revise-3+AP

(Algorithm 19) on every ‘triplet relations’ in which the constraint appears. How-

ever, unlike BSH-PPC, Revise-3+AP includes a special processing for articulation

points and cut edges.

1See discussion in Section 3.3.
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Algorithm 17: Propagate-APs(Apoints,QAP )

Input: Apoints: Articulation vertices
QAP : Queue of articulation points

Output: Uedges: Set of non-cut edges that have been updated
Uedges ← ∅1

while QAP do2

foreach Vi ∈ QAP do Filter-Dom(Di, {Ci ∈ C | Vi ∈ scope(Ci)})3

Qorig ← QAP4

QAP ← ∅5

foreach Vi ∈ Qorig do6

Qe ←Filter-Rels({Ci ∈ C | Vi ∈ scope(Ci)}, Di)7

foreach Ci,j ∈ Qe do8

if Vj ∈ Apoints then QAP ← QAP ∪ {Vj}9

else Uedges ← Uedges ∪ {Ci,j}10

return Uedges11

Algorithm 18: Filter-Rels(Ci, Di)

Input: Ci: Set of constraints incident to variable Vi
Di: Domain of variable Vi

Output: Cu: Set of updated constraints
Cu ← ∅1

foreach C ∈ Ci do2

Rold ← rel(C)3

R← σVi∈Di
(Rold)4

if R 6= Rold then5

rel(C)← R6

Cu ← Cu ∪ {C}7

return Cu8

An implementation of Articulation-Points is not given and can be found

elsewhere [Hopcroft and Tarjan, 1973].
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Algorithm 19: Revise-3+AP(Vi, Vj , Vk,Apoints)

Input: Vi, Vj, Vk ∈ V ,Apoints: Articulation vertices
Output: Qu: Queue of updated constraints
Qu ← ∅1

if Revise-3(Vi, Vj, Vk) then2

Qu ← Qu ∪ {Ci,j}3

if Vi ∈ Apoints then4

Qu ← Qu ∪ Propagate-APs(Apoints, {Vi})5

else if Vj ∈ Apoints then6

Qu ← Qu ∪ Propagate-APs(Apoints, {Vj})7

return Qu8

4.2 Exploiting Triangles (∆PPC)

In Section 2.8.5, we illustrated the operation of the BSH-PPC algorithm (Algo-

rithm 10) on the example shown in Figure 4.1. BSH-PPC loops through a queue of

constraints. Consequently, it examines three times each of the two triangles in Fig-

ure 4.1 and ends up calling the algorithm Revise-3 18 times even though no change

occurred between the two calls to Revise-3. It is obvious that the performance of

BSH-PPC can be significantly improved. In a manner similar to the ∆STP algo-

rithm by Xu and Choueiry [2003], we propose ∆PPC (Algorithm 20), which improves

on the performance of PPC+AP as follows:

1. ∆PPC uses a queue of triangles instead of the queues of edges used in PPC+AP

and BSH-PPC.

2. Every time we pop an element from the queue, Revise-Triangle (Algo-

rithm 21) revises all three edges of the triangle at the same time.

3. Whenever an edge is updated, we add to the queue, unless they are already

there, all the triangles in which the edge appears except the triangle under

consideration.



61

To this end, we need three data structures:

1. A table TrianglesEdge storing for each edge, the list of triangles in which the

edge appears. Such table has at most O(n2) entries with O(n) items each,

where n is the number of variables in the CSP.

2. A table storing all the articulation points, whose size is O(n).

3. A propagation queue Qt of triangles, whose size is O(n3).

Like BSH-PPC and PPC+AP, ∆PPC operates on a triangulated graph and integrates

the processing of the articulation points introduced in PPC+AP.

Algorithm 20: ∆PPC(P)

Input: P = (V ,D, C) with a triangulated constraint graph
Output: Partially path consistent P
Apoints ←Articulation-Points(P)1

QAP ← Apoints2

Propagate-APs(Apoints,QAP )3

Qt ← {(Vi, Vj, Vk) ∈ V3 | (i < j < k) ∧ (Ci,j, Ci,k, Cj,k ∈ C)}4

while Qt do5

(Vi, Vj, Vk)←Peek(Qt)6

Qe ←Revise-Triangle(Vi, Vj, Vk,Apoints)7

while Qe do8

edge ←Pop(Qe)9

Qt ← Qt ∪ TrianglesEdge(edge)10

Pop(Qt)11

return P12

We illustrate the operation of ∆PPC on the example of the triangulated CSP

shown in Figure 4.1.2

First, line 1 of ∆PPC identifies V2 as the unique articulation point. Thus,

Filter-Dom (line 2) filters removes values 3 from D2; and Filter-Rels removes

2This example was shown in Figures 2.9, 2.10, and 2.17.
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Algorithm 21: Revise-Triangle(Vi, Vj , Vk,Apoints)

Input: Vx, Vy, Vz ∈ V , Apoints: articulation vertices
Output: Qe: Queue of updated constraints
Qe ← ∅1

Qe ← Qe ∪ Revise-3+AP(Vi, Vj, Vk,Apoints)2

Qe ← Qe ∪ Revise-3+AP(Vi, Vk, Vj,Apoints)3

Qe ← Qe ∪ Revise-3+AP(Vj, Vk, Vi,Apoints)4

return Qe5

{3,4} ≠ {3,4} {1,2,3} 
V5 V2 V3 

{3,4} 

{2,3,5} 
V4 

V3<V1 

V3<V4 V4<V2 

V1<V2 

V1 

Figure 4.1: A triangulated graph, the
dashed line denotes a universal constraint

R1,2

3 4

R1,3

1 3

1 4

2 3

2 4

3 4

R2,3

3 1

3 2

3 3

4 1

4 2

4 3

R2,4

3 2

4 2

4 3

R2,5

3 4

4 3

R3,4

1 2

1 3

1 5

2 3

2 5

3 5

Figure 4.2: The relations. Gray tuples are
removed by ∆PPC

{(3, 1), (3, 2), (3, 3)} from R2,3, the tuple (3, 2) from R2,4, and the tuple (3, 4) from

R2,5. (Note that BSH-PPC does not remove (3, 4) from R2,5.)

The propagation queue Qt is initialized with two the triangles in the problem:

Qt ← {(V1, V2, V3), (V2, V3, V4)}.

The first triangle, (V1, V2, V3), is copied from the queue. Revising C1,2 with respect

to V3 removes no tuples. Revising R1,3 given V2 yields the removal to the tuples

{(1,4),(2,4),(3,4)}, shown in grey in Figure 4.2. Revising R2,3 given V1 removes the

tuple (4, 3) from R2,3. Because V2 is an articulation point, Filter-Dom and Filter-

Rels are called again, but yield no further revisions. Now, the processed triangle is

removed from Qt, and we peek at the second triangle in Qt. Considering the triangle

(V2, V3, V4), we update R3,4 removing the tuples {(1, 5), (2, 5), (3, 5)} as shown in grey

in Figure 4.2. The examination of the two other relations yields no updates. We pop
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(V2, V3, V4) from Qt, which becomes empty and the algorithm terminates.

4.3 σ-∆PPC

Below, we introduce the main contribution of this thesis, σ-∆PPC, an algorithm that

enforces partial path consistency by correcting then improving the operations of the

BSH-PPC algorithm.

4.3.1 Idea and Data Structures

In order to reduce the number of revisions during constraint propagation and quickly

reach a fixpoint (i.e., quiescence), one may want to follow the structure of a tree

decomposition of the constraint graph of the CSP [Dechter, 2003]. This operation

can be achieved using a perfect elimination ordering of the constraint graph. The idea

is to triangulate the CSP’s graph, process the triangles in the elimination ordering,

then in the instantiation ordering, which is the reverse of the elimination ordering

(see Section 2.3), and repeat the operation until quiescence. When the constraints are

convex or when composition distributes over intersection, a single iteration suffices:

• The consistency of the CSP is guaranteed after traversing the triangles in the

elimination order, and

• The constraints are guaranteed minimal after traversing the triangles in the

instantiation ordering [Planken et al., 2008; Long et al., 2016].

For arbitrary binary constraints, the operation must be repeated until quiescence. Our

new algorithm σ-∆PPC (Algorithm 23) implements this idea for arbitrary constraints.

In the case of convex or distributive constraints, the loop on line 18 can be eliminated,

yielding P3C [Planken et al., 2008] and DPC+ [Long et al., 2016].
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As input to σ-∆PPC (Algorithm 23), we provide P , after triangulating the cor-

responding constraint graph and peo, a perfect elimination ordering of the graph.

See illustration in Figure 4.3. We store the triangles of the graph in an array called

V6 

V5 

V4 

V1 

V3 

V2 
In

st
an

tia
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or

de
r 

E
lim
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at

io
n 

or
de

r 

tri[.] 
1 (V6,V5,V4) 
2 (V4,V3,V2) 
3 (V4,V3,V1) 
4 (V4,V2,V1) 
5 (V3,V2,V1) 

TrianglesEdge[.] 
C1,2 (V3,V2,V1),(V4,V2,V1) 
C1,3 (V3,V2,V1),(V4,V3,V1) 
C1,4 (V4,V2,V1),(V4,V3,V1) 
C2,3 (V4,V3,V2),(V3,V2,V1) 
C2,4 (V4,V3,V2),(V4,V2,V1) 
C3,4 (V4,V3,V1),(V4,V3,V2) 
C4,5 (V6,V5,V4) 
C4,6 (V6,V5,V4) 
C5,6 (V6,V5,V4) 

Figure 4.3: A triangulated graph, a peo, tri [·], and TrianglesEdge[·]

tri [·]. The triangles are ordered along the peo such that a triangle on k > j > i is

stored as (Vk, Vj, Vi). The size of tri [·] is O(n3) where n is the number of variables

in the CSP. Init-Triangle-Vector (Algorithm 22) initializes this array. A table

TrianglesEdge stores, for each edge, the list of triangles in which the edge appears.

The initialization of this table is too obvious to be reported. Such table has at most

O(n2) entries, each with O(n) items.

4.3.2 The σ-∆PPC Algorithm

The σ-∆PPC algorithm first identifies the articulation points in the triangulated

graph. Then, it filters the domains of the corresponding variables given their incident

constraints using Filter-Dom. It then filters the same constraints given the updated
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Algorithm 22: Init-Triangle-Vector(P, peo, tri [·])
Input: P = (V ,D, C),

peo = (|V|, . . . , 1): a perfect elimination ordering on V ,
tri [·]: an empty vector to store all the triangles in the graph

Output: counter : the number of triangles in the graph.
As a side effect, it stores all triangles in tri

counter ← 1 /* An index for tri [·] */1

for k ← |V| downto 3 by − 1 do2

for j ← k − 1 downto 2 do3

for i← j − 1 downto 1 do4

if Ci,j, Cj,k, Ci,k ∈ C then5

tri [counter ]← (Vk, Vj, Vj)6

counter ← counter + 17

return counter − 18

domains using Filter-Rels. The above is done in lines 1–3.

Starting from k ← n, σ-∆PPC traverses the triangles along peo, then continues the

same process down along the instantiation ordering then peo until reaching a fixpoint.

Every time a triangle is considered, Revise-Triangle updates all three relations in

the triangle while processing the domains of the variables at that articulation nodes.

Every time an edge is updated, all the triangles in which at appears are flagged for

revision using the bit vector flag [·].

In summary, σ-∆PPC introduces the following improvements:

1. It exploits a perfect elimination ordering.

2. It processes the triangles in linear fashion, iterating up and down along the

ordering.

3. It flags the triangles for revision only when one of the edges of the triangle was

revised.
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Algorithm 23: σ-∆PPC(P, peo)

Input: P = (V,D, C) with a triangulated constraint graph,
peo = (|V|, . . . , 1) a perfect elimination ordering on V

Output: P if it is path consistent
Apoints ←Articulation-Points(P)1

QAP ← Apoints2

Propagate-APs(Apoints,QAP )3

tri [·] /* An empty vector to store O(n3) triangles */4

size← Init-Triangle-Vector(P, peo, tri [·])5

flag [·] /* An empty vector to flag triangles that lost at least a tuple */6

change ← false7

Qe ← ∅8

for i← 1 to size do /* Sweeping along the elimination ordering */9

(Vk, Vj , Vi)← tri [i]10

flag [i]← false11

Qe ← Qe ∪Revise-Triangle(Vi, Vj , Vk,Apoints)12

if Qe 6= ∅ then change ← true13

T ← ∅14

foreach edge ∈ Qe do T ← T ∪ TrianglesEdge(edge)15

for i← 1 to size do16

if tri [i] ∈ T then flag [i]← true17

while change = true do18

change ← false19

for i← size− 1 downto 1 by − 1 do /* Along the instantiation ordering */20

(Vk, Vj , Vi)← tri [i]21

flag [i]← false22

Qe ←Revise-Triangle(Vi, Vj , Vk,Apoints)23

if Qe 6= ∅ then change ← true24

T ← ∅25

foreach edge ∈ Qe do T ← T ∪ TrianglesEdge(edge)26

for i← 1 to size do if tri [i] ∈ T then flag [i]← true27

if not change then break28

change ← false29

for i← 2 to size by 1 do30

(Vk, Vj , Vi)← tri [i]31

flag [i]← false32

Qe ←Revise-Triangle(Vi, Vj , Vk,Apoints)33

if Qe 6= ∅ then change ← true34

T ← ∅35

foreach edge ∈ Qe do T ← T ∪ TrianglesEdge(edge)36

for i← 1 to size do if tri [i] ∈ T then flag [i]← true37

return P38

4. Finally, we introduce support structures for the tuples in a relation so that, when

a triangle is revisited, only those tuples that have lost support are effectively
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revised.

4.3.3 Support Structures in σ-∆PPC

In addition to the above listed features, σ-∆PPC uses support structures for the

tuples in the relations.

For every a triangle in the graph, the idea is to record, for every tuple in a relation,

its two supporting tuples in the relations in the triangle. Figure 4.4 illustrates this

situation. Consider the three relations Ri,j, Ri,k, and Rj,k in the triangle (Vi, Vj, Vk).

Ri,j 
id Vi Vj A s 
t1 a b 1 

t2 a c 1 

t3 a d 1 

t4 b c 1 

t5 c a 1 

t6 c c 1 

supports(t1, Ri,j)   
(Vi,Vj,Vk) 

Triangle2 

Triangle3 

Triangle4 

… 

Rj,k 
id Vj Vk A s 
t7 a b 1 

t8 b c 1 

t9 b d 1 

t10 c a 1 

t11 c b 1 

t12 d c 1 

Ri,k 
id Vi Vk A s 
t13 a b 1 

t14 a c 1 

t15 a d 1 

t16 c b 1 

t17 c d 1 

t18 d a 1 

	
	

	
	

Figure 4.4: The support structure for tuples in σ-∆PPC

We store each relation as an indexed array of tuples. Further, we add the Boolean flag

‘A’ (which stands for ‘Active’) for each tuple in the relation. This flag is initialized to 1

at the beginning and reset to 0 when the tuple is deleted. In addition to this flag, each

tuple t ∈ Ri,j has a pointer to its support structure supports(t, Ri,j). This support

structure is an array indexed by all the triangles in which the relation Ri,j appears

such as the triangle (Vi, Vj, Vk). For the given triangle (Vi, Vj, Vk), supports(t, Ri,j)

stores two pointers, each to the tuples that are consistent with t in (Vi, Vj, Vk).
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Given a relation Ri,j in the triangle (Vi, Vj, Vk), as soon as we find that tuple

(a, b) ∈ Ri,j is consistent with (a, c) ∈ Ri,k and (b, c) ∈ Rj,k, we set the pointers

of supports((a, b), Ri,j) to point to the tuples (a, c) ∈ Ri,k and (b, c) ∈ Rj,k. At the

same time, we update supports((a, c), Ri,k) and supports((b, c), Rj,k) even if they were

already pointing to another existing support. In this manner, any future check to the

consistency of any of these three tuples in this triangle can follow the pointers and

verify whether or not the supporting tuples are active.

There are O(n) rows in each supports because each constraint appears in at most

(n− 2) triangles. Given that each relation has at most O(d2) tuples and the triangu-

lated graph has at most O(e + e′) constraints, the number of supports structures is

O((e+ e′)d2) and the space needed to store them is O(n(e+ e′)d2).

One can selectively choose whether or not to use the support structures. Generally

speaking, while using them reduces the number of constraint checks, their size may

become prohibitively large when the number of tuples in the problem’s relations is

exceedingly large. We denote σ-∆PPC the version of our algorithm that does not use

the support structures and σ-∆PPCsup the one that does.

The idea of support was first introduced in AC-2001 and PC-2001 [Bessière et

al., 2005]. Our support structures are inspired from those used by Karakashian et al.

[2010] and differ from those used in PC-2001. For each tuple (a, b) and each third

variable k, PC-2001 stores Last((Vi, a), (Vj, b), Vk) ← c and cannot store the three

tuples in the triangle as supporting each other. As a result, verifying whether or not

the supports of (a, b) are still active requires checking the constraints and adds to the

number of constraint checks, which we avoid.

PC-2001 does have an advantage over our support structures in that PC-2001

orders the domains. As a result, when the support Last((Vi, a), (Vj, b), Vk) ← c is

no longer valid, PC-2001 continues to the next value, after c, in Dk because it has
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already checked all values before c. Our support structures do not order the domains:

when c is no longer a valid support, our algorithm must check all values x where

x ∈ Dk \ {c}.

4.3.4 Reflections on PPC

While the PPC property (Definition 2.5.5) was proposed as a new approximation

of PC (Definition 2.5.2), it becomes apparent that any algorithm for enforcing PPC

must operate along a perfect elimination ordering, exactly as advocated by the DPC

algorithm [Dechter and Pearl, 1988], so that the worst-case complexity can be bound

by the induced width of the ordering. This realization was first expressed by Nic Wil-

son in a private communication and integrated by Yorke-Smith [2005] in an algorithm

for reasoning about time and later in P3C [Planken et al., 2008].

σ-∆PPC is the first algorithm that generalizes this mechanism to arbitrary con-

straints. Unlike P3C and DPC+ [Long et al., 2016], which operate on restricted

classes of constraints (i.e., STP constraints and distributive subalgebra), and unlike

the original PPC, σ-∆PPC updates all the edges of the triangles at the same time,

handles the articulation points in the constraint graph, and uses support structures

to reduce constraint checks.

4.4 PC-8+ and PC-2001+

We propose two separate improvements that we apply to both PC-8 (Algorithm 8,

Section 2.8.3) and PC-2001 (Algorithm 9, Section 2.8.4). Below, we discuss them

only in the context of PC-8. Their adaptation to PC-2001 is straightforward and not

reported in this section.
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Our two improvements yield PC-8-Flag (Algorithm 24) and PC-8-Ordering

(Algorithm 26), which we then combine to form the new algorithm PC-8+ (Algo-

rithm 27).

4.4.1 PC-8-Flag

Consider the following lines of PC-8 (Algorithm 8):

Q ← ∅1

foreach Vi, Vj, Vk ∈ V such that (i < j) ∧ (i 6= k) ∧ (j 6= k) do2

foreach (a, b) ∈ Ri,j do3

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then4

Ri,j ← Ri,j \ {(a, b)}5

Q ← Q∪ {((Vi, a), Vj), ((Vj, b), Vi)}6

Let’s apply them to the example shown in Figure 4.5. If, for (a, b) ∈ Ri,j, we find

c 

a 

b 

Vi 

Vj 

Vk 

(a,b) 

Ri,j 

Rj,k 

Ri,k 

Figure 4.5: Three variables of a CSP

a value c ∈ Dk such that (a, c) ∈ Ri,k and (b, c) ∈ Ri,k, we say that (a, c) and (b, c)

have ‘served’ in a consistency check. If such a value, c, is not found in Dk, then,

PC-8 removes (a, b) from Ri,j, and, in line 6, it adds ((Vi, a), Vj) and ((Vj, b), Vi) to

the propagation queue, Q. Those items are added to Q because the tuple (a, b)

could have served in the consistency check of other tuples in other triangles, whose

consistency is now ‘threatened’ and should, thus, be re-examined. Adding elements
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to the queue necessarily induces the execution of more operations by PC-8. When

(a, b) never ‘served’ in a consistency checks, those operations are wasted.

To address this issue, we introduce the bit-array flag that stores, for every tuple,

such as (a, b), whether or not it ‘served’ in a successful consistency check. All the

entries in flag are initially set to false. When, in the example above, c ∈ Dk is found

consistent with (a, b), the flag values of (a, c) ∈ Ri,k and (b, c) ∈ Ri,k are set to true.

Further, ((Vi, a), Vj) and ((Vj, b), Vi) are added to the queue only when the flag value

of (a, b) is true.

Modifying PC-8 to integrate the above mechanism yields the two algorithms PC-

8-Flag (Algorithm 24) and Revise-PC-8-Flag (Algorithm 25). The modification

is bound to reduce the number of constraint checks.

Algorithm 24: PC-8-Flag(P)

Input: P = (V ,D, C) with a complete constraint graph
Output: Path consistent P
Q ← ∅1

foreach Vi, Vj ∈ V such that (i < j) do2

foreach (a, b) ∈ Ri,j do3

flag((a, b), Ri,j)← false4

foreach Vi, Vj, Vk ∈ V such that (i < j) ∧ (i 6= k) ∧ (j 6= k) do5

Q ← Q ∪ Revise-PC-8-Flag(Vi, Vj, Vk,flag)6

while Q do7

((Vi, a), Vk)← Pop(Q)8

foreach Vj ∈ V such that (i 6= j) ∧ (k 6= j) do9

Q ← Q ∪ Revise-PC-8-Flag(Vi, Vj, Vk,flag)10

return P11
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Algorithm 25: Revise-PC-8-Flag(Vi, Vj , Vk,flag)

Input: Vi, Vj, Vk ∈ V ,flag : flag structure
Output: Q: A set of elements to add to the queue
Q ← ∅1

foreach (a, b) ∈ Ri,j do2

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then3

Ri,j ← Ri,j \ {(a, b)}4

if flag((a, b), Ri,j) then Q ← Q∪ {((Vi, a), Vj), ((Vj, b), Vi)}5

else6

flag((a, c), Ri,k))← true7

flag((b, c), Rj,k))← true8

return Q9

4.4.2 PC-8-Ordering

Let’s consider again the first few lines of PC-8 (Algorithm 8) shown below:

Q ← ∅1

foreach Vi, Vj, Vk ∈ V such that (i < j) ∧ (i 6= k) ∧ (j 6= k) do2

foreach (a, b) ∈ Ri,j do3

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then4

Ri,j ← Ri,j \ {(a, b)}5

Q ← Q∪ {((Vi, a), Vj), ((Vj, b), Vi)}6

We modify line 2 of the above pseudocode to clarify the exact sequence of operations

(while renaming the queue for the sake of clarity):

Q1 ← ∅1

for i← 1 to n by 1 do2

for j ← i+ 1 to n by 1 do3

foreach Vk ∈ V such that (k 6= i) ∧ (k 6= j) do4

foreach (a, b) ∈ Ri,j do5

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then6

Ri,j ← Ri,j \ {(a, b)}7

Q1 ← Q1 ∪ {((Vi, a), Vj), ((Vj, b), Vi)}8
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In this reformulated pseudocode, it becomes clear that the tuples of Ri,j are always

examined before a relation Rx,y with (x > i) or (x = i) ∧ (y > j) is considered.

Consequently, if any (a, b) ∈ Ri,j is removed in line 7 of the reformulated pseudocode,

this tuple is necessarily removed before Rx,y is even considered, and thus, could not

have possibly ‘served’ to establish the consistency of any tuple in Rx,y.

Now, let us re-examine how PC-8 processes the elements in its queue, for the first

time, right after the loop reported above:

while Q do7

((Vi, a), Vk)← Pop(Q)8

foreach Vj ∈ V such that (j 6= i) ∧ (j 6= k) do9

foreach (a, b) ∈ Ri,j do10

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then11

Ri,j ← Ri,j \ {(a, b)}12

Q ← Q∪ {((Vi, a), Vj), ((Vj, b), Vi)}13

When ((Vi, a), Vk) is popped from the queue, it becomes clear that it is useless to

consider, in line 9, any variable Vj where j < k. Such an effort is wasted. Such a

consideration is safe the first time the queue is processed at line 7. In any subsequent

iteration through the queue, ∀j Vj should be considered in line 9.

This observation is the basis of our algorithm PC-8-Ordering (Algorithm 26),

which saves some consistency checks when processing the queue right after the first

loop (lines 9–16). As the queue is emptied, then PC-8-Ordering operates like PC-8

(lines 17–23).
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Algorithm 26: PC-8-Ordering(P)

Input: P = (V ,D, C) with a complete constraint graph
Output: Path consistent P
Q1 ← ∅1

for i← 1 to n by 1 do2

for j ← i+ 1 to n by 1 do3

foreach Vk ∈ V such that (k 6= i) ∧ (k 6= j) do4

foreach (a, b) ∈ Ri,j do5

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then6

Ri,j ← Ri,j \ {(a, b)}7

Q1 ← Q1 ∪ {((Vi, a), Vj), ((Vj, b), Vi)}8

Q2 ← ∅9

while Q1 do10

((Vi, a), Vk)← Pop(Q1)11

foreach Vj ∈ V such that (i 6= j) ∧ (j < k) do12

foreach (a, b) ∈ Ri,j do13

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then14

Ri,j ← Ri,j \ {(a, b)}15

Q2 ← Q2 ∪ {((Vi, a), Vj), ((Vj, b), Vi)}16

while Q2 do17

((Vi, a), Vk)← Pop(Q2)18

foreach Vj ∈ V such that (i 6= j) ∧ (k 6= j) do19

foreach (a, b) ∈ Ri,j do20

if @ c ∈ Dk such that (a, c) ∈ Ri,k ∧ (b, c) ∈ Rj,k then21

Ri,j ← Ri,j \ {(a, b)}22

Q2 ← Q2 ∪ {((Vi, a), Vj), ((Vj, b), Vi)}23

return P24

4.4.3 PC-8+

The PC-8+ algorithm (Algorithm 27) combines the approaches of PC-8-Flag and

PC-8-Ordering. Although the two improvements are not independent, the number

of constraint checks in PC-8+ is guaranteed to never exceed either of their number.
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Algorithm 27: PC-8+(P)

Input: P = (V ,D, C) with a complete constraint graph
Output: Path consistent P
foreach Vi, Vj ∈ V such that (i < j) do1

foreach (a, b) ∈ Ri,j do flag((a, b), Ri,j)← false2

Q1 ← ∅3

for i← 1 to n by 1 do4

for j ← i+ 1 to n by 1 do5

foreach Vk ∈ V such that (k 6= i) ∧ (k 6= j) do6

Q1 ← Q1 ∪ Revise-PC-8-Flag(Vi, Vj, Vk,flag)7

Q2 ← ∅8

while Q1 do9

((Vi, a), Vk)← Pop(Q1)10

foreach Vj ∈ V such that (i 6= j) ∧ (j < k) do11

Q2 ← Q2 ∪ Revise-PC-8-Flag(Vi, Vj, Vk,flag)12

while Q2 do13

((Vi, a), Vk)← Pop(Q2)14

foreach Vj ∈ V such that (i 6= j) ∧ (k 6= j) do15

Q2 ← Q2 ∪ Revise-PC-8-Flag(Vi, Vj, Vk,flag)16

return P17

4.5 Time and Space Complexities

The asymptotic complexity of PPC+AP, ∆PPC, and PC-8+ are that of the original

algorithms upon which they improve. Thus,

• PPC+AP and ∆PPC are O(δ(e+ e′)d5) and O(e′d2) in space. The data struc-

tures used are O(n3), necessary to store the triangles of the constraint network.

• PC-8+ is O(n3d4) in time and O(n2d2) in space. The space for the new data

structures is O(n2d2).

Because it follows a perfect elimination ordering peo of the triangulated graph, the

complexity of σ-∆PPC can be bounded by the width of the ordering wpeo after trian-
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gulation. Each revision along the ordering is O(w2
peo · n · d3) and there could at most

O((e+ e′)d2) revisions. Thus, σ-∆PPC is O(w2
peo · n · (e+ e′)d5) in time and O(e′d2)

in space. Its data structures are dominated by the space of storing the triangles of

the triangulated graph, which is O(n3).

The above information is summarized in Table 4.3.

Table 4.3: Properties of the introduced algorithms

Constraint Enforces Complexity
graph consistency Time Space

property Constraints Data struc.

PPC+AP Triangulated PPC O(δ(e+ e′)d5) O(e′d2) O(n3)∗

∆PPC Triangulated PPC O(δ(e+ e′)d5) O(e′d2) O(n3)∗

PC-8+ Completed PC O(n3d4) O(n2d2) O(n2d)
σ-∆PPC Triangulated PPC O(w2

peo · n · d3) O(e′d2) O(n3)∗

d: Maximum domain size, Max(|Di|)
n: Number of variables, |V|
e: Number of constraints before graph is altered, |C|
e′: Number of edges added by a triangulation of the graph
∗: O(n3 + e+ e′)
wpeo : Width of the triangulated graph in the peo ordering
δ: The maximum degree of the graph

Summary

In this chapter, we introduced PPC+AP, an algorithm that corrects the original BSH-

PPC, whose published pseudocode ignores the articulation points of the constraint

graph although the original code and the original experiments are correct. Then, we

modified PPC+AP to operate on the triangles of the graph instead of operating on its

edges, yielding the ∆PPC algorithm. We then refined ∆PPC into σ-∆PPC, which

processes the triangles along a perfect elimination ordering, flags triangles to skip

processing unaffected triangles, and uses support structures to reduce unnecessary
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revisions of the tuples in a relation. Finally, we introduced two improvements to

PC-8, namely, PC-8-Flag and PC-8-Ordering, which we combined into PC-8+.

Table 4.5 reports the algorithms we have discussed in Chapters 2 and 4. These

algorithms are empirically evaluated in the next chapter, Chapter 5.

Algorithm Property Original publication
DPC sDPC [Dechter and Pearl, 1988]

sCDC1 sCDC [Lecoutre et al., 2007a]

PC-2

PC

[Mackworth and Freuder, 1984]

PC-8 [Chmeiss and Jégou, 1998]

PC-8-Ordering proposed
PC-8-Flag proposed
PC-8+ proposed
PC-2001 [Bessière et al., 2005]

PC-2001-Ordering proposed
PC-2001-Flag proposed
PC-2001+ proposed
PPC+AP*

PPC

[Bliek and Sam-Haroud, 1999]

∆PPC proposed
σ-∆PPC proposed
σ-∆PPCsup2001 proposed
σ-∆PPCsup proposed
sDC2 sDC [Lecoutre et al., 2007b]

* Corrected version of original.
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Chapter 5

Empirical Evaluations

In this chapter, we discuss our empirical evaluations of the discussed and introduced

algorithms, first on well-known benchmark problems found at the XCSP website1,

then on four randomly generated data-sets covering the phase-transition phenomenon

[Cheeseman et al., 1991]. Finally, we discuss our results.

5.1 Benchmark Problems

In this section, we first introduce the benchmark problems tested, then compare the

performance of the known and new algorithms for path consistency and its approxi-

mations on benchmark binary problems.

5.1.1 Problem Characteristics

The binary CSP benchmarks consist of 2,288 instances in 79 benchmarks. We elim-

inate the following five graph-coloring instances, because their table constraints are

too large to generate: 3-insertions-3-3.xml (k-insertion), 4-fullins-5-7 ext.xml (full-

1http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
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insertion), inithx-i-1-10 ext.xml (register-inithx), and mulsol-i-3-20.xml and mulsol-

i-4-31.xml (register-mulsol), Tables 5.1, 5.2, and 5.3 summarize the characteristics of

the problems tested and the number of edges added to complete the graph and to

triangulate it.

Table 5.1: Characteristics of the benchmark problems (table 1 of 3)

# instances # edges added for
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BH-4-13 7 7 0 208.0 4,217.0 19.6% 0.0 17,104.0 296.0
BH-4-4 10 10 0 64.0 431.0 21.4% 0.0 1,522.0 62.0
BH-4-7 20 20 0 112.0 1,261.0 20.3% 0.0 4,844.0 133.0
QCP-10 15 14 1 100.0 822.0 16.6% 0.0 4,128.0 1,729.7
QCP-15 15 15 0 225.0 2,519.3 10.0% 0.0 22,680.7 6,192.9
QCP-20 15 15 0 400.0 5,540.0 6.9% 0.0 74,260.0 15,687.2
QCP-25 15 15 0 625.0 10,142.0 5.2% 0.0 184,858.0 32,023.3
QWH-10 10 10 0 100.0 756.0 15.3% 0.0 4,194.0 1,282.1
QWH-15 10 10 0 225.0 2,324.0 9.2% 0.0 22,876.0 4,863.7
QWH-20 10 10 0 400.0 5,092.0 6.4% 0.0 74,708.0 12,398.9
QWH-25 10 10 0 625.0 9,300.0 4.8% 0.0 185,700.0 25,411.6
bqwh-15-106 100 100 0 106.0 593.4 10.7% 0.0 4,971.6 1,912.0
bqwh-18-141 100 100 0 141.0 878.3 8.9% 0.1 8,991.8 3,554.7
coloring 22 20 2 119.7 1,203.0 18.8% 1.0 18,309.7 10,154.1

co
m

p
os

ed

25-1-2 10 0 10 33.0 224.0 42.4% 0.2 304.0 63.2
25-1-25 10 0 10 33.0 247.0 46.8% 0.0 281.0 111.1
25-1-40 10 0 10 33.0 262.0 49.6% 0.0 266.0 126.2
25-1-80 10 0 10 33.0 302.0 57.2% 0.0 226.0 134.4
25-10-20 10 10 0 105.0 620.0 11.4% 0.0 4,840.0 441.0
75-1-2 10 0 10 83.0 624.0 18.3% 0.2 2,779.0 1,102.8
75-1-25 10 0 10 83.0 647.0 19.0% 0.0 2,756.0 1,213.5
75-1-40 10 0 10 83.0 662.0 19.5% 0.0 2,741.0 1,293.8
75-1-80 10 0 10 83.0 702.0 20.6% 0.0 2,701.0 1,384.8
driver 7 7 0 351.6 7,201.4 9.9% 5.3 67,498.1 7,648.7
frb30-15 10 10 0 30.0 212.0 48.7% 0.0 223.0 122.4
frb35-17 10 10 0 35.0 264.6 44.5% 0.0 330.4 174.0
frb40-19 10 10 0 40.0 320.4 41.1% 0.0 459.6 253.0
frb45-21 10 10 0 45.0 379.2 38.3% 0.0 610.8 349.2
frb50-23 10 10 0 50.0 438.8 35.8% 0.0 786.2 453.2
frb53-24 10 10 0 53.0 473.6 34.4% 0.0 904.4 523.2
frb56-25 10 10 0 56.0 515.2 33.5% 0.0 1,024.8 588.0
frb59-26 10 10 0 59.0 550.0 32.1% 0.0 1,161.0 680.8
geom 100 100 0 50.0 421.4 34.4% 0.0 803.6 108.9

Summary continues in next table.
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Table 5.2: Characteristics of the benchmark problems (table 2 of 3)

# instances # edges added for
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hos 14 14 0 1,248.3 24,011.3 2.7% 0.4 836,180.8 39,741.2
full-insertion 40 40 0 856.8 12,809.2 6.5% 0.0 350,562.2 122,695.6
k-insertion 32 32 0 445.0 2,963.7 4.3% 0.0 183,376.6 22,600.0
leighton-15 26 26 0 450.0 12,113.0 12.0% 0.5 88,912.0 54,070.1
leighton-25 31 31 0 450.0 12,676.9 12.5% 0.0 88,348.1 47,266.9
leighton-5 8 8 0 450.0 7,752.0 7.7% 0.0 93,273.0 55,552.8
mug 8 8 0 94.0 156.0 3.6% 0.0 4,233.0 60.0
myciel 16 16 0 96.5 981.9 20.4% 0.0 6,045.9 1,181.9
register-fpsol 37 37 0 464.6 10,051.6 9.3% 0.0 42,025.2 228.3
register-inithx 31 31 0 720.6 15,958.8 6.2% 0.0 135,209.5 284.9
register-mulsol 47 47 0 188.9 3,928.6 22.2% 0.0 9,637.4 231.9
register-zeroin 31 31 0 209.5 3,775.1 17.3% 0.0 6,637.9 286.5
school 8 8 0 368.5 16,853.5 24.7% 1.0 48,086.5 21,705.5
sgb-book 26 26 0 202.3 655.3 7.0% 21.7 36,732.2 206.1
sgb-games 4 4 0 120.0 638.0 8.9% 0.0 6,502.0 1,472.0
sgb-miles 42 42 0 128.0 3,051.6 37.5% 0.5 4,803.4 421.4
sgb-queen 50 50 0 140.6 2,745.0 28.1% 0.0 9,344.3 7,533.1
hanoi 5 5 0 47.6 46.6 11.1% 45.6 2,014.8 0.0
langford 4 4 0 25.3 358.8 100.0% 0.0 0.0 0.0
lard 10 10 0 87.5 3,788.5 100.0% 0.0 0.0 0.0
marc 10 5 5 88.0 3,844.0 100.0% 0.0 0.0 0.0
os-taillard-4 30 21 9 16.0 48.0 40.0% 0.0 72.0 38.0
os-taillard-5 30 30 0 25.0 100.0 33.3% 0.0 200.0 110.0

ra
n

d

23-Feb 10 10 0 23.0 253.0 100.0% 0.0 0.0 0.0
24-Feb 10 10 0 24.0 276.0 100.0% 0.0 0.0 0.0
25-Feb 10 10 0 25.0 300.0 100.0% 0.0 0.0 0.0
26-Feb 10 10 0 26.0 325.0 100.0% 0.0 0.0 0.0
27-Feb 10 10 0 27.0 351.0 100.0% 0.0 0.0 0.0
2-30-15 50 50 0 30.0 222.2 51.1% 0.0 212.8 116.2
2-30-15-fcd 50 50 0 30.0 222.2 51.1% 0.0 212.8 116.2
2-40-19 50 50 0 40.0 338.3 43.4% 0.0 441.7 253.2
2-40-19-fcd 50 50 0 40.0 338.3 43.4% 0.0 441.7 253.2
2-50-23 50 50 0 50.0 467.2 38.1% 0.0 757.8 451.8
2-50-23-fcd 50 50 0 50.0 467.2 38.1% 0.0 757.8 451.8

rl
fa

p

Graphs 14 8 6 547.7 3,059.0 2.7% 0.9 12,787.4 19,348.1
GraphsMod 12 6 6 751.3 2,933.1 1.2% 18.9 179,180.1 20,013.5
Scens11 12 12 0 680.0 4,103.0 1.8% 4.0 226,757.0 1,757.0
Scens 11 6 5 559.3 3,486.2 3.0% 4.5 44,442.4 1,458.9
ScensMod 13 9 4 328.0 1,173.4 2.4% 11.2 58,752.8 810.4

Summary continues in next table.
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Table 5.3: Characteristics of the benchmark problems (table 3 of 3)

# instances # edges added for
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tightness0.1 100 100 0 40.0 752.2 96.4% 0.0 27.8 21.1
tightness0.2 100 100 0 40.0 414.0 53.1% 0.0 366.0 233.7
tightness0.35 100 100 0 40.0 250.0 32.1% 0.0 530.0 247.6
tightness0.5 100 100 0 40.0 180.0 23.1% 0.0 600.0 214.0
tightness0.65 100 100 0 40.0 135.0 17.3% 0.2 645.0 169.1
tightness0.8 100 100 0 40.0 103.0 13.2% 1.0 676.2 120.4
tightness0.9 100 86 14 40.0 84.0 10.8% 2.4 691.4 87.8

5.1.2 Experimental Set-Up

We run our experiments on the Crane supercomputer with a timeout limit of five

hours per instance and 60 GiB of memory. We record the instruction count using the

‘perf’ tool and convert the number of instructions to a time value by assuming a 3.0

GHz CPU.

Comparing the original BSH-PPC algorithm and our correction of it, PPC+AP,

the ‘bug’ is revealed on the five instances of the hanoi benchmark, whose constraint

graph is a chain. PPC+AP correctly enforces the PPC property and removes on

average 191,558.6 tuples while BSH-PPC removes none.

Below, we report the following experiments:

1. In Section 5.1.3, we compare the effect of enforcing arc consistency (AC) before

running any other algorithm and show that, in general, running AC first reduces

the CPU time and increases the number of problems completed within the

allocated time threshold.
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2. In Section 5.1.4, we assess the benefits of using a propagation queue of triangles

instead of a queue of edges.

3. In Section 5.1.5, we demonstrate the benefits of following a PEO while enforcing

consistency on the triangles.

4. In Section 5.1.6, we compare the effectiveness of the type of support structures

used in PC-2001 to that of our new support structures in the context of our

σ-∆PPC algorithm.

5. In Section 5.1.7, we assess the effectiveness of our support structures in our

σ-∆PPC algorithm.

6. In Section 5.1.8, we assess the effectiveness of the two improvements we propose

for PC-8. And, in Section 5.1.9, we do the same evaluation for PC-2001.

7. In Section 5.1.10, we compare, among each other, the best algorithms we have

in each category.

In each experiment, we report, as appropriate:

1. The number of instances completed by the algorithms being compared.

2. The CPU time computed as an average over the instances completed by the

algorithms.

3. The number of deleted tuples in the consistent instances completed by the

compared algorithms. When no instance is completed by all algorithms being

compared, then the CPU time is not shown but the mark ‘-’ appears in the

table.

4. The summation of the above values over the tested benchmarks.



83

5.1.3 Pre-processing with Arc Consistency

In this section, we evaluate the effect of running arc consistency before any of our

algorithms, except sCDC1, because this algorithm enforces AC as a first step. In

order to enforce arc consistency as a pre-processing step to a given algorithm:

1. We first run AC-2001 (Section 2.7) on the problem instance at hand.

2. We generate universal constraints for the added edges necessary to complete

the constraint graph or to triangulate it, as appropriate.

3. Then, we synchronize the constraint relations with the domains by applying

Filter-Rels (Algorithm 18).

Finally, we execute the considered path-consistency algorithm. For all PPC-based

algorithms, we skip the initial processing of articulation points (i.e., in PPC+AP

(Algorithm 16), line 4 is omitted) because the operation is already secured by the

pre-processing with AC.

In Section B.1 of Appendix B, we report the detailed results of pre-processing

by AC for the following algorithms: DPC , PC-2, PC-8, PC-8-Ordering, PC-2001,

PC-2001-Ordering, PPC+AP, ∆PPC, σ-∆PPC, σ-∆PPCsup2001, σ-∆PPCsup, and

sDC2. In Table 5.4, we summarize the results reported in the appendix and include

a reference to the corresponding table of the appendix. Generally speaking, pre-

processing with AC:

1. consistently saves CPU time,

2. consistently increases the number of instances completed, and

3. does not affect the number of tuples removed (except for DPC, where this

number is increased).



84

Table 5.4: Summary of effect of pre-processing with AC

# instances CPU time (s)

w
/
o
A
C

w
it
h

A
C

G
a
in

w
/
o
A
C

w
it
h

A
C

S
a
v
in
g

R
e
fe
re

n
c
e

DPC 2,288 2,288 0 1,989.3 1,829.1 160.2 Table B.2

PC-2 2,228 2,250 22 24,174.5 18,662.9 5,511.6 Table B.3

PC-8 2,243 2,264 21 23,570.8 19,009.7 4,561.1 Table B.4

PC-8-Ordering 2,242 2,266 24 21,229.3 18,385.9 2,913.4 Table B.5

PC-2001 2,091 2,128 37 6,930.8 5,786.2 1,144.6 Table B.6

PC-2001-Ordering 2,091 2,128 37 6,493.0 5,695.3 797.7 Table B.7

PPC+AP 2,288 2,288 0 7,396.8 6,747.1 649.6 Table B.8

∆PPC 2,285 2,285 0 4,229.7 3,576.1 653.7 Table B.9

σ-∆PPC 2,288 2,288 0 4,929.6 3,651.4 1,278.2 Table B.10

σ-∆PPCsup2001 2,184 2,193 9 2,782.8 2,202.0 580.9 Table B.11

σ-∆PPCsup 2,184 2,193 9 2,787.2 2,228.9 558.3 Table B.12

sDC2 2,247 2,255 8 11,567.6 11,791.2 223.6 Table B.13

Indeed, in the case of DPC, pre-processing with AC increases the number of tuples

deleted and decreases total processing time. Both algorithms, DPC and AC+DPC,

complete all 2,288 instances. Table 5.5 shows selected results. The complete results

are shown in Table B.2 in Appendix B.

Table 5.5: Enforcing AC before DPC

# tuples deleted CPU time (s)

D
P
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A
C
+
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P
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A
C
+
D
P
C

S
a
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QCP-25 15 1,449,297.2 1,620,407.6 171,110.4 34.9 7.6 27.3
QWH-25 10 1,145,354.8 1,306,672.0 161,317.2 26.2 5.2 21.0
composed-75-1-2 10 319.0 Inconsistent - 0.2 0.2 0.0
composed-75-1-25 10 1,605.0 Inconsistent - 0.2 0.2 0.0
hanoi 5 0.0 191,558.6 191,558.6 0.2 2.0 -1.9

Most notably, AC+DPC detects the inconsistency of all the instances of the

composed-75-1-2 and composed-75-1-25 benchmarks, while DPC does not. Further,

on the hanoi benchmark, AC+DPC uses slightly more CPU time, although it filters
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many tuples while DPC filters none.

Given that pre-processing with AC provides such a robust improvement, in the

rest of this chapter, we always include this pre-processing step.

5.1.4 Propagation Queue: Edges versus Triangles

In this section, we assess the impact of replacing the queue of edges of PPC+AP

(Algorithm 16), our corrected version of the original PPC algorithm, with a queue of

triangles in ∆PPC (Section 4.2).

In Table 5.6 we report selected results from Tables B.14 and B.15. In general, using

triangles improves performance. However, ∆PPC does not complete three instances of

the graphColoring full-insertion benchmark while PPC+AP completes all instances.

Each of these instances has 4,146 variables, ∆PPC exceeds the memory limit because

the queue of triangles is O(n3), where n is the number of variables, whereas the queue

of edges is O(n2).

Table 5.6: A propagation queue made of edges (AC+PPC+AP) vs triangles (AC+∆PPC)

# instances CPU time (s)

A
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∆
P
P
C

G
a
in

A
C
+
P
P
C
+
A
P

A
C
+

∆
P
P
C

S
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gr
ap

h
C

ol
or

in
g full-insertion 40 40 37 -3 170.2 74.4 95.8

leighton-15 26 26 26 0 476.2 176.9 299.4
leighton-25 31 31 31 0 1,084.6 385.1 699.4
register-fpsol 37 37 37 0 175.3 80.4 94.9
register-inithx 31 31 31 0 175.3 84.4 90.9
school 8 8 8 0 280.9 105.2 175.7
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5.1.5 Propagating Along a PEO

In this section, we evaluate the impact of propagating consistency along a PEO by

comparing the performance of ∆PPC to that of σ-∆PPC. The complete results,

appearing in Tables B.16 and B.17, show a consistent but not sizable improvement

in CPU time. Table 5.7 shows selected results.

While ∆PPC fails to run on three instances of graphColoring full-insertion because

of memory limitations, σ-∆PPC does not suffer from this limitation. Indeed, the

latter does not use any propagation queue.

Table 5.7: Propagating along a PEO: AC+∆PPC vs AC+σ-∆PPC

# Instances CPU time (s)
A
C
+

∆
P
P
C

A
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σ
-∆

P
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S
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coloring 22 22 22 0 5.0 2.6 2.4

graphColoring-full-insertion 40 37 40 3 74.4 55.8 18.6

graphColoring-k-insertion 32 32 32 0 13.4 8.5 4.9

graphColoring-leighton-5 8 8 8 0 37.4 23.5 13.9

rlfap-Graphs 14 14 14 0 583.2 589.3 -6.1

rlfap-GraphsMod 12 12 12 0 106.0 103.3 2.7

5.1.6 Comparing Types of Supports

We enhance our best PPC enforcing algorithm, σ-∆PPC, with two types of support

structures: supports à la PC-2001 in σ-∆PPCsup2001 and our new support structures

in σ-∆PPCsup, see discussion in Section 4.3.3. The detailed results of the evaluation

on benchmark problems appear in Tables B.18 and B.19 of Appendix B.2

2Table B.18 reports the results of benchmarks where no filtering occurs and Table B.19 those
where filtering occurs.
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Generally speaking, σ-∆PPCsup consistently uses slightly more CPU time (about

8%) than σ-∆PPCsup2001 on instances where no filtering occurs. On problems where

tuples are removed, σ-∆PPCsup uses about 1% less CPU time than σ-∆PPCsup2001.

In Table 5.8, we show representative results from Tables B.18 and B.19 with the

number of tuples deleted shown for reference. On the two os-taillard benchmarks,

Table 5.8: Comparing the two types of support structures

CPU time (s)

#
d
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S
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graphColoring-school 8 0.0 115.9 128.4 -12.5
os-taillard-4 30 550,541.0 127.7 129.8 -2.2
os-taillard-5 30 559,583.8 1,056.1 1,059.1 -3.1
rlfap-Graphs 14 743,935.3 90.2 73.3 16.9
rlfap-Scens11 12 1,584,627.0 29.2 25.6 3.6
rlfap-Scens 11 1,210,624.8 26.0 23.4 2.5
tightness0.9 100 27,134.2 28.6 25.5 3.0

σ-∆PPCsup2001 slightly outperforms σ-∆PPCsup. The better performance of the PC-

2001-style supports on these benchmarks can be traced to the fact that domains of

these benchmarks are totally ordered. In contrast, on the rlfap-Graphs benchmark,

σ-∆PPCsup outperforms σ-∆PPCsup2001 because the former is able to save many

constraint checks.

In conclusion, we expect the new support structures to be more useful, in practice,

on difficult problems, which are those where path consistency is most needed.
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5.1.7 Benefits of Using Supports

In this section, we evaluate the impact of using support structures by comparing

σ-∆PPC to σ-∆PPCsup.

The complete results are reported in Tables B.20, B.21, and B.22 of Appendix B.3

Generally speaking, we lose about 54.8% when no filtering occurs and gain about

13.9% when filtering occurs. The usefulness of support structures becomes more

consequential in the context of search, which is beyond the scope of this thesis.

In Table 5.9, we select some representative results from Tables B.20, B.21, and B.22

with the tuples removed shown for reference. For the tightness benchmarks, as the

tightness increases, support structures become increasingly more useful.

Table 5.9: Impact of using support structures

CPU time (s)
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graphColoring-school 8 0.0 81.2 128.4 -47.2
os-taillard-4 30 550,541.0 154.1 129.8 24.3
os-taillard-5 30 559,583.8 1,265.8 1,059.1 203.7
rlfap-Graphs 14 743,935.3 141.1 73.3 67.8
tightness0.65 100 474.3 1.6 1.2 0.4
tightness0.8 100 4,030.1 6.8 3.5 3.3
tightness0.9 100 27,134.2 69.9 25.5 44.4

5.1.8 Improving PC-8

In this section, we evaluate the three improvements we proposed to the PC-8 algo-

rithm in Section 4.4, namely, PC-8-Ordering, PC-8-Flag, and their combination,

3Table B.20 reports the benchmarks where no filtering occurs and Tables B.21 and B.22 report
the benchmarks where filtering occurs.
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PC-8+. Tables B.23 and B.24 show the complete results for the benchmark problems.

Table 5.10 reports some representative results.

Table 5.10: Improvements to PC-8

# instances CPU time (s)
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+
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driver 7 All instances complete 94.6 81.2 87.3 80.7
graphColoring-hos 14 14 13 13 14 2,786.7 3,121.7 3,107.0 2,801.8
rlfap-ScensMod 13 11 11 11 13 963.3 1,009.6 1,045.6 920.5
os-taillard-5 30 All instances complete 1,563.0 1,498.5 1,575.8 1,475.5

PC-8-Flag saves constraint checks with the use of the flag bit vector. Con-

sequently, we would expect it to also save time. However, on the results reported

in Tables B.23 and B.24 , the CPU time saving is not systematic and PC-8-Flag

is sometimes more costly in CPU time than PC-8 (e.g., all benchmarks Table 5.10

except driver). Further, PC-8-Flag (and also PC-8+) cannot complete one in-

stance of the graphColoring-hos benchmark due to exceeding the memory limit. The

PC-8-Ordering algorithm is able to complete two instances of the rlfap-ScensMod

benchmark more than any other algorithm.

Generally speaking, PC-8-Ordering shows the best performance both in terms

of CPU time and the number of completed instances, and even consistently outper-

forms PC-8+.

5.1.9 Improving PC-2001

In this section, we briefly comment on the improvements to the PC-2001 algorithm,

PC-2001-Ordering, PC-2001-Flag, and PC-2001+. The complete results are re-
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ported in Tables B.25 and B.25 of Appendix B.

Table 5.11 reports some representative results. Once again, the flag modifica-

tion saves constraint checks and therefore time in theory, but, in practice, on most

benchmarks, it increases the CPU time, though there are exceptions like the driver

benchmark. Once again, PC-2001-Ordering consistently outperforms all other

algorithms in terms of CPU time and number of instances completed.

Table 5.11: Improvements to PC-2001

CPU time (s)
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driver 7 7 91.0 79.7 86.8 78.9
graphColoring-hos 14 4 249.2 277.3 277.4 249.3
os-taillard-5 30 30 1,236.7 1,248.0 1,253.5 1,229.6

5.1.10 Comparing Main Algorithms

In this section, we compare the best of our introduced algorithms, PC-8-Ordering,

PC-2001-Ordering, and σ-∆PPCsup against the best published algorithms, DPC,

sDC2, and sCDC1. The complete results are reported in Tables B.26 and B.27.

In general, the DPC algorithm is the quickest of all considered algorithms because:

1. It operates on a triangulated graph.

2. It sweeps only once through the triangles of the triangulated graph.

3. It updates only one edge of each triangle, while enforcing directional arc con-

sistency.
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Consequently, it filters significantly fewer tuples than any other algorithm. Whether

or not this amount of filtering is sufficient needs to be determined by evaluating the

resulting effectiveness of search, which is beyond the scope of this thesis.

In terms of the number of completed instances, both DPC and sCDC1 complete all

2,288 instances. Then, comes PC-8-Ordering completing 2,266 instances, followed

by sDC2 completing 2,255 instances. The main obstacle to completing an instance is

the need for memory space. The two algorithms with the largest support structures, σ-

∆PPCsup and PC-2001-Ordering complete the fewest instances (2,193 and 2,128,

respectively). Note that σ-∆PPCsup operates on a triangulated graph and has no

propagation queue while PC-2001-Ordering operates on the complete graph and

has a propagation queue of edges.

In terms of CPU time, and excluding DPC, sCDC1 ranks first, followed by σ-

∆PPCsup, then sDC2. Further, PC-2001-Ordering outperforms PC-8-Ordering.

Table 5.12 shows selected representative results. Note that σ-∆PPCsup outper-

forms sCDC1 on three of the four reported benchmark problems.

Table 5.12: Comparing the best performing algorithms

# instances CPU time (s)
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BH-4-13 7 All instances complete 37.1 556.4 524.8 100.2 653.7 182.3
rlfap-Scens 11 11 7 9 11 9 11 13.9 160.5 141.4 14.6 78.5 16.0
rlfap-ScensMod 13 13 7 13 13 12 13 1.7 132.5 142.1 2.2 100.8 4.8
os-taillard-5 30 All instances complete 924.7 1,229.6 1,475.5 1,059.1 1,187.3 1,012.1
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5.2 Randomly Generated Problems

In this section, we compare the performance of the studied algorithms on randomly

generated problems.

5.2.1 Problem Characteristics

Using a Model B generator, we consider four sets of binary CSP instances with 20

instances per data point. For each problem set, we vary the constraint tightness to

study the area around the phase transition. The four data sets have the following

〈n, a, t, d〉 characteristics, where n is the number variables in the CSP, a is the domain

size (the same for all variables), t is the constraint tightness (t = number of forbidden tuples
total number of tuples

,

the same for all constraints), d is the constraint ratio or density (d = 2e
n(n−1)), and e

is the number of constraints in the CSP:

〈50, 25, t, 20%〉, 〈50, 50, t, 20%〉, 〈50, 25, t, 40%〉, and 〈50, 50, t, 40%〉.

The goal of the above data sets is to compare the performance of the studied algo-

rithm under relatively low (i.e., 20%) and high (i.e., 40%) constraint density and for

problems with large (i.e., 25) and very large (i.e., 50) domains.

We run our experiments on the Crane supercomputer with a timeout limit of three

hours per instance and 16 GiB of memory. These limits are large enough to allow

every algorithm to complete every instance. We record the instruction count using

the ‘perf’ tool and convert the number of instructions to a time value by assuming

a 3.0 GHz CPU.

All our results assume pre-processing by AC before every algorithm except sCDC1.
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5.2.2 Results

Below, we report the averages of the CPU time in a table and charts for the 〈50, 25, t, 20%〉

random data-set. While the tables and charts for other three data-sets are reported

in Appendix C, we comment on all four data-sets throughout this section. Although

the results are, generally speaking, similar, we do note some differences.

5.2.2.1 〈50, 25, t, 20%〉

Table 5.13 reports the averages for all algorithms, listed from left to right in increasing

cost. DPC is obviously the cheapest algorithm, but it also the one that does the least

filtering. The performance of σ-∆PPCsup validates our approach as this algorithm

outperforms all others.

Table 5.13: Comparing CPU times on random problems 〈50, 25, t, 20%〉
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A
C
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C
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A
C
+
sD

C
2

A
C
+
P
C
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52.0% 2.0 6.7 6.2 8.5 8.0 8.1 14.3 15.3 12.5 15.0 15.7 14.5 13.7 15.0 14.6 26.4 17.0
54.0% 2.1 7.0 7.5 9.6 9.3 9.4 15.2 16.0 13.5 16.3 16.8 15.4 14.8 16.5 16.4 31.2 19.9
56.0% 2.1 7.3 9.9 11.1 11.3 11.6 16.7 17.4 15.5 18.6 18.8 17.3 17.0 19.3 19.8 42.6 25.3
58.0% 2.1 8.2 15.2 14.6 16.4 16.8 19.8 20.2 21.6 22.6 22.4 21.5 21.7 24.6 25.9 64.5 37.3
59.0% 2.1 9.6 23.2 20.9 25.8 26.6 24.3 24.7 32.6 27.5 27.2 28.2 28.7 32.0 33.6 112.2 62.0
59.5% 2.1 14.3 27.0 34.0 45.7 47.1 50.2 50.4 53.0 53.4 54.1 69.8 70.6 74.1 75.7 132.7 142.4
60.0% 2.1 15.3 19.5 34.4 46.8 47.7 55.5 56.2 52.7 59.1 60.3 79.3 79.5 84.0 85.0 98.5 132.5
61.0% 2.1 9.8 5.0 12.6 15.2 14.5 38.2 38.2 13.8 41.0 42.1 49.8 49.2 54.3 54.4 22.7 49.5
62.0% 2.2 8.5 3.1 9.4 10.2 9.3 29.6 30.3 5.3 31.9 33.4 36.6 35.6 39.8 39.8 14.3 34.8
64.0% 2.3 6.6 1.4 6.7 5.8 5.7 16.7 17.9 3.4 16.1 17.3 17.5 16.4 16.7 15.7 6.2 14.7
66.0% 2.4 3.9 0.7 4.0 4.0 4.6 9.3 10.0 2.5 9.4 10.0 8.9 8.2 8.9 8.2 3.0 7.6

Figure 5.1 shows the best published algorithms. DPC is obviously the best on all

random data-sets. sCDC1 is generally the next best algorithm, except in the case of
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the 〈50, 50, t, 40%〉 data-set where it is outperformed by PC-8 and PC-2001, both of

which enforce PC, a stronger consistency than CDC. On all data sets, PC-2001 is the

fastest PC algorithm, followed by PC-8, sDC2, and finally PC-2.
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Figure 5.1: 〈50, 25, t, 20%〉: Comparing the best previously known algorithms

Figure 5.2 shows the performance of the most competitive algorithms, including

our proposed algorithms. The performance of σ-∆PPCsup is clearly outstanding.
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Figure 5.2: 〈50, 25, t, 20%〉: Comparing the most competitive algorithms
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Figure 5.3 compares PC-8, PC-8-Ordering, PC-8-Flag, and PC-8+. Inter-

estingly, for all data sets, PC-8+ outperforms all other algorithms. Both PC-8-

Ordering and PC-8-Flag outperform PC-8 on all data sets.
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Figure 5.3: 〈50, 25, t, 20%〉: Improving PC-8

Figure 5.4 compares our improvements to PC-2001. Interestingly, on all data sets,

PC-2001-Ordering and PC-2001+ have comparable performance. In all data sets,

they outperform PC-2001. PC-2001-Flag slightly outperforms PC-2001 for a = 50

and the opposite holds for a = 25.

0 

10 

20 

30 

40 

50 

60 

70 

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 

Ti
m

e 
(s

) 

Tightness 

AC+PC2001-Flag 
AC+PC-2001 
AC+PC2001+ 
AC+PC2001-Ordering 

Figure 5.4: 〈50, 25, t, 20%〉: Improving PC-2001
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Figure 5.5 compares the impact of the propagation queue and PEO. For 20%

density, ∆PPC outperforms all other algorithms, but for 40% density, σ-∆PPC out-

performs all other algorithms.
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Figure 5.5: 〈50, 25, t, 20%〉: Impact of the propagation queue and PEO

In Figure 5.6, we assess the impact of support structures. For all data sets, σ-

∆PPCsup outperforms σ-∆PPCsup2001, which, in turn, outperforms σ-∆PPC.
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Figure 5.6: 〈50, 25, t, 20%〉: Impact of support structures
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5.3 Discussion

Drawing from the results of our tests on benchmark and random CSPs, we conclude:

1. Pre-processing with arc consistency is an important step. It decisively reduces

CPU time and, in the case of DPC, increases the filtering.

2. DPC is a very ‘cheap’ algorithm in terms of CPU time. While it yields less

filtering than PC algorithms, one may want to consider enforcing DPC before

search, at least on existing triangles if one does not want to add edges to the

constraint graph. Enforcing DPC during search is not done in practice because

it was thought to require fixing the instantiation ordering of the variables while

search typically performs best with a dynamic variable ordering. However,

recently the ConSystLab has argued that the fixed ordering of DPC should not

be an impediment to running it as a look-ahead during search.

3. We note that among our PC-8 improvements, PC-8+ outperforms all other

versions of PC-8 on randomly generated problems. However, on benchmark

problems, PC-8-Ordering outperforms all others. The same comment holds

for PC-2001+ and PC-2001-Ordering.

4. Performance on benchmark problems qualitatively differs from performance on

randomly generated problems. Notably, there are many instances in the bench-

marks where no filtering can be done. On problems with no or little filtering,

the CPU time needed for creating and maintaining support structures is wasted,

which is detrimental to the corresponding algorithms.

5. Supports can yield significant CPU-time savings, but can also be costly in terms

of memory space. Generally speaking, it is possible to predict the size of the
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supports before processing a given instance. It may be advantageous either to

entirely opt out of using supports, or to delay generating and storing supports

until the problem is small enough that doing so becomes advantageous.

6. Before ruling out any of the proposed algorithms, it is important to evaluate

them in the context of search, either as a pre-processing step or as a look-

ahead strategy. In this thesis, we focused our efforts to studying the existing

algorithms and proposing new ones. Evaluating our algorithms in the context

of search has to be left out to future research.

Summary

In this chapter, we discussed our empirical evaluations of the discussed and intro-

duced algorithms, first on well-known benchmark problems, then on four randomly

generated data-sets. Finally, we discussed our results.
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Chapter 6

Conclusions and Future Work

In this thesis, we studied path consistency and its approximations, namely,

• Strong approximation: strong dual consistency.

• Weak approximation: directional path consistency and partial path consistency.

• Incomparable: strong conservative dual consistency.

We studied the main algorithms reported in the literature and proposed new ones

that improve on the state of the art. A full list of our contributions is reported in

Section 1.2. Below we identify new directions for future research:

1. Study modern bit-based implementations of consistency algorithms to improve

implementation and practical performance.

2. Investigate hash-based techniques to reduce the cost of looking up tuples in

table constraints.

3. Investigate strategies for generating and using supports selectively.

4. Investigate applying DPC before search on the existing triangles of the con-

straint graph.
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5. Empirically determine the percentage of tested instances are path consistent

but unsolvable.1

6. Implement the studied and proposed algorithms as a real-full look-ahead strat-

egy during search [Haralick and Elliott, 1980].

1This evaluation was sugggested by Peter Revesz, a member of the Examining Committee.
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Appendix A

Data Structures

The code is written in C++. Below, we describe the data structures of the variables,

the variables’ domains, and constraints in our code. Those structures are illustrated

in Figure A.1.

Class: CSP 
  std::vector⟨Variable*⟩ variables 
  std::vector⟨Constraint*⟩ constraints 

Class: Variable 
  std::vector⟨Variable*⟩ neighbors 
  std::map⟨val_type,bool⟩ initial_domain 
  std::set⟨val_type⟩ current_domain 

Class: Constraint 
  std::vector⟨constriant_tuple_type⟩ tuples 
  long total_active 
  std::pair⟨Variable*,Variable*⟩ scope 
  std::unordered_map⟨int,std::set⟨int⟩⟩ first_value_lookup 
  std::unordered_map⟨int,std::set⟨int⟩⟩ second_value_lookup 

Structure: constraint_tuple_type 
  std::pair⟨val_type,val_type⟩ values 
  bool active 
  bool support 
  std::vector⟨std::map⟨val_type,bool⟩::iterator⟩ *supported_by 

Figure A.1: The data structures.

The class CSP has two attributes:

1. variables stores std::vector<Variable *>, which is a vector of pointers to

variables.
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2. constraints stores std::vector<Constraint *>, which is a vector of pointers

to constraints.

The Variable class has three attributes:

1. neighbors stores std::vector<Variable *>, which is a vector of pointers to

the variables adjacent to the variable in the constraint graph.

2. fixed domain stores std::map<val type,bool>, which is a map of the sorted

values in the initial domain of a CSP variable where bool indicates whether or

not the value is ‘alive.’

3. current domain stores std::set<val type>, which is the set of the domain

values. The domain values are of the type val type, which is an integer.

Note that the size of the attribute fixed domain never changes after the problem

is created while the size of current domain can fluctuate as values are added and

removed.

The Constraint class has five attributes:

1. tuples stores a one-dimensional vector, of type std::vector<constraint tuple type>,

storing structures of type constraint tuple type, which has four attributes:

a) values stores a tuple of values of type std::pair<val type,val type>.

b) active is a Boolean indicating whether the tuple is active or deleted.

c) support is a Boolean indicating whether the tuple is supported by a value.

This attribute is only used in PC-8+, PC-8-Flag, PC-2001+, and PC-

2001-Flag (see Section 4.4).

d) *supported by is a pointer to a vector of pointers, each of which points to

the domain value (in fixed domain) of a CSP variable that supports the
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tuple. The vector of pointers is called

std::vector<std::map<val type,bool>::iterator>. This attribute is

used only in PC-2001 (see Section 2.8.4).

2. total active, which stores the number of active tuples in the relation.

3. scope stores a pair of pointers, std::pair<Variable*,Variable*>, to the vari-

ables in the scope of the constraint.

4. first value lookup is hashtable std::unordered map<int,std::set<int>>

providing for each value in the domain of the first variable in the scope of the

constraint the initial set of values in the domain of the second variable with

which it is consistent according to the constraint.

5. second value lookup is hashtable std::unordered map<int,std::set<int>>

providing for each value in the domain of the second variable in the scope of

the constraint the initial set of values in the domain of the first variable with

which it is consistent according to the constraint.

Note that the last two attributes, first value lookup and second value lookup,

are redundant and used only for convenience. They are not updated during processing.
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Appendix B

Results of Benchmark Problems

In this appendix, we include almost all the results of our experiments on benchmark

problems, clearly stating and explaining omissions. In Chapter 5, we report only

summaries of these results but discuss them in detail.

B.1 Pre-processing with Arc Consistency

In this section, we report the full results of comparing running arc consistency before

each of the algorithms listed in Table B.1:

• Notably, we do not include sCDC1 because this algorithm enforces arc consis-

tency as its first step.

• We omit all the graphColoring benchmarks from all tables because no tuples

can be deleted by any of the discussed algorithms (i.e., both arc and path

consistency), the time gained or lost by pre-processing is under one second, and

the instances completed are the same with and without pre-processing with arc

consistency.
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• Further, we omit some instances of some benchmarks (i.e., frb and rand in-

stances in Table B.2) and entire benchmarks (i.e., frb and rand in Tables B.3–

B.7; composed, frd, and rand in Tables B.8–B.13) because pre-processing with

AC does not impact performance.

• Unless we show the number of tuples deleted by each algorithm, the two algo-

rithms compared in a given table remove the same number of tuples.

• Finally, the CPU time reported is averaged over the instances of a benchmark

completed by both algorithms.

Table B.1: Enforcing arc consistency as a pre-processing step

Results Comparing To Not shown

Table B.2 DPC AC+DPC Some instances of frb, rand

Table B.3 PC-2 AC+PC-2 frb, rand

Table B.4 PC-8 AC+PC-8 frb, rand

Table B.5 PC-8-Ordering AC+PC-8-Ordering frb, rand

Table B.6 PC-2001 AC+PC-2001 frb, rand

Table B.7 PC-2001-Ordering AC+PC-2001-Ordering frb, rand

Table B.8 PPC+AP AC+PCC+AP composed, frb, rand

Table B.9 ∆PPC AC+∆PPC composed, frb, rand

Table B.10 σ-∆PPC AC+σ-∆PPC composed, frb, rand

Table B.11 σ-∆PPCsup2001 AC+σ-∆PPCsup2001 composed, frb, rand

Table B.12 σ-∆PPCsup AC+σ-∆PPCsup composed, frb, rand

Table B.13 sDC2 AC+sDC2 composed, frb, rand



106

Table B.2: Enforcing AC before DPC. AC+DPC and DPC complete the same number of
instances

# tuples deleted CPU time (s)

D
P
C

A
C
+
D
P
C

G
a
in

D
P
C

A
C
+
D
P
C

S
a
v
in
g

Total 1,667 26,810,010.3 34,572,988.6 7,764,902.3 1,495.9 1,335.0 160.9
BH-4-13 7 723,666.0 2,340,635.0 1,616,969.0 42.2 37.1 5.1
BH-4-4 10 10,903.5 53,312.0 42,408.5 0.2 0.2 0.0
BH-4-7 20 73,480.0 204,924.0 131,444.0 2.5 2.3 0.2
QCP-10 15 25,394.1 29,366.4 3,972.3 0.3 0.2 0.1
QCP-15 15 157,944.9 179,737.8 21,792.9 2.2 0.8 1.4
QCP-20 15 555,556.9 626,260.5 70,703.7 10.1 2.7 7.4
QCP-25 15 1,449,297.2 1,620,407.6 171,110.4 34.9 7.6 27.3
QWH-10 10 20,457.5 24,290.8 3,833.3 0.2 0.1 0.1
QWH-15 10 124,499.1 144,940.5 20,441.4 1.6 0.5 1.1
QWH-20 10 438,685.6 504,906.6 66,221.0 7.5 1.9 5.7
QWH-25 10 1,145,354.8 1,306,672.0 161,317.2 26.2 5.2 21.0
bqwh-15-106 100 263.0 384.1 121.1 0.1 0.1 0.0
bqwh-18-141 100 342.7 474.9 132.2 0.2 0.2 0.0
coloring 22 0.0 0.0 0.0 1.0 1.0 0.0

co
m

p
o
se

d

25-1-2 10 All instances are found inconsistent 0.0 0.0 0.0
25-1-25 10 1,805.0 2,014.0 209.0 0.0 0.0 0.0
25-1-40 10 2,555.0 2,897.0 342.0 0.1 0.1 0.0
25-1-80 10 All instances are found inconsistent 0.1 0.1 0.0
25-10-20 10 1,008.1 1,094.7 86.6 0.1 0.2 0.0
75-1-2 10 319.0 Inconsistent - 0.2 0.2 0.0
75-1-25 10 1,605.0 Inconsistent - 0.2 0.2 0.0
75-1-40 10 All instances are found inconsistent 0.2 0.2 0.0
75-1-80 10 2,426.0 3,092.5 666.5 0.3 0.3 0.0
driver 7 12,050.1 17,819.0 5,768.9 1.1 1.1 0.0
frb30-15 10 103.4 124.0 20.6 0.2 0.2 0.0
geom 100 0.0 0.0 0.0 0.5 0.5 0.0
hanoi 5 0.0 191,558.6 191,558.6 0.2 2.0 -1.9
langford 4 88,065.3 227,498.0 139,432.8 0.9 0.7 0.2
lard 10 7,170,733.2 7,335,584.5 164,851.3 74.7 35.9 38.8
marc 10 12,510,907.8 15,188,207.2 2,677,299.4 42.9 24.2 18.7
os-taillard-4 30 162,989.8 187,485.2 24,495.4 109.9 109.2 0.7
os-taillard-5 30 137,760.1 138,267.3 507.1 924.8 924.7 0.2

ra
n
d

2-30-15 50 71.2 81.3 10.2 0.1 0.1 0.0
2-30-15-fcd 50 72.6 87.9 15.3 0.1 0.1 0.0
2-40-19 50 34.7 43.8 9.1 0.4 0.4 0.0
2-40-19-fcd 50 34.6 42.3 7.7 0.4 0.4 0.0
2-50-23-fcd 50 16.8 26.4 9.6 1.0 1.1 0.0

rl
fa

p

Graphs 14 279,465.0 311,367.0 31,902.0 99.7 90.9 8.8
GraphsMod 12 270,571.4 842,489.1 571,917.7 54.4 32.9 21.5
Scens11 12 529,989.3 1,333,950.8 803,961.5 16.2 14.6 1.7
Scens 11 646,131.7 1,002,191.3 356,059.7 19.2 17.1 2.1
ScensMod 13 257,339.6 742,643.4 485,303.8 6.1 5.2 0.9
tightness0.1 100 0.9 0.9 0.0 0.1 0.1 0.0
tightness0.2 100 2.0 2.0 0.0 0.1 0.1 0.0
tightness0.35 100 9.3 9.3 0.0 0.2 0.2 0.0
tightness0.5 100 27.1 27.1 0.0 0.4 0.4 0.0
tightness0.65 100 149.1 149.1 0.0 0.5 0.5 0.0
tightness0.8 100 1,127.1 1,127.7 0.6 1.6 1.6 0.0
tightness0.9 100 6,794.8 6,794.8 0.0 9.6 9.6 0.0
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Table B.3: Enforcing AC before PC-2. AC+PC-2 completes more instances than PC-2
and consistently saves time

# instances CPU time (s)

P
C
-2

A
C
+
P
C
-2

G
a
in

P
C
-2

A
C
+
P
C
-2

S
a
v
in
g

Total 1,407 1,372 1,394 22 17,723.3 12,211.1 5,512.2
BH-4-13 7 7 7 0 906.4 437.4 469.0
BH-4-4 10 10 10 0 1.6 0.5 1.1
BH-4-7 20 20 20 0 36.2 17.1 19.1
QCP-10 15 15 15 0 1.2 0.6 0.6
QCP-15 15 15 15 0 11.9 4.8 7.2
QCP-20 15 15 15 0 70.8 26.1 44.7
QCP-25 15 15 15 0 313.9 110.8 203.1
QWH-10 10 10 10 0 1.1 0.6 0.5
QWH-15 10 10 10 0 10.1 4.3 5.8
QWH-20 10 10 10 0 61.6 23.8 37.8
QWH-25 10 10 10 0 266.0 100.9 165.1
bqwh-15-106 100 100 100 0 1.3 1.3 0.1
bqwh-18-141 100 100 100 0 2.4 2.3 0.1
coloring 22 22 22 0 8.6 8.6 0.0

co
m

p
o
se

d

25-1-2 10 10 10 0 0.1 0.1 0.0
25-1-25 10 10 10 0 0.1 0.1 0.0
25-1-40 10 10 10 0 0.2 0.1 0.0
25-1-80 10 10 10 0 0.2 0.2 0.0
25-10-20 10 10 10 0 11.2 11.1 0.1
75-1-2 10 10 10 0 1.8 1.7 0.0
75-1-25 10 10 10 0 1.8 1.7 0.0
75-1-40 10 10 10 0 1.8 1.7 0.0
75-1-80 10 10 10 0 1.8 1.8 0.0
driver 7 7 7 0 154.6 151.4 3.3
geom 100 100 100 0 1.9 1.9 0.0
hanoi 5 3 5 2 19.9 0.0 19.8
langford 4 4 4 0 2.4 1.3 1.2
lard 10 10 10 0 173.5 58.7 114.8
marc 10 10 10 0 44.4 25.1 19.4
os-taillard-4 30 30 30 0 215.5 212.4 3.1
os-taillard-5 30 30 30 0 1,621.4 1,620.7 0.7

rl
fa

p

Graphs 14 6 9 3 1,107.7 1,022.5 85.2
GraphsMod 12 5 8 3 1,648.3 1,227.3 421.0
Scens11 12 2 10 8 6,728.3 4,167.7 2,560.7
Scens 11 5 9 4 1,424.9 787.9 637.0
ScensMod 13 11 13 2 2,069.7 1,377.7 692.0
tightness0.1 100 100 100 0 0.2 0.2 0.0
tightness0.2 100 100 100 0 0.3 0.3 0.0
tightness0.35 100 100 100 0 0.7 0.7 0.0
tightness0.5 100 100 100 0 2.0 2.0 0.0
tightness0.65 100 100 100 0 6.6 6.6 0.0
tightness0.8 100 100 100 0 43.2 43.3 0.0
tightness0.9 100 100 100 0 745.6 746.0 -0.4
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Table B.4: Enforcing AC before PC-8. AC+PC-8 completes more instances than PC-8
and generally saves time

# instances CPU time (s)

P
C
-8

A
C
+
P
C
-8

G
a
in

P
C
-8

A
C
+
P
C
-8

S
a
v
in
g

Total 1,407 1,372 1,393 21 11,949.3 7,388.6 4,560.7
BH-4-13 7 7 7 0 1,488.2 536.2 952.0
BH-4-4 10 10 10 0 2.5 0.5 2.0
BH-4-7 20 20 20 0 59.3 20.9 38.4
QCP-10 15 15 15 0 1.9 0.5 1.4
QCP-15 15 15 15 0 20.8 3.5 17.4
QCP-20 15 15 15 0 128.6 17.0 111.6
QCP-25 15 15 15 0 548.7 57.8 490.8
QWH-10 10 10 10 0 1.4 0.4 1.0
QWH-15 10 10 10 0 16.1 2.7 13.4
QWH-20 10 10 10 0 104.0 13.3 90.7
QWH-25 10 10 10 0 438.0 44.4 393.5
bqwh-15-106 100 100 100 0 1.1 1.0 0.1
bqwh-18-141 100 100 100 0 2.2 2.0 0.2
coloring 22 22 22 0 7.1 7.1 0.0

co
m

p
o
se

d

25-1-2 10 10 10 0 0.2 0.2 0.0
25-1-25 10 10 10 0 0.2 0.2 0.0
25-1-40 10 10 10 0 0.2 0.2 0.0
25-1-80 10 10 10 0 0.2 0.2 0.0
25-10-20 10 10 10 0 13.2 12.9 0.2
75-1-2 10 10 10 0 2.1 2.0 0.0
75-1-25 10 10 10 0 2.1 2.0 0.0
75-1-40 10 10 10 0 2.1 2.0 0.0
75-1-80 10 10 10 0 2.1 2.1 0.0
driver 7 7 7 0 99.2 94.6 4.5
geom 100 100 100 0 2.2 2.2 0.0
hanoi 5 3 5 2 31.3 0.0 31.3
langford 4 4 4 0 3.6 1.8 1.8
lard 10 10 10 0 279.3 67.7 211.6
marc 10 10 10 0 54.6 25.0 29.6
os-taillard-4 30 30 30 0 209.1 205.9 3.2
os-taillard-5 30 30 30 0 1,563.6 1,563.0 0.6

rl
fa

p

Graphs 14 8 9 1 922.2 810.2 112.0
GraphsMod 12 7 10 3 2,319.3 1,905.6 413.7
Scens11 12 0 9 9 - - -
Scens 11 5 9 4 2,044.6 1,012.6 1,032.0
ScensMod 13 9 11 2 996.9 389.6 607.3
tightness0.1 100 100 100 0 0.2 0.2 0.0
tightness0.2 100 100 100 0 0.4 0.4 0.0
tightness0.35 100 100 100 0 0.7 0.7 0.0
tightness0.5 100 100 100 0 1.9 1.9 0.0
tightness0.65 100 100 100 0 5.9 5.9 0.0
tightness0.8 100 100 100 0 42.2 42.1 0.1
tightness0.9 100 100 100 0 530.0 529.9 0.1
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Table B.5: Enforcing AC before PC-8-Ordering. AC+PC-8-Ordering completes more
instances than PC-8-Ordering and consistently saves time

# instances CPU time (s)

P
C
-8
-O

rd
e
ri
n
g
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C
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P
C
-8
-O

rd
e
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C
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P
C
-8
-O
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n
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S
a
v
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g

Total 1,407 1,371 1,395 24 9,616.4 6,705.4 2,911.0
BH-4-13 7 7 7 0 1,071.0 524.8 546.2
BH-4-4 10 10 10 0 2.0 0.5 1.4
BH-4-7 20 20 20 0 42.6 20.4 22.2
QCP-10 15 15 15 0 1.3 0.5 0.8
QCP-15 15 15 15 0 13.7 3.5 10.2
QCP-20 15 15 15 0 81.8 17.0 64.7
QCP-25 15 15 15 0 340.5 58.1 282.5
QWH-10 10 10 10 0 1.1 0.4 0.7
QWH-15 10 10 10 0 10.8 2.7 8.0
QWH-20 10 10 10 0 66.3 13.3 53.1
QWH-25 10 10 10 0 271.0 44.6 226.4
bqwh-15-106 100 100 100 0 1.1 1.0 0.1
bqwh-18-141 100 100 100 0 2.0 1.9 0.1
coloring 22 22 22 0 7.2 7.2 0.0

co
m

p
o
se

d

25-1-2 10 10 10 0 0.2 0.2 0.0
25-1-25 10 10 10 0 0.2 0.2 0.0
25-1-40 10 10 10 0 0.2 0.2 0.0
25-1-80 10 10 10 0 0.2 0.2 0.0
25-10-20 10 10 10 0 12.8 12.7 0.2
75-1-2 10 10 10 0 2.1 2.1 0.0
75-1-25 10 10 10 0 2.1 2.1 0.0
75-1-40 10 10 10 0 2.1 2.1 0.0
75-1-80 10 10 10 0 2.1 2.1 0.0
driver 7 7 7 0 82.8 80.7 2.1
geom 100 100 100 0 2.2 2.2 0.0
hanoi 5 3 5 2 23.6 0.0 23.5
langford 4 4 4 0 3.2 1.6 1.6
lard 10 10 10 0 212.7 67.9 144.8
marc 10 10 10 0 49.3 25.0 24.3
os-taillard-4 30 30 30 0 199.4 196.3 3.1
os-taillard-5 30 30 30 0 1,475.4 1,475.5 -0.1

rl
fa

p

Graphs 14 8 9 1 877.0 773.3 103.7
GraphsMod 12 6 9 3 1,765.8 1,513.7 252.0
Scens11 12 0 10 10 - - -
Scens 11 5 9 4 1,758.4 961.7 796.7
ScensMod 13 9 13 4 701.8 359.3 342.6
tightness0.1 100 100 100 0 0.2 0.2 0.0
tightness0.2 100 100 100 0 0.4 0.4 0.0
tightness0.35 100 100 100 0 0.7 0.7 0.0
tightness0.5 100 100 100 0 1.9 1.9 0.0
tightness0.65 100 100 100 0 5.3 5.3 0.0
tightness0.8 100 100 100 0 35.1 35.1 0.0
tightness0.9 100 100 100 0 487.0 487.0 -0.1
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Table B.6: Enforcing AC before PC-2001. AC+PC-2001 completes more instances than
AC+PC-2001 and consistently saves time

# instances CPU time (s)

P
C
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C
+
P
C
-2
0
0
1

G
a
in

P
C
-2
0
0
1

A
C
+
P
C
-2
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0
1

S
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g

Total 1,407 1,332 1,369 37 4,935.9 3,792.3 1,143.5
BH-4-13 7 7 7 0 1,059.3 561.4 497.9
BH-4-4 10 10 10 0 2.1 0.6 1.5
BH-4-7 20 20 20 0 43.3 22.4 20.9
QCP-10 15 15 15 0 1.9 0.6 1.3
QCP-15 15 15 15 0 21.7 4.4 17.3
QCP-20 15 15 15 0 139.4 22.1 117.3
QCP-25 15 0 15 15 - - -
QWH-10 10 10 10 0 1.4 0.5 1.0
QWH-15 10 10 10 0 17.1 3.4 13.7
QWH-20 10 10 10 0 112.3 17.4 94.9
QWH-25 10 0 10 10 - - -
bqwh-15-106 100 100 100 0 1.1 1.0 0.1
bqwh-18-141 100 100 100 0 2.1 2.0 0.1
coloring 22 22 22 0 7.6 7.6 0.0

co
m

p
o
se

d

25-1-2 10 10 10 0 0.2 0.2 0.0
25-1-25 10 10 10 0 0.2 0.2 0.0
25-1-40 10 10 10 0 0.2 0.2 0.0
25-1-80 10 10 10 0 0.2 0.2 0.0
25-10-20 10 10 10 0 11.3 11.1 0.2
75-1-2 10 10 10 0 2.2 2.2 0.0
75-1-25 10 10 10 0 2.2 2.2 0.0
75-1-40 10 10 10 0 2.3 2.2 0.0
75-1-80 10 10 10 0 2.2 2.2 0.0
driver 7 7 7 0 95.5 91.0 4.5
geom 100 100 100 0 2.4 2.4 0.0
hanoi 5 3 5 2 30.7 0.0 30.7
langford 4 4 4 0 2.6 1.7 0.9
lard 10 10 10 0 233.9 83.0 150.9
marc 10 10 10 0 67.7 37.8 29.9
os-taillard-4 30 30 30 0 155.6 153.5 2.1
os-taillard-5 30 30 30 0 1,236.9 1,236.7 0.3

rl
fa

p

Graphs 14 3 8 5 762.5 702.1 60.5
GraphsMod 12 2 2 0 0.1 0.1 0.0
Scens11 12 0 0 0 - - -
Scens 11 2 7 5 324.9 298.8 26.1
ScensMod 13 7 7 0 212.1 141.1 71.1
tightness0.1 100 100 100 0 0.2 0.2 0.0
tightness0.2 100 100 100 0 0.4 0.4 0.0
tightness0.35 100 100 100 0 0.8 0.8 0.0
tightness0.5 100 100 100 0 2.1 2.1 0.0
tightness0.65 100 100 100 0 5.9 5.9 0.0
tightness0.8 100 100 100 0 35.5 35.2 0.3
tightness0.9 100 100 100 0 335.7 335.4 0.2
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Table B.7: Enforcing AC before PC-2001-Ordering. AC+PC-2001-Ordering completes
more instances than PC-2001-Ordering and consistently saves time

# instances CPU time (s)
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Total 1,407 1,332 1,369 37 4,498.9 3,701.5 797.4
BH-4-13 7 7 7 0 874.8 556.4 318.4
BH-4-4 10 10 10 0 1.8 0.6 1.1
BH-4-7 20 20 20 0 35.7 22.1 13.5
QCP-10 15 15 15 0 1.5 0.6 0.9
QCP-15 15 15 15 0 16.3 4.4 11.9
QCP-20 15 15 15 0 102.6 22.0 80.6
QCP-25 15 0 15 15 - - -
QWH-10 10 10 10 0 1.1 0.4 0.7
QWH-15 10 10 10 0 12.9 3.4 9.5
QWH-20 10 10 10 0 82.8 17.3 65.5
QWH-25 10 0 10 10 - - -
bqwh-15-106 100 100 100 0 1.0 1.0 0.0
bqwh-18-141 100 100 100 0 2.0 1.9 0.1
coloring 22 22 22 0 7.6 7.6 0.0

co
m

p
o
se

d

25-1-2 10 10 10 0 0.2 0.2 0.0
25-1-25 10 10 10 0 0.2 0.2 0.0
25-1-40 10 10 10 0 0.2 0.2 0.0
25-1-80 10 10 10 0 0.2 0.2 0.0
25-10-20 10 10 10 0 11.1 10.9 0.1
75-1-2 10 10 10 0 2.2 2.2 0.0
75-1-25 10 10 10 0 2.2 2.2 0.0
75-1-40 10 10 10 0 2.2 2.2 0.0
75-1-80 10 10 10 0 2.2 2.2 0.0
driver 7 7 7 0 81.4 78.9 2.5
geom 100 100 100 0 2.4 2.4 0.0
hanoi 5 3 5 2 27.0 0.0 26.9
langford 4 4 4 0 2.4 1.6 0.8
lard 10 10 10 0 189.8 83.0 106.8
marc 10 10 10 0 62.6 37.8 24.7
os-taillard-4 30 30 30 0 155.0 153.0 1.9
os-taillard-5 30 30 30 0 1,229.5 1,229.6 -0.1

rl
fa

p

Graphs 14 3 8 5 729.3 676.6 52.7
GraphsMod 12 2 2 0 0.1 0.1 0.0
Scens11 12 0 0 0 - - -
Scens 11 2 7 5 313.1 286.9 26.2
ScensMod 13 7 7 0 184.7 132.5 52.2
tightness0.1 100 100 100 0 0.2 0.2 0.0
tightness0.2 100 100 100 0 0.4 0.4 0.0
tightness0.35 100 100 100 0 0.8 0.8 0.0
tightness0.5 100 100 100 0 2.0 2.0 0.0
tightness0.65 100 100 100 0 5.5 5.5 0.0
tightness0.8 100 100 100 0 31.4 31.4 0.0
tightness0.9 100 100 100 0 320.4 320.1 0.2
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Table B.8: Enforcing AC before PPC+AP.
Both algorithms complete 1,837 instances
but pre-processing with AC generally saves
time

CPU time (s)
P
P
C
+
A
P

A
C
+
P
P
C
+
A
P

S
a
v
in
g

Total 1,317 4,123.5 3,473.1 650.4
BH-4-13 7 347.4 147.6 199.8
BH-4-4 10 0.8 0.3 0.6
BH-4-7 20 14.5 6.8 7.7
QCP-10 15 1.1 0.6 0.5
QCP-15 15 8.9 3.4 5.5
QCP-20 15 45.4 13.8 31.6
QCP-25 15 162.9 40.4 122.5
QWH-10 10 0.8 0.4 0.4
QWH-15 10 5.9 2.2 3.8
QWH-20 10 32.1 8.6 23.5
QWH-25 10 111.6 25.0 86.6
bqwh-15-106 100 0.5 0.5 0.0
bqwh-18-141 100 1.1 1.1 0.0
coloring 22 8.3 8.3 0.0
driver 7 7.5 7.5 -0.1
geom 100 1.0 1.0 0.0
hanoi 5 0.2 2.0 -1.8
langford 4 4.3 1.9 2.3
lard 10 215.8 127.2 88.6
marc 10 46.1 27.4 18.8
os-taillard-4 30 176.1 174.0 2.1
os-taillard-5 30 1,502.6 1,502.9 -0.2

rl
fa

p

Graphs 14 1,054.6 1,018.7 35.9
GraphsMod 12 163.0 148.6 14.4
Scens11 12 54.2 50.6 3.6
Scens 11 41.8 39.4 2.4
ScensMod 13 15.2 13.3 1.9
tightness0.1 100 0.4 0.4 0.0
tightness0.2 100 0.5 0.5 0.0
tightness0.35 100 0.7 0.7 0.0
tightness0.5 100 1.2 1.2 0.0
tightness0.65 100 2.2 2.2 0.0
tightness0.8 100 9.2 9.2 0.0
tightness0.9 100 85.3 85.3 0.1

Table B.9: Enforcing AC before ∆PPC.
Both algorithms complete 1,837 instances
but pre-processing with AC generally saves
time

CPU time (s)

∆
P
P
C

A
C
+

∆
P
P
C

S
a
v
in
g

Total 1,317 3,138.4 2,483.9 654.5
BH-4-13 7 170.2 79.4 90.8
BH-4-4 10 0.5 0.2 0.3
BH-4-7 20 7.7 3.9 3.8
QCP-10 15 1.0 0.4 0.6
QCP-15 15 9.0 2.0 7.0
QCP-20 15 43.9 8.0 35.9
QCP-25 15 165.7 22.7 143.1
QWH-10 10 0.8 0.3 0.5
QWH-15 10 6.3 1.5 4.8
QWH-20 10 33.6 5.6 28.0
QWH-25 10 118.4 15.3 103.1
bqwh-15-106 100 0.4 0.3 0.0
bqwh-18-141 100 0.8 0.7 0.0
coloring 22 5.0 5.0 0.0
driver 7 6.0 5.9 0.0
geom 100 0.6 0.6 0.0
hanoi 5 0.2 2.0 -1.8
langford 4 2.9 1.3 1.6
lard 10 181.3 58.9 122.5
marc 10 52.2 25.2 26.9
os-taillard-4 30 156.7 154.6 2.1
os-taillard-5 30 1,257.4 1,256.9 0.5

rl
fa

p

Graphs 14 618.1 583.2 35.0
GraphsMod 12 145.4 106.0 39.4
Scens11 12 35.8 30.2 5.6
Scens 11 29.4 26.7 2.7
ScensMod 13 11.3 9.1 2.2
tightness0.1 100 0.2 0.2 0.0
tightness0.2 100 0.2 0.2 0.0
tightness0.35 100 0.4 0.4 0.0
tightness0.5 100 0.8 0.8 0.0
tightness0.65 100 1.5 1.5 0.0
tightness0.8 100 6.7 6.8 0.0
tightness0.9 100 68.0 68.0 0.0
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Table B.10: Enforcing AC before σ-∆PPC. Both algorithms complete 1,837 instances but
pre-processing with AC generally saves time

CPU time (s)

σ
-∆

P
P
C

A
C
+
σ
-∆

P
P
C

S
a
v
in
g

Total 1,317 3,752.0 2,472.9 1,279.1
BH-4-13 7 208.2 79.4 128.8
BH-4-4 10 0.5 0.2 0.3
BH-4-7 20 9.0 3.9 5.1
QCP-10 15 1.1 0.3 0.9
QCP-15 15 13.4 1.4 12.0
QCP-20 15 84.6 5.5 79.0
QCP-25 15 345.1 15.7 329.4
QWH-10 10 0.9 0.2 0.6
QWH-15 10 9.4 1.0 8.3
QWH-20 10 60.3 3.9 56.4
QWH-25 10 243.6 10.3 233.3
bqwh-15-106 100 0.3 0.3 0.0
bqwh-18-141 100 0.6 0.5 0.0
coloring 22 2.6 2.6 0.0
driver 7 4.5 4.5 0.0
geom 100 0.6 0.6 0.0
hanoi 5 0.2 2.0 -1.8
langford 4 2.8 1.2 1.5
lard 10 199.9 58.7 141.2
marc 10 67.5 25.0 42.5
os-taillard-4 30 156.0 154.1 1.9
os-taillard-5 30 1,262.5 1,262.8 -0.3

rl
fa

p

Graphs 14 742.6 589.3 153.4
GraphsMod 12 177.9 103.3 74.7
Scens11 12 35.9 30.3 5.6
Scens 11 31.0 27.0 4.0
ScensMod 13 11.3 8.9 2.3
tightness0.1 100 0.2 0.2 0.0
tightness0.2 100 0.2 0.2 0.0
tightness0.35 100 0.4 0.4 0.0
tightness0.5 100 0.8 0.8 0.0
tightness0.65 100 1.6 1.6 0.0
tightness0.8 100 6.8 6.8 0.0
tightness0.9 100 69.9 69.9 0.0
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Table B.11: Enforcing AC before σ-∆PPCsup2001. Pre-processing with AC allows us to
complete more instances and saves time

# instances CPU time (s)
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Total 1,3717 1,300 1,309 9 2,255.1 1,673.4 581.6
BH-4-13 7 7 7 0 170.0 95.7 74.3
BH-4-4 10 10 10 0 0.4 0.2 0.2
BH-4-7 20 20 20 0 7.8 4.7 3.1
QCP-10 15 15 15 0 0.9 0.4 0.5
QCP-15 15 15 15 0 7.8 2.1 5.7
QCP-20 15 15 15 0 43.8 8.8 35.1
QCP-25 15 7 15 8 167.4 27.1 140.3
QWH-10 10 10 10 0 0.7 0.3 0.4
QWH-15 10 10 10 0 5.5 1.4 4.0
QWH-20 10 10 10 0 31.5 6.1 25.4
QWH-25 10 10 10 0 118.5 17.5 101.0
bqwh-15-106 100 100 100 0 0.3 0.3 0.0
bqwh-18-141 100 100 100 0 0.6 0.6 0.0
coloring 22 22 22 0 3.6 3.6 0.0
driver 7 7 7 0 5.2 5.0 0.2
frb30-15 10 10 10 0 0.3 0.3 0.0
frb35-17 10 10 10 0 0.5 0.5 0.0
frb40-19 10 10 10 0 0.9 0.9 0.0
frb45-21 10 10 10 0 1.4 1.4 0.0
frb50-23 10 10 10 0 2.2 2.2 0.0
frb53-24 10 10 10 0 2.7 2.8 0.0
frb56-25 10 10 10 0 3.4 3.4 0.0
frb59-26 10 10 10 0 4.2 4.2 0.0
geom 100 100 100 0 0.7 0.7 0.0
hanoi 5 5 5 0 0.2 2.0 -1.8
langford 4 4 4 0 2.5 1.4 1.1
lard 10 10 10 0 174.7 81.2 93.5
marc 10 10 10 0 97.5 28.2 69.3
os-taillard-4 30 30 30 0 129.5 127.7 1.9
os-taillard-5 30 30 30 0 1,055.9 1,056.1 -0.2

rl
fa

p

Graphs 14 10 10 0 105.5 90.2 15.3
GraphsMod 12 7 8 1 12.9 12.0 0.9
Scens11 12 12 12 0 34.6 29.2 5.4
Scens 11 11 11 0 29.6 26.0 3.6
ScensMod 13 13 13 0 11.2 8.7 2.5
tightness0.1 100 100 100 0 0.2 0.2 0.0
tightness0.2 100 100 100 0 0.3 0.3 0.0
tightness0.35 100 100 100 0 0.4 0.5 0.0
tightness0.5 100 100 100 0 0.9 0.9 0.0
tightness0.65 100 100 100 0 1.4 1.4 0.0
tightness0.8 100 100 100 0 4.4 4.4 0.0
tightness0.9 100 100 100 0 28.5 28.6 0.0
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Table B.12: Enforcing AC before σ-∆PPCsup . Pre-processing with AC allows us to com-
plete more instances and generally saves time

# instances CPU time (s)
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Total 1,317 1,300 1,309 9 2,217.9 1,658.8 559.0
BH-4-13 7 7 7 0 173.5 100.2 73.3
BH-4-4 10 10 10 0 0.4 0.2 0.2
BH-4-7 20 20 20 0 7.8 4.8 3.0
QCP-10 15 15 15 0 0.8 0.4 0.4
QCP-15 15 15 15 0 7.4 2.0 5.4
QCP-20 15 15 15 0 42.1 8.5 33.6
QCP-25 15 7 15 8 162.4 26.2 136.2
QWH-10 10 10 10 0 0.6 0.2 0.4
QWH-15 10 10 10 0 5.2 1.3 3.9
QWH-20 10 10 10 0 30.3 5.6 24.7
QWH-25 10 10 10 0 114.8 16.4 98.4
bqwh-15-106 100 100 100 0 0.3 0.2 0.0
bqwh-18-141 100 100 100 0 0.6 0.6 0.0
coloring 22 22 22 0 3.7 3.7 0.0
driver 7 7 7 0 3.8 3.6 0.2
geom 100 100 100 0 0.7 0.7 0.0
hanoi 5 5 5 0 0.2 2.0 -1.8
langford 4 4 4 0 2.4 1.3 1.1
lard 10 10 10 0 170.8 91.0 79.8
marc 10 10 10 0 99.7 28.2 71.5
os-taillard-4 30 30 30 0 131.9 129.8 2.1
os-taillard-5 30 30 30 0 1,059.1 1,059.1 0.0

rl
fa

p

Graphs 14 10 10 0 88.8 73.3 15.5
GraphsMod 12 7 8 1 11.3 10.4 0.9
Scens11 12 12 12 0 30.2 25.6 4.5
Scens 11 11 11 0 27.0 23.4 3.5
ScensMod 13 13 13 0 10.3 8.0 2.4
tightness0.1 100 100 100 0 0.2 0.2 0.0
tightness0.2 100 100 100 0 0.3 0.3 0.0
tightness0.35 100 100 100 0 0.4 0.4 0.0
tightness0.5 100 100 100 0 0.8 0.8 0.0
tightness0.65 100 100 100 0 1.2 1.2 0.0
tightness0.8 100 100 100 0 3.5 3.5 0.0
tightness0.9 100 100 100 0 25.5 25.5 0.0
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Table B.13: Enforcing AC before sDC2. Pre-processing with AC allows us to complete
more instances and consistently saves time

# instances CPU time (s)

sD
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Total 1,317 1,286 1,294 8 9,172.8 8,950.5 222.3
BH-4-13 7 7 7 0 656.0 653.7 2.3
BH-4-4 10 10 10 0 0.6 0.6 0.1
BH-4-7 20 20 20 0 27.2 27.1 0.1
QCP-10 15 15 15 0 0.4 0.3 0.1
QCP-15 15 15 15 0 3.8 2.9 0.9
QCP-20 15 15 15 0 22.2 18.1 4.1
QCP-25 15 15 15 0 74.1 61.8 12.4
QWH-10 10 10 10 0 1.2 1.1 0.1
QWH-15 10 10 10 0 9.3 8.5 0.7
QWH-20 10 10 10 0 47.3 43.6 3.7
QWH-25 10 10 10 0 104.9 93.7 11.3
bqwh-15-106 100 100 100 0 2.8 2.8 0.0
bqwh-18-141 100 100 100 0 6.2 6.2 0.0
coloring 22 22 22 0 2.4 2.4 0.0
driver 7 7 7 0 49.6 49.5 0.1
geom 100 100 100 0 2.5 2.5 0.0
hanoi 5 3 5 2 4.1 0.0 4.0
langford 4 4 4 0 1.8 1.8 0.0
lard 10 10 10 0 34.2 34.1 0.0
marc 10 10 10 0 23.7 23.7 0.0
os-taillard-4 30 30 30 0 135.3 135.2 0.2
os-taillard-5 30 30 30 0 1,187.2 1,187.3 -0.1

rl
fa

p

Graphs 14 8 9 1 698.5 634.1 64.4
GraphsMod 12 7 8 1 379.2 359.6 19.7
Scens11 12 1 1 0 3,419.9 3,367.4 52.5
Scens 11 5 9 4 500.9 470.9 30.1
ScensMod 13 12 12 0 1,047.8 1,031.3 16.6
tightness0.1 100 100 100 0 0.3 0.3 0.0
tightness0.2 100 100 100 0 0.6 0.6 0.0
tightness0.35 100 100 100 0 1.4 1.4 0.0
tightness0.5 100 100 100 0 3.6 3.6 0.0
tightness0.65 100 100 100 0 10.4 10.4 0.0
tightness0.8 100 100 100 0 69.2 69.3 -0.1
tightness0.9 100 100 100 0 644.3 644.9 -0.6
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B.2 Propagation Queue: Edges versus Triangles

In this section, we report the detailed results comparing the impact of using triangles

instead of edges in the propagation queue. Except for three instances where we run

out of memory space, handling triangles generally saves CPU time (see discussion in

Section 5.1.4). Otherwise, the number of deleted tuples is not affected.

Table B.14: AC+PPC+AP vs AC+∆PPC (table 1 of 2)

# instances CPU time (s)

A
C
+
P
P
C
+
A
P

A
C
+

∆
P
P
C

G
a
in

A
C
+
P
P
C
+
A
P

A
C
+

∆
P
P
C

S
a
v
in
g

Total 2,288 2,288 2,285 -3 6,229.1 3,576.1 2,653.0
BH-4-13 7 7 7 0 147.6 79.4 68.2
BH-4-4 10 10 10 0 0.3 0.2 0.1
BH-4-7 20 20 20 0 6.8 3.9 2.8
QCP-10 15 15 15 0 0.6 0.4 0.2
QCP-15 15 15 15 0 3.4 2.0 1.4
QCP-20 15 15 15 0 13.8 8.0 5.9
QCP-25 15 15 15 0 40.4 22.7 17.7
QWH-10 10 10 10 0 0.4 0.3 0.1
QWH-15 10 10 10 0 2.2 1.5 0.7
QWH-20 10 10 10 0 8.6 5.6 3.0
QWH-25 10 10 10 0 25.0 15.3 9.7
bqwh-15-106 100 100 100 0 0.5 0.3 0.1
bqwh-18-141 100 100 100 0 1.1 0.7 0.4
coloring 22 22 22 0 8.3 5.0 3.4

co
m

p
o
se

d

25-1-2 10 10 10 0 0.1 0.1 0.0
25-1-25 10 10 10 0 0.1 0.1 0.0
25-1-40 10 10 10 0 0.1 0.1 0.0
25-1-80 10 10 10 0 0.2 0.1 0.0
25-10-20 10 10 10 0 0.6 0.4 0.2
75-1-2 10 10 10 0 0.5 0.6 -0.1
75-1-25 10 10 10 0 0.6 0.7 -0.1
75-1-40 10 10 10 0 0.6 0.7 -0.1
75-1-80 10 10 10 0 0.7 0.8 -0.1
driver 7 7 7 0 7.5 5.9 1.6
frb30-15 10 10 10 0 0.4 0.3 0.2
frb35-17 10 10 10 0 0.8 0.5 0.3
frb40-19 10 10 10 0 1.3 0.8 0.6
frb45-21 10 10 10 0 2.3 1.2 1.1
frb50-23 10 10 10 0 3.5 1.8 1.7
frb53-24 10 10 10 0 4.5 2.2 2.2
frb56-25 10 10 10 0 5.5 2.7 2.8
frb59-26 10 10 10 0 6.9 3.4 3.5
geom 100 100 100 0 1.0 0.6 0.4

Results continue in next table.
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Table B.15: AC+PPC+AP vs AC+∆PPC (table 2 of 2)

# instances CPU time (s)

A
C
+
P
P
C
+
A
P

A
C
+

∆
P
P
C

G
a
in

A
C
+
P
P
C
+
A
P

A
C
+

∆
P
P
C

S
a
v
in
g

g
ra

p
h
C

o
lo

ri
n
g

hos 14 14 14 0 49.0 23.9 25.1
full-insertion 40 40 37 -3 170.2 74.4 95.8
k-insertion 32 32 32 0 26.0 13.4 12.6
leighton-15 26 26 26 0 476.2 176.9 299.4
leighton-25 31 31 31 0 1,084.6 385.1 699.4
leighton-5 8 8 8 0 73.0 37.4 35.6
mug 8 8 8 0 0.0 0.0 0.0
myciel 16 16 16 0 0.9 0.4 0.4
register-fpsol 37 37 37 0 175.3 80.4 94.9
register-inithx 31 31 31 0 175.3 84.4 90.9
register-mulsol 47 47 47 0 26.5 13.1 13.3
register-zeroin 31 31 31 0 34.6 16.4 18.2
school 8 8 8 0 280.9 105.2 175.7
sgb-book 26 26 26 0 0.3 0.2 0.1
sgb-games 4 4 4 0 0.8 0.4 0.4
sgb-miles 42 42 42 0 79.6 33.9 45.7
sgb-queen 50 50 50 0 56.9 21.0 35.9
hanoi 5 5 5 0 2.0 2.0 0.0
langford 4 4 4 0 1.9 1.3 0.6
lard 10 10 10 0 127.2 58.9 68.3
marc 10 10 10 0 27.4 25.2 2.2
os-taillard-4 30 30 30 0 174.0 154.6 19.3
os-taillard-5 30 30 30 0 1,502.9 1,256.9 246.0

ra
n
d

23-Feb 10 10 10 0 0.8 0.5 0.3
24-Feb 10 10 10 0 1.0 0.6 0.4
25-Feb 10 10 10 0 1.2 0.7 0.5
26-Feb 10 10 10 0 1.5 0.9 0.6
27-Feb 10 10 10 0 1.8 1.0 0.7
2-30-15 50 50 50 0 0.4 0.3 0.2
2-30-15-fcd 50 50 50 0 0.4 0.3 0.2
2-40-19 50 50 50 0 1.3 0.7 0.6
2-40-19-fcd 50 50 50 0 1.4 0.7 0.6
2-50-23 50 50 50 0 3.6 1.8 1.8
2-50-23-fcd 50 50 50 0 3.6 1.8 1.8

rl
fa

p

Graphs 14 14 14 0 1,018.7 583.2 435.5
GraphsMod 12 12 12 0 148.6 106.0 42.6
Scens11 12 12 12 0 50.6 30.2 20.4
Scens 11 11 11 0 39.4 26.7 12.7
ScensMod 13 13 13 0 13.3 9.1 4.2
tightness0.1 100 100 100 0 0.4 0.2 0.2
tightness0.2 100 100 100 0 0.5 0.2 0.2
tightness0.35 100 100 100 0 0.7 0.4 0.3
tightness0.5 100 100 100 0 1.2 0.8 0.4
tightness0.65 100 100 100 0 2.2 1.5 0.7
tightness0.8 100 100 100 0 9.2 6.8 2.5
tightness0.9 100 100 100 0 85.3 68.0 17.2
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B.3 Propagating Along a PEO

Propagating along a PEO, without a propagation queue, allows us to save CPU time,

memory space, and complete all 2,288 instances. Both algorithms, AC+∆PPC and

AC+σ-∆PPC, remove the same number of tuples on completed instances. Further,

they complete all instances of the BH, frb, composed, and rand benchmark and have

comparable performance on those benchmarks (omitted from the tables below).

Table B.16: Following a PEO: AC+∆PPC vs AC+σ-∆PPC (table 1 of 2)

# instances CPU time (s)
A
C
+

∆
P
P
C

A
C
+
σ
-∆

P
P
C

G
a
in

A
C
+

∆
P
P
C

A
C
+
σ
-∆

P
P
C

S
a
v
in
g

Total 1,731 1,728 1,731 3 3,446.7 3,375.7 91.0
QCP-10 15 15 15 0 0.4 0.3 0.1
QCP-15 15 15 15 0 2.0 1.4 0.6
QCP-20 15 15 15 0 8.0 5.5 2.4
QCP-25 15 15 15 0 22.7 15.7 7.0
QWH-10 10 10 10 0 0.3 0.2 0.1
QWH-15 10 10 10 0 1.5 1.0 0.4
QWH-20 10 10 10 0 5.6 3.9 1.8
QWH-25 10 10 10 0 15.3 10.3 5.0
bqwh-15-106 100 100 100 0 0.3 0.3 0.1
bqwh-18-141 100 100 100 0 0.7 0.5 0.2
coloring 22 22 22 0 5.0 2.6 2.4
driver 7 7 7 0 5.9 4.5 1.5
geom 100 100 100 0 0.6 0.6 0.0

g
ra

p
h
C

o
lo

ri
n
g

hos 14 14 14 0 23.9 19.0 4.9
full-insertion 40 37 40 3 74.4 55.8 18.6
k-insertion 32 32 32 0 13.4 8.5 4.9
leighton-15 26 26 26 0 176.9 161.3 15.6
leighton-25 31 31 31 0 385.1 372.3 12.8
leighton-5 8 8 8 0 37.4 23.5 13.9
mug 8 8 8 0 0.0 0.0 0.0
myciel 16 16 16 0 0.4 0.3 0.1
register-fpsol 37 37 37 0 80.4 79.8 0.6
register-inithx 31 31 31 0 84.4 83.4 1.0
register-mulsol 47 47 47 0 13.1 13.0 0.1
register-zeroin 31 31 31 0 16.4 16.3 0.1
school 8 8 8 0 105.2 99.1 6.1
sgb-book 26 26 26 0 0.2 0.2 0.0
sgb-games 4 4 4 0 0.4 0.3 0.1
sgb-miles 42 42 42 0 33.9 33.8 0.1
sgb-queen 50 50 50 0 21.0 19.8 1.2

Results continue in next table.
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Table B.17: Following a PEO: AC+∆PPC vs AC+σ-∆PPC (table 2 of 2)

# instances CPU time (s)

A
C
+

∆
P
P
C

A
C
+
σ
-∆

P
P
C

G
a
in

A
C
+

∆
P
P
C

A
C
+
σ
-∆

P
P
C

S
a
v
in
g

hanoi 5 5 5 0 2.0 2.0 0.0
langford 4 4 4 0 1.3 1.2 0.1
lard 10 10 10 0 58.9 58.7 0.2
marc 10 10 10 0 25.2 25.0 0.2
os-taillard-4 30 30 30 0 154.6 154.1 0.5
os-taillard-5 30 30 30 0 1,256.9 1,262.8 -5.9

rl
fa

p

Graphs 14 14 14 0 583.2 589.3 -6.1
GraphsMod 12 12 12 0 106.0 103.3 2.7
Scens11 12 12 12 0 30.2 30.3 -0.2
Scens 11 11 11 0 26.7 27.0 -0.3
ScensMod 13 13 13 0 9.1 8.9 0.1
tightness0.1 100 100 100 0 0.2 0.2 0.0
tightness0.2 100 100 100 0 0.2 0.2 0.0
tightness0.35 100 100 100 0 0.4 0.4 0.0
tightness0.5 100 100 100 0 0.8 0.8 0.0
tightness0.65 100 100 100 0 1.5 1.6 0.0
tightness0.8 100 100 100 0 6.8 6.8 0.0
tightness0.9 100 100 100 0 68.0 69.9 -1.9
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B.4 Comparing Types of Supports

We compare the performance AC+σ-∆PPCsup2001, which uses PC-2001 style supports

and AC+σ-∆PPCsup, which users our new support structure.

Table B.18 isolates instances where PPC removes no tuples, thus, the effort of

building support structures is wasted. In retrospect, one can create such structures

only when the need arises.

Table B.18: Comparing the two styles of support structures when no filtering occurs

CPU time (s)

A
C
+
σ
-∆

P
P
C

s
u
p
2
0
0
1

A
C
+
σ
-∆

P
P
C

su
p

S
a
v
e
d

Total 523 508.3 549.3 -41.1
coloring 22 3.6 3.7 -0.1

g
ra

p
h
C

o
lo

ri
n
g

hos 14 26.2 26.7 -0.5
full-insertion 40 17.8 19.2 -1.3
k-insertion 32 12.2 12.8 -0.6
leighton-15 26 88.4 96.0 -7.6
leighton-25 31 56.8 60.9 -4.1
leighton-5 8 33.0 33.9 -0.9
mug 8 0.0 0.0 0.0
myciel 16 0.5 0.5 0.0
register-fpsol 37 32.2 34.2 -2.1
register-inithx 31 28.0 29.3 -1.3
register-mulsol 47 17.6 19.1 -1.5
register-zeroin 31 22.3 24.5 -2.2
school 8 115.9 128.4 -12.5
sgb-book 26 0.3 0.3 0.0
sgb-games 4 0.5 0.5 0.0
sgb-miles 42 22.8 25.6 -2.8
sgb-queen 50 26.0 29.4 -3.5

ra
n
d

23-Feb 10 0.6 0.6 0.0
24-Feb 10 0.7 0.7 0.0
25-Feb 10 0.8 0.9 0.0
26-Feb 10 1.0 1.0 0.0
27-Feb 10 1.2 1.3 0.0

Table B.19 reports the results when filtering occurs. Both algorithms complete

all instances of the composed benchmark (omitted) with the same CPU time.
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Table B.19: Comparing the two styles of support structures on benchmarks when filtering
occurs

CPU time (s)

A
C
+
σ
-∆

P
P
C

s
u
p
2
0
0
1

A
C
+
σ
-∆

P
P
C

su
p

S
a
v
e
d

Total 1,675 1,713.3 1,699.3 14.0
BH-4-13 7 95.7 100.2 -4.4
BH-4-4 10 0.2 0.2 0.0
BH-4-7 20 4.7 4.8 -0.1
QCP-10 15 0.4 0.4 0.0
QCP-15 15 2.1 2.0 0.1
QCP-20 15 8.8 8.5 0.3
QCP-25 15 26.9 26.0 0.9
QWH-10 10 0.3 0.2 0.0
QWH-15 10 1.4 1.3 0.1
QWH-20 10 6.1 5.6 0.5
QWH-25 10 17.5 16.4 1.0
bqwh-15-106 100 0.3 0.2 0.1
bqwh-18-141 100 0.6 0.6 0.1
driver 7 5.0 3.6 1.4
frb30-15 10 0.3 0.3 0.0
frb35-17 10 0.5 0.5 0.0
frb40-19 10 0.9 0.9 0.0
frb45-21 10 1.4 1.5 0.0
frb50-23 10 2.2 2.3 -0.1
frb53-24 10 2.8 2.9 -0.1
frb56-25 10 3.4 3.5 -0.2
frb59-26 10 4.2 4.5 -0.3
geom 100 0.7 0.7 0.0
hanoi 5 2.0 2.0 0.0
langford 4 1.4 1.3 0.1
lard 10 81.2 91.0 -9.7
marc 10 28.2 28.2 0.0
os-taillard-4 30 127.7 129.8 -2.2
os-taillard-5 30 1,056.1 1,059.1 -3.1

ra
n
d

2-30-15 50 0.3 0.3 0.0
2-30-15-fcd 50 0.3 0.3 0.0
2-40-19 50 0.9 0.9 0.0
2-40-19-fcd 50 0.9 0.9 0.0
2-50-23 50 2.2 2.3 -0.1
2-50-23-fcd 50 2.2 2.3 -0.1

rl
fa

p

Graphs 14 90.2 73.3 16.9
GraphsMod 12 33.3 31.7 1.6
Scens11 12 29.2 25.6 3.6
Scens 11 26.0 23.4 2.5
ScensMod 13 8.7 8.0 0.8
tightness0.1 100 0.2 0.2 0.0
tightness0.2 100 0.3 0.3 0.0
tightness0.35 100 0.5 0.4 0.0
tightness0.5 100 0.9 0.8 0.1
tightness0.65 100 1.4 1.2 0.3
tightness0.8 100 4.4 3.5 0.9
tightness0.9 100 28.6 25.5 3.0
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B.5 Benefits of Using Supports

Creating support structures uses up memory, but allows us, in general, to save on

CPU time. When no filtering is possible, recording supports is wasteful of both time

and space. We compare the performance of AC+σ-∆PPCsup and AC+σ-∆PPC in

Table B.20 (no filtering) and in Tables B.21 and B.22 (with filtering).

Table B.20: Drawbacks of using support structures on benchmarks with no filtering

# instances CPU time (s)

A
C
+
σ
-∆

P
P
C

A
C
+
σ
-∆

P
P
C

su
p

G
a
in

A
C
+
σ
-∆

P
P
C

A
C
+
σ
-∆

P
P
C

su
p

S
a
v
e
d

Total 523 523 436 -87 354.7 549.3 -194.6
coloring 22 22 22 0 2.6 3.7 -1.1

g
ra

p
h
C

o
lo

ri
n
g

hos 14 14 14 0 19.0 26.7 -7.7
full-insertion 40 40 32 -8 12.2 19.2 -7.0
k-insertion 32 32 32 0 8.5 12.8 -4.4
leighton-15 26 26 10 -16 61.8 96.0 -34.2
leighton-25 31 31 6 -25 39.9 60.9 -21.0
leighton-5 8 8 8 0 23.5 33.9 -10.4
mug 8 8 8 0 0.0 0.0 0.0
myciel 16 16 16 0 0.3 0.5 -0.1
register-fpsol 37 37 26 -11 20.7 34.2 -13.6
register-inithx 31 31 13 -18 17.0 29.3 -12.3
register-mulsol 47 47 47 0 13.0 19.1 -6.1
register-zeroin 31 31 31 0 16.3 24.5 -8.2
school 8 8 5 -3 81.2 128.4 -47.2
sgb-book 26 26 26 0 0.2 0.3 -0.1
sgb-games 4 4 4 0 0.3 0.5 -0.2
sgb-miles 42 42 37 -5 16.6 25.6 -9.0
sgb-queen 50 50 49 -1 18.1 29.4 -11.4

ra
n
d

23-Feb 10 10 10 0 0.5 0.6 -0.1
24-Feb 10 10 10 0 0.6 0.7 -0.1
25-Feb 10 10 10 0 0.7 0.9 -0.1
26-Feb 10 10 10 0 0.9 1.0 -0.2
27-Feb 10 10 10 0 1.1 1.3 -0.2
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Table B.21: Impact of using support structures on benchmarks with filtering (table 1 of 2)

# instances CPU time (s)

A
C
+
σ
-∆

P
P
C

A
C
+
σ
-∆

P
P
C

su
p

G
a
in

A
C
+
σ
-∆

P
P
C

A
C
+
σ
-∆

P
P
C

su
p

S
a
v
e
d

Total 1,765 1,765 1,757 -8 1,975.2 1,700.8 274.4
BH-4-13 7 7 7 0 79.4 100.2 -20.7
BH-4-4 10 10 10 0 0.2 0.2 0.0
BH-4-7 20 20 20 0 3.9 4.8 -0.9
QCP-10 15 15 15 0 0.3 0.4 -0.1
QCP-15 15 15 15 0 1.4 2.0 -0.6
QCP-20 15 15 15 0 5.5 8.5 -2.9
QCP-25 15 15 15 0 15.7 26.0 -10.3
QWH-10 10 10 10 0 0.2 0.2 0.0
QWH-15 10 10 10 0 1.0 1.3 -0.3
QWH-20 10 10 10 0 3.9 5.6 -1.7
QWH-25 10 10 10 0 10.3 16.4 -6.2
bqwh-15-106 100 100 100 0 0.3 0.2 0.0
bqwh-18-141 100 100 100 0 0.5 0.6 0.0

co
m

p
o
se

d

25-1-2 10 10 10 0 0.1 0.0 0.0
25-1-25 10 10 10 0 0.1 0.0 0.0
25-1-40 10 10 10 0 0.1 0.1 0.0
25-1-80 10 10 10 0 0.1 0.1 0.0
25-10-20 10 10 10 0 0.4 0.4 0.0
75-1-2 10 10 10 0 0.6 0.2 0.4
75-1-25 10 10 10 0 0.6 0.2 0.4
75-1-40 10 10 10 0 0.7 0.2 0.5
75-1-80 10 10 10 0 0.7 0.3 0.4
driver 7 7 7 0 4.5 3.6 0.9
frb30-15 10 10 10 0 0.3 0.3 0.0
frb35-17 10 10 10 0 0.5 0.5 0.0
frb40-19 10 10 10 0 0.8 0.9 -0.1
frb45-21 10 10 10 0 1.2 1.5 -0.2
frb50-23 10 10 10 0 1.8 2.3 -0.5
frb53-24 10 10 10 0 2.2 2.9 -0.6
frb56-25 10 10 10 0 2.7 3.5 -0.9
frb59-26 10 10 10 0 3.4 4.5 -1.1
geom 100 100 100 0 0.6 0.7 -0.1
hanoi 5 5 5 0 2.0 2.0 0.0
langford 4 4 4 0 1.2 1.3 -0.1
lard 10 10 10 0 58.7 91.0 -32.3
marc 10 10 10 0 25.0 28.2 -3.2
os-taillard-4 30 30 30 0 154.1 129.8 24.3
os-taillard-5 30 30 30 0 1,262.8 1,059.1 203.7

ra
n
d

2-30-15 50 50 50 0 0.3 0.3 0.0
2-30-15-fcd 50 50 50 0 0.3 0.3 0.0
2-40-19 50 50 50 0 0.7 0.9 -0.1
2-40-19-fcd 50 50 50 0 0.7 0.9 -0.1
2-50-23 50 50 50 0 1.8 2.3 -0.5
2-50-23-fcd 50 50 50 0 1.8 2.3 -0.5
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Table B.22: Impact of using support structures on benchmarks with filtering (table 2 of 2)

# instances CPU time (s)

A
C
+
σ
-∆

P
P
C

A
C
+
σ
-∆

P
P
C

su
p

G
a
in

A
C
+
σ
-∆

P
P
C

A
C
+
σ
-∆

P
P
C

su
p

S
a
v
e
d

rl
fa

p

Graphs 14 14 10 -4 141.1 73.3 67.8
GraphsMod 12 12 8 -4 34.8 31.7 3.1
Scens11 12 12 12 0 30.3 25.6 4.7
Scens 11 11 11 0 27.0 23.4 3.6
ScensMod 13 13 13 0 8.9 8.0 1.0
tightness0.1 100 100 100 0 0.2 0.2 -0.1
tightness0.2 100 100 100 0 0.2 0.3 -0.1
tightness0.35 100 100 100 0 0.4 0.4 -0.1
tightness0.5 100 100 100 0 0.8 0.8 0.0
tightness0.65 100 100 100 0 1.6 1.2 0.4
tightness0.8 100 100 100 0 6.8 3.5 3.3
tightness0.9 100 100 100 0 69.9 25.5 44.4
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B.6 Improving PC-8

All algorithms do the same filtering. AC+PC-8-Ordering has the smallest CPU

time.

Table B.23: Assessing improvements to PC-8 (table 1 of 2)

# instances CPU time (s)

A
C
+
P
C
-8

A
C
+
P
C
-8

+

A
C
+
P
C
-8
-F

l
a
g

A
C
+
P
C
-8
-O

r
d
e
r
in
g

A
C
+
P
C
-8

A
C
+
P
C
-8

+

A
C
+
P
C
-8
-F

l
a
g

A
C
+
P
C
-8
-O

r
d
e
r
in
g

Total: 2,288 2,264 2,261 2,260 2,266 27,038 29,088 29,446 26,549
BH-4-13 7 All instances complete 536.2 573.8 586.1 524.8
BH-4-4 10 All instances complete 0.5 0.5 0.5 0.5
BH-4-7 20 All instances complete 20.9 22.2 22.7 20.4
QCP-10 15 All instances complete 0.5 0.6 0.5 0.5
QCP-15 15 All instances complete 3.5 3.8 3.8 3.5
QCP-20 15 All instances complete 17.0 18.6 18.6 17.0
QCP-25 15 All instances complete 57.8 63.6 63.3 58.1
QWH-10 10 All instances complete 0.4 0.4 0.4 0.4
QWH-15 10 All instances complete 2.7 2.9 3.0 2.7
QWH-20 10 All instances complete 13.3 14.3 14.3 13.3
QWH-25 10 All instances complete 44.4 48.7 48.6 44.6
bqwh-15-106 100 All instances complete 1.0 1.1 1.1 1.0
bqwh-18-141 100 All instances complete 2.0 2.1 2.1 1.9
coloring 22 All instances complete 7.1 8.0 7.9 7.2

co
m

p
o
se

d

25-1-2 10 All instances complete 0.2 0.2 0.2 0.2
25-1-25 10 All instances complete 0.2 0.2 0.2 0.2
25-1-40 10 All instances complete 0.2 0.2 0.2 0.2
25-1-80 10 All instances complete 0.2 0.2 0.2 0.2
25-10-20 10 All instances complete 12.9 13.2 13.6 12.7
75-1-2 10 All instances complete 2.0 2.3 2.2 2.1
75-1-25 10 All instances complete 2.0 2.3 2.2 2.1
75-1-40 10 All instances complete 2.0 2.3 2.3 2.1
75-1-80 10 All instances complete 2.1 2.3 2.3 2.1
driver 7 All instances complete 94.6 81.2 87.3 80.7
frb30-15 10 All instances complete 0.4 0.4 0.4 0.4
frb35-17 10 All instances complete 0.7 0.7 0.7 0.7
frb40-19 10 All instances complete 1.2 1.2 1.2 1.2
frb45-21 10 All instances complete 2.0 2.1 2.1 2.0
frb50-23 10 All instances complete 3.1 3.3 3.3 3.1
frb53-24 10 All instances complete 3.9 4.2 4.2 3.9
frb56-25 10 All instances complete 4.9 5.3 5.3 4.9
frb59-26 10 All instances complete 6.1 6.6 6.6 6.1
geom 100 All instances complete 2.2 2.4 2.4 2.2

Results continue in next table.
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Table B.24: Assessing improvements to PC-8 (table 2 of 2)

# instances CPU time (s)
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hos 14 14 13 13 14 2,786.7 3,121.7 3,107.0 2,801.8
full-insertion 40 35 34 34 35 611.1 683.7 680.4 614.0
k-insertion 32 All instances complete 304.8 341.6 340.3 306.8
leighton-15 26 All instances complete 409.0 456.9 454.9 411.0
leighton-25 31 All instances complete 1,114.6 1,248.9 1,242.7 1,120.3
leighton-5 8 All instances complete 62.6 70.0 69.6 62.9
mug 8 All instances complete 0.4 0.4 0.4 0.4
myciel 16 All instances complete 3.1 3.5 3.5 3.2
register-fpsol 37 All instances complete 1,109.1 1,238.3 1,233.0 1,114.6
register-inithx 31 26 26 26 26 3,464.7 3,873.7 3,857.4 3,481.8
register-mulsol 47 All instances complete 105.1 116.6 116.1 105.6
register-zeroin 31 All instances complete 80.2 88.8 88.5 80.6
school 8 All instances complete 322.6 359.6 358.3 324.3
sgb-book 26 All instances complete 129.0 144.3 143.6 129.6
sgb-games 4 All instances complete 3.3 3.7 3.7 3.4
sgb-miles 42 All instances complete 101.3 111.9 111.4 101.7
sgb-queen 50 All instances complete 34.1 38.0 37.8 34.2
hanoi 5 All instances complete 3.7 3.7 3.7 3.7
langford 4 All instances complete 1.8 1.6 1.8 1.6
lard 10 All instances complete 67.7 72.7 72.4 67.9
marc 10 All instances complete 25.0 25.0 25.0 25.0
os-taillard-4 30 All instances complete 205.9 199.6 207.8 196.3
os-taillard-5 30 All instances complete 1,563.0 1,498.5 1,575.8 1,475.5

ra
n
d

23-Feb 10 All instances complete 0.5 0.6 0.6 0.5
24-Feb 10 All instances complete 0.6 0.7 0.7 0.7
25-Feb 10 All instances complete 0.8 0.8 0.8 0.8
26-Feb 10 All instances complete 0.9 1.0 1.0 0.9
27-Feb 10 All instances complete 1.1 1.2 1.2 1.1
2-30-15 50 All instances complete 0.3 0.3 0.4 0.3
2-30-15-fcd 50 All instances complete 0.3 0.3 0.4 0.3
2-40-19 50 All instances complete 1.1 1.2 1.2 1.1
2-40-19-fcd 50 All instances complete 1.1 1.2 1.2 1.1
2-50-23 50 All instances complete 3.0 3.2 3.2 3.0
2-50-23-fcd 50 All instances complete 3.0 3.2 3.2 3.0

rl
fa

p

Graphs 14 9 9 9 9 722.8 744.4 770.4 690.0
GraphsMod 12 10 9 9 9 3,270.0 3,534.3 3,532.0 3,228.2
Scens11 12 9 9 8 10 7,284.0 7,823.9 7,967.8 7,102.3
Scens 11 9 9 9 9 846.7 833.1 891.8 775.5
ScensMod 13 11 11 11 13 963.3 1,009.6 1,045.6 920.5
tightness0.1 100 All instances complete 0.2 0.2 0.2 0.2
tightness0.2 100 All instances complete 0.4 0.4 0.4 0.4
tightness0.35 100 All instances complete 0.7 0.8 0.8 0.7
tightness0.5 100 All instances complete 1.9 2.0 2.0 1.9
tightness0.65 100 All instances complete 5.9 5.4 5.7 5.3
tightness0.8 100 All instances complete 42.1 34.1 38.9 35.1
tightness0.9 100 All instances complete 529.9 492.7 531.6 487.0
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B.7 Improving PC-2001

All algorithms do the same filtering. They all complete the same number of instances

(i.e., 2,128). AC+PC-2001-Ordering has the smallest CPU time.

Table B.25: Assessing improvements to PC-2001 (table 1 of 2)

CPU time (s)

#
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n
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e
s
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0
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+
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Total 2,288 2,128 5,372 5,633 5,697 5,302
BH-4-13 7 7 561.4 592.0 597.0 556.4
BH-4-4 10 10 0.6 0.7 0.7 0.6
BH-4-7 20 20 22.4 23.8 24.4 22.1
QCP-10 15 15 0.6 0.6 0.6 0.6
QCP-15 15 15 4.4 4.7 4.7 4.4
QCP-20 15 15 22.1 23.7 23.7 22.0
QCP-25 15 15 78.0 83.8 83.9 78.1
QWH-10 10 10 0.5 0.5 0.5 0.4
QWH-15 10 10 3.4 3.6 3.6 3.4
QWH-20 10 10 17.4 18.4 18.5 17.3
QWH-25 10 10 60.4 64.5 64.7 60.3
bqwh-15-106 100 100 1.0 1.0 1.1 1.0
bqwh-18-141 100 100 2.0 2.1 2.1 1.9
coloring 22 22 7.6 8.4 8.4 7.6

co
m

p
o
se

d

25-1-2 10 10 0.2 0.2 0.2 0.2
25-1-25 10 10 0.2 0.2 0.2 0.2
25-1-40 10 10 0.2 0.2 0.2 0.2
25-1-80 10 10 0.2 0.2 0.2 0.2
25-10-20 10 10 11.1 11.1 11.9 10.9
75-1-2 10 10 2.2 2.4 2.4 2.2
75-1-25 10 10 2.2 2.4 2.4 2.2
75-1-40 10 10 2.2 2.4 2.4 2.2
75-1-80 10 10 2.2 2.4 2.4 2.2
driver 7 7 91.0 79.7 86.8 78.9
frb30-15 10 10 0.4 0.4 0.4 0.4
frb35-17 10 10 0.7 0.8 0.8 0.7
frb40-19 10 10 1.3 1.3 1.3 1.3
frb45-21 10 10 2.1 2.3 2.3 2.1
frb50-23 10 10 3.3 3.6 3.6 3.3
frb53-24 10 10 4.2 4.5 4.6 4.2
frb56-25 10 10 5.3 5.7 5.7 5.3
frb59-26 10 10 6.6 7.1 7.1 6.6
geom 100 100 2.4 2.6 2.6 2.4

Results continue in next table.
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Assessing improvements to PC-2001 (table 2 of 2)
CPU time (s)

#
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hos 14 4 249.2 277.3 277.4 249.3
full-insertion 40 25 67.5 75.1 75.1 67.3
k-insertion 32 28 68.4 75.9 76.0 68.4
leighton-15 26 14 248.5 276.4 276.5 248.5
leighton-25 31 8 200.1 222.7 222.8 200.1
leighton-5 8 8 66.1 73.5 73.5 66.1
mug 8 8 0.4 0.5 0.5 0.4
myciel 16 16 3.4 3.7 3.7 3.4
register-fpsol 37 11 198.7 220.3 220.2 198.6
register-inithx 31 3 144.3 160.4 160.2 144.4
register-mulsol 47 47 112.1 123.6 123.7 112.1
register-zeroin 31 31 85.7 94.3 94.3 85.7
school 8 8 340.6 377.7 377.7 340.6
sgb-book 26 22 25.3 28.1 28.1 25.3
sgb-games 4 4 3.6 4.0 4.0 3.6
sgb-miles 42 42 108.4 119.0 119.0 108.4
sgb-queen 50 50 36.2 40.1 40.1 36.2
hanoi 5 5 5.5 5.5 5.5 5.4
langford 4 4 1.7 1.6 1.8 1.6
lard 10 10 83.0 88.0 87.9 83.0
marc 10 10 37.8 37.9 37.9 37.8
os-taillard-4 30 30 153.5 155.1 156.1 153.0
os-taillard-5 30 30 1,236.7 1,248.0 1,253.5 1,229.6

ra
n
d

23-Feb 10 10 0.6 0.6 0.6 0.6
24-Feb 10 10 0.7 0.7 0.7 0.7
25-Feb 10 10 0.8 0.9 0.9 0.8
26-Feb 10 10 1.0 1.0 1.0 1.0
27-Feb 10 10 1.2 1.2 1.2 1.2
2-30-15 50 50 0.4 0.4 0.4 0.4
2-30-15-fcd 50 50 0.4 0.4 0.4 0.4
2-40-19 50 50 1.2 1.3 1.3 1.2
2-40-19-fcd 50 50 1.2 1.3 1.3 1.2
2-50-23 50 50 3.2 3.5 3.5 3.2
2-50-23-fcd 50 50 3.2 3.5 3.5 3.2

rl
fa

p

Graphs 14 8 272.7 271.5 278.4 263.1
GraphsMod 12 2 0.1 0.1 0.1 0.1
Scens11 12 0 - - - -
Scens 11 7 167.4 168.6 174.0 160.5
ScensMod 13 7 141.1 139.7 150.0 132.5
tightness0.1 100 100 0.2 0.2 0.2 0.2
tightness0.2 100 100 0.4 0.4 0.4 0.4
tightness0.35 100 100 0.8 0.9 0.9 0.8
tightness0.5 100 100 2.1 2.2 2.2 2.0
tightness0.65 100 100 5.9 5.8 6.0 5.5
tightness0.8 100 100 35.2 31.7 34.2 31.4
tightness0.9 100 100 335.4 331.4 349.0 320.1
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B.8 Comparing Main Algorithms

Table B.26: Comparing AC+DPC, AC+PC-2001-Ordering, AC+PC-8-Ordering,
σ-∆PPCsup, AC+sDC2, and sCDC1 (table 1 of 2)

# instances CPU time (s)

A
C
+
D
P
C

A
C
+
P
C
-2
0
0
1
-O

r
d
e
r
in
g

A
C
+
P
C
-8
-O

r
d
e
r
in
g

A
C
+
σ
-∆

P
P
C

s
u
p

A
C
+
sD

C
2

sC
D
C
1

A
C
+
D
P
C

A
C
+
P
C
-2
0
0
1
-O

r
d
e
r
in
g

A
C
+
P
C
-8
-O

r
d
e
r
in
g

A
C
+
σ
-∆

P
P
C

s
u
p

A
C
+
sD

C
2

sC
D
C
1

Total: 2,288 2,288 2,128 2,266 2,193 2,255 2,288 1,340 5,089 5,446 2,036 4,408 1,840
BH-4-13 7 All instances complete 37.1 556.4 524.8 100.2 653.7 182.3
BH-4-4 10 All instances complete 0.2 0.6 0.5 0.2 0.6 0.2
BH-4-7 20 All instances complete 2.3 22.1 20.4 4.8 27.1 8.1
QCP-10 15 All instances complete 0.2 0.6 0.5 0.4 0.3 0.1
QCP-15 15 All instances complete 0.8 4.4 3.5 2.0 2.9 0.5
QCP-20 15 All instances complete 2.7 22.0 17.0 8.5 18.1 1.5
QCP-25 15 All instances complete 7.6 78.1 58.1 26.0 61.8 3.5
QWH-10 10 All instances complete 0.1 0.4 0.4 0.2 1.1 0.1
QWH-15 10 All instances complete 0.5 3.4 2.7 1.3 8.5 0.4
QWH-20 10 All instances complete 1.9 17.3 13.3 5.6 43.6 1.3
QWH-25 10 All instances complete 5.2 60.3 44.6 16.4 93.7 2.9
bqwh-15-106 100 All instances complete 0.1 1.0 1.0 0.2 2.8 0.1
bqwh-18-141 100 All instances complete 0.2 1.9 1.9 0.6 6.2 0.2
coloring 22 All instances complete 1.0 7.6 7.2 3.7 2.4 0.2

co
m

p
o
se

d

25-1-2 10 All instances complete 0.0 0.2 0.2 0.0 0.2 0.1
25-1-25 10 All instances complete 0.0 0.2 0.2 0.0 0.2 0.1
25-1-40 10 All instances complete 0.1 0.2 0.2 0.1 0.2 0.1
25-1-80 10 All instances complete 0.1 0.2 0.2 0.1 0.2 0.1
25-10-20 10 All instances complete 0.2 10.9 12.7 0.4 9.0 0.7
75-1-2 10 All instances complete 0.2 2.2 2.1 0.2 1.2 0.3
75-1-25 10 All instances complete 0.2 2.2 2.1 0.2 1.3 0.3
75-1-40 10 All instances complete 0.2 2.2 2.1 0.2 1.3 0.3
75-1-80 10 All instances complete 0.3 2.2 2.1 0.3 1.3 0.3
driver 7 All instances complete 1.1 78.9 80.7 3.6 49.5 5.6
frb30-15 10 All instances complete 0.2 0.4 0.4 0.3 0.8 0.5
frb35-17 10 All instances complete 0.3 0.7 0.7 0.5 1.4 0.8
frb40-19 10 All instances complete 0.5 1.3 1.2 0.9 2.3 1.2
frb45-21 10 All instances complete 0.7 2.1 2.0 1.5 3.6 1.8
frb50-23 10 All instances complete 1.1 3.3 3.1 2.3 5.1 2.5
frb53-24 10 All instances complete 1.4 4.2 3.9 2.9 6.3 3.0
frb56-25 10 All instances complete 1.7 5.3 4.9 3.5 7.4 3.5
frb59-26 10 All instances complete 2.0 6.6 6.1 4.5 9.2 4.1
geom 100 All instances complete 0.5 2.4 2.2 0.7 2.5 1.1
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Table B.27: Comparing AC+DPC, AC+PC-2001-Ordering, AC+PC-8-Ordering,
σ-∆PPCsup, AC+sDC2, and sCDC1 (table 2 of 2)

# instances CPU time (s)
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hos 14 14 4 14 14 14 14 1.8 249.3 237.5 5.9 32.7 0.9
full-insertion 40 40 25 35 32 37 40 1.3 67.3 64.3 4.6 12.0 0.7
k-insertion 32 32 28 32 32 32 32 1.1 68.4 65.1 4.1 9.9 0.4
leighton-15 26 26 14 26 10 26 26 22.7 178.2 169.7 96.0 66.6 8.5
leighton-25 31 31 8 31 6 31 31 14.8 160.4 152.6 60.9 56.6 7.4
leighton-5 8 All instances complete 8.7 66.1 62.9 33.9 24.7 2.0
mug 8 All instances complete 0.0 0.4 0.4 0.0 0.1 0.0
myciel 16 All instances complete 0.2 3.4 3.2 0.5 1.7 0.3
register-fpsol 37 37 11 37 26 37 37 6.5 198.6 188.7 17.1 92.0 37.2
register-inithx 31 31 3 26 13 24 31 1.4 144.4 137.5 2.8 65.4 18.5
register-mulsol 47 All instances complete 8.5 112.1 105.6 19.1 55.4 23.0
register-zeroin 31 All instances complete 10.2 85.7 80.6 24.5 50.8 27.9
school 8 8 8 8 5 8 8 32.1 283.4 270.0 128.4 161.1 44.6
sgb-book 26 26 22 26 26 26 26 0.1 25.3 24.0 0.1 2.5 0.2
sgb-games 4 All instances complete 0.2 3.6 3.4 0.5 1.3 0.1
sgb-miles 42 42 42 42 37 42 42 9.1 66.4 62.2 25.6 41.4 23.0
sgb-queen 50 50 50 50 49 50 50 7.0 33.0 31.2 29.4 15.6 3.5
hanoi 5 All instances complete 2.0 5.4 3.7 2.0 2.0 2.0
langford 4 All instances complete 0.7 1.6 1.6 1.3 1.8 2.1
lard 10 All instances complete 35.9 83.0 67.9 91.0 34.1 32.3
marc 10 All instances complete 24.2 37.8 25.0 28.2 23.7 23.7
os-taillard-4 30 All instances complete 109.2 153.0 196.3 129.8 135.2 118.1
os-taillard-5 30 All instances complete 924.7 1,229.6 1,475.5 1,059.1 1,187.3 1,012.1

ra
n
d

23-Feb 10 All instances complete 0.4 0.6 0.5 0.6 0.9 0.9
24-Feb 10 All instances complete 0.5 0.7 0.7 0.7 1.1 1.1
25-Feb 10 All instances complete 0.6 0.8 0.8 0.9 1.3 1.3
26-Feb 10 All instances complete 0.7 1.0 0.9 1.0 1.6 1.6
27-Feb 10 All instances complete 0.8 1.2 1.1 1.3 1.9 1.9
2-30-15 50 All instances complete 0.1 0.4 0.3 0.3 0.7 0.5
2-30-15-fcd 50 All instances complete 0.1 0.4 0.3 0.3 0.8 0.5
2-40-19 50 All instances complete 0.4 1.2 1.1 0.9 2.2 1.2
2-40-19-fcd 50 All instances complete 0.4 1.2 1.1 0.9 2.2 1.2
2-50-23 50 All instances complete 1.1 3.2 3.0 2.3 4.9 2.6
2-50-23-fcd 50 All instances complete 1.1 3.2 3.0 2.3 4.9 2.6

rl
fa

p

Graphs 14 14 8 9 10 9 14 12.6 263.1 367.9 19.0 375.6 34.9
GraphsMod 12 12 2 9 8 8 12 0.1 0.1 0.1 0.1 1.0 1.0
Scens11 12 12 0 10 12 1 12 - - - - - -
Scens 11 11 7 9 11 9 11 13.9 160.5 141.4 14.6 78.5 16.0
ScensMod 13 13 7 13 13 12 13 1.7 132.5 142.1 2.2 100.8 4.8
tightness0.1 100 All instances complete 0.1 0.2 0.2 0.2 0.3 0.4
tightness0.2 100 All instances complete 0.1 0.4 0.4 0.3 0.6 0.4
tightness0.35 100 All instances complete 0.2 0.8 0.7 0.4 1.4 0.6
tightness0.5 100 All instances complete 0.4 2.0 1.9 0.8 3.6 1.1
tightness0.65 100 All instances complete 0.5 5.5 5.3 1.2 10.4 2.2
tightness0.8 100 All instances complete 1.6 31.4 35.1 3.5 69.3 12.6
tightness0.9 100 All instances complete 9.6 320.1 487.0 25.5 644.9 134.3
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Appendix C

Results of Randomly Generated

Problems

In this appendix, we include the results of our experiments on three randomly gener-

ated data sets:

• 〈50, 50, t, 20%〉

• 〈50, 25, t, 40%〉

• 〈50, 50, t, 40%〉

A summary and detailed description of the 〈50, 25, t, 20%〉 data set can be found

in Section 5.2.

C.1 〈50, 25, t, 40%〉

The complete results are summarized in Table C.1
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Table C.1: Comparing CPU times on random problems 〈50, 25, t, 40%〉
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C
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46.0% 3.6 11.5 17.3 14.5 15.6 15.0 13.8 15.8 14.8 13.7 15.3 14.2 35.4 13.2 13.2 23.2 16.5
48.0% 3.6 11.8 20.7 15.3 16.0 15.6 15.5 16.4 15.4 14.5 16.0 15.4 38.5 15.5 15.6 25.7 19.2
50.0% 3.6 12.3 25.9 16.1 17.0 17.3 17.8 17.8 16.8 16.2 18.1 18.1 49.8 19.3 19.1 29.2 24.2
52.0% 3.6 13.5 35.3 18.3 18.9 20.3 22.7 20.5 19.9 19.7 22.4 23.1 70.6 27.5 26.8 38.2 34.9
53.0% 3.7 19.6 73.5 27.3 27.7 29.9 49.3 29.8 34.6 35.4 38.1 39.8 157.9 72.8 71.5 94.0 97.0
53.5% 3.7 25.0 34.5 52.8 53.2 55.6 56.2 56.6 79.2 80.4 83.2 84.9 85.8 86.2 88.0 100.5 139.5
54.0% 3.7 19.0 17.0 45.3 46.0 48.6 30.4 49.4 65.6 66.3 70.0 71.4 41.0 41.3 43.8 46.0 80.3
56.0% 3.8 11.9 3.9 25.0 26.1 25.8 12.2 27.0 30.6 29.5 31.9 31.7 9.3 12.8 14.8 9.3 31.5
58.0% 3.9 8.9 1.6 11.4 12.2 11.4 9.3 12.3 11.2 10.4 11.2 10.4 3.7 6.7 7.8 5.4 10.0
60.0% 4.1 3.9 0.9 5.8 6.1 5.8 4.0 6.1 5.1 4.9 5.1 4.9 2.1 3.3 4.0 3.5 4.7
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Figure C.1: 〈50, 25, t, 40%〉: Comparing the best previously known algorithms
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Figure C.2: 〈50, 25, t, 40%〉: Comparing the most competitive algorithms
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Figure C.3: 〈50, 25, t, 40%〉: Improving PC-8
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Figure C.4: 〈50, 25, t, 40%〉: Improving PC-2001
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Figure C.5: 〈50, 25, t, 40%〉: Impact of the propagation queue and PEO
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Figure C.6: 〈50, 25, t, 40%〉: Impact of support structures
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C.2 〈50, 50, t, 20%〉

The complete results are summarized in Table C.2

Table C.2: Comparing CPU times on random problems 〈50, 50, t, 20%〉
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66.0% 9.3 31.2 39.4 43.5 71.2 69.5 75.1 75.8 47.9 49.0 68.5 70.6 69.9 76.5 80.8 151.0 101.8
68.0% 9.6 33.6 51.9 51.9 80.5 79.9 87.4 91.0 63.4 65.0 88.0 83.5 86.4 96.0 105.7 205.9 137.2
70.0% 9.8 40.8 93.6 81.2 103.6 104.7 114.5 120.8 117.9 121.5 154.6 121.4 130.2 142.4 158.6 357.4 266.4
71.0% 10.1 69.4 104.5 156.4 241.5 242.5 251.6 259.6 264.8 278.2 300.6 365.8 387.3 388.9 416.8 420.1 700.8
72.0% 10.3 49.8 25.3 60.6 184.9 184.4 201.8 199.6 86.0 81.6 82.9 265.4 268.5 290.0 296.6 108.4 263.4
74.0% 11.0 33.2 7.8 33.3 109.2 103.1 98.4 93.4 33.3 31.3 19.5 121.7 115.8 106.1 102.6 34.4 102.6
76.0% 11.8 20.2 2.5 20.8 49.6 46.5 49.6 46.6 20.1 22.2 13.2 45.1 42.1 45.0 42.0 12.3 38.2
78.0% 12.4 8.8 1.4 9.1 22.1 21.1 22.1 21.1 9.6 10.1 9.4 17.9 16.9 17.8 16.9 7.9 15.8
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Figure C.7: 〈50, 50, t, 20%〉: Comparing the best previously known algorithms

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

66.0% 68.0% 70.0% 72.0% 74.0% 76.0% 78.0% 

Ti
m

e 
(s

) 

Tightness 

AC+sDC2 
AC+PC-8+ 
AC+PC2001+ 
sCDC1 
AC+σ-ΔPPC-sup 
AC+DPC 

Figure C.8: 〈50, 50, t, 20%〉: Comparing the most competitive algorithms
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Figure C.9: 〈50, 50, t, 20%〉: Improving PC-8
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Figure C.10: 〈50, 50, t, 20%〉: Improving PC-2001
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Figure C.11: 〈50, 50, t, 20%〉: Impact of the propagation queue and PEO
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Figure C.12: 〈50, 50, t, 20%〉: Impact of support structures
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C.3 〈50, 50, t, 40%〉

The complete results are summarized in Table C.3

Table C.3: Comparing CPU times on random problems 〈50, 50, t, 40%〉
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62.0% 16.8 55.0 73.4 76.2 79.2 77.2 75.9 74.1 81.3 82.8 75.0 110.4 92.8 91.7 199.3 147.8 113.7
64.0% 17.2 59.0 83.0 84.6 91.2 91.9 90.8 92.3 103.6 111.4 90.5 147.6 128.8 125.8 282.0 190.6 164.1
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66.0% 18.0 124.8 191.3 192.2 198.8 205.8 300.2 326.3 326.4 358.6 364.6 410.1 804.8 809.2 875.8 1,020.9 1,110.7
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70.0% 20.0 39.5 54.5 57.9 57.6 54.1 53.6 50.1 53.5 50.1 41.3 5.3 29.3 36.9 13.0 26.8 46.8
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Figure C.13: 〈50, 50, t, 40%〉: Comparing the best previously known algorithms
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Figure C.14: 〈50, 50, t, 40%〉: Comparing the most competitive algorithms
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Figure C.15: 〈50, 50, t, 40%〉: Improving PC-8
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Figure C.16: 〈50, 50, t, 40%〉: Improving PC-2001
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Figure C.17: 〈50, 50, t, 40%〉: Impact of the propagation queue and PEO
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Figure C.18: 〈50, 50, t, 40%〉: Impact of support structures
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