On Path Consistency for Binary Constraint Satisfaction Problems

Christopher G. Reeson
University of Nebraska - Lincoln, creeson@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss
Part of the Artificial Intelligence and Robotics Commons, and the Computer Engineering Commons

[^0]
ON PATH CONSISTENCY FOR BINARY CONSTRAINT SATISFACTION PROBLEMS

by

Christopher G. Reeson

A THESIS

Presented to the Faculty of
The Graduate College at the University of Nebraska
In Partial Fulfilment of Requirements
For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

December, 2016

ON PATH CONSISTENCY FOR BINARY CONSTRAINT SATISFACTION PROBLEMS

Christopher G. Reeson, M. S.

University of Nebraska, 2016

Adviser: Berthe Y. Choueiry

Constraint satisfaction problems (CSPs) provide a flexible and powerful framework for modeling and solving many decision problems of practical importance. Consistency properties and the algorithms for enforcing them on a problem instance are at the heart of Constraint Processing and best distinguish this area from other areas concerned with the same combinatorial problems. In this thesis, we study path consistency (PC) and investigate several algorithms for enforcing it on binary finite CSPs. We also study algorithms for enforcing consistency properties that are related to PC but are stronger or weaker than PC.

We identify and correct errors in the literature and settle an open question. We propose two improvements that we apply to the well-known algorithms PC-8 and PC-2001, yielding $\mathrm{PC}-8^{+}$and $\mathrm{PC}-2001^{+}$. Further, we propose a new algorithm for enforcing partial path consistency, $\sigma-\Delta-\mathrm{PPC}$, which generalizes features of the wellknown algorithms DPC and PPC. We evaluate over fifteen different algorithms on both benchmark and randomly generated binary problems to empirically demonstrate the effectiveness of our approach.

ACKNOWLEDGMENTS

I would like to thank my adviser, Professor Choueiry, without whom this work would not have been possible. She went above and beyond to make herself available to complete this work. Her insight and advise have been essential, and I very much appreciate her efforts.

I would also like to thank Robert Woodward who created much of the infrastructure needed to run the empirical evaluations. His help troubleshooting problems as they arose was invaluable.

Thanks are also due to the members of my examination committee, Professor Wei and Professor Revesz. Also, Tony Schneider, who has already taken the first step towards implementing these ideas in search.

Finally, I would like to thank my parents for their support.

This research was partially supported by a National Science Foundation (NSF) grant No. RI-111795 and No. RI-1619344. Experiments were conducted on the equipment of the Holland Computing Center at UNL.

Contents

Contents iv
List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Motivation 1
1.2 Contributions 3
1.3 Outline of Thesis 4
2 Background 5
2.1 Constraint Satisfaction Problem: Problem Definition 5
2.2 Solving CSPs 7
2.3 Graphical Representation 8
2.4 Global Consistency Properties 9
2.5 Local Consistency Properties 10
2.5.1 Basic Local Consistency Properties for Binary CSPs 11
2.5.1.1 Arc Consistency (AC) 11
2.5.1.2 Path Consistency (PC) 11
2.5.1.3 k-Consistency and Strong k-Consistency 13
2.5.1.4 Directional Path Consistency (DPC) 14
2.5.2 Other Local Consistency Properties for Binary CSPs 15
2.5.2.1 Conservative Path Consistency (CPC) 15
2.5.2.2 Partial Path Consistency (PPC) 15
2.5.2.3 Singleton Arc Consistency (SAC) 16
2.5.2.4 Dual Consistency (DC) and Conservative Dual Con- sistency (CDC) 17
2.5.3 Comparing Local Consistency Properties 18
2.6 Algorithms for Local Consistency 19
2.7 An Algorithm for Arc Consistency: AC-2001 20
2.8 Algorithms Related to Path Consistency 23
2.8.1 Basic Path Consistency Algorithm (PC-2) 27
2.8.2 Directional Path Consistency (DPC) 30
2.8.3 Iterating Over Variables' Domains (PC-8) 32
2.8.4 Introducing Support Bookkeeping (PC-2001) 35
2.8.5 Partial Path Consistency (BSH-PPC) 37
2.8.6 Strong Conservative Dual Consistency (sCDC1) 40
2.8.7 Strong Dual Consistency (SDC2) 43
2.9 Path Consistency Algorithms in Practice 46
3 Gaps in the Literature 48
3.1 On the Definition of PPC 48
3.2 CPC and PPC on Triangulated Graphs 50
3.2.1 Incorrect Example 50
3.2.2 Incorrect Proposition 51
3.3 Imprecision in the Pseudocode of BSH-PPC 51
3.4 Comparing PC and PPC 53
4 New Algorithms for (Partial) Path Consistency 56
4.1 Correcting BSH-PPC (PPC+AP) 57
4.2 Exploiting Triangles ($\triangle \mathrm{PPC}$) 60
$4.3 \quad \sigma-\Delta \mathrm{PPC}$ 63
4.3.1 Idea and Data Structures 63
4.3.2 The σ - $\Delta \mathrm{PPC}$ Algorithm 64
4.3.3 Support Structures in $\sigma-\Delta \mathrm{PPC}$ 67
4.3.4 Reflections on PPC 69
4.4 $\mathrm{PC}-8^{+}$and $\mathrm{PC}-2001^{+}$ 69
4.4.1 PC-8-Flag 70
4.4.2 PC-8-Ordering 72
4.4.3 PC-8 ${ }^{+}$ 74
4.5 Time and Space Complexities 75
5 Empirical Evaluations 78
5.1 Benchmark Problems 78
5.1.1 Problem Characteristics 78
5.1.2 Experimental Set-Up 81
5.1.3 Pre-processing with Arc Consistency 83
5.1.4 Propagation Queue: Edges versus Triangles 85
5.1.5 Propagating Along a PEO 86
5.1.6 Comparing Types of Supports 86
5.1.7 Benefits of Using Supports 88
5.1.8 Improving PC-8 88
5.1.9 Improving PC-2001 89
5.1.10 Comparing Main Algorithms 90
5.2 Randomly Generated Problems 92
5.2.1 Problem Characteristics 92
5.2.2 Results 93
5.2.2.1 $\langle 50,25, t, 20 \%\rangle$ 93
5.3 Discussion 97
6 Conclusions and Future Work 99
A Data Structures 101
B Results of Benchmark Problems 104
B. 1 Pre-processing with Arc Consistency 104
B. 2 Propagation Queue: Edges versus Triangles 117
B. 3 Propagating Along a PEO 119
B. 4 Comparing Types of Supports 121
B. 5 Benefits of Using Supports 123
B. 6 Improving PC-8 126
B. 7 Improving PC-2001 128
B. 8 Comparing Main Algorithms 130
C Results of Randomly Generated Problems 132
C. $1\langle 50,25, t, 40 \%\rangle$ 132
C. $2\langle 50,50, t, 20 \%\rangle$ 137
C. $3\langle 50,50, t, 40 \%\rangle$ 141
Bibliography 145

List of Figures

2.1 A simple, binary CSP with three variables 8
2.2 The constraint network of a simple binary CSP and a PEO of this network 9
2.3 Two simple CSPs that are PC, but not AC 13
2.4 Illustrating DPC: for every tuple $(a, b) \in R_{i, j}$ (the dashed line), there is a value $c \in D_{k}$ so that $(a, c) \in R_{i, k}$ and $(b, c) \in R_{j, k}$ (the solid lines) 14
2.5 Partial order of some consistency properties [Lecoutre et al., 2011] 19
2.6 A three-variable example 22
2.7 Processing \mathcal{Q}, updated values are shown in gray 22
2.8 Left: Dashed lines in the constraint graph denote universal constraints. Right: The relations of the CSP. PC-2 removes the tuples are shown in gray 28
2.9 A five-variable example 31
2.10 A triangulation of the constraint graph 31
2.11 The ordering used 32
2.12 After running DPC 32
2.13 Left: A CSP where the dashed line denotes a universal constraint Right: Rela-tions of the CSP with tuples removed by PC-8's lines 1-6 shown in gray . . . 342.14 Left: Seeking supports for $(2, *) \in R_{1,3}$ in D_{2}. Right: Seeking supports for$(2, *) \in R_{1,4}$ in D_{2}. 35
2.15 PC-8 seeks supports for $(*, 3) \in R_{1,4}$ in D_{2}. The tuple $(1,3)$ is removed from$R_{1,4}$ because no support exists in D_{2}.35
2.16 Path-consistent relations of the CSP in Figure 2.8 after execution of PC-8 35
2.17 Left: A triangulated graph, the dashed line is a universal constraint. Right: The relations of the CSP. BSH-PPC removes the tuples shown in gray 38
2.18 Left: The CSP before processing. Middle: Relations as revised by sCDC1, removed tuples are shown in gray. Right: The CSP after processing 42
3.1 A CSP that is PPC because every closed graph-path is PC 49
3.2 An incorrect example with the inconsistent two-length path $\left(V_{2}, V_{3}, V_{5}\right)$ [Lecoutre et al., 2011] 50
3.3 A triangulated CSP that is CPC, but not PPC 50
3.4 BSH-PPC cannot detect the inconsistency of the instantiation $\left\{\left(V_{2}, 1\right),\left(V_{1}, 1\right)\right\}$ along the path $\left(V_{2}, V_{1}, V_{3}, V_{1}\right)$ if it considers only triangles with distinct vertices 52
3.5 A binary CSP that is PPC but not CDC 53
3.6 Enforcing PC uncovers the inconsistency of the CSP, but enforcing PPC yields no filtering 54
3.7 Relations of the CSP in Figure 3.6 54
4.1 A triangulated graph, the dashed line denotes a universal constraint 62
4.2 The relations. Gray tuples are removed by $\triangle \mathrm{PPC}$ 62
4.3 A triangulated graph, a peo, tri [•], and TrianglesEdge[•] 64
4.4 The support structure for tuples in $\sigma-\Delta \mathrm{PPC}$ 67
4.5 Three variables of a CSP 70
$5.1\langle 50,25, t, 20 \%\rangle$: Comparing the best previously known algorithms 94
$5.2\langle 50,25, t, 20 \%\rangle$: Comparing the most competitive algorithms 94
$5.3\langle 50,25, t, 20 \%\rangle$: Improving PC-8 95
$5.4\langle 50,25, t, 20 \%\rangle$: Improving PC-2001 95
$5.5\langle 50,25, t, 20 \%\rangle$: Impact of the propagation queue and PEO 96
$5.6\langle 50,25, t, 20 \%\rangle$: Impact of support structures 96
A. 1 The data structures. 101
C. $1\langle 50,25, t, 40 \%\rangle$: Comparing the best previously known algorithms 134
C. $2\langle 50,25, t, 40 \%\rangle$: Comparing the most competitive algorithms 134
C. $3\langle 50,25, t, 40 \%\rangle$: Improving PC-8 135
C. $4\langle 50,25, t, 40 \%\rangle$: Improving PC-2001 135
C. $5\langle 50,25, t, 40 \%\rangle$: Impact of the propagation queue and PEO 136
C. $6\langle 50,25, t, 40 \%\rangle$: Impact of support structures 136
C. $7\langle 50,50, t, 20 \%\rangle$: Comparing the best previously known algorithms 138
C. $8\langle 50,50, t, 20 \%\rangle$: Comparing the most competitive algorithms 138
C. $9\langle 50,50, t, 20 \%\rangle$: Improving PC-8 139
C. $10\langle 50,50, t, 20 \%\rangle$: Improving PC-2001 139
C. $11\langle 50,50, t, 20 \%\rangle$: Impact of the propagation queue and PEO 140
C. $12\langle 50,50, t, 20 \%\rangle$: Impact of support structures 140
C. $13\langle 50,50, t, 40 \%\rangle$: Comparing the best previously known algorithms 142
C. $14\langle 50,50, t, 40 \%\rangle$: Comparing the most competitive algorithms 142
C. $15\langle 50,50, t, 40 \%\rangle$: Improving PC-8 143
C. $16\langle 50,50, t, 40 \%\rangle$: Improving PC-2001 143
C. $17\langle 50,50, t, 40 \%\rangle$: Impact of the propagation queue and PEO 144
C. $18\langle 50,50, t, 40 \%\rangle$: Impact of support structures 144

List of Tables

2.1 Summary of the studied consistency properties 18
2.2 List of the studied algorithms 23
2.3 Properties of the studied algorithms 25
2.4 Data structures and propagation queues for the studied algorithms 26
2.5 PC-2's first 12 steps on the example in Figure 2.8 29
4.1 Summary of the introduced algorithms 56
4.2 Data structures and propagation queues of the introduced algorithms 57
4.3 Properties of the introduced algorithms 76
5.1 Characteristics of the benchmark problems (table 1 of 3) 79
5.2 Characteristics of the benchmark problems (table 2 of 3) 80
5.3 Characteristics of the benchmark problems (table 3 of 3) 81
5.4 Summary of effect of pre-processing with AC 84
5.5 Enforcing AC before DPC 84
5.6 A propagation queue made of edges $(\mathrm{AC}+\mathrm{PPC}+\mathrm{AP})$ vs triangles $(\mathrm{AC}+\Delta \mathrm{PPC})$ 85
5.7 Propagating along a PEO: $\mathrm{AC}+\Delta \mathrm{PPC}$ vs $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}$ 86
5.8 Comparing the two types of support structures 87
5.9 Impact of using support structures 88
5.10 Improvements to PC-8 89
5.11 Improvements to PC-2001 90
5.12 Comparing the best performing algorithms 91
5.13 Comparing CPU times on random problems $\langle 50,25, t, 20 \%\rangle$ 93
B. 1 Enforcing arc consistency as a pre-processing step 105
B. 2 Enforcing AC before DPC. AC+DPC and DPC complete the same number of instances 106
B. 3 Enforcing AC before PC-2. AC+PC-2 completes more instances than PC-2 and consistently saves time 107
B. 4 Enforcing AC before PC-8. AC+PC-8 completes more instances than PC-8 and generally saves time 108
B. 5 Enforcing AC before PC-8-Ordering. AC+PC-8-Ordering completes more instances than PC-8-Ordering and consistently saves time 109
B. 6 Enforcing AC before PC-2001. AC+PC-2001 completes more instances than $\mathrm{AC}+\mathrm{PC}-2001$ and consistently saves time 110
B. 7 Enforcing AC before PC-2001-Ordering. AC+PC-2001-Ordering completes more instances than PC-2001-Ordering and consistently saves time 111
B. 8 Enforcing AC before PPC+AP. Both algorithms complete 1,837 instances but pre-processing with AC generally saves time 112
B. 9 Enforcing AC before \triangle PPC. Both algorithms complete 1,837 instances but pre- processing with AC generally saves time 112
B. 10 Enforcing AC before $\sigma-\Delta \mathrm{PPC}$. Both algorithms complete 1,837 instances but pre-processing with AC generally saves time 113
B. 11 Enforcing AC before $\sigma-\Delta \mathrm{PPC}^{\text {sup } 2001}$. Pre-processing with AC allows us to complete more instances and saves time 114
B. 12 Enforcing AC before $\sigma-\Delta \mathrm{PPC}^{s u p}$. Pre-processing with AC allows us to complete more instances and generally saves time 115
B. 13 Enforcing AC before sDC2. Pre-processing with AC allows us to complete more instances and consistently saves time 116
B. $14 \mathrm{AC}+\mathrm{PPC}+\mathrm{AP}$ vs $\mathrm{AC}+\Delta \mathrm{PPC}$ (table 1 of 2) 117
B. $15 \mathrm{AC}+\mathrm{PPC}+\mathrm{AP}$ vs $\mathrm{AC}+\triangle \mathrm{PPC}$ (table 2 of 2) 118
B. 16 Following a PEO: $\mathrm{AC}+\Delta \mathrm{PPC}$ vs $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}($ table 1 of 2) 119
B. 17 Following a PEO: $\mathrm{AC}+\Delta \mathrm{PPC}$ vs $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}($ table 2 of 2) 120
B. 18 Comparing the two styles of support structures when no filtering occurs 121
B. 19 Comparing the two styles of support structures on benchmarks when filtering occurs 122
B. 20 Drawbacks of using support structures on benchmarks with no filtering 123
B. 21 Impact of using support structures on benchmarks with filtering (table 1 of 2) 124
B. 22 Impact of using support structures on benchmarks with filtering (table 2 of 2) 125
B. 23 Assessing improvements to PC-8 (table 1 of 2) 126
B. 24 Assessing improvements to PC-8 (table 2 of 2) 127
B. 25 Assessing improvements to PC-2001 (table 1 of 2) 128
B. 26 Comparing AC+DPC, AC+PC-2001-Ordering, AC+PC-8-Ordering, σ - $\Delta \mathrm{PPC}^{\text {sup }}, \mathrm{AC}+\mathrm{sDC} 2$, and sCDC1 (table 1 of 2) 130
B. 27 Comparing AC+DPC, AC+PC-2001-Ordering, $\mathrm{AC}+\mathrm{PC}-8$-Ordering, σ - $\Delta \mathrm{PPC}^{\text {sup }}, \mathrm{AC}+\mathrm{sDC} 2$, and SCDC1 (table 2 of 2) 131
C. 1 Comparing CPU times on random problems $\langle 50,25, t, 40 \%\rangle$ 133
C. 2 Comparing CPU times on random problems $\langle 50,50, t, 20 \%\rangle$ 137
C. 3 Comparing CPU times on random problems $\langle 50,50, t, 40 \%\rangle$ 141

List of Algorithms

AC-2001 (P) Adapted from [Bessière et al., 2005] 20
AC-2001-CORE $(\mathcal{P}, \mathcal{X})$ Adapted from [Bessière et al., 2005] 21
Revise-2001 $\left(V_{i}, V_{j}\right)$ Adapted from [Bessière et al., 2005] 21
PC-2 (\mathcal{P}) Adapted from [Dechter, 2003] 27
$\operatorname{Revise}-3\left(V_{i}, V_{j}, V_{k}\right)$ Adapted from [Dechter, 2003] 28
$\operatorname{DPC}(\mathcal{P}$, ord $)$ Adapted from [Dechter and Pearl, 1988] 30
Filter- $\operatorname{Dom}\left(D_{i}, \mathcal{C}_{i}\right)$ 31
PC-8(\mathcal{P}) Adapted from [Chmeiss and Jégou, 1998] 33
PC-2001(P) Adapted from [Bessière et al., 2005] 36
BSH-PPC $(\mathcal{P}) \quad$ Adapted from [Bliek and Sam-Haroud, 1999] 38
$\operatorname{sCDC1}(\mathcal{P})$ Adapted from [Lecoutre et al., 2007a] 40
$\operatorname{sCDC} 1-\operatorname{ChEck}\left(\mathcal{P}, V_{x}\right)$ Adapted from [Lecoutre et al., 2007a] 41
sDC2 ${ }^{(\mathcal{P})}$ Adapted from [Lecoutre et al., 2007b] 44
$\operatorname{sDC} 2-\operatorname{ChEck}\left(\mathcal{P}, V_{x}\right.$, count $) \quad$ Adapted from [Lecoutre et al., 2007b] 45
FC-2001 $\left(\mathcal{P}, V_{x}\right) \quad$ Adapted from [Lecoutre et al., 2007b] 45
$\mathrm{PPC}+\mathrm{AP}(\mathcal{P})$ 58
Propagate- $\operatorname{APs}\left(\mathcal{A}_{\text {points }}, \mathcal{Q}_{A P}\right)$ 59
Filter-Rels $\left(\mathcal{C}_{i}, D_{i}\right)$ 59
Revise- $3+\mathrm{AP}\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)$ 60
20 $\Delta \mathrm{PPC}(\mathcal{P})$ 61
21 $\operatorname{Revise-Triangle}\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)$ 62
22 Init-Triangle-Vector $(\mathcal{P}$, peo, tri $[\cdot])$ 65
$23 \sigma-\Delta \mathrm{PPC}(\mathcal{P}$, рео $)$ 66
24 PC-8-Flag (\mathcal{P}) 71
25 Revise-PC-8-Flag $\left(V_{i}, V_{j}, V_{k}\right.$, flag $)$ 72
26 PC-8-Ordering (\mathcal{P}) 74
27 PC- $8^{+}(\mathcal{P})$ 75

Chapter 1

Introduction

Constraint satisfaction problems (CSPs) provide a flexible and powerful framework for modeling many decision problems of practical importance. In order to find a solution to a CSP, a solver must, in general, incorporate search because CSPs are NP-complete. A solver will usually run consistency algorithms as a pre-processing step and/or during search in order to reduce the cost of the search. Consistency algorithms operate by removing values from the domains of the variables and/or tuples from the relations of the constraints. As a result, they reduce the size of the search space.

In this thesis, we study the recent developments of the algorithms for path consistency (PC) and propose new efficient variations of these algorithms, thus improving on the state of the art.

1.1 Motivation

While consistency algorithms are at the heart of constraint processing, most of the research has focused on developing efficient algorithms for enforcing arc consistency
on binary CSPs and generalized arc consistency (GAC) on non-binary CSPs. This situation remains the case even today with new generic algorithms for GAC being proposed in the main conferences. Algorithms for enforcing path consistency (PC) have been considered too expensive to use in practice. Three main trends have revived our interest in path consistency:

1. First, Bliek and Sam-Haroud [1999] proposed an algorithm for enforcing partial path consistency (PPC) that operates on arbitrary binary finite-constraints. Xu and Choueiry [2003] proposed the Δ STP algorithm which applied the same idea as DPC to efficiently solve the simple temporal problem. Planken et al. [2008] proposed the $\mathrm{P}^{3} \mathrm{C}$ algorithm, which improved the worst case performance of Δ STP. Long et al. [2016] proposed DPC+, which specialized $\mathrm{P}^{3} \mathrm{C}$ for distributive spacio-temporal constraints. They generalized the scalar operators to relational ones (i.e., addition and minimum to composition and intersection, respectively). Δ STP and its improved versions have become a staple for processing time in planning problems [Yorke-Smith, 2005] and in multi-agent systems [Boerkoel Jr. and Durfee, 2013]. It is important to return to PPC, the original algorithm by Bliek and Sam-Haroud [1999] in order to correct it and improve its practical performance.
2. Second, in recent years, the Constraint Systems Laboratory has developed new algorithms for relational consistency that operate by filtering constraints (e.g., $\mathrm{R}(*, m) \mathrm{C}$ using PerTuple [Karakashian et al., 2010; 2013], $\mathrm{R}(*, m) \mathrm{C}$ using PerFB [Schneider et al., 2014], R(*,m)C using AllSol [Geschwender et al., 2016], RNIC [Woodward et al., 2011; 2012], Living-STR [Woodward et al., 2014]). Those algorithms were shown to effectively solve many difficult benchmark problems. However, the properties enforced by those algorithms are based
on inverse consistency and are, in general, not comparable to PPC. Before we can empirically compare the two 'flavors' of consistency property, we need to study the PPC property and its proposed algorithm in detail. ${ }^{1}$
3. Finally, directional path consistency can be viewed as an efficient approximation of the more general variable-elimination mechanism [Dechter, 2003]. In fact, resolution steps that generate new binary clauses have become a key component of successful SAT solvers [Eén and Biere, 2005].

The above three reasons are the main motivations that justify our efforts.

1.2 Contributions

Below, we list the contributions of this thesis:

1. We provide a concise and uniform description of the main known algorithms for path consistency and its approximations (both weak and strong).
2. We identify and correct errors that have appeared in the literature concerning the definition of the property of partial path consistency, the algorithm for enforcing it, and a proposition about it reported in the literature.
3. We settle an open question that appeared in the literature concerning whether or not partial path consistency and path consistency are equivalent with respect to detecting the insolubility of a CSP.
4. We introduce two improvements to the well-known PC-8 algorithm [Chmeiss and Jégou, 1998], yielding a new algorithm, which we call PC-8+.

[^1]5. We study the known PPC algorithm [Bliek and Sam-Haroud, 1999], and propose two new variations, namely $\Delta \mathrm{PPC}$ and $\sigma-\Delta \mathrm{PPC}$.
6. We conduct extensive empirical evaluations on both on randomly generated CSPs and on benchmark problems to compare the performance of over 15 algorithms: PC-2 [Mackworth and Freuder, 1984], DPC [Dechter and Pearl, 1988], PC-8 [Chmeiss and Jégou, 1998], PC-2001 [Bessière et al., 2005], PPC+AP (a correction of PPC [Bliek and Sam-Haroud, 1999]), sCDC1 [Lecoutre et al., 2007a], sDC2 [Lecoutre et al., 2007b], PC-8-Flag, PC-8-Ordering, PC8^{+}, PC-2001-Flag, PC-2001-Ordering, PC-2001 ${ }^{+}, \Delta \mathrm{PPC}, ~ \sigma-\Delta \mathrm{PPC}$, and $\sigma-\Delta \mathrm{PPC}^{s u p}$.

Finally, we identify directions for future research.

1.3 Outline of Thesis

This thesis is structured as follows. Chapter 2 introduces CSPs, discusses main consistency properties, and reviews in great detail various algorithms for enforcing local consistencies. Chapter 3 highlights errors that we have encountered in the literature. Chapter 4 discusses the new algorithms that we introduce. Chapter 5 discusses our empirical evaluations. Finally, Chapter 6 concludes this thesis.

Chapter 2

Background

In this chapter, we first define constraint satisfaction problems and review their representation in terms of constraint graphs. Then, we discuss local consistency properties and some selected consistency-enforcing algorithms. Finally, we give a comprehensive review of the main path-consistency algorithms that have appeared in the literature.

2.1 Constraint Satisfaction Problem: Problem Definition

A constraint satisfaction problem (CSP) is defined as $\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})$, where \mathcal{V} is a set of variables, \mathcal{D} is a set of domains, where a domain is a set of values that a variable can take, and \mathcal{C} is a set of constraints restricting the combinations of values that variables can take at the same time. A solution to a CSP is an assignment of values to variables such that all the constraints are satisfied. Deciding the existence of a solution is NP-complete.

Each variable $V_{i} \in \mathcal{V}$ has a finite domain $D_{i} \in \mathcal{D}$, which is a set of values that the variable can take. A variable-value pair $(\mathrm{vvp})\left(V_{i}, a\right)$ is the association of a variable
V_{i} to a value $a \in D_{i}$. Each variable is constrained by a subset of the constraints in \mathcal{C}.
Each constraint $C_{i} \in \mathcal{C}$ is defined as $C_{i}=\left\langle\mathcal{S}_{i}, R_{i}\right\rangle$, where

- The scope of a constraint $C_{i}, \operatorname{scope}\left(C_{i}\right) \subseteq \mathcal{V}$, is the set of variables to which C_{i} applies. The arity of C_{i} is the cardinality of the scope, $\left|\operatorname{scope}\left(C_{i}\right)\right|$.
- The relation of $C_{i}, R_{i}=\operatorname{rel}\left(C_{i}\right)$, is defined as a subset of the Cartesian product of the domains of the variables in $\operatorname{scope}\left(C_{i}\right)$. Relations are defined either in intension (i.e., as a set builder) or in extension as a set of tuples (e.g., table constraints, tries, or multi-valued decision diagrams).

A tuple $t_{i} \in \operatorname{rel}\left(C_{i}\right)$ specifies a combination of values that are either allowed (i.e., support) or forbidden (i.e., conflict or no-good) by C_{i}. A constraint is satisfied when every variable in its scope is assigned a value from its respective domain that is allowed by the constraint. A universal binary constraint is a constraint between two variables that allows all combinations of values in the domains of the two variables.

The neighbors of a variable are those variables that appear with the variable in the scope of some constraint.

In this thesis, we restrict ourselves to CSPs with binary constraints (i.e., arity $2)$ and to table constraints specified with supports (i.e., positive table constraints). Further, we denote the constraint defined over the two variables V_{i} and V_{j} as $C_{i, j}$ and assume that $C_{i, j}=C_{j, i}$.

Example 2.1.1 provides a simple example of a CSP instance.

Example 2.1.1. Consider the following CSP:

- $\mathcal{V}=\left\{V_{1}, V_{2}, V_{3}\right\}$
- $D_{1}=D_{2}=D_{3}=\{1,2,3\}$
- $\forall i, j \in\{1,2,3\}, i \neq j, R_{i, j}=\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}$ is the set of support tuples.
- A solution to this CSP is $\left\{\left(V_{1}, 1\right),\left(V_{2}, 3\right),\left(V_{3}, 2\right)\right\}$.

2.2 Solving CSPs

CSPs are typically solved with some combination of backtrack search and constraint propagation.

Backtrack search is a systematic, exhaustive exploration of the search space obtained by instantiating variables. Search proceeds by building a solution incrementally, instantiating one variable at a time and ensuring that the partial solution is consistent (i.e., does not break any of the constraints defined over the variables in the partial solution). When a partial solution cannot be extended to the next considered variable, the last assignment is undone by backtracking and a new instantiation is attempted. Because search proceeds in a depth-first manner, i.e., maintaining a single partial solution, it requires linear space. However, it requires exponential time in the number of variables of the CSP (i.e., $\mathcal{O}\left(d^{n}\right)$ where d is the maximum domain size and n the number of variables). The order in which the variables are considered for instantiation, the instantiation order, may greatly affect the performance of backtrack search. Conventional wisdom dictates to instantiate the 'most constrained' variable first.

Constraint propagation is the process of locally enforcing some level of consistency on combinations of variables (or constraints) and propagating the effect of such an operation across the network until reaching a fixpoint (see below for more details).

2.3 Graphical Representation

A CSP is often graphically represented as a constraint network (CN). ${ }^{1}$ A constraint network represents the variables as vertices and the constraints as edges connecting the variables in their scopes. Figure 2.1 shows the constraint graph of the CSP from Example 2.1.1.

Figure 2.1: A simple, binary CSP with three variables

An ordering of a graph is a total ordering of the vertices of a graph. The parents of a vertex are the neighbors that appear before it in the ordering. The width of a vertex is the number of its parents. The width of an ordering is the maximum vertex width. The width of a graph, denoted w, is the minimum width of all its possible orderings, and can be found in quadratic time in the number of vertices in the graph [Freuder, 1982].

A graph is triangulated, or chordal, iff every cycle of length four or more in the graph has a chord, which is an edge between two non-consecutive vertices. To triangulate a graph, chords are added to chordless cycles of length four or more. The added chords are called fill edges. Minimizing the number of fill edges is NP-hard [Yannakakis, 1981]. A triangulated graph (i.e., moralized graph) is obtained when each pair of parents of every vertex are connected (i.e., moralizing the vertex by marrying its parents), whose width is called the induced width, denoted w^{*}, of the ordering used.

[^2]A perfect elimination ordering (PEO) of a graph is "an ordering of the vertices of the graph such that, for each vertex V, V and the neighbors of V that occur after V in the order form a clique. A graph is chordal iff it has a perfect elimination ordering" [Fulkerson and Gross, 1965]. Figure 2.2 shows a PEO of a graph with six vertices.

Figure 2.2: The constraint network of a simple binary CSP and a PEO of this network

The induced width of a graph is the minimum induced width of all orderings. Finding a graph's induced width and its ordering is NP-hard [Arnborg, 1985]. However, a good approximation of a graph's induced width is the width of a PEO of the graph triangulated using the Min-Fill heuristic [Kjærulff, 1990]. Note that if a graph is triangulated, the width of the graph is the width any PEO of the graph.

2.4 Global Consistency Properties

The main global consistency properties are consistency, minimality, and decomposability.

- Consistency is simply another term for solvability of the CSP.
- Montanari [1974] introduced Minimality as the "central problem." Stated informally, the minimal network network is the one where the relations are as tight as can be, that is, each tuple in a relation can be extended to a solution to the CSP. We give the formal definition as formulated by Dechter [2003].

Definition 2.4.1. Minimality [Dechter, 2003]. Given a $\operatorname{CSP} \mathcal{P}_{0}$, let $\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{l}\right\}$ be the set of all networks equivalent to \mathcal{P}_{0}. Then the minimal network M of \mathcal{P}_{0} is defined by $M\left(\mathcal{P}_{0}\right)=\cap_{i=1}^{l} \mathcal{P}_{i}$.

Gottlob [2011] showed that not only is enforcing minimality NP-complete but also that solving a minimal CSP remains NP-complete.

- Montanari [1974] also introduced decomposability, which guarantees that every assignment of any number of variables in the CSP that is consistent with the constraints defined over these variables can be extended to a complete solution of the CSP.

Decomposability guarantees backtrack-free search and it also guarantees minimality. In turn, minimality guarantees consistency, which is NP-complete.

2.5 Local Consistency Properties

A CSP with at least one solution is solvable (or consistent). Because determining the consistency of a CSP is NP-complete, and thus likely intractable, significant research has been invested in defining local consistency properties. Local consistency properties are defined on sub-problems of the original problem that have a pre-determined fixed size (e.g., two variables or two constraints). Because the size is fixed, enforcing local consistencies is usually tractable. Below, we review some basic local consistency
properties. Then, we recall more 'advanced' consistency properties that are relevant to our research.

2.5.1 Basic Local Consistency Properties for Binary CSPs

We first recall the most basic and common local consistency properties for binary CSPs, namely, arc consistency, path consistency, directional path consistency, and (strong) k-consistency.

2.5.1.1 Arc Consistency (AC)

A problem is arc consistent when every value in the domain of each variable is consistent with all of the variable's neighbors. Meaning that, given a variable that has taken a value, at least one value can be found in each of the variable's neighbors' domains that is allowed by the constraint between the two variables.

Definition 2.5.1. Arc Consistency (AC) [Mackworth, 1977]. Given a CSP \mathcal{P}, with $C_{i, j} \in \mathcal{C}$ a variable V_{i} is arc consistent relative to V_{j} iff for every value $a \in D_{i}$ there exists some value $b \in D_{j}$ such that $(a, b) \in R_{i, j}$. The $\operatorname{arc}\left(V_{i}, V_{j}\right)$ is arc consistent iff V_{i} is arc consistent relative to V_{j} and V_{j} is arc consistent relative to $V_{i} . \mathcal{P}$ is said to be arc consistent iff all of its arcs are arc consistent.

2.5.1.2 Path Consistency (PC)

Montanari [1974] originally introduced the property of path consistency as a tractable approximation of minimality (see Section 2.4). Mackworth [1977] later restated it as follows:

- A path in a CSP is a sequence $\left(V_{i}, \ldots, V_{j}\right)$ of variables of \mathcal{P} s.t. $V_{i} \neq V_{j}$. Note that two adjacent variables in the path do not have to have an edge between them in the constraint network.
- An instantiation $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ is consistent along a path $\left(V_{i}, \ldots, V_{j}\right)$ if $(a, b) \in$ $R_{i, j}$ and there exists a value for each variable in the path that satisfies the binary constraints along the path. Note that a variable can appear multiple times in the path and may take different values each time. ${ }^{2}$ Further, if there is no constraint in \mathcal{C} for two variables adjacent in the path, then the (binary) universal constraint applies.
- A path $\left(V_{i}, \ldots, V_{j}\right)$ is consistent iff $\forall(a, b) \in R_{i, j},\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ is a consistent instantiation.
- A CSP is path consistent iff every path in its constraint graph is consistent.

Because enumerating all paths is not practical, the following equivalent definition of path consistency is used. It requires that every arc consistent assignment to any two variables can be extended to every third variable in a consistent way.

Definition 2.5.2. Path Consistency (PC) [Dechter, 2003]. Given a CSP \mathcal{P}, the variables V_{i} and V_{j} are path consistent relative to a variable V_{k} iff for every consistent assignment $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ there is some value $c \in D_{k}$ such that both the assignments $\left\{\left(V_{i}, a\right),\left(V_{k}, c\right)\right\}$ and $\left\{\left(V_{j}, b\right),\left(V_{k}, c\right)\right\}$ are consistent. \mathcal{P} is path consistent iff $\forall V_{i}, V_{j}, V_{k} \in \mathcal{V}$ with $k \neq i \neq j, V_{i}$ and V_{j} are path consistent relative to V_{k}.

Given a consistent assignment $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ and a value $c \in D_{k}$ such that both the assignments $\left\{\left(V_{i}, a\right),\left(V_{k}, c\right)\right\}$ and $\left\{\left(V_{j}, b\right),\left(V_{k}, c\right)\right\}$ are consistent, we say that the

[^3]value $c \in D_{k}$ as well as the tuples $(a, c) \in R_{i, k}$ and $(b, c) \in R_{j, k}$ support the tuple $(a, b) \in R_{i, j}$

Example 2.1.1 (see also Figure 2.1) shows a CSP that is both arc consistent and path consistent. Note that path consistency does not imply arc consistency. The two examples in Figure 2.3 are path consistent but are not arc consistent.

Figure 2.3: Two simple CSPs that are PC, but not AC

For the left example, the variable V_{3} is not arc consistent relative to V_{1} since there does not exist a value $a \in D_{1}$ such that $(a, 1) \in R_{1,3} \cdot{ }^{3}$ For the right example, all three variables are mutually arc inconsistent. For example, V_{1} is not arc consistent relative to V_{2} since there does not exist a value $a \in D_{2}$ such that $(2, a) \in R_{1,2}$.

2.5.1.3 k-Consistency and Strong k-Consistency

We recall the k-consistency property in a similar manner to arc consistency (which is 2-consistency) and path consistency (which is 3-consistency) [Freuder, 1978]. Basically, a problem is k-consistent if every consistent assignment to every combination of $k-1$ variables can be consistently extended to any $k^{t h}$ variable.

Note that k-consistency does not guarantee $(k-1)$-consistency (e.g., see Figure 2.3). The property strong k-consistency guarantees that the problem is j-consistent for all $j \leq k$. Further, strong n-consistency, where n is the number of variables in the CSP, is equivalent to decomposability, which was defined in Section 2.4.

[^4]Importantly, Freuder showed that any network with width j that is $(j+1)$ consistent can be solved in a backtrack-free manner [1982].

2.5.1.4 Directional Path Consistency (DPC)

Dechter and Pearl [1988] defined the notion of directional k-consistency along a given ordering of the variables as a restricted form of k-consistency. We recall the definition of directional path consistency, for which we will give an algorithm in Section 2.8.2.

Definition 2.5.3. Directional Path Consistency (DPC) [Dechter and Pearl, 1988]. A CSP is directional path consistent relative to order ord $=\left(V_{1}, V_{2}, \ldots, V_{n}\right)$, iff for every $k \geq i, j$, the two variables V_{i} and V_{j} are path consistent relative to V_{k}.

In Figure 2.4, we illustrate DPC, which guarantees that every consistent assignment to V_{i} and V_{j} can be extended to V_{k}.

Figure 2.4: Illustrating DPC: for every tuple $(a, b) \in R_{i, j}$ (the dashed line), there is a value $c \in D_{k}$ so that $(a, c) \in R_{i, k}$ and $(b, c) \in R_{j, k}$ (the solid lines)

Importantly, Dechter and Pearl showed that, when given a CSP, \mathcal{P}, and an ordering, ord, of the variables of \mathcal{P}, if \mathcal{P} is strong DPC along ord and the induced width of ord is two, then \mathcal{P} can be solved in a backtrack-free manner along ord [1988].

2.5.2 Other Local Consistency Properties for Binary CSPs

In recent years, new local consistency properties have been introduced in the literature. We recall conservative path consistency [Debruyne, 1999] and partial path consistency [Bliek and Sam-Haroud, 1999], which were introduced the same year. We also recall singleton arc consistency [Debruyne and Bessière, 1997], dual consistency [Lecoutre et al., 2007a], and conservative dual consistency [Lecoutre et al., 2007a].

2.5.2.1 Conservative Path Consistency (CPC)

We first recall conservative path consistency, which is a restriction of path consistency to the existing constraints of a problem. If there is no $C_{i, j} \in \mathcal{C}$ then V_{i} and V_{j} are always conservative path consistent.

Definition 2.5.4. Conservative Path Consistency (CPC) [Debruyne, 1999]. An assignment to two variables V_{i} and V_{j} such that there is no constraint $C_{i, j} \in \mathcal{C}$ is conservative path consistent. If $\exists C_{i, j} \in \mathcal{C}$, the assignment $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ is conservative path consistent iff $(a, b) \in R_{i, j}$ and $\forall V_{i}, V_{j}, V_{k} \in \mathcal{V}$ with $k \neq i \neq j, C_{i, k}, C_{j, k} \in \mathcal{C} \Rightarrow$ $\exists c \in D_{k}$ such that $(a, c) \in R_{i, k}$ and $(b, c) \in R_{j, k}$. A constraint $C_{i, j} \in \mathcal{C}$ is conservative path consistent iff for all the tuples $(a, b) \in R_{i, j}$, the assignment $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ is conservative path consistent. A CSP is conservative path consistent iff it is arc consistent and $\forall C_{i, j} \in \mathcal{C}, C_{i, j}$ is conservative path consistent.

2.5.2.2 Partial Path Consistency (PPC)

We now recall partial path consistency [Bliek and Sam-Haroud, 1999], which was introduced in the same year as CPC. As we argue in Section 3.1, the definition of PPC in the original paper is incomplete and likely flawed. Below, we report the
definition of PPC stated by Lecoutre et al. [2011]. Lecoutre et al. first introduce the definition of graph-path and closed (graph-)path respectively as follows:

- A graph-path of a constraint graph is a path $\left(V_{1}, \ldots, V_{k}\right)$ of the graph s.t. $\forall i \in$ $\{1, \ldots, k-1\}, \exists C_{i, i+1} \in \mathcal{C}$. Informally, the graph-path can only use existing edges in the graph.
- A closed (graph-)path of a constraint graph is a (graph-)path $\left(V_{1}, \ldots, V_{k}\right)$ of the graph s.t. $\exists C_{1, k} \in \mathcal{C}$. Informally, there must be an edge between the two endpoints of the path. Note that a closed graph-path is a cycle in the constraint graph.

Definition 2.5.5. Partial Path Consistency (PPC) [Lecoutre et al., 2011]. A CSP is partially path consistent iff every closed graph-path of its constraint graph is consistent.

We introduce the following proposition, not reported in the literature:

Proposition 2.5.1. DPC defined along any ordering is strictly weaker than PPC.

Sketch Proof: PPC guarantees that every closed path of any length is path consistent. DPC requires that the edges of the triangles along the ordering be consistent but not those along the reverse ordering.

2.5.2.3 Singleton Arc Consistency (SAC)

Debruyne and Bessière [1997] introduced singleton consistency. It takes advantage of the fact that if a $\operatorname{vvp}\left(V_{i}, a\right)$ is consistent (i.e., appears in a solution), then the CSP obtained by restricting the domain of V_{i} to the singleton a is consistent (i.e., has a solution). We denote the CSP obtained by assigning the value a to the variable V_{i}
as $\left.\mathcal{P}\right|_{D_{i}=\{a\}}=\left.\mathcal{P}\right|_{V_{i}=a}$. Debruyne and Bessière [1997] noticed that if $\left.\mathcal{P}\right|_{D_{i}=a}$ is inconsistent, then a can safely be removed from D_{i}. A singleton test ${ }^{4}$ consists of assigning a value to a given variable and enforcing a consistency algorithm. If the algorithm fails, then the value is removed because it cannot appear in any solution. Singleton consistency can be combined with any second consistency property. Enforcing the second consistency property on every CSP obtained after the singleton assignment will not yield an inconsistent problem. For example, singleton arc consistency is defined relative to arc consistency:

Definition 2.5.6. Singleton Arc Consistency (SAC) [Bessiere, 2006]. A CSP is singleton arc consistent iff $\forall V_{i} \in \mathcal{V}, a \in D_{i},\left.P\right|_{D_{i}=\{a\}}$ is not arc inconsistent.

2.5.2.4 Dual Consistency (DC) and Conservative Dual Consistency (CDC)

Lecoutre et al. [2011] introduced dual consistency and conservative dual consistency. Dual consistency is defined using arc consistency:

Definition 2.5.7. Dual Consistency (DC) [Lecoutre et al., 2011]. Given a CSP, \mathcal{P}, an assignment $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ is dual consistent iff $\left(V_{j}, b\right) \in A C\left(\left.\mathcal{P}\right|_{V_{i}=a}\right)$ and $\left(V_{i}, a\right) \in$ $A C\left(\left.\mathcal{P}\right|_{V_{j}=b}\right) . \mathcal{P}$ is dual consistent iff every consistent assignment $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ is dual consistent.

Conservative dual consistency distinguishes between pairs of variables that are connected and those that are not:

Definition 2.5.8. Conservative Dual Consistency (CDC) [Lecoutre et al., 2007a]. Given a CSP, \mathcal{P}, an assignment $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ is conservative dual consistent iff

[^5]$\left(C_{i, j} \notin \mathcal{C}\right) \vee\left(\left(V_{j}, b\right) \in A C\left(\left.\mathcal{P}\right|_{V_{i}=a}\right) \wedge\left(V_{i}, a\right) \in A C\left(\left.\mathcal{P}\right|_{V_{j}=b}\right)\right) . \mathcal{P}$ is conservative dual consistent iff every consistent assignment $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ is conservative dual consistent.
PC, DC, and CDC can be combined with AC to yield the corresponding strong consistency properties $\mathrm{sPC}, \mathrm{sDC}$, and sCDC .

Proposition 2.5.2. Strong Conservative Dual Consistency (sCDC) is equivalent to SAC+CDC [Lecoutre et al., 2011].

2.5.3 Comparing Local Consistency Properties

Table 2.1 summarizes the consistency properties discussed in Sections 2.4 and 2.5.
Table 2.1: Summary of the studied consistency properties

Acronym	Consistency property	Original paper
	Minimality	[Montanari, 1974]
	Decomposability	[Montanari, 1974]
	(strong) k-consistency	[Freuder, 1978]
AC	Arc Consistency	[Mackworth, 1977]
PC	Path Consistency	[Montanari, 1974]
sPC (AC \wedge PC $)$	strong Path Consistency	[Freuder, 1978]
DPC	Directional Path Consistency	[Dechter and Pearl, 1988]
PPC	Partial Path Consistency	[Bliek and Sam-Haroud, 1999]
CPC	Conservative Path Consistency	[Debruyne, 1999]
DC	Dual Consistency	[Lecoutre et al., 2011]*
sDC $(A C \wedge D C)$	strong Dual Consistency	[Lecoutre et al., 2011]*
CDC	Conservative Dual Consistency	[Lecoutre et al., 2011]*
SAC	Singleton Arc Consistency	[Debruyne and Bessière, 1997]
sCDC $(S A C \wedge C D C)$	strong Conservative Dual Consistency	[Lecoutre et al., 2011]*

* Definitions were introduced by Lecoutre et al. [2007a; 2007b] and later corrected by Lecoutre et al. [2011].

Using the terminology introduced by Debruyne and Bessière [1997], we say that a local consistency property $L C$ is stronger than another local consistency property $L C^{\prime}$ if in any CSP where $L C$ holds, $L C^{\prime}$ also holds. Further, $L C$ is strictly stronger than
$L C^{\prime}$ if $L C$ is stronger than the $L C^{\prime}$ and there exists at least one CSP in which $L C^{\prime}$ holds but $L C$ does not. Finally, $L C$ and $L C^{\prime}$ are equivalent when $L C$ is stronger than $L C^{\prime}$ and vice versa [Bessière et al., 2008]. In practice, when a consistency property is stronger (respectively, weaker) than another, enforcing the former never yields less (respectively, more) pruning than enforcing the latter on the same problem does.

Figure 2.5 shows the relationships between the local consistency properties relevant to this thesis. The proofs can be found in [Lecoutre et al., 2011]. Each arrow points from a property that is stronger to a property that is weaker.

Figure 2.5: Partial order of some consistency properties [Lecoutre et al., 2011]

2.6 Algorithms for Local Consistency

A consistency algorithm enforces a given consistency property on a CSP. Typically, a consistency enforcing algorithm operates by either removing values from the variables' domains (i.e., domain filtering) or by removing tuples from the constraints' relations (i.e., relation filtering). Some algorithms may do both domain and relation filtering. The local consistency property being enforced guarantees that any value (or tuple) removed does not participate in any solution to the CSP. Thus, enforcing a given consistency property never sacrifices solutions.

More than one algorithm may exist for enforcing a given consistency property. For example, arc consistency is enforced by AC-1 [Mackworth and Freuder, 1984], AC-3 [Mackworth and Freuder, 1984], AC-4 [Mohr and Henderson, 1986], and AC-2001 [Bessière et al., 2005]. Similarly, path consistency is enforced by PC-1 [Montanari, 1974], PC-2 [Mackworth and Freuder, 1984], PC-8 [Chmeiss and Jégou, 1998], and PC-2001 [Bessière et al., 2005].

Algorithms that enforce the same consistency property may use different bookkeeping data-structures to avoid repeated consistency checks (e.g., whether or not a tuple appears in a relation), thus trading space for time.

2.7 An Algorithm for Arc Consistency: AC-2001

In this section, we discuss AC-2001 (Algorithm 1) [Bessière and Régin, 2001; Zhang and Yap, 2001; Bessière et al., 2005], currently the best and most widely used generic algorithm for enforcing arc consistency.

```
Algorithm 1: AC-2001(P) Adapted from [Bessière et al., 2005]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\)
    Output: Arc consistent \(\mathcal{P}\)
    foreach \(V_{i} \in \mathcal{V}\) do
        foreach \(V_{j} \in \mathcal{V}\) such that \(C_{i, j} \in \mathcal{C}\) do
            foreach \(a \in D_{i}\) do \(\operatorname{Last}\left(\left(V_{i}, a\right), V_{j}\right) \leftarrow \emptyset\)
    \(\mathrm{AC}-2001-\operatorname{CORE}(\mathcal{P}, \mathcal{V})\)
    return \(\mathcal{P}\)
```

This algorithm requires that the problem's domains be totally ordered. AC-2001 uses the function Next on the ordered domains. $\operatorname{Next}\left(D_{i}, a\right)$ yields the value after a in D_{i}. When a is nil, $\operatorname{Next}\left(D_{i}, n i l\right)$ returns the first element in D_{i}. When a is the last element in $D_{i}, \operatorname{Next}\left(D_{i}, a\right)$ returns nil. Like its predecessors, (e.g., AC-1

```
Algorithm 2: AC-2001- \(\operatorname{Core}(\mathcal{P}, \mathcal{X}) \quad\) Adapted from [Bessière et al., 2005]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C}), \mathcal{X} \subseteq \mathcal{V}\)
    Output: Arc consistent \(\mathcal{P}\)
    \(\mathcal{Q} \leftarrow \emptyset\)
    foreach \(V_{i} \in \mathcal{X}\) do
        foreach \(V_{j} \in \mathcal{V}\) such that \(C_{i, j} \in \mathcal{C}\) do \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(V_{j}, V_{i}\right)\right\}\)
    while \(\mathcal{Q}\) do
        \(\left(V_{i}, V_{j}\right) \leftarrow \operatorname{Pop}(\mathcal{Q})\)
        if Revise-2001 \(\left(V_{i}, V_{j}\right)\) then
            foreach \(V_{k} \in \mathcal{V}\) such that \(C_{i, k} \in \mathcal{C} \wedge(k \neq j) \wedge(k \neq i)\) do
                        \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(V_{k}, V_{i}\right)\right\}\)
    return \(\mathcal{P}\)
```

```
Algorithm 3: Revise-2001 \(\left(V_{i}, V_{j}\right) \quad\) Adapted from [Bessière et al., 2005]
    Input: \(V_{i}, V_{j} \in \mathcal{V}\)
    Output: true if \(D_{i}\) has been revised, false otherwise
    revised \(\leftarrow\) false
    foreach \(a \in D_{i}\) do
        \(b \leftarrow \operatorname{Last}\left(\left(V_{i}, a\right), V_{j}\right)\)
        if \(b \notin D_{j}\) then
            \(b \leftarrow \operatorname{Next}\left(D_{j}, b\right)\)
            while \(b\) do
            if \((a, b) \in R_{i, j}\) then
                \(\operatorname{Last}\left(\left(V_{i}, a\right), V_{j}\right) \leftarrow b\)
                break
            \(b \leftarrow \operatorname{Next}\left(D_{j}, b\right)\)
            if not \(b\) then
                \(D_{i} \leftarrow D_{i} \backslash\{a\}\)
                revised \(\leftarrow\) true
14 return revised
```

and AC-3), AC-2001 loops through all ordered pairs of variables, $\left(V_{i}, V_{j}\right)$, that share a constraint $C_{i, j}$ and revises the domain of V_{i} given $R_{i, j}$. REVISE-2001 (Algorithm 3) updates D_{i} by removing the values that have no supporting value in D_{j} given $R_{i, j}$.

The particularity of AC-2001 is that for every value a in D_{i} it keeps track of the
first value in D_{j} that supports $\left(V_{i}, a\right)$. As long as the supporting value remains in the domain of D_{j}, the support is 'active,' and reused in future calls to REVISE-2001. The data structure used for this bookkeeping is $\operatorname{Last}\left(\left(V_{i}, a\right), V_{j}\right)$. In practice, this simple structure saves many constraint-checking operations. Its space complexity is $\mathcal{O}(e n d)$, where e is the number of binary constraints, n is the number of variables in the problem, and d is the maximal domain size.

Figure 2.6: A threevariable example

	Revising \ldots					
	$\left(V_{2}, V_{1}\right)$	$\left(V_{1}, V_{2}\right)$	$\left(V_{3}, V_{2}\right)$	$\left(V_{2}, V_{3}\right)$	$\left(V_{1}, V_{2}\right)$	
$\left(\left(V_{1}, 2\right), V_{2}\right)$	nil	nil	1	1	1	
$\left(\left(V_{1}, 3\right), V_{2}\right)$	nil	nil	1	1	1	
$\left(\left(V_{2}, 1\right), V_{1}\right)$	nil	2	2	2	2	
$\left(\left(V_{2}, 2\right), V_{1}\right)$	nil	3	3	3	3	
$\left(\left(V_{2}, 1\right), V_{3}\right)$	nil	nil	nil	nil	nil	
$\left(\left(V_{2}, 2\right), V_{3}\right)$	nil	nil	nil	nil	nil	
$\left(\left(V_{3}, 1\right), V_{2}\right)$	nil	nil	nil	2	1	

Figure 2.7: Processing \mathcal{Q}, updated values are shown in gray

We illustrate the operation of AC-2001 on the example shown in Figure 2.6. First, AC-2001 initializes the contents of Last to nil. The first column of Figure 2.7 shows the elements of Last and the second column shows the initial nil values. As the algorithm proceeds, Revise-2001 updates Last elements to new values as illustrated in columns 3-7 of Figure 2.7. The figure highlights values that are updated by showing them in gray.

AC-2001-CORE (Algorithm 2) initializes the propagation queue, \mathcal{Q}, to: $\mathcal{Q} \leftarrow$ $\left\{\left(V_{2}, V_{1}\right),\left(V_{1}, V_{2}\right),\left(V_{3}, V_{2}\right),\left(V_{2}, V_{3}\right)\right\}$. It then passes each queue element to Revise2001. Figure 2.7 has a column for each element of \mathcal{Q} and the updates to Last are shown there.

When Revise-2001 is passed $\left(V_{2}, V_{3}\right)$, it finds no support for $\left(V_{2}, 1\right)$ in D_{3}. As a
result, Revise-2001 removes the value 1 from the domain of D_{2} and returns true. AC-2001-CORE adds $\left(V_{1}, V_{2}\right)$ to the queue.

For the last element of the queue, $\left(V_{1}, V_{2}\right)$, Last has non-nil values for the two elements we are concerned with (see the top two rows of Figure 2.7). The Last value for the element $\left(\left(V_{1}, 2\right), V_{2}\right)$ is 1 , but $1 \notin D_{2}$. Thus, Revise-2001 searches for a new support starting from $\operatorname{Next}\left(D_{2}, 1\right)$, but none is found and 2 is removed from D_{1}. Next, Revise-2001 seeks a support for $\left(V_{1}, 3\right)$ in V_{2}, but we already saw that $\operatorname{Last}\left(\left(V_{1}, 3\right), V_{2}\right)=1 \notin D_{2}$. This time, it finds a new support, the value 2 , and updates $\operatorname{Last}\left(\left(V_{1}, 3\right), V_{2}\right) \leftarrow 2$. At this point, the queue becomes empty and AC-2001 terminates successfully.

Throughout this thesis, we enforce AC using the AC-2001 algorithm.

2.8 Algorithms Related to Path Consistency

We now discuss several algorithms that enforce or approximate path consistency. The algorithms are listed in Table 2.2; their properties are summarized in Table 2.3; their data structures and propagation queues are given in Table 2.4.

Table 2.2: List of the studied algorithms

Algorithm	Section	Original publication
PC-2	Section 2.8.1	[Mackworth and Freuder, 1984]
DPC	Section 2.8.2	[Dechter and Pearl, 1988]
PC-8	Section 2.8.3	[Chmeiss and Jégou, 1998]
PC-2001	Section 2.8.4	[Bessière et al., 2005]
BSH-PPC	Section 2.8.5	[Bliek and Sam-Haroud, 1999]
sCDC1	Section 2.8.6	[Lecoutre et al., 2007a]
sDC2	Section 2.8.7	[Lecoutre et al., 2007b]

Although more algorithms for path consistency are reported in the literature (e.g.,

PC-1 [Montanari, 1974], PC-3 [Mohr and Henderson, 1986], PC-4 [Han and Lee, 1988], PC-5 and PC-5++ [Singh, 1996], PC-6 [Chmeiss, 1996], PC-7 [Chmeiss and Jégou, 1996]), we choose to study only the latest ones as well as PC-.$-^{5}$
sCDC1 and SDC2 were not formally introduced as path-consistency algorithms but instead as dual-consistency algorithms. In fact, they do not operate by composing constraints (like all the other PC-algorithms do), but instead they operate by running an arc-consistency algorithm.

In Table 2.3, we identify the following properties of the chosen algorithms: the constraint graph on which they operate, their pruning power with respect to PC-2, and their time and space complexity. Notice that sCDC1 is the only algorithm that does not modify the constraint network but instead operates on the original graph.

[^6]Table 2.3: Properties of the studied algorithms

	Constraint graph	Enforces consistency property	Pruning w.r.t. PC-2	Time	Complexity Space Data structures	
PC-1	Completed	Strong PC	More	$\mathcal{O}\left(n^{5} d^{5}\right)$	$\mathcal{O}\left(n^{2} d^{2}\right)$	$\mathcal{O}\left(d^{2}\right)$
PC-2	Completed	PC	Same	$\mathcal{O}\left(n^{3} d^{5}\right)$	$\mathcal{O}\left(n^{2} d^{2}\right)$	$\mathcal{O}\left(n^{3}\right)$
DPC	Triangulated	Strong DPC	Less	$\mathcal{O}\left(n^{3} d^{3}\right)$	$\mathcal{O}\left(w_{\text {pee }}^{2} n d^{3}\right)$	$\mathcal{O}\left(e^{\prime} d^{2}\right)$
$\mathcal{O}(1)$						
PC-8	Completed	PC	Same	$\mathcal{O}\left(n^{3} d^{4}\right)$	$\mathcal{O}\left(n^{2} d^{2}\right)$	$\mathcal{O}\left(n^{2} d\right)$
PC-2001	Completed	PC	Same	$\mathcal{O}\left(n^{3} d^{3}\right)$	$\mathcal{O}\left(n^{2} d^{2}\right)$	$\mathcal{O}\left(n^{3} d^{2}\right)$
BSH-PPC	Triangulated	PPC	Less	$\mathcal{O}\left(\delta\left(e+e^{\prime}\right) d^{5}\right)$	$\mathcal{O}\left(e^{\prime} d^{2}\right)$	$\mathcal{O}\left(n^{3}+e+e^{\prime}\right)=\mathcal{O}\left(n^{3}\right)$
SCDC1	Original	sCDC	Incomparable	$\mathcal{O}\left(\lambda e n d^{3}\right)$	$\mathcal{O}(1)$	$\mathcal{O}\left(e d^{2}\right)$
SDC2	Completed	Strong PC	More	$\mathcal{O}\left(\lambda n^{3} d^{3}\right)$	$\mathcal{O}\left(n^{2} d^{2}\right)$	$\mathcal{O}\left(n^{2} d^{2}\right)$

d : Maximum domain size, $\operatorname{Max}\left(\left|D_{i}\right|\right)$
n : Number of variables, $|\mathcal{V}|$
e : Number of constraints before graph is altered, $|\mathcal{C}|$
e^{\prime} : Number of edges added by a triangulation of the graph
$w_{\text {peo }}$: Width of the triangulated graph in the peo ordering
δ : The maximum degree of the graph
λ : Number of allowed tuples in all the constraints of \mathcal{P}, i.e., $\lambda=\sum_{C_{i} \in \mathcal{C}}\left|R_{i}\right|$ and is bounded by $\mathcal{O}\left(n^{2} d^{2}\right)$ and $\mathcal{O}\left(e d^{2}\right)$

In Table 2.4, we state whether or not each algorithm uses support structures and a propagation queue, and provide pointers to the constituent functions and their pseudocode.

Table 2.4: Data structures and propagation queues for the studied algorithms

	Supports	Queue element	Pseudocode
PC-1	None	None	-
PC-2	None	$\left(V_{i}, V_{j}, V_{k}\right)$ with $i<k, i \neq j \neq k$	PC-2 (Algorithm 4) REVISE-3 (Algorithm 5)
PC-8	None	$\left(\left(V_{i}, V_{j}\right), V_{k}\right)$	PC-8 (Algorithm 8)
PC-2001	Last $\left(\left(V_{i}, a\right),\left(V_{j}, b\right), V_{k}\right) \leftarrow c$	$\left(\left(V_{i}, V_{j}\right), V_{k}\right)$	PC-2001 (Algorithm 9)
BSH-PPC	None	$C_{i, j}$	BSH-PPC (Algorithm 10) REVISE-3 (Algorithm 5)
DPC	None	None	DPC (Algorithm 6) REVISE-3 (Algorithm 5) FILTER-Dom (Algorithm 7)
			SCDC1 (Algorithm 11) SCDC1-CHECK (Algorithm 12)
			REVISE-2001 (Algorithm 3) AC-2001 (Algorithm 1)
SDC2	None, embedded AC may	None	AC-2001-CORE (Algorithm 2)
			SDC2 (Algorithm 13) SDC2-CHECK (Algorithm 14)
			REVISE-2001 (Algorithm 3) AC-2001 (Algorithm 1)
			AC-2001-CORE(Algorithm 2) FC-2001 (Algorithm 15)

Below we review the operation of each of the studied algorithms.

2.8.1 Basic Path Consistency Algorithm (PC-2)

PC-2 is the first improvement on the first and most basic PC algorithm, PC-1, which was proposed by Montanari [1974]. The PC-2 algorithm proposed by Mackworth [1977] enforces strong path consistency (sPC). That is, in addition to updating relations to enforce path consistency it also updates the domains of the variables to enforce arc consistency. However, the PC-2 algorithm (Algorithm 4) that we discuss below is based on the version described by Dechter [2003], and enforces only path consistency.

```
Algorithm 4: PC-2(P) Adapted from [Dechter, 2003]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a complete constraint graph
    Output: Path consistent \(\mathcal{P}\)
    \(\mathcal{Q} \leftarrow \emptyset\)
    foreach \(V_{i}, V_{k}, V_{j} \in \mathcal{V},(i<j) \wedge(i \neq k) \wedge(j \neq k)\) do
        \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(V_{i}, V_{k}, V_{j}\right)\right\}\)
    while \(\mathcal{Q}\) do
        \(\left(V_{i}, V_{k}, V_{j}\right) \leftarrow \operatorname{Pop}(\mathcal{Q})\)
        if Revise-3 \(\left(V_{i}, V_{j}, V_{k}\right)\) then
                foreach \(V_{m} \in \mathcal{V},(m \neq i) \wedge(m \neq j)\) do
                    \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\begin{array}{l}\text { if } m<i<j \text { then }\left\{\left(V_{m}, V_{i}, V_{j}\right),\left(V_{m}, V_{j}, V_{i}\right)\right\} \\ \text { if } i<m<j \text { then }\left\{\left(V_{m}, V_{i}, V_{j}\right),\left(V_{i}, V_{j}, V_{m}\right)\right\} \\ \text { if } i<j<m \text { then }\left\{\left(V_{j}, V_{i}, V_{m}\right),\left(V_{i}, V_{j}, V_{m}\right)\right\}\end{array}\right.\)
    return \(\mathcal{P}\)
```

Like PC-1, PC-2 operates on a constraint graph that is complete, meaning that there is a constraint between every pair of variables. If the original constraint graph is not complete, the missing edges are added as universal binary constraints.

PC-2 improves the performance of PC-1 by using a more sophisticated propagation queue. The propagation queue begins with triplets of distinct variables:

$$
\mathcal{Q} \leftarrow\left\{\left(V_{i}, V_{k}, V_{j}\right) \text { s.t. }(i<j) \wedge(i \neq k) \wedge(j \neq k)\right\}
$$

```
Algorithm 5: Revise-3 \(\left(V_{i}, V_{j}, V_{k}\right) \quad\) Adapted from [Dechter, 2003]
    Input: \(V_{i}, V_{j}, V_{k} \in \mathcal{V}\)
    Output: \(\mathcal{T}_{d}\) the set of removed tuples from \(R_{i, j}\)
    \(\mathcal{T}_{d} \leftarrow \emptyset\)
    foreach \((a, b) \in R_{i, j}\) do
        if \(\nexists c \in D_{k}\) such that \(\left((a, c) \in R_{i, k}\right) \wedge\left((b, c) \in R_{j, k}\right)\) then
            \(R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}\)
            \(\mathcal{T}_{d} \leftarrow \mathcal{T}_{d} \cup\{(a, b)\}\)
    return \(\mathcal{T}_{d}\)
```

For each element in \mathcal{Q}, Revise-3 (Algorithm 5) revises $R_{i, j}$ given $R_{i, k}, R_{k, j}$, and D_{k}. After any revision PC-2 adds only the triplets that may be affected by the revision back into the queue. ${ }^{6}$

We illustrate the operation of PC-2 on the example shown in Figure 2.8. We give the constraints in intension on the left and in extension on the right. On the left of Figure 2.8 the solid lines represent constraints with initial relations and the dashed lines represent two binary universal relations. PC-2 initializes the propagation queue

Figure 2.8: Left: Dashed lines in the constraint graph denote universal constraints. Right: The relations of the CSP. PC-2 removes the tuples are shown in gray

[^7]with these 12 triplets (lines 1-3):
\[

$$
\begin{aligned}
\mathcal{Q} \leftarrow\{ & \left(V_{1}, V_{3}, V_{2}\right),\left(V_{1}, V_{4}, V_{2}\right),\left(V_{1}, V_{2}, V_{3}\right),\left(V_{1}, V_{4}, V_{3}\right),\left(V_{1}, V_{2}, V_{4}\right),\left(V_{1}, V_{3}, V_{4}\right), \\
& \left.\left(V_{2}, V_{1}, V_{3}\right),\left(V_{2}, V_{4}, V_{3}\right),\left(V_{2}, V_{1}, V_{4}\right),\left(V_{2}, V_{3}, V_{4}\right),\left(V_{3}, V_{1}, V_{4}\right),\left(V_{3}, V_{2}, V_{4}\right)\right\}
\end{aligned}
$$
\]

Table 2.5 summarizes the first 12 steps of PC-2's main loop (lines 1-8). Each row in this table shows:

1. The triplet $\left(V_{i}, V_{k}, V_{j}\right)$ that is popped from the queue at line 5 .
2. The revisions REvise-3 makes to $R_{i, j}$, when applicable.
3. The triplets PC-2 adds to the propagation queue at line 8 .

Table 2.5: PC-2's first 12 steps on the example in Figure 2.8

Step	Triplet	Relation update	Additions to \mathcal{Q}
1	$\left(V_{1}, V_{3}, V_{2}\right)$	none	-
2	$\left(V_{1}, V_{4}, V_{2}\right)$	none	-
3	$\left(V_{1}, V_{2}, V_{3}\right)$	$R_{1,3} \leftarrow\{(3,1),(3,2)\}$	$\left\{\left(V_{1}, V_{3}, V_{2}\right)\right\}$
4	$\left(V_{1}, V_{4}, V_{3}\right)$	none	-
5	$\left(V_{1}, V_{2}, V_{4}\right)$	$R_{1,4} \leftarrow\{(3,2),(3,3)\}$	$\left\{\left(V_{1}, V_{4}, V_{2}\right),\left(V_{1}, V_{4}, V_{3}\right)\right\}$
6	$\left(V_{1}, V_{3}, V_{4}\right)$	none	-
7	$\left(V_{2}, V_{1}, V_{3}\right)$	$R_{2,3} \leftarrow\{(4,1),(4,2)\}$	$\left\{\left(V_{1}, V_{2}, V_{3}\right)\right\}$
8	$\left(V_{2}, V_{4}, V_{3}\right)$	none	-
9	$\left(V_{2}, V_{1}, V_{4}\right)$	$R_{2,4} \leftarrow\{(4,2),(4,3)\}$	$\left\{\left(V_{1}, V_{2}, V_{4}\right),\left(V_{2}, V_{4}, V_{3}\right)\right\}$
10	$\left(V_{2}, V_{3}, V_{4}\right)$	none	-
11	$\left(V_{3}, V_{1}, V_{4}\right)$	$R_{3,4} \leftarrow\{(1,2)(1,3),(2,3)\}$	$\left\{\left(V_{1}, V_{3}, V_{4}\right),\left(V_{2}, V_{3}, V_{4}\right)\right\}$
12	$\left(V_{3}, V_{2}, V_{4}\right)$	none	-

The fourth column in Table 2.5 indicates the only eight items in \mathcal{Q} after the first 12 steps. PC-2 continues without yielding any further revisions or queue additions, at which point it terminates with an empty queue.

2.8.2 Directional Path Consistency (DPC)

Dechter and Pearl [1988] proposed the DPC algorithm to compute the DPC network given a CSP and an instantiation ordering of the variables. ${ }^{7}$ As the algorithm proceeds, it adds edges to the graph (i.e., new constraints to the CSP), which corresponds to moralizing the graph along the given ordering.

The DPC algorithm (Algorithm 6) that we discuss below takes as input a CSP that has had its constraint graph triangulated and the instantiation ordering ord corresponding to the inverse of a perfect elimination ordering of the vertices of the graph. ${ }^{8}$ Typically DPC considers fewer constraints than PC-2, because DPC operates on a triangulation of the constraint graph while PC-2 operates on the complete graph.

```
Algorithm 6: \(\operatorname{DPC}(\mathcal{P}\), ord \() \quad\) Adapted from [Dechter and Pearl, 1988]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a triangulated constraint graph,
                ord: an instantiation ordering of \(\mathcal{V}\)
    Output: Strong directional path consistent \(\mathcal{P}\) in the direction of ord
    for \(k \leftarrow|\mathcal{V}|\) downto 2 by -1 do
        for \(i \leftarrow 1\) to \(k-1\) such that \(C_{i, k} \in \mathcal{C}\) do \(\operatorname{REvise}\left(D_{i},\left\{C_{i, k}\right\}\right)\)
        for \(i \leftarrow 1\) to \(k-2\) such that \(C_{i, k} \in \mathcal{C}\) do
            for \(j \leftarrow i+1\) to \(k-1\) such that \(C_{i, j} \in \mathcal{C}\) do \(\operatorname{Revise}-3\left(V_{i}, V_{j}, V_{k}\right)\)
    return \(\mathcal{P}\)
```

DPC loops through the variables starting with the last variable in the instantiation order ord. As it visits each variable V_{k}, it first enforces directional arc consistency on all the variables V_{i} preceding V_{k} in the ordering. That is, for all $i<k$ DPC uses Filter-Dom (Algorithm 7) to revise D_{i} given the relation $R_{i, k}$. Then, for all

[^8]$i<j<k$, where $C_{i, k}$ and $C_{j, k}$ exist, DPC uses Revise-3 (Algorithm 5) to revise $R_{i, j}$ given $R_{i, k}, R_{j, k}$, and D_{k} Figure 2.4 in Section 2.5.1.4 illustrates DPC's filtering.

```
Algorithm 7: Filter-Dom \(\left(D_{i}, \mathcal{C}_{i}\right)\)
    Input: \(D_{i}\) : Domain of variable \(V_{i}\),
            \(\mathcal{C}_{i}\) : Set of constraints incident to variable \(V_{i}\)
    Output: true if \(D_{i}\) was updated, false otherwise
    \(D_{i}^{\text {old }} \leftarrow D_{i}\)
    foreach \(C \in \mathcal{C}_{i}\) do \(D_{i} \leftarrow D_{i} \cap \pi_{\left\{V_{i}\right\}}(\operatorname{rel}(C))\)
    return \(D_{i}^{\text {old }} \neq D_{i}\)
```

We illustrate the operation of DPC on the example shown in Figure 2.9. First, we triangulate the problem by adding a universal constraint between V_{2} and V_{3}, which is shown as a dashed line in Figure 2.10.

Figure 2.9: A five-variable example

Figure 2.10: A triangulation of the constraint graph

DPC uses the ordering $V_{1}, V_{2}, \ldots, V_{5}$, as shown in Figure 2.11, and executes the following steps:

1. DPC first considers V_{5}, and updates the domain D_{2} given $R_{2,5}$ (no filtering).
2. DPC then 'moves up to' V_{4} by setting k to 4 at line 1 . It updates D_{2} and D_{3} given $R_{2,4}$ and $R_{3,4}$ respectively (no filtering), and updates $R_{2,3} \leftarrow\{(3,1),(4,1),(4,2)\}$ given $R_{2,4}$ and $R_{3,4}$.

Figure 2.11: The ordering used

Figure 2.12: After running DPC
3. Moving up to V_{3}, it updates D_{1} and D_{2} given $R_{1,3}$ and $R_{2,3}$ respectively (no filtering). It updates $R_{1,2}$ given $R_{1,3}$ and $R_{2,3}$ (no filtering).
4. Finally, moving up to V_{2}, it updates $D_{1} \leftarrow\{3\}$ given $R_{1,2}$.

DPC makes two updates to the problem, namely $D_{1} \leftarrow\{3\}$ and $R_{2,3} \leftarrow\{(3,1),(4,1),(4,2)\}$. Figure 2.12 depicts the final constraint graph.

2.8.3 Iterating Over Variables' Domains (PC-8)

Chmeiss and Jégou [1998] proposed PC-8 (Algorithm 8) to enforce PC on a CSP's completed constraint graph. We compare PC-8 to PC-2. The consistency-checking operations of PC-8 (lines 3-5 and lines 10-12) operate similarly to REviSE-3 (Algorithm 5), which is used in PC-2 (Algorithm 4). However, PC-8's propagation queue is different than PC-2's, which stores triplets of variables $\left(V_{i}, V_{k}, V_{j}\right)$. PC-2 uses REvise-3 which iterates over every tuple in $R_{i, j}$ to ensure the existence of a supporting value in D_{k} with corresponding supporting tuples in $R_{i, k}$ and $R_{j, k}$. In contrast, PC-8's queue stores elements of the following form:

$$
\mathcal{Q} \leftarrow\left\{\left(\left(V_{i}, a\right), V_{k}\right) \text { s.t. }(i \neq k)\right\}
$$

```
Algorithm 8: PC-8( \(\mathcal{P}\) ) Adapted from [Chmeiss and Jégou, 1998]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a complete constraint graph
    Output: Path consistent \(\mathcal{P}\)
    \(\mathcal{Q} \leftarrow \emptyset\)
    foreach \(V_{i}, V_{j}, V_{k} \in \mathcal{V}\) such that \((i<j) \wedge(i \neq k) \wedge(j \neq k)\) do
        foreach \((a, b) \in R_{i, j}\) do
            if \(\nexists c \in D_{k}\) such that \((a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}\) then
                \(R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}\)
                \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}\)
    while \(\mathcal{Q}\) do
        \(\left(\left(V_{i}, a\right), V_{k}\right) \leftarrow \operatorname{Pop}(\mathcal{Q})\)
        foreach \(V_{j} \in \mathcal{V}\) such that \((j \neq i) \wedge(j \neq k)\) do
            foreach \((a, b) \in R_{i, j}\) do
                if \(\nexists c \in D_{k}\) such that \((a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}\) then
                    \(R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}\)
                    \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}\)
    return \(\mathcal{P}\)
```

The elements are tuples $\left(\left(V_{i}, a\right), V_{k}\right)$ where $\left(V_{i}, a\right)$ is a variable-value pair and V_{k} is a variable. PC-8 considers every third variable, V_{j} (line 9), but instead of looping over every tuple in $R_{i, j}$ it only considers those where $V_{i} \leftarrow a$ (line 10). Every tuple (a, b) that lacks supports in $R_{i, k}, R_{j, k}$ and D_{k} is removed from $R_{i, j}$. Note that line 10 of Algorithm 8 appears as follows in the original paper:
foreach $b \in D_{j}$ such that $(a, b) \in R_{i, j}$ do

However, executing such an instruction adds unnecessary constraint checks for each value in D_{j} to the cost of the algorithm in practice. For this reason, we reformulated the instruction as appears our proposed pseudocode.

We illustrate the operation of PC-8 on the example shown in Figure 2.13. The tuples removed by PC-8's initial pass (lines 1-6) are shown in gray. As PC-8 deletes tu-

Figure 2.13: Left: A CSP where the dashed line denotes a universal constraint Right: Relations of the CSP with tuples removed by PC-8's lines 1-6 shown in gray
ples in the course of its initial pass (lines 1-6) elements are added to the queue(line 6), and after the initial pass the queue has the following tuples:

$$
\begin{aligned}
\mathcal{Q} \leftarrow \quad\{ & \left(\left(V_{1}, 2\right), V_{2}\right),\left(\left(V_{2}, 4\right), V_{1}\right),\left(\left(V_{1}, 3\right), V_{2}\right),\left(\left(V_{2}, 2\right), V_{1}\right),\left(\left(V_{1}, 2\right), V_{3}\right),\left(\left(V_{3}, 4\right), V_{1}\right), \\
& \left(\left(V_{2}, 4\right), V_{4}\right),\left(\left(V_{4}, 3\right), V_{2}\right),\left(\left(V_{3}, 4\right), V_{4}\right),\left(\left(V_{3}, 6\right), V_{4}\right),\left(\left(V_{4}, 3\right), V_{3}\right),\left(\left(V_{1}, 2\right), V_{4}\right), \\
& \left.\left(\left(V_{1}, 3\right), V_{4}\right),\left(\left(V_{1}, 4\right), V_{4}\right),\left(\left(V_{4}, 1\right), V_{1}\right),\left(\left(V_{4}, 3\right), V_{1}\right),\left(\left(V_{2}, 4\right), V_{3}\right),\left(\left(V_{3}, 6\right), V_{2}\right)\right\}
\end{aligned}
$$

PC-8 continues by popping elements off of the queue (line 8) and checking for the existence of supporting tuples. For the first element, ($\left.\left(V_{1}, 2\right), V_{2}\right)$, tuples in the relations between V_{1} and every third variable in the problem, that is, V_{3} then V_{4} are considered, where $V_{1} \leftarrow 2$ as illustrated in Figure 2.14. There is no such tuple $(2, *) \in R_{1,3}$ and no further checks are made to determine if any tuples need to be removed from $R_{1,3}$. The same holds for $R_{1,4}$. All other queue elements yield similar results until $\left(\left(V_{4}, 3\right), V_{2}\right)$ is considered. The tuples where $V_{4} \leftarrow 3,(*, 3) \in R_{2,4}$, are checked against V_{1} as illustrated in Figure 2.15. When no support is found in D_{1} the tuple $(1,3)$ is removed from $R_{1,4}$.

The processing continues without further updates until the queue is empty, at which point PC-8 terminates. Figure 2.16 shows the updated relations after PC-8

Figure 2.14: Left: Seeking supports for $(2, *) \in R_{1,3}$ in D_{2}. Right: Seeking supports for $(2, *) \in R_{1,4}$ in D_{2}

Figure 2.15: PC-8 seeks supports for $(*, 3) \in R_{1,4}$ in D_{2}. The tuple $(1,3)$ is removed from $R_{1,4}$ because no support exists in D_{2}
completes.

$R_{1,2}$		$R_{1,3}$		$R_{1,4}$		$R_{2,3}$		$R_{2,4}$		$R_{3,4}$	
1	2	1	3	1	1	2	3	2	1	3	1
1	4	1	4	4	1	2	4	4	1	4	1
4	2	4	6			2	6			6	1
						4	3				

Figure 2.16: Path-consistent relations of the CSP in Figure 2.8 after execution of PC-8

2.8.4 Introducing Support Bookkeeping (PC-2001)

In this section, we discuss PC-2001 (Algorithm 9) [Bessière et al., 2005]. This algorithm extends, to path consistency, the idea of bookkeeping supports introduced in AC-2001 [Bessière and Régin, 2001; Zhang and Yap, 2001] (see Section 2.7).

PC-2001 operates on the complete constraint graph like the previously studied PC algorithms, PC-2 and PC-8. Like AC-2001, PC-2001 requires that the variables'

```
Algorithm 9: PC-2001(P) Adapted from [Bessière et al., 2005]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a complete constraint graph
    Output: Path consistent \(\mathcal{P}\)
    \(\mathcal{Q} \leftarrow \emptyset\)
    foreach \(V_{i}, V_{j}, V_{k} \in \mathcal{V}\) such that \((i<j) \wedge(i \neq k) \wedge(j \neq k)\) do
        foreach \((a, b) \in R_{i, j}\) do
            foreach \(c \in D_{k}\) do
                    if \((a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}\) then
                \(\operatorname{Last}\left(\left(V_{i}, a\right),\left(V_{j}, b\right), V_{k}\right) \leftarrow\{c\}\)
                break
            if not \(\operatorname{Last}\left(\left(V_{i}, a\right),\left(V_{j}, b\right), V_{k}\right)\) then
                \(R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}\)
                \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}\)
    while \(\mathcal{Q}\) do /* REVISE_PATH [Bessière et al., 2005] */
        \(\left(\left(V_{i}, a\right), V_{k}\right) \leftarrow \operatorname{Pop}(\mathcal{Q})\)
        foreach \(V_{j} \in \mathcal{V}\) such that \((i \neq j) \wedge(k \neq j)\) do
            foreach \((a, b) \in R_{i, j}\) do
            if \(i<j\) then \(c \leftarrow \operatorname{Last}\left(\left(V_{i}, a\right),\left(V_{j}, b\right), V_{k}\right)\) else
                \(c \leftarrow \operatorname{Last}\left(\left(V_{j}, a\right),\left(V_{i}, b\right), V_{k}\right)\)
            found \(\leftarrow\) false
            while \(c \leq \operatorname{Final}\left(D_{k}\right)\) do
                        if \((a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}\) then
                                    if \(i<j\) then \(\operatorname{Last}\left(\left(V_{i}, a\right),\left(V_{j}, b\right), V_{k}\right) \leftarrow c\) else
                                    \(\operatorname{Last}\left(\left(V_{j}, a\right),\left(V_{i}, b\right), V_{k}\right) \leftarrow c\)
                                    found \(\leftarrow\) true
                                    break
                            \(c \leftarrow \operatorname{NExt}\left(D_{k}, c\right)\)
            if not found then
                    \(R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}\)
                        \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}\)
    return \(\mathcal{P}\)
```

domains be totally ordered, and it also uses $\operatorname{NEXT}\left(D_{i}, a\right)$ to obtain the value after a in D_{i}. The function $\operatorname{Final}\left(D_{i}\right)$ yields the last element in D_{i}.

PC-2001 uses a different Last structure than AC-2001. Last $\left(\left(V_{i}, a\right),\left(V_{j}, b\right), V_{k}\right)$
points to the value in D_{k} that supports the assignments $\left\{\left(V_{i}, a\right),\left(V_{j}, b\right)\right\}$ (i.e., the tuple $\left.(a, b) \in R_{i, j}\right)$. This data structure incurs a large space overhead. Indeed, the space complexity of PC-2001 is $\mathcal{O}\left(n^{3} d^{2}\right)$, where n is the number of variables in the problem and d is the maximal domain size [Bessière et al., 2005].

PC-2001 begins by initializing the Last structure, as well as making an initial pass through all of the relations and updating the queue (lines 1-10). PC-2001's first pass does the same relation updates and queue additions as PC-8's first pass (lines 1-6). PC-2001 also makes the same revisions and queue additions in the rest of the algorithm (lines 11-27) as are done in the rest of PC-8 (lines 7-13). PC-2001's advantage is that the Last structure saves some constraint checks after the initial pass.

We illustrate the operation of PC-2001 on the example shown in Figure 2.13 of Section 2.8.3. When $\left(\left(V_{2}, 2\right), V_{1}\right)$ is removed from the queue and a support is sought in V_{1} for the tuple $(2,6) \in R_{2,3}, \operatorname{Last}\left(\left(V_{2}, 2\right),\left(V_{3}, 6\right), V_{1}\right)$ stores, or points to, the value $4 \in D_{1}$. After that, when seeking a support for the tuple $(2,6) \in R_{2,3}$ in D_{1}, the values that precede $4 \in D_{1}$ are ignored, thus saving some consistency-checking effort.

2.8.5 Partial Path Consistency (BSH-PPC)

Bliek and Sam-Haroud [1999] proposed the BSH-PPC algorithm (Algorithm 10) to enforce PPC on a CSP with a triangulated graph. BSH-PPC uses a queue consisting of constraints, which it initializes to hold hall of the constraints. BSH-PPC removes each constraint, $C_{i, j}$, from the queue and identifies each triangle in the constraint graph that $C_{i, j}$ participates in (line 4). For each triangle (V_{i}, V_{j}, V_{k}), first, REVISE-3 (Algorithm 5) is used to revise $C_{i, j}$ with respect to V_{k}, second, $C_{i, k}$ with respect to V_{j}, and finally, $C_{j, k}$ with respect to V_{i}. BSH-PPC adds any revised constraint to the

```
Algorithm 10: BSH-PPC( \(\mathcal{P})\) Adapted from [Bliek and Sam-Haroud, 1999]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a triangulated constraint graph
    Output: Partially path consistent \(\mathcal{P}\)
    \(\mathcal{Q} \leftarrow \mathcal{C}\)
    while \(\mathcal{Q}\) do
        \(C_{i, j} \leftarrow \operatorname{Pop}(\mathcal{Q})\)
        foreach \(\left(V_{i}, V_{k}, V_{j}\right) \in \mathcal{V}\) such that \(\left(C_{i, k} \in \mathcal{C}\right) \wedge\left(C_{j, k} \in \mathcal{C}\right)\) do
                if Revise- \(3\left(V_{i}, V_{j}, V_{k}\right)\) then \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{C_{i, j}\right\}\)
                if Revise-3 \(\left(V_{i}, V_{k}, V_{j}\right)\) then \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{C_{i, k}\right\}\)
                if Revise- \(3\left(V_{j}, V_{k}, V_{i}\right)\) then \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{C_{j, k}\right\}\)
    return \(\mathcal{P}\)
```

queue.
We illustrate the operation of BSH-PPC on the example of the triangulated CSP shown in Figure 2.17 (Figures 2.9 and 2.10 previously contained this same example). First, the queue is initialized with all the constraints in the problem.

$R_{1,2}$	$R_{1,3}$		$R_{2,3}$		$R_{2,4}$		$R_{2,5}$		$R_{3,4}$	
3 4	1	3	3	1	3	2	3	4	1	2
	1	4	3	2	4	2	4	3	1	3
	2	3	3	3	4	3			1	5
	2	4	4	1					2	3
	3	4	4	2					2	5
			4	3					3	5

Figure 2.17: Left: A triangulated graph, the dashed line is a universal constraint. Right: The relations of the CSP. BSH-PPC removes the tuples shown in gray

$$
\mathcal{Q} \leftarrow\left\{C_{1,2}, C_{1,3}, C_{2,3}, C_{2,4}, C_{2,5}, C_{3,4}\right\} .
$$

1. The first item $C_{1,2}$ is popped from the queue. The only triplet considered is $\left(V_{1}, V_{3}, V_{2}\right)$. We revise $R_{1,2}$ given V_{3}, but no tuple is removed from $R_{1,2}$. Then, we examine $R_{1,3}$ against V_{2} followed by $R_{2,3}$ against V_{1}. The tuples of $R_{1,3}$ and $R_{2,3}$ shown in gray in Figure 2.17 are removed at this time. We attempt to add
$C_{1,3}$ and $C_{2,3}$ to \mathcal{Q}, but they are already in the queue, which remains unchanged:

$$
\mathcal{Q} \leftarrow\left\{C_{1,3}, C_{2,3}, C_{2,4}, C_{2,5}, C_{3,4}\right\}
$$

2. The second item, $C_{1,3}$, is popped from the queue. The only triplet considered is $\left(V_{1}, V_{2}, V_{3}\right)$. No revision takes place, and no new constraint is added to the queue:

$$
\mathcal{Q} \leftarrow\left\{C_{2,3}, C_{2,4}, C_{2,5}, C_{3,4}\right\} .
$$

3. $C_{2,3}$ is popped from the queue. Two triplets are considered: $\left(V_{2}, V_{3}, V_{1}\right)$ and $\left(V_{2}, V_{4}, V_{3}\right)$. The examination of $\left(V_{2}, V_{3}, V_{1}\right)$ yields no change. The examination of (V_{2}, V_{4}, V_{3}) updates the $R_{2,4}$ and $R_{3,4}$ by removing the tuples shown in gray in Figure 2.17. We attempt to add $C_{2,4}$ and $C_{3,4}$ to \mathcal{Q}, but they are already in the queue:

$$
\mathcal{Q} \leftarrow\left\{C_{2,4}, C_{2,5}, C_{3,4}\right\}
$$

4. $C_{2,4}$ is popped from the queue. The tuple $\left(V_{2}, V_{3}, V_{4}\right)$, is considered. No revision takes place. The queue is now:

$$
\mathcal{Q} \leftarrow\left\{C_{2,5}, C_{3,4}\right\} .
$$

5. $C_{2,5}$ is popped from the queue. Because the constraint is not part of any triangle no constraint is examined. The queue is now:

$$
\mathcal{Q} \leftarrow\left\{C_{3,4}\right\}
$$

6. $C_{3,4}$ is popped from the queue. The tuple $\left(V_{3}, V_{2}, V_{4}\right)$, is considered. No revision
takes place. The algorithm terminates.

BSH-PPC considers both of the triangles $\left(V_{1}, V_{3}, V_{2}\right)$ and $\left(V_{2}, V_{4}, V_{3}\right)$ three times each, which is wasteful. We introduce $\triangle \mathrm{PPC}$ in Section 4.2 to improve on this behavior.

2.8.6 Strong Conservative Dual Consistency (sCDC1)

Lecoutre et al. [2007a] proposed the SCDC1 algorithm (Algorithm 11), which enforces strong conservative dual consistency by filtering both the domains and the relations of the CSP.

```
Algorithm 11: \(\operatorname{sCDC1}(\mathcal{P}) \quad\) Adapted from [Lecoutre et al., 2007a]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C}) \quad / *\) Unaltered constraint graph */
    Output: Strong conservative dual consistent \(\mathcal{P}\)
    AC-2001(P)
    ind \(\leftarrow 1\)
    marker \(\leftarrow 1\)
    repeat
        if \(\operatorname{sDC} 1-\operatorname{Check}(\mathcal{P}, \operatorname{Var}(\) ind \())\) then
            AC-2001-CORE \((\mathcal{P},\{\operatorname{Var}(\) ind \()\})\)
            marker \(\leftarrow\) ind
        ind \(\leftarrow\) ind +1
        if ind \(>|\mathcal{V}|\) then ind \(\leftarrow 1\)
    until ind \(=\) marker
    return \(\mathcal{P}\)
```

SCDC1 is conservative, meaning it does not require the input problem to be triangulated, completed, or otherwise changed. It does not add any edges to the graph. It does assume that the variables are ordered and given an index starting with 1 and going to n. It uses the following data structures and functions:

- $\operatorname{Index}\left(V_{i}\right)$ yields the index of the variable V_{i}.
- $\operatorname{Var}(i n d)$ is a vector that facilitates accessing each variable by its index ind.

```
Algorithm 12: \(\operatorname{sCDC1-Check}\left(\mathcal{P}, V_{x}\right) \quad\) Adapted from [Lecoutre et al., 2007a]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C}), V_{x} \in \mathcal{V}\)
    Output: true if \(D_{x}\) was updated, false otherwise
    modified \(\leftarrow\) false
    foreach \(a \in D_{x}\) do
        \(\mathcal{P}^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{D}^{\prime}, \mathcal{C}^{\prime}\right) \leftarrow \operatorname{Copy}(\mathcal{P})\)
        \(V_{x}^{\prime} \leftarrow a\)
        AC-2001-Core \(\left(\mathcal{P}^{\prime},\left\{V_{x}^{\prime}\right\}\right)\)
        if \(\mathcal{P}^{\prime}\) is consistent then
            foreach \(V_{y} \in \mathcal{V}\) such that \(C_{x, y} \in \mathcal{C}\) do
                foreach \(b \in D_{y}\) such that \(b \notin D_{y}^{\prime}\) do
                if \((a, b) \in R_{x, y}\) then
                    \(R_{x, y} \leftarrow R_{x, y} \backslash\{(a, b)\}\)
                    modified \(\leftarrow\) true
        else
            \(D_{x} \leftarrow D_{x} \backslash\{a\}\)
            modified \(\leftarrow\) true
    return modified
```

- $\operatorname{Copy}(\mathcal{P})$ generates a copy of all the variables, domains, and constraints of $\mathcal{P} .{ }^{9}$
sCDC1 uses two position pointers, ind and marker, which are initialized to 1. marker records the index of the last variable that caused an update, and ind keeps the index of the current variable.

The main loop of SCDC1 (lines 4-10) continues until the next variable to process is the last one that made an update. SCDC1 begins by enforcing AC on the entire problem. However, to illustrate the operation of SCDC 1 , we run it on the example in Figure 2.18 without first enforcing AC in order to maintain the simplicity of the example. (Otherwise, sCDC1 does not yield any filtering beyond that done by AC on this example.) First, sCDC1 passes SCDC1-CHECK (Algorithm 12) the variable V_{1}.

[^9]

Figure 2.18: Left: The CSP before processing. Middle: Relations as revised by sCDC1, removed tuples are shown in gray. Right: The CSP after processing
sCDC1-ChECK makes instantiation $V_{1}^{\prime} \leftarrow 3$ in $\mathcal{P}^{\prime \prime}$. AC determines that the resulting problem, \mathcal{P}^{\prime} is consistent and updates the domains $D_{2}^{\prime}=\{4\}, D_{3}^{\prime}=\{1,2\}, D_{4}^{\prime}=$ $\{2,3\}$. Line 7 examines V_{2} then V_{3}, which are the neighbors of V_{1}. Because the tuple $(3,3)$ does not appear in $R_{1,2}$, the relation is not altered; the same applies for $R_{1,3}$ (lines $8-11$). When considering $V_{1}^{\prime} \leftarrow 4$, AC determines inconsistency and value 4 is removed from D_{1} (the original domain).

Next, we call sCDC1-ChECK on V_{2}. There, we first consider $V_{2}^{\prime} \leftarrow 3$. AC determines inconsistency. Thus, the original domain gets updated, $D_{2} \leftarrow\{4\}$. Then, we consider $V_{2}^{\prime} \leftarrow 4$. sCDC1-CHECK proceeds without updating any domain or relation.

Next, V_{3} is passed to sDC1-ChEck. First, we consider $V_{3}^{\prime} \leftarrow 1$. AC determines \mathcal{P}^{\prime} is consistent and updates the domains $D_{1}^{\prime}=\{3\}, D_{2}^{\prime}=\{4\}, D_{4}^{\prime}=\{2,3\}$. Note that value 5 is removed from $D_{4}^{\prime}=\{2,3\}$. Thus, the tuple $(1,5)$ is removed from $R_{3,4}$. Moving to $V_{3}^{\prime} \leftarrow 2$, we determine that the tuple $(2,5)$ must be removed from $R_{3,4}$. Finally, considering $V_{3}^{\prime} \leftarrow 3$, AC yields failure, and $D_{3} \leftarrow\{1,2\}$.

Next, sDC1-Check is passed V_{4}. There, no filtering occurs when considering $V_{4}^{\prime} \leftarrow 2$ and $V_{4}^{\prime} \leftarrow 3$. When considering $V_{4}^{\prime} \leftarrow 5$, AC detects inconsistency and $D_{4} \leftarrow\{2,3\}$.

Then, sDC1-CHECK is passed V_{1}, V_{2}, and V_{3} in sequence without causing any updates. Thus, sDC1-Check does not need to be passed V_{4} again. And the algorithm terminates.

2.8.7 Strong Dual Consistency (SDC2)

McGregor [1979] proposed an algorithm for enforcing strong path consistency by using arc consistency as a 'basic tool.' Lecoutre et al. [2007b] incorporated this mechanism into their algorithm sDC2 (Algorithm 13), which enforces strong dual consistency on the completed graph. sDC2 operates by running two singleton tests on each of the two variable-value pairs of a tuple that is consistent with the constraint defined over the two variables (i.e., a support tuple).

It is difficult to provide a simple walk through the pseudocode of SDC 2 . It suffices to say that, in addition to singleton checks, SDC2 calls a forward-checking procedure (FC-2001, Algorithm 15) and an arc-consistency procedure (AC-2001CORE, Algorithm 2).

Further, in addition to the functions and data structures used by sCDC1 (see Section 2.8.6), SDC 2 uses $\operatorname{dom}(i n d)$, which gives the domain of the variable whose index is ind. Like sCDC1, sDC2 uses marker that allows it to continue iterating over the variables in the problem until it completes a revolution over the variables without causing an update. It introduces a LastModified structure to keep track of when each variable was last affected by a change, where a change is either an update of its domain or that of the relation of any constraint defined over the variable. At lines 9 and 10 of SDC2, totalvals stores the total number of values in the variables' domains. At lines 14-17, if the total the number of values has changed, every variable is marked as modified. It would be possible to mark a smaller set of variables, but

```
Algorithm 13: \(\operatorname{sDC} 2(\mathcal{P}) \quad\) Adapted from [Lecoutre et al., 2007b]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a complete constraint graph
    Output: Strong dual consistent \(\mathcal{P}\)
    AC-2001(P)
    ind \(\leftarrow 0\)
    marker \(\leftarrow 0\)
    count \(\leftarrow 0\)
    foreach \(V_{i} \in \mathcal{V}\) do LastModified \(\left(V_{i}\right) \leftarrow 0\)
    repeat
        count \(\leftarrow\) count +1
        if \(\mid \operatorname{dom}(\) ind \() \mid>1\) then
            totalvals \(\leftarrow 0\)
            foreach \(D_{i} \in \mathcal{D}\) do totalvals \(\leftarrow\) totalvals \(+\left|D_{i}\right|\)
            if \(\operatorname{SDC} 2-\operatorname{CHECK}(\mathcal{P}, \operatorname{VAR}(\) ind \()\), count \()\) then
                LastModified \((\operatorname{VAR}(\) ind \()) \leftarrow\) count
                AC-2001-CORE \((\mathcal{P},\{\operatorname{VAR}(\) ind \()\})\)
                newtotalvals \(\leftarrow 0\)
                foreach \(D_{i} \in \mathcal{D}\) do newtotalvals \(\leftarrow\) newtotalvals \(+\left|D_{i}\right|\)
                if totalvals \(\neq\) newtotalvals then
                    foreach \(V_{i} \in \mathcal{V}\) do LastModified \(\left(V_{i}\right) \leftarrow\) count
                    marker \(\leftarrow\) ind
            ind \(\leftarrow\) ind +1
            if ind \(\geq|\mathcal{V}|\) then ind \(\leftarrow 0\)
    until ind \(\neq\) marker
    return \(\mathcal{P}\)
```

Lecoutre et al. [2007b] found that this operation would increase complexity of the implementation without any noticeable effect.

Whenever sDC2 calls SDC 2 -CHECK (Algorithm 14) on a given variable V_{x}, AC2001 is run on a copy of the problem the first time that SDC2-CHECK is passed V_{x}. After this step, forward checking is done on all the variables connected to V_{x}. Then, AC-2001-CORE only needs to be run on variables that have changed since they were last passed to sDC2-CHECK.

```
Algorithm 14: \(\operatorname{sDC} 2-\operatorname{CHECK}\left(\mathcal{P}, V_{x}\right.\), count) Adapted from [Lecoutre et al., 2007b]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C}), V_{x}\), count
    Output: true if \(D_{x}\) or any constraint of \(V_{x}\) is modified, false otherwise
    modified \(\leftarrow\) false
    foreach \(a \in D_{x}\) do
        \(\mathcal{P}^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{D}^{\prime}, \mathcal{C}^{\prime}\right) \leftarrow \operatorname{Copy}(\mathcal{P})\)
        \(V_{x}^{\prime} \leftarrow a \quad / *\) Variable assignment */
        if count \(\leq|\mathcal{V}|\) then \(\mathrm{AC}-2001-\operatorname{Core}\left(\mathcal{P}^{\prime},\left\{V_{x}^{\prime}\right\}\right)\)
        else
            FC-2001 \(\left(\mathcal{P}^{\prime},\left\{V_{x}^{\prime}\right\}\right)\)
            if \(\mathcal{P}^{\prime}\) is consistent then
                \(\mathcal{Y} \leftarrow \emptyset\)
                foreach \(V_{y} \in \mathcal{V}\) do
                    if count \(-\operatorname{LastModified}\left(V_{y}\right)<|\mathcal{V}|\) then \(\mathcal{Y} \leftarrow \mathcal{Y} \cup\left\{V_{y}\right\}\)
                    AC-2001-CORE \(\left(\mathcal{P}^{\prime}, \mathcal{Y}\right)\)
        if \(\mathcal{P}^{\prime}\) is consistent then
            foreach \(V_{y} \in \mathcal{V}\) such that \(C_{x, y} \in \mathcal{C}\) do
                foreach \(b \in V_{y}\) such that \(\left(b \notin V_{y}^{\prime}\right)\) do
                        if \(\{a, b\} \in R_{x, y}\) then
                    \(R_{x, y} \leftarrow R_{x, y} \backslash\{(a, b)\}\)
                        LastModified \(\left(V_{y}\right) \leftarrow\) count
                        modified \(\leftarrow\) true
        else
            \(D_{x} \leftarrow D_{x} \backslash\{a\}\)
            modified \(\leftarrow\) true
    return modified
```

```
Algorithm 15: \(\mathrm{FC}-2001\left(\mathcal{P}, V_{x}\right) \quad\) Adapted from [Lecoutre et al., 2007b]
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C}), V_{x}\)
    Output: Forward-checked \(\mathcal{P}\)
    \(\mathcal{Q} \leftarrow \emptyset\)
    foreach \(V_{i} \in \mathcal{V}\) such that \(C_{i, x} \in \mathcal{C}\) do \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(V_{i}, V_{x}\right)\right\}\)
    while \(\mathcal{Q}\) do
        \(\left(V_{i}, V_{j}\right) \leftarrow \operatorname{Pop}(\mathcal{Q})\)
        Revise-2001 \(\left(V_{i}, V_{j}\right)\)
    return \(\mathcal{P}\)
```


2.9 Path Consistency Algorithms in Practice

Look-ahead techniques, which enforce consistency during search, typically use arcconsistency but not path-consistency algorithms because the latter are typically computationally expensive and modify the structure of the constraint graph.

Temporal networks with convex constraints are the only constraint networks that path consistency is enforced on in practice. For convex constraints it is known that partial path consistency guarantees path consistency [Bliek and Sam-Haroud, 1999] and that path consistency guarantees that the problem can be solved in a backtrackfree manner Dechter:91:

1. Indeed, Xu and Choueiry [2003] proposed the algorithm Δ STP to solve the the Simple Temporal Problem by improving the operation of the BSH-PPC algorithm of Bliek and Sam-Haroud [1999] and specializing it to the STP. Further, they noted the dependency of the performance of $\Delta \mathrm{STP}$ on the ordering of the triangles in the propagation queue. They attribute to a private communication with Nic Wilson in 2005 the realization that a perfect elimination ordering of the vertices of the graph and a tree decomposition control the performance Δ STP and can be used to predict a tight bound for time complexity [Bui et al., 2007].
2. Planken et al. proposed $\mathrm{P}^{3} \mathrm{C}$ as an improvement of $\Delta \mathrm{STP}$ [2008]. Further, they provided the theoretical characterization of the complexity of the algorithm exploiting a perfect elimination ordering.
3. Recently, Long et al. [2016] generalized $\mathrm{P}^{3} \mathrm{C}$ into $\mathrm{DPC}+$, which they applied to qualitative constraint networks for spatio-temporal reasoning. ${ }^{10}$
[^10]In Boolean satisfiability (SAT), the generation of binary clauses for variable elimination by resolution is equivalent to a path-consistency operation and the basis of the powerful pre-processing in modern SAT solvers [Eén and Biere, 2005].

In this thesis, we consider algorithms that operate on arbitrary constraints and do not restrict ourselves to any type of constraints.

Summary

In this chapter, we reviewed background information about CSPs. In particular, we discussed several consistency properties and reviewed in great detail the consistency algorithms that we use in our empirical evaluation.

Chapter 3

Gaps in the Literature

In this chapter, we discuss various imprecisions and errors that have appeared in the literature and that are relevant to anyone interested in path consistency and algorithms for enforcing it.

In particular, we discuss the definition of the partial path consistency property. We show that conservative path consistency and partial path consistency are not equivalent on triangulated graphs, contrary to what is stated by Lecoutre et al. [2011]. We report an error in the pseudocode of the PPC algorithm reported by Bliek and Sam-Haroud [1999]. ${ }^{1}$ Finally, we give an example where PC detects inconsistency but PPC fails to (a case that was never encountered in practice before).

3.1 On the Definition of PPC

In order to introduce PPC, Bliek and Sam-Haroud [1999] distinguish between enforcing PC on a CSP and on the constraint graph. They state the following propositions:

[^11]1. A constraint graph is PC iff all paths in the graph are PC [Montanari, 1974; Mackworth, 1977].
2. A CSP is PC if the completion of its constraint graph is PC [Montanari, 1974; Mackworth, 1977].
3. A CSP is PPC if its (original) constraint graph is PC.
4. A triangulated constraint graph is PC iff every path of length two is PC.

Then, the authors give an algorithm, which we call BSH-PPC, ${ }^{2}$ that takes a constraint graph as input, and triangulates the graph while ensuring that every path of length two in the triangulated graph is PC. Thus, the algorithm ensures that the triangulated constraint graph is PC and, consequently, the CSP is PPC.

If we run BSH-PPC on the example shown in Figure 3.1, the algorithm determines that the CSP is PPC. Thus, we should expect that all paths in the graph are

Figure 3.1: A CSP that is PPC because every closed graph-path is PC

PC. However, if we consider the instantiation $\left\{\left(V_{1}, 1\right),\left(V_{3}, 2\right)\right\}$ we can easily see that it is not consistent along the path $\left(V_{1}, V_{2}, V_{3}\right)$. Consequently, we conclude that the definitions of Bliek and Sam-Haroud [1999] do not correctly characterize the consistency property PPC, and we choose to use instead the definition of Lecoutre et al.

[^12][2011], ${ }^{3}$ which restricts the paths on which the PC property must hold to only closed graph-paths.

3.2 CPC and PPC on Triangulated Graphs

Below, we report two errors by Lecoutre et al. [2011].

3.2.1 Incorrect Example

Lecoutre et al. [2011] provided the example shown in Figure 3.2 to illustrate a constraint network where "every 2-length graph-path is [...] consistent." ${ }^{4}$ However, the path $\left(V_{2}, V_{3}, V_{5}\right)$ is not consistent for the locally consistent instantiation $\left\{\left(V_{2}, b\right),\left(V_{5}, b\right)\right\}$.

Figure 3.2: An incorrect example with the inconsistent two-length path $\left(V_{2}, V_{3}, V_{5}\right)$ [Lecoutre et al., 2011]

Figure 3.3: A triangulated CSP that is CPC, but not PPC

We propose to correct this example by setting $D_{1}=D_{2}=D_{4}=D_{5}=\{a\}$, as shown in Figure 3.3.

[^13]
3.2.2 Incorrect Proposition

Further, Lecoutre et al. [2011] state an incorrect proposition: ${ }^{5}$

Proposition 4. (Bliek \mathcal{B} Sam-Haroud 1999) Let P be a binary CN P with a triangulated constraint graph. P is $P P C$-consistent iff P is $C P C$ consistent.

This proposition has the following errors:

1. First, no such statement appears in the paper of Bliek and Sam-Haroud [1999].
2. Second, the CSP shown in Figure 3.3 is a counterexample to Proposition 4 of Lecoutre et al. [2011]. Indeed, the CSP is triangulated and CPC but it is not PPC because the closed graph-path $\left(V_{3}, V_{1}, V_{3}, V_{4}\right)$ is not path consistent for the assignment $\left(\left(V_{3}, a\right),\left(V_{4}, a\right)\right)$.

Thus, it is incorrect to say that PPC and CPC are equivalent on triangulated graphs.

3.3 Imprecision in the Pseudocode of BSH-PPC

The pseudocode of BSH-PPC provided by Bliek and Sam-Haroud [1999] iterates over every combination of three connected variables $\left(V_{i}, V_{k}, V_{j}\right)$, called Related-Triplets, "that correspond to actual triangles in" the constraint graph. It is not clear whether or not two vertices in this triangle can be equal.

- If we consider that the three vertices must be distinct, then the algorithm fails to detect the inconsistency of the example shown in Figure 3.4.

[^14]

Figure 3.4: BSH-PPC cannot detect the inconsistency of the instantiation $\left\{\left(V_{2}, 1\right),\left(V_{1}, 1\right)\right\}$ along the path $\left(V_{2}, V_{1}, V_{3}, V_{1}\right)$ if it considers only triangles with distinct vertices

- If we allow two vertices to be the same, then processing the triangle $\left(V_{1}, V_{2}, V_{1}\right)$ updates $D_{1} \leftarrow\{1\}$. Further, processing the triangle $\left(V_{1}, V_{3}, V_{1}\right)$ updates $D_{1} \leftarrow$ \emptyset, thus detecting inconsistency.

However, considering all triangles with two variables that are the same is not necessary. Instead, we should simply pay special attention to edges incident to articulation points in the triangulated graph. Thus, assuming that all triplets considered are defined over distinct variables, then the algorithm can be fixed by enforcing arc consistency on edges incident to articulation points ${ }^{6}$ as we do in PPC + AP (Algorithm 16) in Section 4.1, Chapter 4.

A private communication with the authors confirmed that, indeed, their code singles out articulation points and that their reported experimental results are correct. They acknowledged the shortcoming of the pseudocode in the paper.

Note that this imprecision was not detected by previous research adapting BSHPPC because they are restricted to temporal constraint networks, which ignore the variables' domains [Xu and Choueiry, 2003; Planken et al., 2008].

[^15]
3.4 Comparing PC and PPC

Lecoutre et al. [2011] showed that PC is strictly stronger than CDC, and that CDC is strictly stronger than PPC. They provide the example in Figure 3.5 that is PPC but not CDC. ${ }^{7}$ Applying a PC or CDC algorithm to this instance removes the tuple $(1,2)$ from the relation $R_{1,2}$, whereas enforcing PPC yields no filtering.

$$
D_{1}=D_{2}=D_{3}=D_{4}=\{1,2\} \quad D_{5}=\{1,2,3\}
$$

Figure 3.5: A binary CSP that is PPC but not CDC

In practice, enforcing either PPC or PC on a CSP was found to detect inconsistency on exactly the same instances as noted by Bliek and Sam-Haroud [1999] and also in our experiments. Indeed, Bliek and Sam-Haroud wrote:

For the tests conducted on random problems, insolubility detected by PC was also detected by PPC.

Since 1999, it was an open question whether or not a PC algorithm can detect inconsistency of an instance that is PPC. The example in Figure 3.6, with the relation definitions reported in Figure 3.7, provides, for the first time, a counterexample that settles this question.

[^16]
\[

$$
\begin{aligned}
& \forall i \in\{1,2,3,4,6,7,9,10,12,13\} D_{i}=\{1,2\} \\
& D_{5}=D_{8}=D_{11}=D_{14}=\{1,2,3\}
\end{aligned}
$$
\]

Figure 3.6: Enforcing PC uncovers the inconsistency of the CSP, but enforcing PPC yields no filtering

		$R_{1,3}$		$R_{2,5}$		$R_{3,4}$		$R_{3,5}$		$R_{4,5}$		$R_{2,8}$	
1	1	1	1	1	3	1	1	1	2	1	1	1	1
1	2	2	1	2	1	1	2	1	3	1	3	1	2
2	1	2	2	2	2	2	1	2	1	2	2	2	2
2	2									2	3	2	3

$$
\begin{aligned}
& R_{1,2}=R_{2,4}=R_{2,7}=R_{2,10}=R_{2,13}=\{1,2\} \times\{1,2\} \\
& R_{1,3}=R_{1,4}=R_{1,6}=R_{1,7}=R_{2,3}=R_{2,12}=\{(1,1),(2,1),(2,2)\} \\
& R_{2,5}=R_{2,14}=\{(1,3),(2,1),(2,2)\} \\
& R_{3,4}=R_{6,7}=R_{9,10}=R_{12,13}=R_{1,9}=R_{1,10}=R_{1,12}=R_{1,13}= \\
& \quad R_{2,6}=R_{2,9}=\{(1,1),(1,2),(2,1)\} \\
& R_{3,5}=R_{6,8}=R_{9,11}=R_{12,14}=\{(1,2),(1,3),(2,1)\} \\
& R_{4,5}=R_{7,8}=R_{10,11}=R_{13,14}=\{(1,1),(1,3),(2,2),(2,3)\} \\
& R_{2,8}=R_{2,11}=\{(1,1),(1,2),(2,2),(2,3)\}
\end{aligned}
$$

Figure 3.7: Relations of the CSP in Figure 3.6

Summary

In this chapter, we cleared various imprecisions, errors, and omissions that appeared in the literature concerning path consistency and its closely related properties.

Chapter 4

New Algorithms for (Partial) Path
 Consistency

In this chapter, we introduce new algorithms for enforcing PPC and PC. The properties and characteristics of those algorithms are summarized in Tables 4.1 and 4.2.

Table 4.1: Summary of the introduced algorithms

	Section	Graph	Property	Pruning w.r.t. PC-2
PPC+AP	Section 4.1	Triangulated	PPC	Less than PC-2, more than BSH-PPC
Δ PPC	Section 4.2	Triangulated	PPC	Less than PC-2, more than BSH-PPC
σ - Δ PPC	Section 4.3	Triangulated	PPC	Less than PC-2, more than BSH-PPC
PC-8 ${ }^{+}$	Section 4.4	Complete	PC	same as PC-2

$\mathrm{PPC}+\mathrm{AP}$ corrects the error of the BSH-PPC algorithm (Section 2.8.5); $\triangle \mathrm{PPC}$ improves the performance of $\mathrm{PPC}+\mathrm{AP}$ by processing all the edges of a triangle at once; $\sigma-\Delta \mathrm{PPC}$ follows a perfect elimination ordering for processing the triangles in the triangulated graph and uses support structures to reduce the number of con-

Table 4.2: Data structures and propagation queues of the introduced algorithms

	Supports	Element of queue	Pseudocode
$\mathrm{PPC}+\mathrm{AP}$	None	$C_{i, j}$	$\begin{aligned} & \hline \hline \text { PPC+AP (Algorithm 16) } \\ & \text { REvise-3+AP (Algorithm 19) } \\ & \text { Propagate-APs (Algorithm 17) } \\ & \text { Filter-Dom (Algorithm 7) } \\ & \text { Filter-Rels (Algorithm 18) } \\ & \hline \end{aligned}$
$\triangle \mathrm{PPC}$	None	$\begin{aligned} & \left(V_{i}, V_{j}, V_{k}\right) \\ & i<j<k \end{aligned}$	Δ PPC (Algorithm 20) Revise-Triangle (Algorithm 21) Revise-3+AP (Algorithm 19) Propagate-APs (Algorithm 17) Filter-Dom (Algorithm 7) Filter-Rels (Algorithm 18)
$\sigma-\Delta \mathrm{PPC}$	A set of three tuples	$\begin{aligned} & \left(V_{k}, V_{j}, V_{i}\right) \\ & i<j<k \end{aligned}$	$\sigma-\Delta \mathrm{PPC}$ (Algorithm 23) Init-Triangle-Vector (Algorithm 22) Revise-Triangle (Algorithm 21) Revise-3+AP (Algorithm 19) Propagate-APs (Algorithm 17) Filter-Dom (Algorithm 7) Filter-Rels (Algorithm 18)
PC-8 ${ }^{+}$	$\left(V_{i}, a, V_{j}, b\right)$	$\left(\left(V_{i}, a\right), V_{k}\right)$	Revise-PC-8-Flag (Algorithm 25) PC-8-Flag (Algorithm 24) PC-8-Ordering (Algorithm 26) PC-8 ${ }^{+}$(Algorithm 27)

straint checks; finally, PC-8 ${ }^{+}$introduces two improvements for the PC-8 algorithm (Section 2.8.3).

We first discuss each algorithm, then we discuss the time and space complexities of all introduced algorithms.

4.1 Correcting BSH-PPC (PPC+AP)

$\mathrm{PPC}+\mathrm{AP}$ (Algorithm 16) is our proposed correction of the BSH-PPC algorithm.

Like BSH-PPC, PPC+AP requires that the constraint graph of the input problem be triangulated and iterates over a propagation queue of edges. Correcting BSHPPC, PPC+AP ensures the correct propagation across the articulation points and the cut edges in the graph. ${ }^{1}$

```
Algorithm 16: \(\mathrm{PPC}+\mathrm{AP}(\mathcal{P})\)
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a triangulated constraint graph
    Output: Partial-path consistent \(\mathcal{P}\)
    \(\mathcal{Q} \leftarrow \mathcal{C}\)
    \(\mathcal{A}_{\text {points }} \leftarrow\) Articulation-Points \((\mathcal{P})\)
    \(\mathcal{Q}_{A P} \leftarrow \mathcal{A}_{\text {points }}\)
    Propagate- \(\operatorname{APs}\left(\mathcal{A}_{\text {points }}, \mathcal{Q}_{A P}\right)\)
    while \(\mathcal{Q}\) do
        \(C_{i, j} \leftarrow \operatorname{Pop}(\mathcal{Q})\)
        foreach \(\left(V_{i}, V_{k}, V_{j}\right) \in \mathcal{V}\) such that \(\left(C_{i, k} \in \mathcal{C}\right) \wedge\left(C_{j, k} \in \mathcal{C}\right)\) do
            \(\mathcal{Q} \leftarrow \mathcal{Q} \cup \operatorname{Revise}-3+\mathrm{AP}\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)\)
            \(\mathcal{Q} \leftarrow \mathcal{Q} \cup \operatorname{REvISE}-3+\mathrm{AP}\left(V_{i}, V_{k}, V_{j}, \mathcal{A}_{\text {points }}\right)\)
            \(\mathcal{Q} \leftarrow \mathcal{Q} \cup \operatorname{REVISE}-3+\mathrm{AP}\left(V_{j}, V_{k}, V_{i}, \mathcal{A}_{\text {points }}\right)\)
    return \(\mathcal{P}\)
```

More specifically, PPC+AP first identifies the articulation points (line 2). Then, Propagate-APs (Algorithm 17) 'synchronizes' the domains of the articulation points with the relations of the constraints incident to them using the functions FilterDom (Algorithm 7) and Filter-Rels (Algorithm 18), which implement the projection and selection operations. Propagate-APs handles also propagation along any cut edges.

For every constraint in the propagation queue, $\mathrm{PPC}+\mathrm{AP}$ calls Revise-3+AP (Algorithm 19) on every 'triplet relations' in which the constraint appears. However, unlike BSH-PPC, Revise-3+AP includes a special processing for articulation points and cut edges.

[^17]```
Algorithm 17: Propagate- \(\operatorname{APs}\left(\mathcal{A}_{\text {points }}, \mathcal{Q}_{A P}\right)\)
 Input: \(\mathcal{A}_{\text {points }}\) : Articulation vertices
 \(\mathcal{Q}_{A P}\) : Queue of articulation points
 Output: \(\mathcal{U}_{\text {edges }}\) : Set of non-cut edges that have been updated
 \(\mathcal{U}_{\text {edges }} \leftarrow \emptyset\)
 while \(\mathcal{Q}_{A P}\) do
 foreach \(V_{i} \in \mathcal{Q}_{A P}\) do \(\operatorname{Filter}-\operatorname{Dom}\left(D_{i},\left\{C_{i} \in \mathcal{C} \mid V_{i} \in \operatorname{scope}\left(C_{i}\right)\right\}\right)\)
 \(\mathcal{Q}_{\text {orig }} \leftarrow \mathcal{Q}_{A P}\)
 \(\mathcal{Q}_{A P} \leftarrow \emptyset\)
 foreach \(V_{i} \in \mathcal{Q}_{\text {orig }}\) do
 \(\mathcal{Q}_{e} \leftarrow\) Filter-Rels \(\left(\left\{C_{i} \in \mathcal{C} \mid V_{i} \in \operatorname{scope}\left(C_{i}\right)\right\}, D_{i}\right)\)
 foreach \(C_{i, j} \in \mathcal{Q}_{e}\) do
 if \(V_{j} \in \mathcal{A}_{\text {points }}\) then \(\mathcal{Q}_{A P} \leftarrow \mathcal{Q}_{A P} \cup\left\{V_{j}\right\}\)
 else \(\mathcal{U}_{\text {edges }} \leftarrow \mathcal{U}_{\text {edges }} \cup\left\{C_{i, j}\right\}\)
 return \(\mathcal{U}_{\text {edges }}\)
```

```
Algorithm 18: Filter-Rels \(\left(\mathcal{C}_{i}, D_{i}\right)\)
 Input: \(\mathcal{C}_{i}\) : Set of constraints incident to variable \(V_{i}\)
 \(D_{i}\) : Domain of variable \(V_{i}\)
 Output: \(\mathcal{C}_{u}\) : Set of updated constraints
 \(\mathcal{C}_{u} \leftarrow \emptyset\)
 foreach \(C \in \mathcal{C}_{i}\) do
 \(R^{\text {old }} \leftarrow \operatorname{rel}(C)\)
 \(R \leftarrow \sigma_{V_{i} \in D_{i}}\left(R^{\text {old }}\right)\)
 if \(R \neq R^{\text {old }}\) then
 \(\operatorname{rel}(C) \leftarrow R\)
 \(\mathcal{C}_{u} \leftarrow \mathcal{C}_{u} \cup\{C\}\)
 return \(\mathcal{C}_{u}\)
```

An implementation of Articulation-Points is not given and can be found elsewhere [Hopcroft and Tarjan, 1973].

```
Algorithm 19: Revise-3+AP \(\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)\)
 Input: \(V_{i}, V_{j}, V_{k} \in \mathcal{V}, \mathcal{A}_{\text {points }}\) : Articulation vertices
 Output: \(\mathcal{Q}_{u}\) : Queue of updated constraints
 \(\mathcal{Q}_{u} \leftarrow \emptyset\)
 if Revise- \(3\left(V_{i}, V_{j}, V_{k}\right)\) then
 \(\mathcal{Q}_{u} \leftarrow \mathcal{Q}_{u} \cup\left\{C_{i, j}\right\}\)
 if \(V_{i} \in \mathcal{A}_{\text {points }}\) then
 \(\mathcal{Q}_{u} \leftarrow \mathcal{Q}_{u} \cup \operatorname{Propagate}-\operatorname{APs}\left(\mathcal{A}_{\text {points }},\left\{V_{i}\right\}\right)\)
 else if \(V_{j} \in \mathcal{A}_{\text {points }}\) then
 \(\mathcal{Q}_{u} \leftarrow \mathcal{Q}_{u} \cup\) Propagate- \(\operatorname{APs}\left(\mathcal{A}_{\text {points }},\left\{V_{j}\right\}\right)\)
 return \(\mathcal{Q}_{u}\)
```


### 4.2 Exploiting Triangles ( $\triangle \mathrm{PPC}$ )

In Section 2.8.5, we illustrated the operation of the BSH-PPC algorithm (Algorithm 10) on the example shown in Figure 4.1. BSH-PPC loops through a queue of constraints. Consequently, it examines three times each of the two triangles in Figure 4.1 and ends up calling the algorithm REVISE-3 18 times even though no change occurred between the two calls to REvise-3. It is obvious that the performance of BSH-PPC can be significantly improved. In a manner similar to the $\Delta \mathrm{STP}$ algorithm by Xu and Choueiry [2003], we propose $\triangle \mathrm{PPC}$ (Algorithm 20), which improves on the performance of $\mathrm{PPC}+\mathrm{AP}$ as follows:

1. $\triangle \mathrm{PPC}$ uses a queue of triangles instead of the queues of edges used in $\mathrm{PPC}+\mathrm{AP}$ and BSH-PPC.
2. Every time we pop an element from the queue, Revise-Triangle (Algorithm 21) revises all three edges of the triangle at the same time.
3. Whenever an edge is updated, we add to the queue, unless they are already there, all the triangles in which the edge appears except the triangle under consideration.

To this end, we need three data structures:

1. A table TrianglesEdge storing for each edge, the list of triangles in which the edge appears. Such table has at most $\mathcal{O}\left(n^{2}\right)$ entries with $\mathcal{O}(n)$ items each, where $n$ is the number of variables in the CSP.
2. A table storing all the articulation points, whose size is $\mathcal{O}(n)$.
3. A propagation queue $\mathcal{Q}_{t}$ of triangles, whose size is $\mathcal{O}\left(n^{3}\right)$.

Like BSH-PPC and PPC+AP, $\triangle$ PPC operates on a triangulated graph and integrates the processing of the articulation points introduced in $\mathrm{PPC}+\mathrm{AP}$.

```
Algorithm 20: \(\Delta \mathrm{PPC}(\mathcal{P})\)
 Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a triangulated constraint graph
 Output: Partially path consistent \(\mathcal{P}\)
 \(\mathcal{A}_{\text {points }} \leftarrow\) Articulation-Points \((\mathcal{P})\)
 \(\mathcal{Q}_{A P} \leftarrow \mathcal{A}_{\text {points }}\)
 Propagate- \(\operatorname{APs}\left(\mathcal{A}_{\text {points }}, \mathcal{Q}_{\text {AP }}\right)\)
 \(\mathcal{Q}_{t} \leftarrow\left\{\left(V_{i}, V_{j}, V_{k}\right) \in \mathcal{V}^{3} \mid(i<j<k) \wedge\left(C_{i, j}, C_{i, k}, C_{j, k} \in \mathcal{C}\right)\right\}\)
 while \(\mathcal{Q}_{t}\) do
 \(\left(V_{i}, V_{j}, V_{k}\right) \leftarrow \operatorname{Peek}\left(\mathcal{Q}_{t}\right)\)
 \(\mathcal{Q}_{e} \leftarrow\) Revise-Triangle \(\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)\)
 while \(\mathcal{Q}_{e}\) do
 edge \(\leftarrow \operatorname{POP}\left(\mathcal{Q}_{e}\right)\)
 \(\mathcal{Q}_{t} \leftarrow \mathcal{Q}_{t} \cup\) TrianglesEdge \((\) edge \()\)
 \(\operatorname{Pop}\left(\mathcal{Q}_{t}\right)\)
 return \(\mathcal{P}\)
```

We illustrate the operation of $\triangle \mathrm{PPC}$ on the example of the triangulated CSP shown in Figure 4.1. ${ }^{2}$

First, line 1 of $\Delta \mathrm{PPC}$ identifies $V_{2}$ as the unique articulation point. Thus, Filter-Dom (line 2) filters removes values 3 from $D_{2}$; and Filter-Rels removes

[^18]```
Algorithm 21: Revise-Triangle \(\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)\)
    Input: \(V_{x}, V_{y}, V_{z} \in \mathcal{V}, \mathcal{A}_{\text {points }}\) : articulation vertices
    Output: \(\mathcal{Q}_{e}\) : Queue of updated constraints
    \(\mathcal{Q}_{e} \leftarrow \emptyset\)
    \(\mathcal{Q}_{e} \leftarrow \mathcal{Q}_{e} \cup\) REVISE- \(3+\mathrm{AP}\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)\)
    \(\mathcal{Q}_{e} \leftarrow \mathcal{Q}_{e} \cup\) Revise- \(3+\mathrm{AP}\left(V_{i}, V_{k}, V_{j}, \mathcal{A}_{\text {points }}\right)\)
    \(\mathcal{Q}_{e} \leftarrow \mathcal{Q}_{e} \cup\) Revise- \(3+\mathrm{AP}\left(V_{j}, V_{k}, V_{i}, \mathcal{A}_{\text {points }}\right)\)
    return \(\mathcal{Q}_{e}\)
```


$R_{1,2}$	$R_{1,3}$		$R_{2,3}$		$R_{2,4}$		$R_{2,5}$		$R_{3,4}$	
3 4	1	3	3	1	3	2	3	4	1	2
	1	4	3	2	4	2	4	3	1	3
	2	3	3	3	4	3			1	5
	2	4	4	1					2	3
	3	4	4	2					2	5
			4	3					3	5

Figure 4.1: A triangulated graph, the Figure 4.2: The relations. Gray tuples are dashed line denotes a universal constraint removed by $\triangle \mathrm{PPC}$
$\{(3,1),(3,2),(3,3)\}$ from $R_{2,3}$, the tuple (3,2) from $R_{2,4}$, and the tuple $(3,4)$ from $R_{2,5}$. (Note that BSH-PPC does not remove $(3,4)$ from $R_{2,5}$.)

The propagation queue \mathcal{Q}_{t} is initialized with two the triangles in the problem:

$$
\mathcal{Q}_{t} \leftarrow\left\{\left(V_{1}, V_{2}, V_{3}\right),\left(V_{2}, V_{3}, V_{4}\right)\right\}
$$

The first triangle, $\left(V_{1}, V_{2}, V_{3}\right)$, is copied from the queue. Revising $C_{1,2}$ with respect to V_{3} removes no tuples. Revising $R_{1,3}$ given V_{2} yields the removal to the tuples $\{(1,4),(2,4),(3,4)\}$, shown in grey in Figure 4.2. Revising $R_{2,3}$ given V_{1} removes the tuple $(4,3)$ from $R_{2,3}$. Because V_{2} is an articulation point, Filter-Dom and FilterRels are called again, but yield no further revisions. Now, the processed triangle is removed from \mathcal{Q}_{t}, and we peek at the second triangle in \mathcal{Q}_{t}. Considering the triangle $\left(V_{2}, V_{3}, V_{4}\right)$, we update $R_{3,4}$ removing the tuples $\{(1,5),(2,5),(3,5)\}$ as shown in grey in Figure 4.2. The examination of the two other relations yields no updates. We pop
$\left(V_{2}, V_{3}, V_{4}\right)$ from \mathcal{Q}_{t}, which becomes empty and the algorithm terminates.

$4.3 \quad \sigma-\triangle \mathbf{P P C}$

Below, we introduce the main contribution of this thesis, $\sigma-\Delta \mathrm{PPC}$, an algorithm that enforces partial path consistency by correcting then improving the operations of the BSH-PPC algorithm.

4.3.1 Idea and Data Structures

In order to reduce the number of revisions during constraint propagation and quickly reach a fixpoint (i.e., quiescence), one may want to follow the structure of a tree decomposition of the constraint graph of the CSP [Dechter, 2003]. This operation can be achieved using a perfect elimination ordering of the constraint graph. The idea is to triangulate the CSP's graph, process the triangles in the elimination ordering, then in the instantiation ordering, which is the reverse of the elimination ordering (see Section 2.3), and repeat the operation until quiescence. When the constraints are convex or when composition distributes over intersection, a single iteration suffices:

- The consistency of the CSP is guaranteed after traversing the triangles in the elimination order, and
- The constraints are guaranteed minimal after traversing the triangles in the instantiation ordering [Planken et al., 2008; Long et al., 2016].

For arbitrary binary constraints, the operation must be repeated until quiescence. Our new algorithm $\sigma-\Delta \mathrm{PPC}$ (Algorithm 23) implements this idea for arbitrary constraints. In the case of convex or distributive constraints, the loop on line 18 can be eliminated, yielding $\mathrm{P}^{3} \mathrm{C}$ [Planken et al., 2008] and DPC+ [Long et al., 2016].

As input to $\sigma-\Delta \mathrm{PPC}$ (Algorithm 23), we provide \mathcal{P}, after triangulating the corresponding constraint graph and peo, a perfect elimination ordering of the graph. See illustration in Figure 4.3. We store the triangles of the graph in an array called

Figure 4.3: A triangulated graph, a peo, tri $[\cdot]$, and TrianglesEdge $[\cdot]$
$\operatorname{tri}[\cdot]$. The triangles are ordered along the peo such that a triangle on $k>j>i$ is stored as $\left(V_{k}, V_{j}, V_{i}\right)$. The size of $\operatorname{tri}[\cdot]$ is $\mathcal{O}\left(n^{3}\right)$ where n is the number of variables in the CSP. Init-Triangle-Vector (Algorithm 22) initializes this array. A table TrianglesEdge stores, for each edge, the list of triangles in which the edge appears. The initialization of this table is too obvious to be reported. Such table has at most $\mathcal{O}\left(n^{2}\right)$ entries, each with $\mathcal{O}(n)$ items.

4.3.2 The $\sigma-\triangle \mathrm{PPC}$ Algorithm

The $\sigma-\triangle \mathrm{PPC}$ algorithm first identifies the articulation points in the triangulated graph. Then, it filters the domains of the corresponding variables given their incident constraints using Filter-Dom. It then filters the same constraints given the updated

```
Algorithm 22: Init-Triangle-Vector( \(\mathcal{P}\), peo, tri \([\cdot]\) )
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\),
            peo \(=(|\mathcal{V}|, \ldots, 1):\) a perfect elimination ordering on \(\mathcal{V}\),
            \(\operatorname{tri}[\cdot]:\) an empty vector to store all the triangles in the graph
    Output: counter: the number of triangles in the graph.
            As a side effect, it stores all triangles in tri
    counter \(\leftarrow 1 \quad / *\) An index for tri[•] */
    for \(k \leftarrow|\mathcal{V}|\) downto 3 by -1 do
        for \(j \leftarrow k-1\) downto 2 do
            for \(i \leftarrow j-1\) downto 1 do
                if \(C_{i, j}, C_{j, k}, C_{i, k} \in \mathcal{C}\) then
                tri \([\) counter \(] \leftarrow\left(V_{k}, V_{j}, V_{j}\right)\)
                counter \(\leftarrow\) counter +1
    return counter - 1
```

domains using Filter-Rels. The above is done in lines 1-3.
Starting from $k \leftarrow n, \sigma-\Delta \mathrm{PPC}$ traverses the triangles along peo, then continues the same process down along the instantiation ordering then peo until reaching a fixpoint. Every time a triangle is considered, Revise-Triangle updates all three relations in the triangle while processing the domains of the variables at that articulation nodes. Every time an edge is updated, all the triangles in which at appears are flagged for revision using the bit vector flag[•].

In summary, $\sigma-\triangle \mathrm{PPC}$ introduces the following improvements:

1. It exploits a perfect elimination ordering.
2. It processes the triangles in linear fashion, iterating up and down along the ordering.
3. It flags the triangles for revision only when one of the edges of the triangle was revised.
```
Algorithm 23: \(\sigma-\Delta \mathrm{PPC}(\mathcal{P}\), peo \()\)
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a triangulated constraint graph,
                \(p e o=(|\mathcal{V}|, \ldots, 1)\) a perfect elimination ordering on \(\mathcal{V}\)
    Output: \(\mathcal{P}\) if it is path consistent
    \(\mathcal{A}_{\text {points }} \leftarrow\) Articulation-Points \((\mathcal{P})\)
    \(\mathcal{Q}_{A P} \leftarrow \mathcal{A}_{\text {points }}\)
    Propagate- \(\operatorname{APs}\left(\mathcal{A}_{\text {points }}, \mathcal{Q}_{A P}\right)\)
    tri \([\cdot] \quad / *\) An empty vector to store \(\mathcal{O}\left(n^{3}\right)\) triangles */
    size \(\leftarrow \operatorname{Init}-T r i a n g l e-V e c t o r(\mathcal{P}\), peo, tri \([\cdot])\)
    flag[.] /* An empty vector to flag triangles that lost at least a tuple */
    change \(\leftarrow\) false
    \(\mathcal{Q}_{e} \leftarrow \emptyset\)
    for \(i \leftarrow 1\) to size do /* Sweeping along the elimination ordering */
        \(\left(V_{k}, V_{j}, V_{i}\right) \leftarrow \operatorname{tri}[i]\)
        flag \([i] \leftarrow\) false
        \(\mathcal{Q}_{e} \leftarrow \mathcal{Q}_{e} \cup \operatorname{Revise}-\operatorname{Triangle}\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)\)
    if \(\mathcal{Q}_{e} \neq \emptyset\) then change \(\leftarrow\) true
    \(\mathcal{T} \leftarrow \emptyset\)
    foreach edge \(\in \mathcal{Q}_{e}\) do \(\mathcal{T} \leftarrow \mathcal{T} \cup\) TrianglesEdge(edge)
    for \(i \leftarrow 1\) to size do
        if \(\operatorname{tri}[i] \in \mathcal{T}\) then flag \([i] \leftarrow\) true
    while change \(=\) true do
        change \(\leftarrow\) false
        for \(i \leftarrow\) size -1 downto 1 by -1 do /* Along the instantiation ordering */
            \(\left(V_{k}, V_{j}, V_{i}\right) \leftarrow \operatorname{tri}[i]\)
            flag \([i] \leftarrow\) false
            \(\mathcal{Q}_{e} \leftarrow \operatorname{Revise-Triangle}\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)\)
            if \(\mathcal{Q}_{e} \neq \emptyset\) then change \(\leftarrow\) true
            \(\mathcal{T} \leftarrow \emptyset\)
            foreach edge \(\in \mathcal{Q}_{e}\) do \(\mathcal{T} \leftarrow \mathcal{T} \cup\) TrianglesEdge(edge)
            for \(i \leftarrow 1\) to size do if tri \([i] \in \mathcal{T}\) then flag \([i] \leftarrow\) true
        if not change then break
        change \(\leftarrow\) false
        for \(i \leftarrow 2\) to size by 1 do
            \(\left(V_{k}, V_{j}, V_{i}\right) \leftarrow \operatorname{tri}[i]\)
            flag \([i] \leftarrow\) false
            \(\mathcal{Q}_{e} \leftarrow\) Revise-Triangle \(\left(V_{i}, V_{j}, V_{k}, \mathcal{A}_{\text {points }}\right)\)
            if \(\mathcal{Q}_{e} \neq \emptyset\) then change \(\leftarrow\) true
            \(\mathcal{T} \leftarrow \emptyset\)
            foreach edge \(\in \mathcal{Q}_{e}\) do \(\mathcal{T} \leftarrow \mathcal{T} \cup\) TrianglesEdge(edge)
            for \(i \leftarrow 1\) to size do if \(\operatorname{tri}[i] \in \mathcal{T}\) then flag \([i] \leftarrow\) true
    return \(\mathcal{P}\)
```

4. Finally, we introduce support structures for the tuples in a relation so that, when a triangle is revisited, only those tuples that have lost support are effectively
revised.

4.3.3 Support Structures in $\sigma-\Delta \mathbf{P P C}$

In addition to the above listed features, σ - $\triangle \mathrm{PPC}$ uses support structures for the tuples in the relations.

For every a triangle in the graph, the idea is to record, for every tuple in a relation, its two supporting tuples in the relations in the triangle. Figure 4.4 illustrates this situation. Consider the three relations $R_{i, j}, R_{i, k}$, and $R_{j, k}$ in the triangle $\left(V_{i}, V_{j}, V_{k}\right)$.

Figure 4.4: The support structure for tuples in $\sigma-\Delta \mathrm{PPC}$

We store each relation as an indexed array of tuples. Further, we add the Boolean flag ' A ' (which stands for 'Active') for each tuple in the relation. This flag is initialized to 1 at the beginning and reset to 0 when the tuple is deleted. In addition to this flag, each tuple $t \in R_{i, j}$ has a pointer to its support structure $\operatorname{supports}\left(t, R_{i, j}\right)$. This support structure is an array indexed by all the triangles in which the relation $R_{i, j}$ appears such as the triangle $\left(V_{i}, V_{j}, V_{k}\right)$. For the given triangle $\left(V_{i}, V_{j}, V_{k}\right)$, supports $\left(t, R_{i, j}\right)$ stores two pointers, each to the tuples that are consistent with t in $\left(V_{i}, V_{j}, V_{k}\right)$.

Given a relation $R_{i, j}$ in the triangle $\left(V_{i}, V_{j}, V_{k}\right)$, as soon as we find that tuple $(a, b) \in R_{i, j}$ is consistent with $(a, c) \in R_{i, k}$ and $(b, c) \in R_{j, k}$, we set the pointers of $\operatorname{supports}\left((a, b), R_{i, j}\right)$ to point to the tuples $(a, c) \in R_{i, k}$ and $(b, c) \in R_{j, k}$. At the same time, we update supports $\left((a, c), R_{i, k}\right)$ and $\operatorname{supports}\left((b, c), R_{j, k}\right)$ even if they were already pointing to another existing support. In this manner, any future check to the consistency of any of these three tuples in this triangle can follow the pointers and verify whether or not the supporting tuples are active.

There are $\mathcal{O}(n)$ rows in each supports because each constraint appears in at most $(n-2)$ triangles. Given that each relation has at most $\mathcal{O}\left(d^{2}\right)$ tuples and the triangulated graph has at most $\mathcal{O}\left(e+e^{\prime}\right)$ constraints, the number of supports structures is $\mathcal{O}\left(\left(e+e^{\prime}\right) d^{2}\right)$ and the space needed to store them is $\mathcal{O}\left(n\left(e+e^{\prime}\right) d^{2}\right)$.

One can selectively choose whether or not to use the support structures. Generally speaking, while using them reduces the number of constraint checks, their size may become prohibitively large when the number of tuples in the problem's relations is exceedingly large. We denote $\sigma-\Delta \mathrm{PPC}$ the version of our algorithm that does not use the support structures and $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$ the one that does.

The idea of support was first introduced in AC-2001 and PC-2001 [Bessière et al., 2005]. Our support structures are inspired from those used by Karakashian et al. [2010] and differ from those used in PC-2001. For each tuple (a, b) and each third variable k, PC-2001 stores $\operatorname{Last}\left(\left(V_{i}, a\right),\left(V_{j}, b\right), V_{k}\right) \leftarrow c$ and cannot store the three tuples in the triangle as supporting each other. As a result, verifying whether or not the supports of (a, b) are still active requires checking the constraints and adds to the number of constraint checks, which we avoid.

PC-2001 does have an advantage over our support structures in that PC-2001 orders the domains. As a result, when the support $\operatorname{Last}\left(\left(V_{i}, a\right),\left(V_{j}, b\right), V_{k}\right) \leftarrow c$ is no longer valid, PC-2001 continues to the next value, after c, in D_{k} because it has
already checked all values before c. Our support structures do not order the domains: when c is no longer a valid support, our algorithm must check all values x where $x \in D_{k} \backslash\{c\}$.

4.3.4 Reflections on PPC

While the PPC property (Definition 2.5.5) was proposed as a new approximation of PC (Definition 2.5.2), it becomes apparent that any algorithm for enforcing PPC must operate along a perfect elimination ordering, exactly as advocated by the DPC algorithm [Dechter and Pearl, 1988], so that the worst-case complexity can be bound by the induced width of the ordering. This realization was first expressed by Nic Wilson in a private communication and integrated by Yorke-Smith [2005] in an algorithm for reasoning about time and later in $\mathrm{P}^{3} \mathrm{C}$ [Planken et al., 2008].
$\sigma-\Delta \mathrm{PPC}$ is the first algorithm that generalizes this mechanism to arbitrary constraints. Unlike $\mathrm{P}^{3} \mathrm{C}$ and DPC+ [Long et al., 2016], which operate on restricted classes of constraints (i.e., STP constraints and distributive subalgebra), and unlike the original PPC, $\sigma-\Delta \mathrm{PPC}$ updates all the edges of the triangles at the same time, handles the articulation points in the constraint graph, and uses support structures to reduce constraint checks.

4.4 $\mathrm{PC}-8^{+}$and $\mathrm{PC}-2001^{+}$

We propose two separate improvements that we apply to both PC-8 (Algorithm 8, Section 2.8.3) and PC-2001 (Algorithm 9, Section 2.8.4). Below, we discuss them only in the context of PC-8. Their adaptation to PC-2001 is straightforward and not reported in this section.

Our two improvements yield PC-8-Flag (Algorithm 24) and PC-8-Ordering (Algorithm 26), which we then combine to form the new algorithm $\mathrm{PC}-8^{+}$(Algorithm 27).

4.4.1 PC-8-FlaG

Consider the following lines of PC-8 (Algorithm 8):

$$
\begin{aligned}
& \mathcal{Q} \leftarrow \emptyset \\
& \text { foreach } V_{i}, V_{j}, V_{k} \in \mathcal{V} \text { such that }(i<j) \wedge(i \neq k) \wedge(j \neq k) \text { do } \\
& \qquad \begin{array}{c}
\text { foreach }(a, b) \in R_{i, j} \text { do } \\
\text { if } \nexists c \in D_{k} \text { such that }(a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k} \text { then } \\
\begin{array}{l}
R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\} \\
\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}
\end{array}
\end{array} .
\end{aligned}
$$

Let's apply them to the example shown in Figure 4.5. If, for $(a, b) \in R_{i, j}$, we find

Figure 4.5: Three variables of a CSP
a value $c \in D_{k}$ such that $(a, c) \in R_{i, k}$ and $(b, c) \in R_{i, k}$, we say that (a, c) and (b, c) have 'served' in a consistency check. If such a value, c, is not found in D_{k}, then, PC-8 removes (a, b) from $R_{i, j}$, and, in line 6 , it adds $\left(\left(V_{i}, a\right), V_{j}\right)$ and $\left(\left(V_{j}, b\right), V_{i}\right)$ to the propagation queue, \mathcal{Q}. Those items are added to \mathcal{Q} because the tuple (a, b) could have served in the consistency check of other tuples in other triangles, whose consistency is now 'threatened' and should, thus, be re-examined. Adding elements
to the queue necessarily induces the execution of more operations by PC-8. When (a, b) never 'served' in a consistency checks, those operations are wasted.

To address this issue, we introduce the bit-array flag that stores, for every tuple, such as (a, b), whether or not it 'served' in a successful consistency check. All the entries in flag are initially set to false. When, in the example above, $c \in D_{k}$ is found consistent with (a, b), the flag values of $(a, c) \in R_{i, k}$ and $(b, c) \in R_{i, k}$ are set to true. Further, $\left(\left(V_{i}, a\right), V_{j}\right)$ and $\left(\left(V_{j}, b\right), V_{i}\right)$ are added to the queue only when the flag value of (a, b) is true.

Modifying PC-8 to integrate the above mechanism yields the two algorithms PC-8-Flag (Algorithm 24) and Revise-PC-8-Flag (Algorithm 25). The modification is bound to reduce the number of constraint checks.

```
Algorithm 24: PC-8-FlaG( \(\mathcal{P}\) )
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a complete constraint graph
    Output: Path consistent \(\mathcal{P}\)
    \(\mathcal{Q} \leftarrow \emptyset\)
    foreach \(V_{i}, V_{j} \in \mathcal{V}\) such that \((i<j)\) do
        foreach \((a, b) \in R_{i, j}\) do
            flag \(\left((a, b), R_{i, j}\right) \leftarrow\) false
    foreach \(V_{i}, V_{j}, V_{k} \in \mathcal{V}\) such that \((i<j) \wedge(i \neq k) \wedge(j \neq k)\) do
        \(\mathcal{Q} \leftarrow \mathcal{Q} \cup \operatorname{REVISE}-\mathrm{PC}-8-\mathrm{FLAG}\left(V_{i}, V_{j}, V_{k}\right.\), flag \()\)
    while \(\mathcal{Q}\) do
        \(\left(\left(V_{i}, a\right), V_{k}\right) \leftarrow \operatorname{Pop}(\mathcal{Q})\)
        foreach \(V_{j} \in \mathcal{V}\) such that \((i \neq j) \wedge(k \neq j)\) do
            \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\) REVISE-PC-8-FLAG \(\left(V_{i}, V_{j}, V_{k}\right.\), flag \()\)
    return \(\mathcal{P}\)
```

```
Algorithm 25: Revise-PC-8-Flag \(\left(V_{i}, V_{j}, V_{k}\right.\), flag)
    Input: \(V_{i}, V_{j}, V_{k} \in \mathcal{V}\), flag: flag structure
    Output: \(\mathcal{Q}\) : A set of elements to add to the queue
    \(\mathcal{Q} \leftarrow \emptyset\)
    foreach \((a, b) \in R_{i, j}\) do
        if \(\nexists c \in D_{k}\) such that \((a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}\) then
            \(R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}\)
            if \(\operatorname{flag}\left((a, b), R_{i, j}\right)\) then \(\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}\)
        else
            \(\left.\operatorname{flag}\left((a, c), R_{i, k}\right)\right) \leftarrow\) true
            \(\left.\operatorname{flag}\left((b, c), R_{j, k}\right)\right) \leftarrow\) true
    return \(\mathcal{Q}\)
```


4.4.2 PC-8-ORDERING

Let's consider again the first few lines of PC-8 (Algorithm 8) shown below:
$\mathcal{Q} \leftarrow \emptyset$
foreach $V_{i}, V_{j}, V_{k} \in \mathcal{V}$ such that $(i<j) \wedge(i \neq k) \wedge(j \neq k)$ do foreach $(a, b) \in R_{i, j}$ do if $\nexists c \in D_{k}$ such that $(a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}$ then $R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}$
$\mathcal{Q} \leftarrow \mathcal{Q} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}$

We modify line 2 of the above pseudocode to clarify the exact sequence of operations (while renaming the queue for the sake of clarity):
$\mathcal{Q}_{1} \leftarrow \emptyset$
for $i \leftarrow 1$ to n by 1 do for $j \leftarrow i+1$ to n by 1 do
foreach $V_{k} \in \mathcal{V}$ such that $(k \neq i) \wedge(k \neq j)$ do
foreach $(a, b) \in R_{i, j}$ do
if $\nexists c \in D_{k}$ such that $(a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}$ then
$R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}$
$\mathcal{Q}_{1} \leftarrow \mathcal{Q}_{1} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}$

In this reformulated pseudocode, it becomes clear that the tuples of $R_{i, j}$ are always examined before a relation $R_{x, y}$ with $(x>i)$ or $(x=i) \wedge(y>j)$ is considered. Consequently, if any $(a, b) \in R_{i, j}$ is removed in line 7 of the reformulated pseudocode, this tuple is necessarily removed before $R_{x, y}$ is even considered, and thus, could not have possibly 'served' to establish the consistency of any tuple in $R_{x, y}$.

Now, let us re-examine how PC-8 processes the elements in its queue, for the first time, right after the loop reported above:

```
7 while \mathcal{Q do}
    ((Vi,a), 㳖)\leftarrow\operatorname{Pop}(\mathcal{Q})
    foreach }\mp@subsup{V}{j}{}\in\mathcal{V}\mathrm{ such that ( }j\not=i)\wedge(j\not=k)\mathrm{ do
    foreach (a,b)\in R R,j}\mathrm{ do
                if #cc\in\mp@subsup{D}{k}{}\mathrm{ such that (a,c) G R R,k}\^(b,c)\in\mp@subsup{R}{j,k}{}\mathrm{ then}
                        R
                        \mathcal{Q}}\leftarrow\mathcal{Q}\cup{((\mp@subsup{V}{i}{},a),\mp@subsup{V}{j}{}),((\mp@subsup{V}{j}{},b),\mp@subsup{V}{i}{})
```

When $\left(\left(V_{i}, a\right), V_{k}\right)$ is popped from the queue, it becomes clear that it is useless to consider, in line 9 , any variable V_{j} where $j<k$. Such an effort is wasted. Such a consideration is safe the first time the queue is processed at line 7. In any subsequent iteration through the queue, $\forall j V_{j}$ should be considered in line 9 .

This observation is the basis of our algorithm PC-8-Ordering (Algorithm 26), which saves some consistency checks when processing the queue right after the first loop (lines 9-16). As the queue is emptied, then PC-8-OrDERING operates like PC-8 (lines 17-23).

```
Algorithm 26: PC-8-Ordering( \(\mathcal{P}\) )
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a complete constraint graph
    Output: Path consistent \(\mathcal{P}\)
    \(\mathcal{Q}_{1} \leftarrow \emptyset\)
    for \(i \leftarrow 1\) to \(n\) by 1 do
        for \(j \leftarrow i+1\) to \(n\) by 1 do
                foreach \(V_{k} \in \mathcal{V}\) such that \((k \neq i) \wedge(k \neq j)\) do
                foreach \((a, b) \in R_{i, j}\) do
                        if \(\nexists c \in D_{k}\) such that \((a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}\) then
                \(R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}\)
                                    \(\mathcal{Q}_{1} \leftarrow \mathcal{Q}_{1} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}\)
    \(\mathcal{Q}_{2} \leftarrow \emptyset\)
    while \(\mathcal{Q}_{1}\) do
        \(\left(\left(V_{i}, a\right), V_{k}\right) \leftarrow \operatorname{Pop}\left(\mathcal{Q}_{1}\right)\)
        foreach \(V_{j} \in \mathcal{V}\) such that \((i \neq j) \wedge(j<k)\) do
            foreach \((a, b) \in R_{i, j}\) do
                        if \(\nexists c \in D_{k}\) such that \((a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}\) then
                \(R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}\)
                \(\mathcal{Q}_{2} \leftarrow \mathcal{Q}_{2} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}\)
    while \(\mathcal{Q}_{2}\) do
        \(\left(\left(V_{i}, a\right), V_{k}\right) \leftarrow \operatorname{Pop}\left(\mathcal{Q}_{2}\right)\)
        foreach \(V_{j} \in \mathcal{V}\) such that \((i \neq j) \wedge(k \neq j)\) do
            foreach \((a, b) \in R_{i, j}\) do
                if \(\nexists c \in D_{k}\) such that \((a, c) \in R_{i, k} \wedge(b, c) \in R_{j, k}\) then
                \(R_{i, j} \leftarrow R_{i, j} \backslash\{(a, b)\}\)
                \(\mathcal{Q}_{2} \leftarrow \mathcal{Q}_{2} \cup\left\{\left(\left(V_{i}, a\right), V_{j}\right),\left(\left(V_{j}, b\right), V_{i}\right)\right\}\)
    4 return \(\mathcal{P}\)
```


4.4.3 $\mathrm{PC}^{-} 8^{+}$

The PC-8 ${ }^{+}$algorithm (Algorithm 27) combines the approaches of PC-8-FLAG and PC-8-Ordering. Although the two improvements are not independent, the number of constraint checks in $\mathrm{PC}-8^{+}$is guaranteed to never exceed either of their number.

```
Algorithm 27: \(\mathrm{PC}-8^{+}(\mathcal{P})\)
    Input: \(\mathcal{P}=(\mathcal{V}, \mathcal{D}, \mathcal{C})\) with a complete constraint graph
    Output: Path consistent \(\mathcal{P}\)
    foreach \(V_{i}, V_{j} \in \mathcal{V}\) such that \((i<j)\) do
        foreach \((a, b) \in R_{i, j}\) do \(\operatorname{flag}\left((a, b), R_{i, j}\right) \leftarrow\) false
    \(\mathcal{Q}_{1} \leftarrow \emptyset\)
    for \(i \leftarrow 1\) to \(n\) by 1 do
        for \(j \leftarrow i+1\) to \(n\) by 1 do
            foreach \(V_{k} \in \mathcal{V}\) such that \((k \neq i) \wedge(k \neq j)\) do
                \(\mathcal{Q}_{1} \leftarrow \mathcal{Q}_{1} \cup\) Revise-PC-8-FlaG \(\left(V_{i}, V_{j}, V_{k}\right.\), flag \()\)
    \(\mathcal{Q}_{2} \leftarrow \emptyset\)
    while \(\mathcal{Q}_{1}\) do
        \(\left(\left(V_{i}, a\right), V_{k}\right) \leftarrow \operatorname{Pop}\left(\mathcal{Q}_{1}\right)\)
        foreach \(V_{j} \in \mathcal{V}\) such that \((i \neq j) \wedge(j<k)\) do
                \(\mathcal{Q}_{2} \leftarrow \mathcal{Q}_{2} \cup\) REVISE-PC-8-FlaG \(\left(V_{i}, V_{j}, V_{k}\right.\), flag \()\)
    while \(\mathcal{Q}_{2}\) do
        \(\left(\left(V_{i}, a\right), V_{k}\right) \leftarrow \operatorname{Pop}\left(\mathcal{Q}_{2}\right)\)
        foreach \(V_{j} \in \mathcal{V}\) such that \((i \neq j) \wedge(k \neq j)\) do
            \(\mathcal{Q}_{2} \leftarrow \mathcal{Q}_{2} \cup\) Revise-PC-8-FLAG \(\left(V_{i}, V_{j}, V_{k}\right.\), flag \()\)
    return \(\mathcal{P}\)
```


4.5 Time and Space Complexities

The asymptotic complexity of $\mathrm{PPC}+\mathrm{AP}, \triangle \mathrm{PPC}$, and $\mathrm{PC}-8^{+}$are that of the original algorithms upon which they improve. Thus,

- PPC+AP and $\triangle \mathrm{PPC}$ are $\mathcal{O}\left(\delta\left(e+e^{\prime}\right) d^{5}\right)$ and $\mathcal{O}\left(e^{\prime} d^{2}\right)$ in space. The data structures used are $\mathcal{O}\left(n^{3}\right)$, necessary to store the triangles of the constraint network.
- PC- 8^{+}is $\mathcal{O}\left(n^{3} d^{4}\right)$ in time and $\mathcal{O}\left(n^{2} d^{2}\right)$ in space. The space for the new data structures is $\mathcal{O}\left(n^{2} d^{2}\right)$.

Because it follows a perfect elimination ordering peo of the triangulated graph, the complexity of $\sigma-\Delta \mathrm{PPC}$ can be bounded by the width of the ordering $w_{\text {peo }}$ after trian-
gulation. Each revision along the ordering is $\mathcal{O}\left(w_{p e o}^{2} \cdot n \cdot d^{3}\right)$ and there could at most $\mathcal{O}\left(\left(e+e^{\prime}\right) d^{2}\right)$ revisions. Thus, $\sigma-\Delta \mathrm{PPC}$ is $\mathcal{O}\left(w_{p e o}^{2} \cdot n \cdot\left(e+e^{\prime}\right) d^{5}\right)$ in time and $\mathcal{O}\left(e^{\prime} d^{2}\right)$ in space. Its data structures are dominated by the space of storing the triangles of the triangulated graph, which is $\mathcal{O}\left(n^{3}\right)$.

The above information is summarized in Table 4.3.
Table 4.3: Properties of the introduced algorithms

	Constraint graph	Enforces consistency property	Time		
		Complexity Space			
Constraints Data struc.					

d : Maximum domain size, $\operatorname{Max}\left(\left|D_{i}\right|\right)$
n : Number of variables, $|\mathcal{V}|$
e : Number of constraints before graph is altered, $|\mathcal{C}|$
e^{\prime} : Number of edges added by a triangulation of the graph
*: $\mathcal{O}\left(n^{3}+e+e^{\prime}\right)$
$w_{\text {peo }}$: Width of the triangulated graph in the peo ordering
δ : The maximum degree of the graph

Summary

In this chapter, we introduced $\mathrm{PPC}+\mathrm{AP}$, an algorithm that corrects the original BSHPPC, whose published pseudocode ignores the articulation points of the constraint graph although the original code and the original experiments are correct. Then, we modified PPC+AP to operate on the triangles of the graph instead of operating on its edges, yielding the $\triangle \mathrm{PPC}$ algorithm. We then refined $\triangle \mathrm{PPC}$ into $\sigma-\Delta \mathrm{PPC}$, which processes the triangles along a perfect elimination ordering, flags triangles to skip processing unaffected triangles, and uses support structures to reduce unnecessary
revisions of the tuples in a relation. Finally, we introduced two improvements to PC-8, namely, PC-8-Flag and PC-8-Ordering, which we combined into PC-8 ${ }^{+}$.

Table 4.5 reports the algorithms we have discussed in Chapters 2 and 4. These algorithms are empirically evaluated in the next chapter, Chapter 5.

Algorithm	Property	Original publication
DPC	sDPC	[Dechter and Pearl, 1988]
sCDC1	sCDC	[Lecoutre et al., 2007a]
PC-2	PC	[Mackworth and Freuder, 1984]
PC-8		[Chmeiss and Jégou, 1998]
PC-8-ORDERING		proposed
PC-8-Flag		proposed
PC-8 ${ }^{+}$		proposed
PC-2001		[Bessière et al., 2005]
PC-2001-ORDERING		proposed
PC-2001-FLAG		proposed
PC-2001 ${ }^{+}$		proposed
PPC+AP *	PPC	[Bliek and Sam-Haroud, 1999]
$\triangle \mathrm{PPC}$		proposed
σ - \triangle PPC		proposed
$\sigma-\Delta \mathrm{PPC}^{\text {sup } 2001}$		proposed
$\sigma-\Delta \mathrm{PPC}^{\text {sup }}$		proposed
SDC2	sDC	[Lecoutre et al., 2007b]

* Corrected version of original.

Chapter 5

Empirical Evaluations

In this chapter, we discuss our empirical evaluations of the discussed and introduced algorithms, first on well-known benchmark problems found at the XCSP website ${ }^{1}$, then on four randomly generated data-sets covering the phase-transition phenomenon [Cheeseman et al., 1991]. Finally, we discuss our results.

5.1 Benchmark Problems

In this section, we first introduce the benchmark problems tested, then compare the performance of the known and new algorithms for path consistency and its approximations on benchmark binary problems.

5.1.1 Problem Characteristics

The binary CSP benchmarks consist of 2,288 instances in 79 benchmarks. We eliminate the following five graph-coloring instances, because their table constraints are too large to generate: 3-insertions-3-3.xml (k-insertion), 4-fullins-5-7_ext.xml (full-

[^19]insertion), inithx-i-1-10_ext.xml (register-inithx), and mulsol-i-3-20.xml and mulsol-i-4-31.xml (register-mulsol), Tables 5.1, 5.2, and 5.3 summarize the characteristics of the problems tested and the number of edges added to complete the graph and to triangulate it.

Table 5.1: Characteristics of the benchmark problems (table 1 of 3)

Summary continues in next table.

Table 5.2: Characteristics of the benchmark problems (table 2 of 3)

Summary continues in next table.

Table 5.3: Characteristics of the benchmark problems (table 3 of 3)

	\# instances							\# edges added for	
	$\begin{aligned} & \text { స్ } \\ & \underset{H}{0} \end{aligned}$	$\begin{aligned} & H \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & \# \end{aligned}$			$\begin{aligned} & \tilde{0} \\ & \text { 0 } \\ & \text { 0 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
tightness0.1	100	100	0	40.0	752.2	96.4\%	0.0	27.8	21.1
tightness0.2	100	100	0	40.0	414.0	53.1\%	0.0	366.0	233.7
tightness0.35	100	100	0	40.0	250.0	32.1\%	0.0	530.0	247.6
tightness0.5	100	100	0	40.0	180.0	23.1\%	0.0	600.0	214.0
tightness0.65	100	100	0	40.0	135.0	17.3\%	0.2	645.0	169.1
tightness0.8	100	100	0	40.0	103.0	13.2\%	1.0	676.2	120.4
tightness0.9	100	86	14	40.0	84.0	10.8\%	2.4	691.4	87.8

5.1.2 Experimental Set-Up

We run our experiments on the Crane supercomputer with a timeout limit of five hours per instance and 60 GiB of memory. We record the instruction count using the 'perf' tool and convert the number of instructions to a time value by assuming a 3.0 GHz CPU.

Comparing the original BSH-PPC algorithm and our correction of it, $\mathrm{PPC}+\mathrm{AP}$, the 'bug' is revealed on the five instances of the hanoi benchmark, whose constraint graph is a chain. PPC +AP correctly enforces the PPC property and removes on average 191,558.6 tuples while BSH-PPC removes none.

Below, we report the following experiments:

1. In Section 5.1.3, we compare the effect of enforcing arc consistency (AC) before running any other algorithm and show that, in general, running AC first reduces the CPU time and increases the number of problems completed within the allocated time threshold.
2. In Section 5.1.4, we assess the benefits of using a propagation queue of triangles instead of a queue of edges.
3. In Section 5.1.5, we demonstrate the benefits of following a PEO while enforcing consistency on the triangles.
4. In Section 5.1.6, we compare the effectiveness of the type of support structures used in PC-2001 to that of our new support structures in the context of our $\sigma-\Delta \mathrm{PPC}$ algorithm.
5. In Section 5.1.7, we assess the effectiveness of our support structures in our $\sigma-\Delta \mathrm{PPC}$ algorithm.
6. In Section 5.1.8, we assess the effectiveness of the two improvements we propose for PC-8. And, in Section 5.1.9, we do the same evaluation for PC-2001.
7. In Section 5.1.10, we compare, among each other, the best algorithms we have in each category.

In each experiment, we report, as appropriate:

1. The number of instances completed by the algorithms being compared.
2. The CPU time computed as an average over the instances completed by the algorithms.
3. The number of deleted tuples in the consistent instances completed by the compared algorithms. When no instance is completed by all algorithms being compared, then the CPU time is not shown but the mark '-' appears in the table.
4. The summation of the above values over the tested benchmarks.

5.1.3 Pre-processing with Arc Consistency

In this section, we evaluate the effect of running arc consistency before any of our algorithms, except sCDC1, because this algorithm enforces AC as a first step. In order to enforce arc consistency as a pre-processing step to a given algorithm:

1. We first run AC-2001 (Section 2.7) on the problem instance at hand.
2. We generate universal constraints for the added edges necessary to complete the constraint graph or to triangulate it, as appropriate.
3. Then, we synchronize the constraint relations with the domains by applying Filter-Rels (Algorithm 18).

Finally, we execute the considered path-consistency algorithm. For all PPC-based algorithms, we skip the initial processing of articulation points (i.e., in $\mathrm{PPC}+\mathrm{AP}$ (Algorithm 16), line 4 is omitted) because the operation is already secured by the pre-processing with AC.

In Section B. 1 of Appendix B, we report the detailed results of pre-processing by AC for the following algorithms: DPC , PC-2, PC-8, PC-8-Ordering, PC-2001, PC-2001-Ordering, $\mathrm{PPC}+\mathrm{AP}, \Delta \mathrm{PPC}, ~ \sigma-\Delta \mathrm{PPC}, ~ \sigma-\Delta \mathrm{PPC}^{\text {sup } 2001}, \sigma-\Delta \mathrm{PPC}^{\text {sup }}$, and sDC2. In Table 5.4, we summarize the results reported in the appendix and include a reference to the corresponding table of the appendix. Generally speaking, preprocessing with AC:

1. consistently saves CPU time,
2. consistently increases the number of instances completed, and
3. does not affect the number of tuples removed (except for DPC, where this number is increased).

Table 5．4：Summary of effect of pre－processing with AC

	\＃instances			CPU time（s）			
	$\begin{aligned} & 0 \\ & 4 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & U \\ & 4 \\ & 7 \\ & \overrightarrow{3} \end{aligned}$	$$	$\begin{aligned} & U \\ & 4 \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & 4 \\ & \leftrightarrows \\ & \stackrel{7}{3} \end{aligned}$		
DPC	2，288	2，288	0	1，989．3	1，829．1	160.2	Table B． 2
PC－2	2，228	2，250	22	24，174．5	18，662．9	5，511．6	Table B． 3
PC－8	2，243	2，264	21	23，570．8	19，009．7	4，561．1	Table B． 4
PC－8－ORDERING	2，242	2，266	24	21，229．3	18，385．9	2，913．4	Table B． 5
PC－2001	2，091	2，128	37	6，930．8	5，786．2	1，144．6	Table B． 6
PC－2001－ORDERING	2，091	2，128	37	6，493．0	5，695．3	797.7	Table B． 7
PPC＋AP	2，288	2，288	0	7，396．8	6，747．1	649.6	Table B． 8
$\triangle \mathrm{PPC}$	2，285	2，285	0	4，229．7	3，576．1	653.7	Table B． 9
σ－\triangle PPC	2，288	2，288	0	4，929．6	3，651．4	1，278．2	Table B． 10
$\sigma-\Delta \mathrm{PPC}^{\text {sup } 2001}$	2，184	2，193	9	2，782．8	2，202．0	580.9	Table B． 11
$\sigma-\Delta \mathrm{PPC}^{\text {sup }}$	2，184	2，193	9	2，787．2	2，228．9	558.3	Table B． 12
SDC2	2，247	2，255	8	11，567．6	11，791．2	223.6	Table B． 13

Indeed，in the case of DPC，pre－processing with AC increases the number of tuples deleted and decreases total processing time．Both algorithms，DPC and AC＋DPC， complete all 2,288 instances．Table 5.5 shows selected results．The complete results are shown in Table B． 2 in Appendix B．

Table 5．5：Enforcing AC before DPC

		\＃tuples deleted			CPU time（s）		
		$\begin{aligned} & 0 \\ & Q \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & Q \\ & + \\ & + \\ & 0 \end{aligned}$	تだ	$\begin{aligned} & \text { U } \\ & \text { an } \end{aligned}$		\％
QCP－25	15	1，449，297．2	1，620，407．6	171，110．4	34.9	7.6	27.3
QWH－25	10	1，145，354．8	1，306，672．0	161，317．2	26.2	5.2	21.0
composed－75－1－2	10	319.0	Inconsistent	－	0.2	0.2	0.0
composed－75－1－25	10	1，605．0	Inconsistent	－	0.2	0.2	0.0
hanoi	5	0.0	191，558．6	191，558．6	0.2	2.0	－1．9

Most notably，AC＋DPC detects the inconsistency of all the instances of the composed－75－1－2 and composed－75－1－25 benchmarks，while DPC does not．Further， on the hanoi benchmark， $\mathrm{AC}+\mathrm{DPC}$ uses slightly more CPU time，although it filters
many tuples while DPC filters none.
Given that pre-processing with AC provides such a robust improvement, in the rest of this chapter, we always include this pre-processing step.

5.1.4 Propagation Queue: Edges versus Triangles

In this section, we assess the impact of replacing the queue of edges of $\mathrm{PPC}+\mathrm{AP}$ (Algorithm 16), our corrected version of the original PPC algorithm, with a queue of triangles in $\triangle \mathrm{PPC}$ (Section 4.2).

In Table 5.6 we report selected results from Tables B. 14 and B.15. In general, using triangles improves performance. However, $\Delta \mathrm{PPC}$ does not complete three instances of the graphColoring full-insertion benchmark while PPC +AP completes all instances. Each of these instances has 4,146 variables, $\Delta \mathrm{PPC}$ exceeds the memory limit because the queue of triangles is $\mathcal{O}\left(n^{3}\right)$, where n is the number of variables, whereas the queue of edges is $\mathcal{O}\left(n^{2}\right)$.

Table 5.6: A propagation queue made of edges ($\mathrm{AC}+\mathrm{PPC}+\mathrm{AP}$) vs triangles ($\mathrm{AC}+\Delta \mathrm{PPC}$)

			\# instances			CPU time (s)		
			$\begin{aligned} & A_{1}^{4} \\ & + \\ & + \\ & Q_{1} \\ & + \\ & + \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & Q_{1} \\ & \vdots \\ & \vdots \\ & + \\ & \vdots \end{aligned}$	デ	8 4 + 0 2 2 + 0 4	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 4 \\ & + \\ & 4 \end{aligned}$	-
	full-insertion	40	40	37	-3	170.2	74.4	95.8
	leighton-15	26	26	26	0	476.2	176.9	299.4
	leighton-25	31	31	31	0	1,084.6	385.1	699.4
	register-fpsol	37	37	37	0	175.3	80.4	94.9
	register-inithx	31	31	31	0	175.3	84.4	90.9
	school	8	8	8	0	280.9	105.2	175.7

5.1.5 Propagating Along a PEO

In this section, we evaluate the impact of propagating consistency along a PEO by comparing the performance of $\triangle \mathrm{PPC}$ to that of $\sigma-\Delta \mathrm{PPC}$. The complete results, appearing in Tables B. 16 and B.17, show a consistent but not sizable improvement in CPU time. Table 5.7 shows selected results.

While $\triangle \mathrm{PPC}$ fails to run on three instances of graphColoring full-insertion because of memory limitations, $\sigma-\triangle \mathrm{PPC}$ does not suffer from this limitation. Indeed, the latter does not use any propagation queue.

Table 5.7: Propagating along a PEO: $\mathrm{AC}+\Delta \mathrm{PPC}$ vs $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}$

		\# Instances			CPU time (s)		
		$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & 1 \\ & + \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & a \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & 4 \end{aligned}$	デ	$\begin{aligned} & 0 \\ & Q_{1} \\ & \vdots \\ & + \\ & \vdots \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ Q \\ 4 \\ 6 \\ + \\ 0 \\ 4 \end{gathered}$	(1)
coloring	22	22	22	0	5.0	2.6	2.4
graphColoring-full-insertion	40	37	40	3	74.4	55.8	18.6
graphColoring-k-insertion	32	32	32	0	13.4	8.5	4.9
graphColoring-leighton-5	8	8	8	0	37.4	23.5	13.9
rlfap-Graphs	14	14	14	0	583.2	589.3	-6.1
rlfap-GraphsMod	12	12	12	0	106.0	103.3	2.7

5.1.6 Comparing Types of Supports

We enhance our best PPC enforcing algorithm, $\sigma-\Delta \mathrm{PPC}$, with two types of support structures: supports à la $\mathrm{PC}-2001$ in $\sigma-\Delta \mathrm{PPC}^{\text {sup } 2001}$ and our new support structures in $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$, see discussion in Section 4.3.3. The detailed results of the evaluation on benchmark problems appear in Tables B. 18 and B. 19 of Appendix B. ${ }^{2}$

[^20]Generally speaking, $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$ consistently uses slightly more CPU time (about $8 \%)$ than $\sigma-\Delta \mathrm{PPC}^{\text {sup2001 }}$ on instances where no filtering occurs. On problems where tuples are removed, $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$ uses about 1% less CPU time than $\sigma-\Delta \mathrm{PPC}^{\text {sup2001 }}$.

In Table 5.8, we show representative results from Tables B. 18 and B. 19 with the number of tuples deleted shown for reference. On the two os-taillard benchmarks,

Table 5.8: Comparing the two types of support structures

			CPU time (s)		
					-
graphColoring-school	8	0.0	115.9	128.4	-12.5
os-taillard-4	30	550,541.0	127.7	129.8	-2.2
os-taillard-5	30	559,583.8	1,056.1	1,059.1	-3.1
rlfap-Graphs	14	743,935.3	90.2	73.3	16.9
rlfap-Scens11	12	1,584,627.0	29.2	25.6	3.6
rlfap-Scens	11	1,210,624.8	26.0	23.4	2.5
tightness0.9	100	27,134.2	28.6	25.5	3.0

$\sigma-\Delta \mathrm{PPC}^{\text {sup } 2001}$ slightly outperforms $\sigma-\Delta \mathrm{PPC}^{s u p}$. The better performance of the PC-2001-style supports on these benchmarks can be traced to the fact that domains of these benchmarks are totally ordered. In contrast, on the rlfap-Graphs benchmark, $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$ outperforms $\sigma-\Delta \mathrm{PPC}^{\text {sup } 2001}$ because the former is able to save many constraint checks.

In conclusion, we expect the new support structures to be more useful, in practice, on difficult problems, which are those where path consistency is most needed.

5.1.7 Benefits of Using Supports

In this section, we evaluate the impact of using support structures by comparing $\sigma-\Delta \mathrm{PPC}$ to $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$.

The complete results are reported in Tables B.20, B.21, and B. 22 of Appendix B. ${ }^{3}$ Generally speaking, we lose about 54.8% when no filtering occurs and gain about 13.9% when filtering occurs. The usefulness of support structures becomes more consequential in the context of search, which is beyond the scope of this thesis.

In Table 5.9, we select some representative results from Tables B.20, B.21, and B. 22 with the tuples removed shown for reference. For the tightness benchmarks, as the tightness increases, support structures become increasingly more useful.

Table 5.9: Impact of using support structures

			CPU time (s)		
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \# \\ & \# \end{aligned}$	$\begin{aligned} & u \\ & a \\ & a_{1} \\ & \vdots \\ & \vdots \\ & + \\ & 4 \end{aligned}$.
graphColoring-school	8	0.0	81.2	128.4	-47.2
os-taillard-4	30	550,541.0	154.1	129.8	24.3
os-taillard-5	30	559,583.8	1,265.8	1,059.1	203.7
rlfap-Graphs	14	743,935.3	141.1	73.3	67.8
tightness0.65	100	474.3	1.6	1.2	0.4
tightness0.8	100	4,030.1	6.8	3.5	3.3
tightness0.9	100	27,134.2	69.9	25.5	44.4

5.1.8 Improving PC-8

In this section, we evaluate the three improvements we proposed to the PC-8 algorithm in Section 4.4, namely, PC-8-Ordering, PC-8-Flag, and their combination,

[^21]PC- 8^{+}. Tables B. 23 and B. 24 show the complete results for the benchmark problems. Table 5.10 reports some representative results.

Table 5.10: Improvements to PC-8

		\# instances				CPU time (s)			
		$\begin{aligned} & \infty \\ & 0 \\ & U_{1} \\ & + \\ & \vdots \\ & 4 \end{aligned}$	$\begin{aligned} & + \\ & 0_{1}^{1} \\ & 0_{1} \\ & + \\ & + \\ & 4 \end{aligned}$			$\begin{aligned} & \infty \\ & \bigcup_{1}^{1} \\ & A_{1} \\ & + \\ & U \end{aligned}$	$$		
driver	7	All instances complete				94.6	81.2	87.3	80.7
graphColoring-hos	14	14	13	13	14	2,786.7	3,121.7	3,107.0	2,801.8
rlfap-ScensMod	13	11	11	11	13	963.3	1,009.6	1,045.6	920.5
os-taillard-5	30	All instances complete				1,563.0	1,498.5	1,575.8	1,475.5

PC-8-Flag saves constraint checks with the use of the flag bit vector. Consequently, we would expect it to also save time. However, on the results reported in Tables B. 23 and B. 24 , the CPU time saving is not systematic and PC-8-Flag is sometimes more costly in CPU time than PC-8 (e.g., all benchmarks Table 5.10 except driver). Further, PC-8-Flag (and also $\mathrm{PC}-8^{+}$) cannot complete one instance of the graphColoring-hos benchmark due to exceeding the memory limit. The PC-8-Ordering algorithm is able to complete two instances of the rlfap-ScensMod benchmark more than any other algorithm.

Generally speaking, PC-8-Ordering shows the best performance both in terms of CPU time and the number of completed instances, and even consistently outperforms $\mathrm{PC}-8^{+}$.

5.1.9 Improving PC-2001

In this section, we briefly comment on the improvements to the PC-2001 algorithm, PC-2001-OrdEring, PC-2001-Flag, and PC-2001+. The complete results are re-
ported in Tables B. 25 and B. 25 of Appendix B.
Table 5.11 reports some representative results. Once again, the flag modification saves constraint checks and therefore time in theory, but, in practice, on most benchmarks, it increases the CPU time, though there are exceptions like the driver benchmark. Once again, PC-2001-Ordering consistently outperforms all other algorithms in terms of CPU time and number of instances completed.

Table 5.11: Improvements to PC-2001

		$\begin{aligned} & \text { U } \\ & \stackrel{U}{E} \\ & \tilde{N} \\ & \tilde{0} \\ & . \sharp \\ & \# \end{aligned}$	CPU time (s)				
		-1 $\stackrel{\rightharpoonup}{8}$ N 0 0 + \vdots					
driver	7		7	91.0	79.7	86.8	78.9
graphColoring-hos	14	4	249.2	277.3	277.4	249.3	
os-taillard-5	30	30	1,236.7	1,248.0	1,253.5	1,229.6	

5.1.10 Comparing Main Algorithms

In this section, we compare the best of our introduced algorithms, PC-8-Ordering, PC-2001-OrdERING, and $\sigma-\Delta \mathrm{PPC}^{s u p}$ against the best published algorithms, DPC , sDC 2 , and SCDC 1 . The complete results are reported in Tables B. 26 and B.27.

In general, the DPC algorithm is the quickest of all considered algorithms because:

1. It operates on a triangulated graph.
2. It sweeps only once through the triangles of the triangulated graph.
3. It updates only one edge of each triangle, while enforcing directional arc consistency.

Consequently, it filters significantly fewer tuples than any other algorithm. Whether or not this amount of filtering is sufficient needs to be determined by evaluating the resulting effectiveness of search, which is beyond the scope of this thesis.

In terms of the number of completed instances, both DPC and sCDC1 complete all 2,288 instances. Then, comes PC-8-Ordering completing 2,266 instances, followed by SDC2 completing 2,255 instances. The main obstacle to completing an instance is the need for memory space. The two algorithms with the largest support structures, σ $\Delta \mathrm{PPC}^{\text {sup }}$ and PC-2001-Ordering complete the fewest instances (2,193 and 2,128, respectively). Note that $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$ operates on a triangulated graph and has no propagation queue while PC-2001-Ordering operates on the complete graph and has a propagation queue of edges.

In terms of CPU time, and excluding DPC, sCDC1 ranks first, followed by σ $\Delta \mathrm{PPC}^{\text {sup }}$, then sDC2. Further, PC-2001-Ordering outperforms PC-8-Ordering.

Table 5.12 shows selected representative results. Note that $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$ outperforms sCDC1 on three of the four reported benchmark problems.

Table 5.12: Comparing the best performing algorithms

		\# instances						CPU time (s)					
						$\begin{aligned} & N \\ & U \\ & 0 \\ & 0 \\ & + \\ & U \\ & X \end{aligned}$	$\begin{aligned} & \text { Uે } \\ & \text { Ôn } \end{aligned}$	$\begin{aligned} & 0 \\ & R \\ & + \\ & 0 \\ & 4 \end{aligned}$			$\begin{aligned} & \text { \#̃ } \\ & 0 \\ & 0 \\ & Q \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \\ & + \\ & \vdots \\ & 4 \end{aligned}$	ご
BH-4-13	7		l ins	stan	nces	s	pplete	37.1	556.4	524.8	100.2	653.7	182.3
rlfap-Scens	11	11	7	9	11	9	11	13.9	160.5	141.4	14.6	78.5	16.0
rlfap-ScensMod	13	13	7	13	13	12	13	1.7	132.5	142.1	2.2	100.8	4.8
os-taillard-5	30	All	l ins	stan	nces	s c	mplete	924.7	1,229.6	1,475.5	1,059.1	1,187.3	1,012.1

5.2 Randomly Generated Problems

In this section, we compare the performance of the studied algorithms on randomly generated problems.

5.2.1 Problem Characteristics

Using a Model B generator, we consider four sets of binary CSP instances with 20 instances per data point. For each problem set, we vary the constraint tightness to study the area around the phase transition. The four data sets have the following $\langle n, a, t, d\rangle$ characteristics, where n is the number variables in the CSP, a is the domain size (the same for all variables), t is the constraint tightness ($t=\frac{\text { number of forbidden tuples }}{\text { total number of tuples }}$, the same for all constraints), d is the constraint ratio or density $\left(d=\frac{2 e}{n(n-1)}\right)$, and e is the number of constraints in the CSP:

$$
\langle 50,25, t, 20 \%\rangle,\langle 50,50, t, 20 \%\rangle,\langle 50,25, t, 40 \%\rangle, \text { and }\langle 50,50, t, 40 \%\rangle .
$$

The goal of the above data sets is to compare the performance of the studied algorithm under relatively low (i.e., 20%) and high (i.e., 40%) constraint density and for problems with large (i.e., 25) and very large (i.e., 50) domains.

We run our experiments on the Crane supercomputer with a timeout limit of three hours per instance and 16 GiB of memory. These limits are large enough to allow every algorithm to complete every instance. We record the instruction count using the 'perf' tool and convert the number of instructions to a time value by assuming a 3.0 GHz CPU .

All our results assume pre-processing by AC before every algorithm except sCDC1.

5.2.2 Results

Below, we report the averages of the CPU time in a table and charts for the $\langle 50,25, t, 20 \%\rangle$ random data-set. While the tables and charts for other three data-sets are reported in Appendix C, we comment on all four data-sets throughout this section. Although the results are, generally speaking, similar, we do note some differences.

5.2.2.1 $\langle 50,25, t, 20 \%\rangle$

Table 5.13 reports the averages for all algorithms, listed from left to right in increasing cost. DPC is obviously the cheapest algorithm, but it also the one that does the least filtering. The performance of $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$ validates our approach as this algorithm outperforms all others.

Table 5.13: Comparing CPU times on random problems $\langle 50,25, t, 20 \%\rangle$

$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0.0 \\ & 00 \\ & i=1 \end{aligned}$	$\begin{aligned} & 0 \\ & Q \\ & 1 \\ & + \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & \stackrel{\#}{8} \\ & 0 \\ & 0 \\ & A \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { OU } \\ & \text { N } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & a \\ & a \\ & \vdots \\ & \vdots \\ & + \\ & \vdots \\ & 4 \end{aligned}$			A_{1} + + 0 0 + 0 4			$\begin{aligned} & + \\ & \infty \\ & 0 \\ & U_{1} \\ & + \\ & U \\ & < \end{aligned}$			$\begin{aligned} & \infty \\ & \bigcup_{1} \\ & + \\ & + \\ & 4 \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { U } \\ & + \\ & + \\ & U \\ & < \end{aligned}$
52.0\%	2.0	6.7	6.2	8.5	8.0	8.1	14.3	15.3	12.5	15.0	15.7	14.5	13.7	15.0	14.6	26.4	17.0
54.0\%	2.1	7.0	7.5	9.6	9.3	9.4	15.2	16.0	13.5	16.3	16.8	15.4	14.8	16.5	16.4	31.2	19.9
56.0\%	2.1	7.3	9.9	11.1	11.3	11.6	16.7	17.4	15.5	18.6	18.8	17.3	17.0	19.3	19.8	42.6	25.3
58.0\%	2.1	8.2	15.2	14.6	16.4	16.8	19.8	20.2	21.6	22.6	22.4	21.5	21.7	24.6	25.9	64.5	37.3
59.0\%	2.1	9.6	23.2	20.9	25.8	26.6	24.3	24.7	32.6	27.5	27.2	28.2	28.7	32.0	33.6	112.2	62.0
59.5\%	2.1	14.3	27.0	34.0	45.7	47.1	50.2	50.4	53.0	53.4	54.1	69.8	70.6	74.1	75.7	132.7	142.4
60.0\%	2.1	15.3	19.5	34.4	46.8	47.7	55.5	56.2	52.7	59.1	60.3	79.3	79.5	84.0	85.0	98.5	132.5
61.0\%	2.1	9.8	5.0	12.6	15.2	14.5	38.2	38.2	13.8	41.0	42.1	49.8	49.2	54.3	54.4	22.7	49.5
62.0\%	2.2	8.5	3.1	9.4	10.2	9.3	29.6	30.3	5.3	31.9	33.4	36.6	35.6	39.8	39.8	14.3	34.8
64.0\%	2.3	6.6	1.4	6.7	5.8	5.7	16.7	17.9	3.4	16.1	17.3	17.5	16.4	16.7	15.7	6.2	14.7
66.0\%	2.4	3.9	0.7	4.0	4.0	4.6	9.3	10.0	2.5	9.4	10.0	8.9	8.2	8.9	8.2	3.0	7.6

Figure 5.1 shows the best published algorithms. DPC is obviously the best on all random data-sets. sCDC1 is generally the next best algorithm, except in the case of
the $\langle 50,50, t, 40 \%\rangle$ data-set where it is outperformed by PC-8 and PC-2001, both of which enforce PC, a stronger consistency than CDC. On all data sets, PC-2001 is the fastest PC algorithm, followed by PC-8, sDC2, and finally PC-2.

Figure 5.1: $\langle 50,25, t, 20 \%\rangle$: Comparing the best previously known algorithms
Figure 5.2 shows the performance of the most competitive algorithms, including our proposed algorithms. The performance of $\sigma-\Delta \mathrm{PPC}^{\text {sup }}$ is clearly outstanding.

Figure 5.2: $\langle 50,25, t, 20 \%\rangle$: Comparing the most competitive algorithms

Figure 5.3 compares PC-8, PC-8-Ordering, PC-8-Flag, and PC-8 ${ }^{+}$. Interestingly, for all data sets, PC-8 ${ }^{+}$outperforms all other algorithms. Both PC-8Ordering and PC-8-Flag outperform PC-8 on all data sets.

Figure 5.3: $\langle 50,25, t, 20 \%\rangle$: Improving PC-8
Figure 5.4 compares our improvements to PC-2001. Interestingly, on all data sets, PC-2001-Ordering and PC-2001+ have comparable performance. In all data sets, they outperform PC-2001. PC-2001-FLAG slightly outperforms PC-2001 for $a=50$ and the opposite holds for $a=25$.

Figure 5.4: $\langle 50,25, t, 20 \%\rangle$: Improving PC-2001

Figure 5.5 compares the impact of the propagation queue and PEO. For 20% density, $\Delta \mathrm{PPC}$ outperforms all other algorithms, but for 40% density, $\sigma-\Delta \mathrm{PPC}$ outperforms all other algorithms.

Figure 5.5: $\langle 50,25, t, 20 \%\rangle$: Impact of the propagation queue and PEO

In Figure 5.6, we assess the impact of support structures. For all data sets, σ $\Delta \mathrm{PPC}^{\text {sup }}$ outperforms $\sigma-\Delta \mathrm{PPC}^{\text {sup } 2001}$, which, in turn, outperforms $\sigma-\Delta \mathrm{PPC}$.

Figure 5.6: $\langle 50,25, t, 20 \%\rangle$: Impact of support structures

5.3 Discussion

Drawing from the results of our tests on benchmark and random CSPs, we conclude:

1. Pre-processing with arc consistency is an important step. It decisively reduces CPU time and, in the case of DPC, increases the filtering.
2. DPC is a very 'cheap' algorithm in terms of CPU time. While it yields less filtering than PC algorithms, one may want to consider enforcing DPC before search, at least on existing triangles if one does not want to add edges to the constraint graph. Enforcing DPC during search is not done in practice because it was thought to require fixing the instantiation ordering of the variables while search typically performs best with a dynamic variable ordering. However, recently the ConSystLab has argued that the fixed ordering of DPC should not be an impediment to running it as a look-ahead during search.
3. We note that among our PC-8 improvements, $\mathrm{PC}-8^{+}$outperforms all other versions of PC-8 on randomly generated problems. However, on benchmark problems, PC-8-Ordering outperforms all others. The same comment holds for $\mathrm{PC}-2001^{+}$and PC-2001-Ordering.
4. Performance on benchmark problems qualitatively differs from performance on randomly generated problems. Notably, there are many instances in the benchmarks where no filtering can be done. On problems with no or little filtering, the CPU time needed for creating and maintaining support structures is wasted, which is detrimental to the corresponding algorithms.
5. Supports can yield significant CPU-time savings, but can also be costly in terms of memory space. Generally speaking, it is possible to predict the size of the
supports before processing a given instance. It may be advantageous either to entirely opt out of using supports, or to delay generating and storing supports until the problem is small enough that doing so becomes advantageous.
6. Before ruling out any of the proposed algorithms, it is important to evaluate them in the context of search, either as a pre-processing step or as a lookahead strategy. In this thesis, we focused our efforts to studying the existing algorithms and proposing new ones. Evaluating our algorithms in the context of search has to be left out to future research.

Summary

In this chapter, we discussed our empirical evaluations of the discussed and introduced algorithms, first on well-known benchmark problems, then on four randomly generated data-sets. Finally, we discussed our results.

Chapter 6

Conclusions and Future Work

In this thesis, we studied path consistency and its approximations, namely,

- Strong approximation: strong dual consistency.
- Weak approximation: directional path consistency and partial path consistency.
- Incomparable: strong conservative dual consistency.

We studied the main algorithms reported in the literature and proposed new ones that improve on the state of the art. A full list of our contributions is reported in Section 1.2. Below we identify new directions for future research:

1. Study modern bit-based implementations of consistency algorithms to improve implementation and practical performance.
2. Investigate hash-based techniques to reduce the cost of looking up tuples in table constraints.
3. Investigate strategies for generating and using supports selectively.
4. Investigate applying DPC before search on the existing triangles of the constraint graph.
5. Empirically determine the percentage of tested instances are path consistent but unsolvable. ${ }^{1}$
6. Implement the studied and proposed algorithms as a real-full look-ahead strategy during search [Haralick and Elliott, 1980].
[^22]
Appendix A

Data Structures

The code is written in $\mathrm{C}++$ ．Below，we describe the data structures of the variables， the variables＇domains，and constraints in our code．Those structures are illustrated in Figure A．1．

\rightarrow Class：Constraint
－std：：vector〈constriant＿tuple＿type〉 tuples long total＿active
std：：pair〈Variable＊，Variable＊〉 scope
std：：unordered＿map〈int，std：：set〈int〉〉 first＿value＿lookup
std：：unordered＿map〈int，std：：set〈int〉〉 second＿value＿lookup
Structure：constraint＿tuple＿type
std：：pair〈val＿type，val＿type〉 values
bool active
bool support
std：：vector〈std：：map〈val＿type，bool＞：：iterator〉＊supported＿by
Figure A．1：The data structures．

The class CSP has two attributes：

1．variables stores std：：vector＜Variable＊＞，which is a vector of pointers to variables．
2. constraints stores std: : vector<Constraint *>, which is a vector of pointers to constraints.

The Variable class has three attributes:

1. neighbors stores std::vector<Variable *>, which is a vector of pointers to the variables adjacent to the variable in the constraint graph.
2. fixed_domain stores std::map<val_type,bool>, which is a map of the sorted values in the initial domain of a CSP variable where bool indicates whether or not the value is 'alive.'
3. current_domain stores std::set<val_type>, which is the set of the domain values. The domain values are of the type val_type, which is an integer.

Note that the size of the attribute fixed_domain never changes after the problem is created while the size of current_domain can fluctuate as values are added and removed.

The Constraint class has five attributes:

1. tuples stores a one-dimensional vector, of type std: :vector<constraint_tuple_type>, storing structures of type constraint_tuple_type, which has four attributes:
a) values stores a tuple of values of type std: :pair<val_type, val_type>.
b) active is a Boolean indicating whether the tuple is active or deleted.
c) support is a Boolean indicating whether the tuple is supported by a value. This attribute is only used in PC-8 ${ }^{+}$, PC-8-Flag, PC-2001+ , and PC-2001-FLAG (see Section 4.4).
d) *supported_by is a pointer to a vector of pointers, each of which points to the domain value (in fixed_domain) of a CSP variable that supports the
tuple. The vector of pointers is called
std::vector<std::map<val_type,bool>::iterator>. This attribute is used only in PC-2001 (see Section 2.8.4).
total_active, which stores the number of active tuples in the relation.
. scope stores a pair of pointers, std: :pair<Variable*,Variable*>, to the variables in the scope of the constraint.
2. first_value_lookup is hashtable std::unordered_map<int,std::set<int>> providing for each value in the domain of the first variable in the scope of the constraint the initial set of values in the domain of the second variable with which it is consistent according to the constraint.
3. second_value_lookup is hashtable std::unordered_map<int,std::set<int>> providing for each value in the domain of the second variable in the scope of the constraint the initial set of values in the domain of the first variable with which it is consistent according to the constraint.

Note that the last two attributes, first_value_lookup and second_value_lookup, are redundant and used only for convenience. They are not updated during processing.

Appendix B

Results of Benchmark Problems

In this appendix, we include almost all the results of our experiments on benchmark problems, clearly stating and explaining omissions. In Chapter 5, we report only summaries of these results but discuss them in detail.

B. 1 Pre-processing with Arc Consistency

In this section, we report the full results of comparing running arc consistency before each of the algorithms listed in Table B.1:

- Notably, we do not include sCDC1 because this algorithm enforces arc consistency as its first step.
- We omit all the graphColoring benchmarks from all tables because no tuples can be deleted by any of the discussed algorithms (i.e., both arc and path consistency), the time gained or lost by pre-processing is under one second, and the instances completed are the same with and without pre-processing with arc consistency.
- Further, we omit some instances of some benchmarks (i.e., frb and rand instances in Table B.2) and entire benchmarks (i.e., frb and rand in Tables B.3B.7; composed, frd, and rand in Tables B.8-B.13) because pre-processing with AC does not impact performance.
- Unless we show the number of tuples deleted by each algorithm, the two algorithms compared in a given table remove the same number of tuples.
- Finally, the CPU time reported is averaged over the instances of a benchmark completed by both algorithms.

Table B.1: Enforcing arc consistency as a pre-processing step

Results	Comparing	To	Not shown
Table B. 2	DPC	AC+DPC	Some instances of frb, rand
Table B. 3	PC-2	$\mathrm{AC}+\mathrm{PC}-2$	frb, rand
Table B. 4	PC-8	$\mathrm{AC}+\mathrm{PC}-8$	frb, rand
Table B. 5	PC-8-ORDERING	AC+PC-8-ORDERING	frb, rand
Table B. 6	PC-2001	AC+PC-2001	frb, rand
Table B. 7	PC-2001-ORDER	AC+PC-2001-ORDER	frb, rand
Table B. 8	PPC+AP	$\mathrm{AC}+\mathrm{PCC}+\mathrm{AP}$	composed, frb, rand
Table B. 9	$\triangle \mathrm{PPC}$	AC $+\triangle \mathrm{PPC}$	composed, frb, rand
Table B. 10	$\sigma-\triangle \mathrm{PPC}$	$\mathrm{AC}+\sigma-\Delta \mathrm{PPC}$	composed, frb, rand
Table B. 11	$\sigma-\Delta \mathrm{PPC}^{\text {sup2001 }}$	$\mathrm{AC}+\sigma$ - $\Delta \mathrm{PPC}^{\text {sup } 2001}$	composed, frb, rand
Table B. 12	$\sigma-\Delta \mathrm{PPC}^{\text {sup }}$	$\mathrm{AC}+\sigma-\Delta \mathrm{PPC}^{\text {sup }}$	composed, frb, rand
Table B. 13	SDC2	$\mathrm{AC}+\mathrm{sDC} 2$	composed, frb, rand

Table B.2: Enforcing AC before DPC. AC + DPC and DPC complete the same number of instances

			\# tuples deleted			CPU time (s)		
			$\begin{aligned} & \text { ט } \\ & \text { R } \end{aligned}$	$\begin{aligned} & 0 \\ & Q \\ & + \\ & + \\ & 0 \end{aligned}$	テี	$\begin{aligned} & \text { U } \\ & \text { Q } \end{aligned}$	$\begin{aligned} & 0 \\ & Q \\ & + \\ & + \\ & 0 \end{aligned}$	
	Total	1,667	26,810,010.3	34,572,988.6	7,764,902.3	1,495.9	1,335.0	160.9
	BH-4-13	7	723,666.0	2,340,635.0	1,616,969.0	42.2	37.1	5.1
	BH-4-4	10	10,903.5	53,312.0	42,408.5	0.2	0.2	0.0
	BH-4-7	20	73,480.0	204,924.0	131,444.0	2.5	2.3	0.2
	QCP-10	15	25,394.1	29,366.4	3,972.3	0.3	0.2	0.1
	QCP-15	15	157,944.9	179,737.8	21,792.9	2.2	0.8	1.4
	QCP-20	15	555,556.9	626,260.5	70,703.7	10.1	2.7	7.4
	QCP-25	15	1,449,297.2	1,620,407.6	171,110.4	34.9	7.6	27.3
	QWH-10	10	20,457.5	24,290.8	3,833.3	0.2	0.1	0.1
	QWH-15	10	124,499.1	144,940.5	20,441.4	1.6	0.5	1.1
	QWH-20	10	438,685.6	504,906.6	66,221.0	7.5	1.9	5.7
	QWH-25	10	1,145,354.8	1,306,672.0	161,317.2	26.2	5.2	21.0
	bqwh-15-106	100	263.0	384.1	121.1	0.1	0.1	0.0
	bqwh-18-141	100	342.7	474.9	132.2	0.2	0.2	0.0
	coloring	22	0.0	0.0	0.0	1.0	1.0	0.0
$\begin{aligned} & \ddot{\otimes} \\ & \text { ò } \\ & 0 \\ & \text { ön } \\ & \text { O} \end{aligned}$	25-1-2	10	All instances are found inconsistent			0.0	0.0	0.0
	25-1-25	10	1,805.0	2,014.0	209.0	0.0	0.0	0.0
	25-1-40	10	2,555.0	2,897.0	342.0	0.1	0.1	0.0
	25-1-80	10	All instances are found inconsistent			0.1	0.1	0.0
	25-10-20	10	1,008.1	1,094.7	86.6	0.1	0.2	0.0
	75-1-2	10	319.0	Inconsistent	-	0.2	0.2	0.0
	75-1-25	10	1,605.0	Inconsistent	-	0.2	0.2	0.0
	75-1-40	10	All instances are found inconsistent			0.2	0.2	0.0
	75-1-80	10	2,426.0	3,092.5	666.5	0.3	0.3	0.0
	driver	7	12,050.1	17,819.0	5,768.9	1.1	1.1	0.0
	frb30-15	10	103.4	124.0	20.6	0.2	0.2	0.0
	geom	100	0.0	0.0	0.0	0.5	0.5	0.0
	hanoi	5	0.0	191,558.6	191,558.6	0.2	2.0	-1.9
	langford	4	88,065.3	227,498.0	139,432.8	0.9	0.7	0.2
	lard	10	7,170,733.2	7,335,584.5	164,851.3	74.7	35.9	38.8
	marc	10	12,510,907.8	15,188,207.2	2,677,299.4	42.9	24.2	18.7
	os-taillard-4	30	162,989.8	187,485.2	24,495.4	109.9	109.2	0.7
	os-taillard-5	30	137,760.1	138,267.3	507.1	924.8	924.7	0.2
$\begin{aligned} & \text { ت్W } \\ & \text { ت్ర } \end{aligned}$	2-30-15	50	71.2	81.3	10.2	0.1	0.1	0.0
	2-30-15-fcd	50	72.6	87.9	15.3	0.1	0.1	0.0
	2-40-19	50	34.7	43.8	9.1	0.4	0.4	0.0
	2-40-19-fcd	50	34.6	42.3	7.7	0.4	0.4	0.0
	2-50-23-fcd	50	16.8	26.4	9.6	1.0	1.1	0.0
	Graphs	14	279,465.0	311,367.0	31,902.0	99.7	90.9	8.8
	GraphsMod	12	270,571.4	842,489.1	571,917.7	54.4	32.9	21.5
	Scens11	12	529,989.3	1,333,950.8	803,961.5	16.2	14.6	1.7
	Scens	11	646,131.7	1,002,191.3	356,059.7	19.2	17.1	2.1
	ScensMod	13	257,339.6	742,643.4	485,303.8	6.1	5.2	0.9
	tightness0.1	100	0.9	0.9	0.0	0.1	0.1	0.0
	tightness0.2	100	2.0	2.0	0.0	0.1	0.1	0.0
	tightness0.35	100	9.3	9.3	0.0	0.2	0.2	0.0
	tightness0.5	100	27.1	27.1	0.0	0.4	0.4	0.0
	tightness0.65	100	149.1	149.1	0.0	0.5	0.5	0.0
	tightness0.8	100	1,127.1	1,127.7	0.6	1.6	1.6	0.0
	tightness0.9	100	6,794.8	6,794.8	0.0	9.6	9.6	0.0

Table B.3: Enforcing AC before PC-2. AC+PC-2 completes more instances than PC-2 and consistently saves time

			\# instances			CPU time (s)		
			$\begin{aligned} & \text { N } \\ & \text { U } \end{aligned}$			$\begin{aligned} & \text { N } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { U } \\ & \text { L } \\ & + \\ & U \\ & \hline \end{aligned}$	
	Total	1,407	1,372	1,394	22	17,723.3	12,211.1	5,512.2
	BH-4-13	7	7	7	0	906.4	437.4	469.0
	BH-4-4	10	10	10	0	1.6	0.5	1.1
	BH-4-7	20	20	20	0	36.2	17.1	19.1
	QCP-10	15	15	15	0	1.2	0.6	0.6
	QCP-15	15	15	15	0	11.9	4.8	7.2
	QCP-20	15	15	15	0	70.8	26.1	44.7
	QCP-25	15	15	15	0	313.9	110.8	203.1
	QWH-10	10	10	10	0	1.1	0.6	0.5
	QWH-15	10	10	10	0	10.1	4.3	5.8
	QWH-20	10	10	10	0	61.6	23.8	37.8
	QWH-25	10	10	10	0	266.0	100.9	165.1
	bqwh-15-106	100	100	100	0	1.3	1.3	0.1
	bqwh-18-141	100	100	100	0	2.4	2.3	0.1
	coloring	22	22	22	0	8.6	8.6	0.0
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \\ & \text { ön } \\ & \text { ƠO } \end{aligned}$	25-1-2	10	10	10	0	0.1	0.1	0.0
	25-1-25	10	10	10	0	0.1	0.1	0.0
	25-1-40	10	10	10	0	0.2	0.1	0.0
	25-1-80	10	10	10	0	0.2	0.2	0.0
	25-10-20	10	10	10	0	11.2	11.1	0.1
	75-1-2	10	10	10	0	1.8	1.7	0.0
	75-1-25	10	10	10	0	1.8	1.7	0.0
	75-1-40	10	10	10	0	1.8	1.7	0.0
	75-1-80	10	10	10	0	1.8	1.8	0.0
	driver	7	7	7	0	154.6	151.4	3.3
	geom	100	100	100	0	1.9	1.9	0.0
	hanoi	5	3	5	2	19.9	0.0	19.8
	langford	4	4	4	0	2.4	1.3	1.2
	lard	10	10	10	0	173.5	58.7	114.8
	marc	10	10	10	0	44.4	25.1	19.4
	os-taillard-4	30	30	30	0	215.5	212.4	3.1
	os-taillard-5	30	30	30	0	1,621.4	1,620.7	0.7
$\underset{\underset{y y}{*}}{\substack{0 \\ \hline}}$	Graphs	14	6	9	3	1,107.7	1,022.5	85.2
	GraphsMod	12	5	8	3	1,648.3	1,227.3	421.0
	Scens11	12	2	10	8	6,728.3	4,167.7	2,560.7
	Scens	11	5	9	4	1,424.9	787.9	637.0
	ScensMod	13	11	13	2	2,069.7	1,377.7	692.0
	tightness0.1	100	100	100	0	0.2	0.2	0.0
	tightness0.2	100	100	100	0	0.3	0.3	0.0
	tightness0.35	100	100	100	0	0.7	0.7	0.0
	tightness0.5	100	100	100	0	2.0	2.0	0.0
	tightness0.65	100	100	100	0	6.6	6.6	0.0
	tightness0.8	100	100	100	0	43.2	43.3	0.0
	tightness0.9	100	100	100	0	745.6	746.0	-0.4

Table B.4: Enforcing AC before PC-8. AC+PC-8 completes more instances than PC-8 and generally saves time

			\# instances			CPU time (s)		
			$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{U}_{1} \\ & + \\ & + \\ & u_{1} \end{aligned}$	تુ	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \bigcup_{1} \\ & Q_{1} \\ & + \\ & \psi_{1} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{E}}$
	Total	1,407	1,372	1,393	21	11,949.3	7,388.6	4,560.7
	BH-4-13	7	7	7	0	1,488.2	536.2	952.0
	BH-4-4	10	10	10	0	2.5	0.5	2.0
	BH-4-7	20	20	20	0	59.3	20.9	38.4
	QCP-10	15	15	15	0	1.9	0.5	1.4
	QCP-15	15	15	15	0	20.8	3.5	17.4
	QCP-20	15	15	15	0	128.6	17.0	111.6
	QCP-25	15	15	15	0	548.7	57.8	490.8
	QWH-10	10	10	10	0	1.4	0.4	1.0
	QWH-15	10	10	10	0	16.1	2.7	13.4
	QWH-20	10	10	10	0	104.0	13.3	90.7
	QWH-25	10	10	10	0	438.0	44.4	393.5
	bqwh-15-106	100	100	100	0	1.1	1.0	0.1
	bqwh-18-141	100	100	100	0	2.2	2.0	0.2
	coloring	22	22	22	0	7.1	7.1	0.0
$\begin{aligned} & \ddot{\ddot{0}} \\ & \text { on } \\ & 0 . \\ & \text { ä } \end{aligned}$	25-1-2	10	10	10	0	0.2	0.2	0.0
	25-1-25	10	10	10	0	0.2	0.2	0.0
	25-1-40	10	10	10	0	0.2	0.2	0.0
	25-1-80	10	10	10	0	0.2	0.2	0.0
	25-10-20	10	10	10	0	13.2	12.9	0.2
	75-1-2	10	10	10	0	2.1	2.0	0.0
	75-1-25	10	10	10	0	2.1	2.0	0.0
	75-1-40	10	10	10	0	2.1	2.0	0.0
	75-1-80	10	10	10	0	2.1	2.1	0.0
	driver	7	7	7	0	99.2	94.6	4.5
	geom	100	100	100	0	2.2	2.2	0.0
	hanoi	5	3	5	2	31.3	0.0	31.3
	langford	4	4	4	0	3.6	1.8	1.8
	lard	10	10	10	0	279.3	67.7	211.6
	marc	10	10	10	0	54.6	25.0	29.6
	os-taillard-4	30	30	30	0	209.1	205.9	3.2
	os-taillard-5	30	30	30	0	1,563.6	1,563.0	0.6
	Graphs	14	8	9	1	922.2	810.2	112.0
	GraphsMod	12	7	10	3	2,319.3	1,905.6	413.7
	Scens11	12	0	9	9	-	-	-
	Scens	11	5	9	4	2,044.6	1,012.6	1,032.0
	ScensMod	13	9	11	2	996.9	389.6	607.3
	tightness0.1	100	100	100	0	0.2	0.2	0.0
	tightness0.2	100	100	100	0	0.4	0.4	0.0
	tightness0.35	100	100	100	0	0.7	0.7	0.0
	tightness0.5	100	100	100	0	1.9	1.9	0.0
	tightness0.65	100	100	100	0	5.9	5.9	0.0
	tightness0.8	100	100	100	0	42.2	42.1	0.1
	tightness0.9	100	100	100	0	530.0	529.9	0.1

Table B．5：Enforcing AC before PC－8－Ordering．AC＋PC－8－Ordering completes more instances than PC－8－Ordering and consistently saves time

			\＃instances			CPU time（s）		
					ت゙	苞		$\begin{aligned} & \text { 䧺 } \\ & \text { in } \end{aligned}$
	Total	1，407	1，371	1，395	24	9，616．4	6，705．4	2，911．0
	BH－4－13	7	7	7	0	1，071．0	524.8	546.2
	BH－4－4	10	10	10	0	2.0	0.5	1.4
	BH－4－7	20	20	20	0	42.6	20.4	22.2
	QCP－10	15	15	15	0	1.3	0.5	0.8
	QCP－15	15	15	15	0	13.7	3.5	10.2
	QCP－20	15	15	15	0	81.8	17.0	64.7
	QCP－25	15	15	15	0	340.5	58.1	282.5
	QWH－10	10	10	10	0	1.1	0.4	0.7
	QWH－15	10	10	10	0	10.8	2.7	8.0
	QWH－20	10	10	10	0	66.3	13.3	53.1
	QWH－25	10	10	10	0	271.0	44.6	226.4
	bqwh－15－106	100	100	100	0	1.1	1.0	0.1
	bqwh－18－141	100	100	100	0	2.0	1.9	0.1
	coloring	22	22	22	0	7.2	7.2	0.0
	25－1－2	10	10	10	0	0.2	0.2	0.0
	25－1－25	10	10	10	0	0.2	0.2	0.0
	25－1－40	10	10	10	0	0.2	0.2	0.0
	25－1－80	10	10	10	0	0.2	0.2	0.0
	25－10－20	10	10	10	0	12.8	12.7	0.2
	75－1－2	10	10	10	0	2.1	2.1	0.0
	75－1－25	10	10	10	0	2.1	2.1	0.0
	75－1－40	10	10	10	0	2.1	2.1	0.0
	75－1－80	10	10	10	0	2.1	2.1	0.0
	driver	7	7	7	0	82.8	80.7	2.1
	geom	100	100	100	0	2.2	2.2	0.0
	hanoi	5	3	5	2	23.6	0.0	23.5
	langford	4	4	4	0	3.2	1.6	1.6
	lard	10	10	10	0	212.7	67.9	144.8
	marc	10	10	10	0	49.3	25.0	24.3
	os－taillard－4	30	30	30	0	199.4	196.3	3.1
	os－taillard－5	30	30	30	0	1，475．4	1，475．5	－0．1
	Graphs	14	8	9	1	877.0	773.3	103.7
	GraphsMod	12	6	9	3	1，765．8	1，513．7	252.0
	Scens11	12	0	10	10	－	－	－
	Scens	11	5	9	4	1，758．4	961.7	796.7
	ScensMod	13	9	13	4	701.8	359.3	342.6
	tightness0．1	100	100	100	0	0.2	0.2	0.0
	tightness0．2	100	100	100	0	0.4	0.4	0.0
	tightness0．35	100	100	100	0	0.7	0.7	0.0
	tightness0．5	100	100	100	0	1.9	1.9	0.0
	tightness0．65	100	100	100	0	5.3	5.3	0.0
	tightness0．8	100	100	100	0	35.1	35.1	0.0
	tightness0．9	100	100	100	0	487.0	487.0	－0．1

Table B.6: Enforcing AC before PC-2001. AC+PC-2001 completes more instances than $\mathrm{AC}+\mathrm{PC}-2001$ and consistently saves time

Table B．7：Enforcing AC before PC－2001－Ordering．AC＋PC－2001－Ordering completes more instances than PC－2001－Ordering and consistently saves time

			\＃instances			CPU time（s）		
					だ		จu！̣әр．о－t00z－Od＋OV	$\begin{aligned} & \underset{\sim}{\underset{\sim}{e}} \\ & \underset{\sim}{n} \end{aligned}$
	Total	1，407	1，332	1，369	37	4，498．9	3，701．5	797.4
	BH－4－13	7	7	7	0	874.8	556.4	318.4
	BH－4－4	10	10	10	0	1.8	0.6	1.1
	BH－4－7	20	20	20	0	35.7	22.1	13.5
	QCP－10	15	15	15	0	1.5	0.6	0.9
	QCP－15	15	15	15	0	16.3	4.4	11.9
	QCP－20	15	15	15	0	102.6	22.0	80.6
	QCP－25	15	0	15	15	－	－	－
	QWH－10	10	10	10	0	1.1	0.4	0.7
	QWH－15	10	10	10	0	12.9	3.4	9.5
	QWH－20	10	10	10	0	82.8	17.3	65.5
	QWH－25	10	0	10	10	－	－	－
	bqwh－15－106	100	100	100	0	1.0	1.0	0.0
	bqwh－18－141	100	100	100	0	2.0	1.9	0.1
	coloring	22	22	22	0	7.6	7.6	0.0
	25－1－2	10	10	10	0	0.2	0.2	0.0
	25－1－25	10	10	10	0	0.2	0.2	0.0
	25－1－40	10	10	10	0	0.2	0.2	0.0
	25－1－80	10	10	10	0	0.2	0.2	0.0
	25－10－20	10	10	10	0	11.1	10.9	0.1
	75－1－2	10	10	10	0	2.2	2.2	0.0
	75－1－25	10	10	10	0	2.2	2.2	0.0
	75－1－40	10	10	10	0	2.2	2.2	0.0
	75－1－80	10	10	10	0	2.2	2.2	0.0
	driver	7	7	7	0	81.4	78.9	2.5
	geom	100	100	100	0	2.4	2.4	0.0
	hanoi	5	3	5	2	27.0	0.0	26.9
	langford	4	4	4	0	2.4	1.6	0.8
	lard	10	10	10	0	189.8	83.0	106.8
	marc	10	10	10	0	62.6	37.8	24.7
	os－taillard－4	30	30	30	0	155.0	153.0	1.9
	os－taillard－5	30	30	30	0	1，229．5	1，229．6	－0．1
発	Graphs	14	3	8	5	729.3	676.6	52.7
	GraphsMod	12	2	2	0	0.1	0.1	0.0
	Scens11	12	0	0	0	－	－	－
	Scens	11	2	7	5	313.1	286.9	26.2
	ScensMod	13	7	7	0	184.7	132.5	52.2
	tightness0．1	100	100	100	0	0.2	0.2	0.0
	tightness0．2	100	100	100	0	0.4	0.4	0.0
	tightness0．35	100	100	100	0	0.8	0.8	0.0
	tightness0．5	100	100	100	0	2.0	2.0	0.0
	tightness0．65	100	100	100	0	5.5	5.5	0.0
	tightness0．8	100	100	100	0	31.4	31.4	0.0
	tightness0．9	100	100	100	0	320.4	320.1	0.2

Table B.8: Enforcing AC before PPC+AP. Both algorithms complete 1,837 instances but pre-processing with AC generally saves time

		CPU time (s)		
		$\begin{aligned} & Q_{1} \\ & + \\ & 0 \\ & Q_{1} \end{aligned}$	R 4 0 2 2 + \vdots 4	
Total	1,317	4,123.5	3,473.1	650.4
BH-4-13	7	347.4	147.6	199.8
BH-4-4	10	0.8	0.3	0.6
BH-4-7	20	14.5	6.8	7.7
QCP-10	15	1.1	0.6	0.5
QCP-15	15	8.9	3.4	5.5
QCP-20	15	45.4	13.8	31.6
QCP-25	15	162.9	40.4	122.5
QWH-10	10	0.8	0.4	0.4
QWH-15	10	5.9	2.2	3.8
QWH-20	10	32.1	8.6	23.5
QWH-25	10	111.6	25.0	86.6
bqwh-15-106	100	0.5	0.5	0.0
bqwh-18-141	100	1.1	1.1	0.0
coloring	22	8.3	8.3	0.0
driver	7	7.5	7.5	-0.1
geom	100	1.0	1.0	0.0
hanoi	5	0.2	2.0	-1.8
langford	4	4.3	1.9	2.3
lard	10	215.8	127.2	88.6
marc	10	46.1	27.4	18.8
os-taillard-4	30	176.1	174.0	2.1
os-taillard-5	30	1,502.6	1,502.9	-0.2
Graphs	14	1,054.6	1,018.7	35.9
\% GraphsMod	12	163.0	148.6	14.4
\% Scens11	12	54.2	50.6	3.6
7 Scens	11	41.8	39.4	2.4
ScensMod	13	15.2	13.3	1.9
tightness0.1	100	0.4	0.4	0.0
tightness0.2	100	0.5	0.5	0.0
tightness0.35	100	0.7	0.7	0.0
tightness0.5	100	1.2	1.2	0.0
tightness0.65	100	2.2	2.2	0.0
tightness0.8	100	9.2	9.2	0.0
tightness0.9	100	85.3	85.3	0.1

Table B.9: Enforcing AC before \triangle PPC. Both algorithms complete 1,837 instances but pre-processing with AC generally saves time

			CPU time (s)		
				$\begin{aligned} & 0 \\ & Q \\ & Q \\ & 1 \\ & 0 \\ & 4 \end{aligned}$	
	Total	1,317	3,138.4	2,483.9	654.5
	BH-4-13	7	170.2	79.4	90.8
	BH-4-4	10	0.5	0.2	0.3
	BH-4-7	20	7.7	3.9	3.8
	QCP-10	15	1.0	0.4	0.6
	QCP-15	15	9.0	2.0	7.0
	QCP-20	15	43.9	8.0	35.9
	QCP-25	15	165.7	22.7	143.1
	QWH-10	10	0.8	0.3	0.5
	QWH-15	10	6.3	1.5	4.8
	QWH-20	10	33.6	5.6	28.0
	QWH-25	10	118.4	15.3	103.1
	bqwh-15-106	100	0.4	0.3	0.0
	bqwh-18-141	100	0.8	0.7	0.0
	coloring	22	5.0	5.0	0.0
	driver	7	6.0	5.9	0.0
	geom	100	0.6	0.6	0.0
	hanoi	5	0.2	2.0	-1.8
	langford	4	2.9	1.3	1.6
	lard	10	181.3	58.9	122.5
	marc	10	52.2	25.2	26.9
	os-taillard-4	30	156.7	154.6	2.1
	os-taillard-5	30	1,257.4	1,256.9	0.5
	Graphs	14	618.1	583.2	35.0
	GraphsMod	12	145.4	106.0	39.4
ช	Scens11	12	35.8	30.2	5.6
	Scens	11	29.4	26.7	2.7
	ScensMod	13	11.3	9.1	2.2
	tightness0.1	100	0.2	0.2	0.0
	tightness0.2	100	0.2	0.2	0.0
	tightness0.35	100	0.4	0.4	0.0
	tightness0.5	100	0.8	0.8	0.0
	tightness0.65	100	1.5	1.5	0.0
	tightness0.8	100	6.7	6.8	0.0
	tightness0.9	100	68.0	68.0	0.0

Table B.10: Enforcing AC before σ - Δ PPC. Both algorithms complete 1,837 instances but pre-processing with AC generally saves time

			CPU time (s)		
			$\begin{aligned} & 0 \\ & h \\ & a \\ & \vdots \\ & b \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 4 \\ & \vdots \\ & 0 \\ & 0 \\ & 4 \end{aligned}$	
	Total	1,317	3,752.0	2,472.9	1,279.1
	BH-4-13	7	208.2	79.4	128.8
	BH-4-4	10	0.5	0.2	0.3
	BH-4-7	20	9.0	3.9	5.1
	QCP-10	15	1.1	0.3	0.9
	QCP-15	15	13.4	1.4	12.0
	QCP-20	15	84.6	5.5	79.0
	QCP-25	15	345.1	15.7	329.4
	QWH-10	10	0.9	0.2	0.6
	QWH-15	10	9.4	1.0	8.3
	QWH-20	10	60.3	3.9	56.4
	QWH-25	10	243.6	10.3	233.3
	bqwh-15-106	100	0.3	0.3	0.0
	bqwh-18-141	100	0.6	0.5	0.0
	coloring	22	2.6	2.6	0.0
	driver	7	4.5	4.5	0.0
	geom	100	0.6	0.6	0.0
	hanoi	5	0.2	2.0	-1.8
	langford	4	2.8	1.2	1.5
	lard	10	199.9	58.7	141.2
	marc	10	67.5	25.0	42.5
	os-taillard-4	30	156.0	154.1	1.9
	os-taillard-5	30	1,262.5	1,262.8	-0.3
	Graphs	14	742.6	589.3	153.4
	GraphsMod	12	177.9	103.3	74.7
	Scens11	12	35.9	30.3	5.6
	Scens	11	31.0	27.0	4.0
	ScensMod	13	11.3	8.9	2.3
	tightness0.1	100	0.2	0.2	0.0
	tightness0.2	100	0.2	0.2	0.0
	tightness0.35	100	0.4	0.4	0.0
	tightness0.5	100	0.8	0.8	0.0
	tightness0.65	100	1.6	1.6	0.0
	tightness0.8	100	6.8	6.8	0.0
	tightness0.9	100	69.9	69.9	0.0

Table B.11: Enforcing AC before σ - $\Delta \mathrm{PPC}^{s u p 2001}$. Pre-processing with AC allows us to complete more instances and saves time

			\# instances			CPU time (s)		
					$\begin{gathered} \tilde{Z} \\ \underset{\sim}{\sigma} \end{gathered}$			
	Total	1,3717	1,300	1,309	9	2,255.1	1,673.4	581.6
	BH-4-13	7	7	7	0	170.0	95.7	74.3
	BH-4-4	10	10	10	0	0.4	0.2	0.2
	BH-4-7	20	20	20	0	7.8	4.7	3.1
	QCP-10	15	15	15	0	0.9	0.4	0.5
	QCP-15	15	15	15	0	7.8	2.1	5.7
	QCP-20	15	15	15	0	43.8	8.8	35.1
	QCP-25	15	7	15	8	167.4	27.1	140.3
	QWH-10	10	10	10	0	0.7	0.3	0.4
	QWH-15	10	10	10	0	5.5	1.4	4.0
	QWH-20	10	10	10	0	31.5	6.1	25.4
	QWH-25	10	10	10	0	118.5	17.5	101.0
	bqwh-15-106	100	100	100	0	0.3	0.3	0.0
	bqwh-18-141	100	100	100	0	0.6	0.6	0.0
	coloring	22	22	22	0	3.6	3.6	0.0
	driver	7	7	7	0	5.2	5.0	0.2
	frb30-15	10	10	10	0	0.3	0.3	0.0
	frb35-17	10	10	10	0	0.5	0.5	0.0
	frb40-19	10	10	10	0	0.9	0.9	0.0
	frb45-21	10	10	10	0	1.4	1.4	0.0
	frb50-23	10	10	10	0	2.2	2.2	0.0
	frb53-24	10	10	10	0	2.7	2.8	0.0
	frb56-25	10	10	10	0	3.4	3.4	0.0
	frb59-26	10	10	10	0	4.2	4.2	0.0
	geom	100	100	100	0	0.7	0.7	0.0
	hanoi	5	5	5	0	0.2	2.0	-1.8
	langford	4	4	4	0	2.5	1.4	1.1
	lard	10	10	10	0	174.7	81.2	93.5
	marc	10	10	10	0	97.5	28.2	69.3
	os-taillard-4	30	30	30	0	129.5	127.7	1.9
	os-taillard-5	30	30	30	0	1,055.9	1,056.1	-0.2
	Graphs	14	10	10	0	105.5	90.2	15.3
	GraphsMod	12	7	8	1	12.9	12.0	0.9
	Scens11	12	12	12	0	34.6	29.2	5.4
	Scens	11	11	11	0	29.6	26.0	3.6
	ScensMod	13	13	13	0	11.2	8.7	2.5
	tightness0.1	100	100	100	0	0.2	0.2	0.0
	tightness0.2	100	100	100	0	0.3	0.3	0.0
	tightness0.35	100	100	100	0	0.4	0.5	0.0
	tightness0.5	100	100	100	0	0.9	0.9	0.0
	tightness0.65	100	100	100	0	1.4	1.4	0.0
	tightness0.8	100	100	100	0	4.4	4.4	0.0
	tightness0.9	100	100	100	0	28.5	28.6	0.0

Table B.12: Enforcing AC before $\sigma-\Delta \mathrm{PPC}^{s u p}$. Pre-processing with AC allows us to complete more instances and generally saves time

			\# instances			CPU time (s)		
			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & a_{1} \\ & \stackrel{1}{1} \\ & 1 \end{aligned}$		$\begin{aligned} & \text { تี } \\ & \text { ت゙ } \end{aligned}$		$\begin{aligned} & \text { B \# } \\ & 0 \\ & 0 \\ & 0 \\ & Q \\ & \vdots \\ & 0 \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 80 \\ & \stackrel{0}{B} \\ & \underset{\sim}{\sigma} \end{aligned}$
	Total	1,317	1,300	1,309	9	2,217.9	1,658.8	559.0
	BH-4-13	7	7	7	0	173.5	100.2	73.3
	BH-4-4	10	10	10	0	0.4	0.2	0.2
	BH-4-7	20	20	20	0	7.8	4.8	3.0
	QCP-10	15	15	15	0	0.8	0.4	0.4
	QCP-15	15	15	15	0	7.4	2.0	5.4
	QCP-20	15	15	15	0	42.1	8.5	33.6
	QCP-25	15	7	15	8	162.4	26.2	136.2
	QWH-10	10	10	10	0	0.6	0.2	0.4
	QWH-15	10	10	10	0	5.2	1.3	3.9
	QWH-20	10	10	10	0	30.3	5.6	24.7
	QWH-25	10	10	10	0	114.8	16.4	98.4
	bqwh-15-106	100	100	100	0	0.3	0.2	0.0
	bqwh-18-141	100	100	100	0	0.6	0.6	0.0
	coloring	22	22	22	0	3.7	3.7	0.0
	driver	7	7	7	0	3.8	3.6	0.2
	geom	100	100	100	0	0.7	0.7	0.0
	hanoi	5	5	5	0	0.2	2.0	-1.8
	langford	4	4	4	0	2.4	1.3	1.1
	lard	10	10	10	0	170.8	91.0	79.8
	marc	10	10	10	0	99.7	28.2	71.5
	os-taillard-4	30	30	30	0	131.9	129.8	2.1
	os-taillard-5	30	30	30	0	1,059.1	1,059.1	0.0
	Graphs	14	10	10	0	88.8	73.3	15.5
	GraphsMod	12	7	8	1	11.3	10.4	0.9
	Scens11	12	12	12	0	30.2	25.6	4.5
	Scens	11	11	11	0	27.0	23.4	3.5
	ScensMod	13	13	13	0	10.3	8.0	2.4
	tightness0.1	100	100	100	0	0.2	0.2	0.0
	tightness0.2	100	100	100	0	0.3	0.3	0.0
	tightness0.35	100	100	100	0	0.4	0.4	0.0
	tightness0.5	100	100	100	0	0.8	0.8	0.0
	tightness0.65	100	100	100	0	1.2	1.2	0.0
	tightness0.8	100	100	100	0	3.5	3.5	0.0
	tightness0.9	100	100	100	0	25.5	25.5	0.0

Table B.13: Enforcing AC before SDC2. Pre-processing with AC allows us to complete more instances and consistently saves time

			\# instances			CPU time (s)		
			$\begin{aligned} & \text { N } \\ & \text { Ô } \end{aligned}$	$\begin{aligned} & \text { Ǹ } \\ & \text { On } \\ & \text { U } \\ & \text { U } \end{aligned}$	-デ	$\begin{aligned} & \text { N } \\ & \text { Ô } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { On } \\ & \text { U } \\ & \text { U } \end{aligned}$	
	Total	1,317	1,286	1,294	8	9,172.8	8,950.5	222.3
	BH-4-13	7	7	7	0	656.0	653.7	2.3
	BH-4-4	10	10	10	0	0.6	0.6	0.1
	BH-4-7	20	20	20	0	27.2	27.1	0.1
	QCP-10	15	15	15	0	0.4	0.3	0.1
	QCP-15	15	15	15	0	3.8	2.9	0.9
	QCP-20	15	15	15	0	22.2	18.1	4.1
	QCP-25	15	15	15	0	74.1	61.8	12.4
	QWH-10	10	10	10	0	1.2	1.1	0.1
	QWH-15	10	10	10	0	9.3	8.5	0.7
	QWH-20	10	10	10	0	47.3	43.6	3.7
	QWH-25	10	10	10	0	104.9	93.7	11.3
	bqwh-15-106	100	100	100	0	2.8	2.8	0.0
	bqwh-18-141	100	100	100	0	6.2	6.2	0.0
	coloring	22	22	22	0	2.4	2.4	0.0
	driver	7	7	7	0	49.6	49.5	0.1
	geom	100	100	100	0	2.5	2.5	0.0
	hanoi	5	3	5	2	4.1	0.0	4.0
	langford	4	4	4	0	1.8	1.8	0.0
	lard	10	10	10	0	34.2	34.1	0.0
	marc	10	10	10	0	23.7	23.7	0.0
	os-taillard-4	30	30	30	0	135.3	135.2	0.2
	os-taillard-5	30	30	30	0	1,187.2	1,187.3	-0.1
$\stackrel{\text { ? }}{\substack{7 \\ 7}}$	Graphs	14	8	9	1	698.5	634.1	64.4
	GraphsMod	12	7	8	1	379.2	359.6	19.7
	Scens11	12	1	1	0	3,419.9	3,367.4	52.5
	Scens	11	5	9	4	500.9	470.9	30.1
	ScensMod	13	12	12	0	1,047.8	1,031.3	16.6
	tightness0.1	100	100	100	0	0.3	0.3	0.0
	tightness0.2	100	100	100	0	0.6	0.6	0.0
	tightness0.35	100	100	100	0	1.4	1.4	0.0
	tightness0.5	100	100	100	0	3.6	3.6	0.0
	tightness0.65	100	100	100	0	10.4	10.4	0.0
	tightness0.8	100	100	100	0	69.2	69.3	-0.1
	tightness0.9	100	100	100	0	644.3	644.9	-0.6

B. 2 Propagation Queue: Edges versus Triangles

In this section, we report the detailed results comparing the impact of using triangles instead of edges in the propagation queue. Except for three instances where we run out of memory space, handling triangles generally saves CPU time (see discussion in Section 5.1.4). Otherwise, the number of deleted tuples is not affected.

Table B.14: $\mathrm{AC}+\mathrm{PPC}+\mathrm{AP}$ vs $\mathrm{AC}+\Delta \mathrm{PPC}$ (table 1 of 2)

			\# instances			CPU time (s)		
			$\begin{aligned} & A_{1} \\ & u_{1} \\ & + \\ & Q_{1} \\ & a_{+} \\ & U_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & Q \\ & Q \\ & + \\ & + \\ & 4 \end{aligned}$	$$	$\begin{aligned} & Q_{1} \\ & n_{1} \\ & U_{1} \\ & Q_{1} \\ & + \\ & U_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & + \\ & + \\ & 4 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\stackrel{0}{E}} \\ & \underset{\sim}{c} \end{aligned}$
	Total	2,288	2,288	2,285	-3	6,229.1	3,576.1	2,653.0
	BH-4-13	7	7	7	0	147.6	79.4	68.2
	BH-4-4	10	10	10	0	0.3	0.2	0.1
	BH-4-7	20	20	20	0	6.8	3.9	2.8
	QCP-10	15	15	15	0	0.6	0.4	0.2
	QCP-15	15	15	15	0	3.4	2.0	1.4
	QCP-20	15	15	15	0	13.8	8.0	5.9
	QCP-25	15	15	15	0	40.4	22.7	17.7
	QWH-10	10	10	10	0	0.4	0.3	0.1
	QWH-15	10	10	10	0	2.2	1.5	0.7
	QWH-20	10	10	10	0	8.6	5.6	3.0
	QWH-25	10	10	10	0	25.0	15.3	9.7
	bqwh-15-106	100	100	100	0	0.5	0.3	0.1
	bqwh-18-141	100	100	100	0	1.1	0.7	0.4
	coloring	22	22	22	0	8.3	5.0	3.4
	25-1-2	10	10	10	0	0.1	0.1	0.0
	25-1-25	10	10	10	0	0.1	0.1	0.0
	25-1-40	10	10	10	0	0.1	0.1	0.0
$\stackrel{\ddot{O}}{0}$	25-1-80	10	10	10	0	0.2	0.1	0.0
O	25-10-20	10	10	10	0	0.6	0.4	0.2
Ö	75-1-2	10	10	10	0	0.5	0.6	-0.1
	75-1-25	10	10	10	0	0.6	0.7	-0.1
	75-1-40	10	10	10	0	0.6	0.7	-0.1
	75-1-80	10	10	10	0	0.7	0.8	-0.1
	driver	7	7	7	0	7.5	5.9	1.6
	frb30-15	10	10	10	0	0.4	0.3	0.2
	frb35-17	10	10	10	0	0.8	0.5	0.3
	frb40-19	10	10	10	0	1.3	0.8	0.6
	frb45-21	10	10	10	0	2.3	1.2	1.1
	frb50-23	10	10	10	0	3.5	1.8	1.7
	frb53-24	10	10	10	0	4.5	2.2	2.2
	frb56-25	10	10	10	0	5.5	2.7	2.8
	frb59-26	10	10	10	0	6.9	3.4	3.5
	geom	100	100	100	0	1.0	0.6	0.4

Results continue in next table.

Table B.15: $\mathrm{AC}+\mathrm{PPC}+\mathrm{AP}$ vs $\mathrm{AC}+\Delta \mathrm{PPC}$ (table 2 of 2)

			\# instances			CPU time (s)		
			$\begin{aligned} & A \\ & \mathbb{C} \\ & + \\ & U \\ & Q \\ & Q_{1} \\ & + \\ & U \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & 1 \\ & + \\ & 0 \\ & 4 \end{aligned}$	ت゙	$\begin{aligned} & Q_{1} \\ & 4 \\ & 0 \\ & Q_{1} \\ & Q_{1} \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & Q \\ & Q \\ & + \\ & 0 \\ & 4 \end{aligned}$	$$
	hos	14	14	14	0	49.0	23.9	25.1
	full-insertion	40	40	37	-3	170.2	74.4	95.8
	k-insertion	32	32	32	0	26.0	13.4	12.6
	leighton-15	26	26	26	0	476.2	176.9	299.4
	leighton-25	31	31	31	0	1,084.6	385.1	699.4
	leighton-5	8	8	8	0	73.0	37.4	35.6
	mug	8	8	8	0	0.0	0.0	0.0
	myciel	16	16	16	0	0.9	0.4	0.4
	register-fpsol	37	37	37	0	175.3	80.4	94.9
	register-inithx	31	31	31	0	175.3	84.4	90.9
	register-mulsol	47	47	47	0	26.5	13.1	13.3
	register-zeroin	31	31	31	0	34.6	16.4	18.2
	school	8	8	8	0	280.9	105.2	175.7
	sgb-book	26	26	26	0	0.3	0.2	0.1
	sgb-games	4	4	4	0	0.8	0.4	0.4
	sgb-miles	42	42	42	0	79.6	33.9	45.7
	sgb-queen	50	50	50	0	56.9	21.0	35.9
	hanoi	5	5	5	0	2.0	2.0	0.0
	langford	4	4	4	0	1.9	1.3	0.6
	lard	10	10	10	0	127.2	58.9	68.3
	marc	10	10	10	0	27.4	25.2	2.2
	os-taillard-4	30	30	30	0	174.0	154.6	19.3
	os-taillard-5	30	30	30	0	1,502.9	1,256.9	246.0
$\stackrel{\rightharpoonup}{7}$	23 -Feb	10	10	10	0	0.8	0.5	0.3
	24 -Feb	10	10	10	0	1.0	0.6	0.4
	$25-\mathrm{Feb}$	10	10	10	0	1.2	0.7	0.5
	26-Feb	10	10	10	0	1.5	0.9	0.6
	27-Feb	10	10	10	0	1.8	1.0	0.7
	2-30-15	50	50	50	0	0.4	0.3	0.2
	2-30-15-fcd	50	50	50	0	0.4	0.3	0.2
	2-40-19	50	50	50	0	1.3	0.7	0.6
	2-40-19-fcd	50	50	50	0	1.4	0.7	0.6
	2-50-23	50	50	50	0	3.6	1.8	1.8
	2-50-23-fcd	50	50	50	0	3.6	1.8	1.8
	Graphs	14	14	14	0	1,018.7	583.2	435.5
	GraphsMod	12	12	12	0	148.6	106.0	42.6
	Scens11	12	12	12	0	50.6	30.2	20.4
	Scens	11	11	11	0	39.4	26.7	12.7
	ScensMod	13	13	13	0	13.3	9.1	4.2
	tightness0.1	100	100	100	0	0.4	0.2	0.2
	tightness0.2	100	100	100	0	0.5	0.2	0.2
	tightness0.35	100	100	100	0	0.7	0.4	0.3
	tightness0.5	100	100	100	0	1.2	0.8	0.4
	tightness0.65	100	100	100	0	2.2	1.5	0.7
	tightness0.8	100	100	100	0	9.2	6.8	2.5
	tightness0.9	100	100	100	0	85.3	68.0	17.2

B. 3 Propagating Along a PEO

Propagating along a PEO, without a propagation queue, allows us to save CPU time, memory space, and complete all 2,288 instances. Both algorithms, $\mathrm{AC}+\Delta \mathrm{PPC}$ and $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}$, remove the same number of tuples on completed instances. Further, they complete all instances of the BH , frb, composed, and rand benchmark and have comparable performance on those benchmarks (omitted from the tables below).

Table B.16: Following a PEO: $\mathrm{AC}+\Delta \mathrm{PPC}$ vs $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}$ (table 1 of 2)

			\# instances			CPU time (s)		
			$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 4 \\ & + \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \vdots \\ & \vdots \\ & 0 \\ & 4 \end{aligned}$	$\begin{gathered} \text { だ } \\ \text { تु } \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & 4 \end{aligned}$	¢ - ¢
	Total	1,731	1,728	1,731	3	3,446.7	3,375.7	91.0
	QCP-10	15	15	15	0	0.4	0.3	0.1
	QCP-15	15	15	15	0	2.0	1.4	0.6
	QCP-20	15	15	15	0	8.0	5.5	2.4
	QCP-25	15	15	15	0	22.7	15.7	7.0
	QWH-10	10	10	10	0	0.3	0.2	0.1
	QWH-15	10	10	10	0	1.5	1.0	0.4
	QWH-20	10	10	10	0	5.6	3.9	1.8
	QWH-25	10	10	10	0	15.3	10.3	5.0
	bqwh-15-106	100	100	100	0	0.3	0.3	0.1
	bqwh-18-141	100	100	100	0	0.7	0.5	0.2
	coloring	22	22	22	0	5.0	2.6	2.4
	driver	7	7	7	0	5.9	4.5	1.5
	geom	100	100	100	0	0.6	0.6	0.0
	hos	14	14	14	0	23.9	19.0	4.9
	full-insertion	40	37	40	3	74.4	55.8	18.6
	k-insertion	32	32	32	0	13.4	8.5	4.9
	leighton-15	26	26	26	0	176.9	161.3	15.6
	leighton-25	31	31	31	0	385.1	372.3	12.8
	leighton-5	8	8	8	0	37.4	23.5	13.9
	mug	8	8	8	0	0.0	0.0	0.0
	myciel	16	16	16	0	0.4	0.3	0.1
	register-fpsol	37	37	37	0	80.4	79.8	0.6
	register-inithx	31	31	31	0	84.4	83.4	1.0
	register-mulsol	47	47	47	0	13.1	13.0	0.1
	register-zeroin	31	31	31	0	16.4	16.3	0.1
	school	8	8	8	0	105.2	99.1	6.1
	sgb-book	26	26	26	0	0.2	0.2	0.0
	sgb-games	4	4	4	0	0.4	0.3	0.1
	sgb-miles	42	42	42	0	33.9	33.8	0.1
	sgb-queen	50	50	50	0	21.0	19.8	1.2

Results continue in next table.

Table B.17: Following a PEO: $\mathrm{AC}+\Delta \mathrm{PPC}$ vs $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}$ (table 2 of 2)

			\# instances			CPU time (s)		
			$\begin{aligned} & 0 \\ & n \\ & n \\ & \vdots \\ & + \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & a \\ & a \\ & u \\ & b \\ & + \\ & \vdots \\ & 4 \end{aligned}$.	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & + \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$.
	hanoi	5	5	5	0	2.0	2.0	0.0
	langford	4	4	4	0	1.3	1.2	0.1
	lard	10	10	10	0	58.9	58.7	0.2
	marc	10	10	10	0	25.2	25.0	0.2
	os-taillard-4	30	30	30	0	154.6	154.1	0.5
	os-taillard-5	30	30	30	0	1,256.9	1,262.8	-5.9
	Graphs	14	14	14	0	583.2	589.3	-6.1
	GraphsMod	12	12	12	0	106.0	103.3	2.7
	Scens11	12	12	12	0	30.2	30.3	-0.2
	Scens	11	11	11	0	26.7	27.0	-0.3
	ScensMod	13	13	13	0	9.1	8.9	0.1
	tightness0.1	100	100	100	0	0.2	0.2	0.0
	tightness0.2	100	100	100	0	0.2	0.2	0.0
	tightness0.35	100	100	100	0	0.4	0.4	0.0
	tightness0.5	100	100	100	0	0.8	0.8	0.0
	tightness0.65	100	100	100	0	1.5	1.6	0.0
	tightness0.8	100	100	100	0	6.8	6.8	0.0
	tightness0.9	100	100	100	0	68.0	69.9	-1.9

B. 4 Comparing Types of Supports

We compare the performance $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}^{\text {sup } 2001}$, which uses $\mathrm{PC}-2001$ style supports and $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}^{\text {sup }}$, which users our new support structure.

Table B. 18 isolates instances where PPC removes no tuples, thus, the effort of building support structures is wasted. In retrospect, one can create such structures only when the need arises.

Table B.18: Comparing the two styles of support structures when no filtering occurs

			CPU time (s)		
	Total	523	508.3	549.3	-41.1
	coloring	22	3.6	3.7	-0.1
	hos	14	26.2	26.7	-0.5
	full-insertion	40	17.8	19.2	-1.3
	k-insertion	32	12.2	12.8	-0.6
	leighton-15	26	88.4	96.0	-7.6
	leighton-25	31	56.8	60.9	-4.1
	leighton-5	8	33.0	33.9	-0.9
	mug	8	0.0	0.0	0.0
	myciel	16	0.5	0.5	0.0
	register-fpsol	37	32.2	34.2	-2.1
	register-inithx	31	28.0	29.3	-1.3
	register-mulsol	47	17.6	19.1	-1.5
	register-zeroin	31	22.3	24.5	-2.2
	school	8	115.9	128.4	-12.5
	sgb-book	26	0.3	0.3	0.0
	sgb-games	4	0.5	0.5	0.0
	sgb-miles	42	22.8	25.6	-2.8
	sgb-queen	50	26.0	29.4	-3.5
T.	$23-\mathrm{Feb}$	10	0.6	0.6	0.0
	24-Feb	10	0.7	0.7	0.0
	$25-\mathrm{Feb}$	10	0.8	0.9	0.0
	26-Feb	10	1.0	1.0	0.0
	27-Feb	10	1.2	1.3	0.0

Table B. 19 reports the results when filtering occurs. Both algorithms complete all instances of the composed benchmark (omitted) with the same CPU time.

Table B.19: Comparing the two styles of support structures on benchmarks when filtering occurs

		CPU time (s)		
			$\begin{aligned} & \stackrel{8}{7} \\ & \text { Un } \\ & 2 \\ & Q \\ & 4 \\ & 6 \\ & + \\ & U \\ & 4 \end{aligned}$	
Total	1,675	1,713.3	1,699.3	14.0
BH-4-13	7	95.7	100.2	-4.4
BH-4-4	10	0.2	0.2	0.0
BH-4-7	20	4.7	4.8	-0.1
QCP-10	15	0.4	0.4	0.0
QCP-15	15	2.1	2.0	0.1
QCP-20	15	8.8	8.5	0.3
QCP-25	15	26.9	26.0	0.9
QWH-10	10	0.3	0.2	0.0
QWH-15	10	1.4	1.3	0.1
QWH-20	10	6.1	5.6	0.5
QWH-25	10	17.5	16.4	1.0
bqwh-15-106	100	0.3	0.2	0.1
bqwh-18-141	100	0.6	0.6	0.1
driver	7	5.0	3.6	1.4
frb30-15	10	0.3	0.3	0.0
frb35-17	10	0.5	0.5	0.0
frb40-19	10	0.9	0.9	0.0
frb45-21	10	1.4	1.5	0.0
frb50-23	10	2.2	2.3	-0.1
frb53-24	10	2.8	2.9	-0.1
frb56-25	10	3.4	3.5	-0.2
frb59-26	10	4.2	4.5	-0.3
geom	100	0.7	0.7	0.0
hanoi	5	2.0	2.0	0.0
langford	4	1.4	1.3	0.1
lard	10	81.2	91.0	-9.7
marc	10	28.2	28.2	0.0
os-taillard-4	30	127.7	129.8	-2.2
os-taillard-5	30	1,056.1	1,059.1	-3.1
2-30-15	50	0.3	0.3	0.0
2-30-15-fcd	50	0.3	0.3	0.0
T 2 2-40-19	50	0.9	0.9	0.0
\% 2 2-40-19-fcd	50	0.9	0.9	0.0
2-50-23	50	2.2	2.3	-0.1
2-50-23-fcd	50	2.2	2.3	-0.1
Graphs	14	90.2	73.3	16.9
O GraphsMod	12	33.3	31.7	1.6
\% Scens11	12	29.2	25.6	3.6
- Scens	11	26.0	23.4	2.5
ScensMod	13	8.7	8.0	0.8
tightness0.1	100	0.2	0.2	0.0
tightness0.2	100	0.3	0.3	0.0
tightness0.35	100	0.5	0.4	0.0
tightness0.5	100	0.9	0.8	0.1
tightness0.65	100	1.4	1.2	0.3
tightness0.8	100	4.4	3.5	0.9
tightness0.9	100	28.6	25.5	3.0

B. 5 Benefits of Using Supports

Creating support structures uses up memory, but allows us, in general, to save on CPU time. When no filtering is possible, recording supports is wasteful of both time and space. We compare the performance of $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}^{s u p}$ and $\mathrm{AC}+\sigma-\Delta \mathrm{PPC}$ in Table B. 20 (no filtering) and in Tables B. 21 and B. 22 (with filtering).

Table B.20: Drawbacks of using support structures on benchmarks with no filtering

			\# instances			CPU time (s)		
			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 4 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 4 \end{aligned}$	$\text { dns: } \mathbf{O d d} \nabla^{-\rho+\mathbf{O V}}$	ت゙	$\begin{aligned} & U \\ & Q \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \\ & 4 \end{aligned}$		$\begin{gathered} \text { D} \\ \text { 己 } \\ \text { స్ } \end{gathered}$
	Total	523	523	436	-87	354.7	549.3	-194.6
	coloring	22	22	22	0	2.6	3.7	-1.1
	hos	14	14	14	0	19.0	26.7	-7.7
	full-insertion	40	40	32	-8	12.2	19.2	-7.0
	k-insertion	32	32	32	0	8.5	12.8	-4.4
	leighton-15	26	26	10	-16	61.8	96.0	-34.2
	leighton-25	31	31	6	-25	39.9	60.9	-21.0
	leighton-5	8	8	8	0	23.5	33.9	-10.4
B	mug	8	8	8	0	0.0	0.0	0.0
0	myciel	16	16	16	0	0.3	0.5	-0.1
\bigcirc	register-fpsol	37	37	26	-11	20.7	34.2	-13.6
$\stackrel{\square}{2}$	register-inithx	31	31	13	-18	17.0	29.3	-12.3
0_{0}	register-mulsol	47	47	47	0	13.0	19.1	-6.1
	register-zeroin	31	31	31	0	16.3	24.5	-8.2
	school	8	8	5	-3	81.2	128.4	-47.2
	sgb-book	26	26	26	0	0.2	0.3	-0.1
	sgb-games	4	4	4	0	0.3	0.5	-0.2
	sgb-miles	42	42	37	-5	16.6	25.6	-9.0
	sgb-queen	50	50	49	-1	18.1	29.4	-11.4
	23-Feb	10	10	10	0	0.5	0.6	-0.1
	24-Feb	10	10	10	0	0.6	0.7	-0.1
تี	$25-\mathrm{Feb}$	10	10	10	0	0.7	0.9	-0.1
	$26-\mathrm{Feb}$	10	10	10	0	0.9	1.0	-0.2
	27-Feb	10	10	10	0	1.1	1.3	-0.2

Table B.21: Impact of using support structures on benchmarks with filtering (table 1 of 2)

			\# instances			CPU time (s)		
			$\begin{aligned} & U \\ & A \\ & Q_{1} \\ & \vdots \\ & 0 \\ & + \\ & 4 \end{aligned}$			$\begin{aligned} & U \\ & A \\ & Q \\ & \vdots \\ & \vdots \\ & + \\ & U \\ & 4 \end{aligned}$		$\begin{aligned} & \text { D } \\ & \text { D } \\ & \text { む } \\ & \text { in } \end{aligned}$
	Total	1,765	1,765	1,757	-8	1,975.2	1,700.8	274.4
	BH-4-13	7	7	7	0	79.4	100.2	-20.7
	BH-4-4	10	10	10	0	0.2	0.2	0.0
	BH-4-7	20	20	20	0	3.9	4.8	-0.9
	QCP-10	15	15	15	0	0.3	0.4	-0.1
	QCP-15	15	15	15	0	1.4	2.0	-0.6
	QCP-20	15	15	15	0	5.5	8.5	-2.9
	QCP-25	15	15	15	0	15.7	26.0	-10.3
	QWH-10	10	10	10	0	0.2	0.2	0.0
	QWH-15	10	10	10	0	1.0	1.3	-0.3
	QWH-20	10	10	10	0	3.9	5.6	-1.7
	QWH-25	10	10	10	0	10.3	16.4	-6.2
	bqwh-15-106	100	100	100	0	0.3	0.2	0.0
	bqwh-18-141	100	100	100	0	0.5	0.6	0.0
	25-1-2	10	10	10	0	0.1	0.0	0.0
	25-1-25	10	10	10	0	0.1	0.0	0.0
\checkmark	25-1-40	10	10	10	0	0.1	0.1	0.0
$\stackrel{\sim}{0}$	25-1-80	10	10	10	0	0.1	0.1	0.0
,	25-10-20	10	10	10	0	0.4	0.4	0.0
O	75-1-2	10	10	10	0	0.6	0.2	0.4
-	75-1-25	10	10	10	0	0.6	0.2	0.4
	75-1-40	10	10	10	0	0.7	0.2	0.5
	75-1-80	10	10	10	0	0.7	0.3	0.4
	driver	7	7	7	0	4.5	3.6	0.9
	frb30-15	10	10	10	0	0.3	0.3	0.0
	frb35-17	10	10	10	0	0.5	0.5	0.0
	frb40-19	10	10	10	0	0.8	0.9	-0.1
	frb45-21	10	10	10	0	1.2	1.5	-0.2
	frb50-23	10	10	10	0	1.8	2.3	-0.5
	frb53-24	10	10	10	0	2.2	2.9	-0.6
	frb56-25	10	10	10	0	2.7	3.5	-0.9
	frb59-26	10	10	10	0	3.4	4.5	-1.1
	geom	100	100	100	0	0.6	0.7	-0.1
	hanoi	5	5	5	0	2.0	2.0	0.0
	langford	4	4	4	0	1.2	1.3	-0.1
	lard	10	10	10	0	58.7	91.0	-32.3
	marc	10	10	10	0	25.0	28.2	-3.2
	os-taillard-4	30	30	30	0	154.1	129.8	24.3
	os-taillard-5	30	30	30	0	1,262.8	1,059.1	203.7
	2-30-15	50	50	50	0	0.3	0.3	0.0
	2-30-15-fcd	50	50	50	0	0.3	0.3	0.0
T	2-40-19	50	50	50	0	0.7	0.9	-0.1
T్రె	2-40-19-fcd	50	50	50	0	0.7	0.9	-0.1
	2-50-23	50	50	50	0	1.8	2.3	-0.5
	2-50-23-fcd	50	50	50	0	1.8	2.3	-0.5

Table B.22: Impact of using support structures on benchmarks with filtering (table 2 of 2)

B. 6 Improving PC-8

All algorithms do the same filtering. AC+PC-8-OrDERING has the smallest CPU time.

Table B.23: Assessing improvements to PC-8 (table 1 of 2)

			\# instances				CPU time (s)			
			$\begin{aligned} & \infty \\ & U_{1}^{\prime} \\ & L_{1} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & + \\ & \infty \\ & 0 \\ & A_{1} \\ & + \\ & \vdots \\ & 4 \end{aligned}$		DNİGGUO-8-Od+?OV	$\begin{aligned} & \infty \\ & u_{1} \\ & L_{1} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & +\infty \\ & 0 \\ & 0 \\ & 1 \\ & + \\ & \vdots \\ & 4 \end{aligned}$		0 2 w w 0 0 ∞ 0 0 1 1 0 4
	Total:	2,288	2,264	2,261	2,260	2,266	27,038	29,088	29,446	26,549
	BH-4-13	7	All instances complete				536.2	573.8	586.1	524.8
	BH-4-4	10	All instances complete				0.5	0.5	0.5	0.5
	BH-4-7	20	All instances complete				20.9	22.2	22.7	20.4
	QCP-10	15	All instances complete				0.5	0.6	0.5	0.5
	QCP-15	15	All instances complete				3.5	3.8	3.8	3.5
	QCP-20	15	All instances complete				17.0	18.6	18.6	17.0
	QCP-25	15	All instances complete				57.8	63.6	63.3	58.1
	QWH-10	10	All instances complete				0.4	0.4	0.4	0.4
	QWH-15	10	All instances complete				2.7	2.9	3.0	2.7
	QWH-20	10	All instances complete				13.3	14.3	14.3	13.3
	QWH-25	10	All instances complete				44.4	48.7	48.6	44.6
	bqwh-15-106	100	All instances complete				1.0	1.1	1.1	1.0
	bqwh-18-141	100	All instances complete				2.0	2.1	2.1	1.9
	coloring	22	All instances complete				7.1	8.0	7.9	7.2
$\begin{aligned} & \text { ठ} \\ & 0 \\ & 0 \\ & 0 \\ & \text { O. } \\ & 0 \end{aligned}$	25-1-2	10	All instances complete				0.2	0.2	0.2	0.2
	25-1-25	10	All instances complete				0.2	0.2	0.2	0.2
	25-1-40	10	All instances complete				0.2	0.2	0.2	0.2
	25-1-80	10	All instances complete				0.2	0.2	0.2	0.2
	25-10-20	10	All instances complete				12.9	13.2	13.6	12.7
	75-1-2	10	All instances complete				2.0	2.3	2.2	2.1
	75-1-25	10	All instances complete				2.0	2.3	2.2	2.1
	75-1-40	10	All instances complete				2.0	2.3	2.3	2.1
	75-1-80	10	All instances complete				2.1	2.3	2.3	2.1
	driver	7	All instances complete				94.6	81.2	87.3	80.7
	frb30-15	10	All instances complete				0.4	0.4	0.4	0.4
	frb35-17	10	All instances complete				0.7	0.7	0.7	0.7
	frb40-19	10	All instances complete				1.2	1.2	1.2	1.2
	frb45-21	10	All instances complete				2.0	2.1	2.1	2.0
	frb50-23	10	All instances complete				3.1	3.3	3.3	3.1
	frb53-24	10	All instances complete				3.9	4.2	4.2	3.9
	frb56-25	10	All instances complete				4.9	5.3	5.3	4.9
	frb59-26	10	All instances complete				6.1	6.6	6.6	6.1
	geom	100	All instances complete				2.2	2.4	2.4	2.2

Results continue in next table.

Table B.24: Assessing improvements to PC-8 (table 2 of 2)

B. 7 Improving PC-2001

All algorithms do the same filtering. They all complete the same number of instances (i.e., 2,128). AC+PC-2001-Ordering has the smallest CPU time.

Table B.25: Assessing improvements to PC-2001 (table 1 of 2)

				CPU time (s)			
			$\begin{aligned} & \text { on } \\ & \stackrel{0}{U} \\ & \text { స్} \\ & \text { H } \\ & . \\ & \# \end{aligned}$	$\begin{aligned} & - \\ & \text { O} \\ & \text { N } \\ & \text { Ú } \\ & \text { + } \\ & + \\ & U \end{aligned}$	$\begin{aligned} & + \\ & \stackrel{-}{0} \\ & \underset{N}{1} \\ & \vdots \\ & U_{1} \\ & + \\ & \vdots \\ & \hline \end{aligned}$		
	Total	2,288	2,128	5,372	5,633	5,697	5,302
	BH-4-13	7	7	561.4	592.0	597.0	556.4
	BH-4-4	10	10	0.6	0.7	0.7	0.6
	BH-4-7	20	20	22.4	23.8	24.4	22.1
	QCP-10	15	15	0.6	0.6	0.6	0.6
	QCP-15	15	15	4.4	4.7	4.7	4.4
	QCP-20	15	15	22.1	23.7	23.7	22.0
	QCP-25	15	15	78.0	83.8	83.9	78.1
	QWH-10	10	10	0.5	0.5	0.5	0.4
	QWH-15	10	10	3.4	3.6	3.6	3.4
	QWH-20	10	10	17.4	18.4	18.5	17.3
	QWH-25	10	10	60.4	64.5	64.7	60.3
	bqwh-15-106	100	100	1.0	1.0	1.1	1.0
	bqwh-18-141	100	100	2.0	2.1	2.1	1.9
	coloring	22	22	7.6	8.4	8.4	7.6
	25-1-2	10	10	0.2	0.2	0.2	0.2
	25-1-25	10	10	0.2	0.2	0.2	0.2
	25-1-40	10	10	0.2	0.2	0.2	0.2
$\stackrel{\rightharpoonup}{0}$	25-1-80	10	10	0.2	0.2	0.2	0.2
OO	25-10-20	10	10	11.1	11.1	11.9	10.9
Eg	75-1-2	10	10	2.2	2.4	2.4	2.2
	75-1-25	10	10	2.2	2.4	2.4	2.2
	75-1-40	10	10	2.2	2.4	2.4	2.2
	75-1-80	10	10	2.2	2.4	2.4	2.2
	driver	7	7	91.0	79.7	86.8	78.9
	frb30-15	10	10	0.4	0.4	0.4	0.4
	frb35-17	10	10	0.7	0.8	0.8	0.7
	frb40-19	10	10	1.3	1.3	1.3	1.3
	frb45-21	10	10	2.1	2.3	2.3	2.1
	frb50-23	10	10	3.3	3.6	3.6	3.3
	frb53-24	10	10	4.2	4.5	4.6	4.2
	frb56-25	10	10	5.3	5.7	5.7	5.3
	frb59-26	10	10	6.6	7.1	7.1	6.6
	geom	100	100	2.4	2.6	2.6	2.4

Results continue in next table.

Assessing improvements to PC-2001 (table 2 of 2)

B． 8 Comparing Main Algorithms

Table B．26：Comparing AC＋DPC，AC＋PC－2001－Ordering，AC＋PC－8－Ordering， $\sigma-\Delta \mathrm{PPC}^{\text {sup }}, \mathrm{AC}+\mathrm{sDC} 2$ ，and SCDC 1 （table 1 of 2 ）

		\＃instances						CPU time（s）					
		$\begin{aligned} & 0 \\ & \text { U } \\ & + \\ & + \\ & U \\ & \hline \end{aligned}$	AC + PC－2001－ORDERING			$\begin{aligned} & \text { N } \\ & \text { U } \\ & \text { U } \\ & U \\ & U \end{aligned}$	$\begin{aligned} & \text { Uu} \\ & \text { OUn } \end{aligned}$				$\begin{aligned} & \stackrel{e}{0} \\ & 0 \\ & 0 \\ & Q_{1} \\ & \vdots \\ & \vdots \\ & \vdots \\ & 4 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { On } \\ & + \\ & U \\ & U \end{aligned}$	ごひ
Total：	2，288	2，288	2，128	2，266	2，193	2，255	2，288	1，340	5，089	5，446	2，036	4，408	1，840
BH－4－13	7	All instances complete						37.1	556.4	524.8	100.2	653.7	182.3
BH－4－4	10	All instances complete						0.2	0.6	0.5	0.2	0.6	0.2
BH－4－7	20	All instances complete						2.3	22.1	20.4	4.8	27.1	8.1
QCP－10	15	All instances complete						0.2	0.6	0.5	0.4	0.3	0.1
QCP－15	15	All instances complete						0.8	4.4	3.5	2.0	2.9	0.5
QCP－20	15	All instances complete						2.7	22.0	17.0	8.5	18.1	1.5
QCP－25	15	All instances complete						7.6	78.1	58.1	26.0	61.8	3.5
QWH－10	10	All instances complete						0.1	0.4	0.4	0.2	1.1	0.1
QWH－15	10	All instances complete						0.5	3.4	2.7	1.3	8.5	0.4
QWH－20	10	All instances complete						1.9	17.3	13.3	5.6	43.6	1.3
QWH－25	10	All instances complete						5.2	60.3	44.6	16.4	93.7	2.9
bqwh－15－106	100	All instances complete						0.1	1.0	1.0	0.2	2.8	0.1
bqwh－18－141	100	All instances complete						0.2	1.9	1.9	0.6	6.2	0.2
coloring	22	All instances complete						1.0	7.6	7.2	3.7	2.4	0.2
25－1－2	10	All instances complete						0.0	0.2	0.2	0.0	0.2	0.1
25－1－25	10	All instances complete						0.0	0.2	0.2	0.0	0.2	0.1
－25－1－40	10	All instances complete						0.1	0.2	0.2	0.1	0.2	0.1
0_{0} 25－1－80	10	All instances complete						0.1	0.2	0.2	0.1	0.2	0.1
O25－10－20	10	All instances complete						0.2	10.9	12.7	0.4	9.0	0.7
\％75－1－2	10	All instances complete						0.2	2.2	2.1	0.2	1.2	0.3
－75－1－25	10	All instances complete						0.2	2.2	2.1	0.2	1.3	0.3
75－1－40	10	All instances complete						0.2	2.2	2.1	0.2	1.3	0.3
75－1－80	10	All instances complete						0.3	2.2	2.1	0.3	1.3	0.3
driver	7	All instances complete						1.1	78.9	80.7	3.6	49.5	5.6
frb30－15	10	All instances complete						0.2	0.4	0.4	0.3	0.8	0.5
frb35－17	10	All instances complete						0.3	0.7	0.7	0.5	1.4	0.8
frb40－19	10	All instances complete						0.5	1.3	1.2	0.9	2.3	1.2
frb45－21	10	All instances complete						0.7	2.1	2.0	1.5	3.6	1.8
frb50－23	10	All instances complete						1.1	3.3	3.1	2.3	5.1	2.5
frb53－24	10	All instances complete						1.4	4.2	3.9	2.9	6.3	3.0
frb56－25	10	All instances complete						1.7	5.3	4.9	3.5	7.4	3.5
frb59－26	10	All instances complete						2.0	6.6	6.1	4.5	9.2	4.1
geom	100	All instances complete						0.5	2.4	2.2	0.7	2.5	1.1

Table B.27: Comparing AC+DPC, AC+PC-2001-Ordering, AC+PC-8-Ordering, $\sigma-\Delta \mathrm{PPC}^{\text {sup }}, \mathrm{AC}+\mathrm{sDC} 2$, and sCDC1 (table 2 of 2)

			\# instances					CPU time (s)					
			$\begin{aligned} & U \\ & Q \\ & A \\ & + \\ & U \\ & \langle \end{aligned}$		AC+PC-8-ORDERING			$\begin{aligned} & U \\ & 0 \\ & + \\ & + \\ & \vdots \\ & 4 \end{aligned}$			$\begin{aligned} & \stackrel{y}{0} \\ & 0 \\ & 0 \\ & 2 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & 4 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { On } \\ & \text { U } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { Uu } \\ & \text { Û } \end{aligned}$
	hos	14	14	4	14	14	14	1.8	249.3	237.5	5.9	32.7	0.9
	full-insertion	40	40	25	35	32	3740	1.3	67.3	64.3	4.6	12.0	0.7
	k-insertion	32	32	28	32	32	$32 \quad 32$	1.1	68.4	65.1	4.1	9.9	0.4
	leighton-15	26	26	14	26	10	26 26	22.7	178.2	169.7	96.0	66.6	8.5
	leighton-25	31	31	8	31	6	31	14.8	160.4	152.6	60.9	56.6	7.4
	leighton-5	8	All instances complete					8.7	66.1	62.9	33.9	24.7	2.0
	mug	8	All instances complete					0.0	0.4	0.4	0.0	0.1	0.0
	myciel	16	All instances complete					0.2	3.4	3.2	0.5	1.7	0.3
	register-fpsol	37	37	111	37	26	37 37	6.5	198.6	188.7	17.1	92.0	37.2
	register-inithx	31	31	3	261	13	24.31	1.4	144.4	137.5	2.8	65.4	18.5
	register-mulsol	47	All instances complete					8.5	112.1	105.6	19.1	55.4	23.0
	register-zeroin	31	All instances complete					10.2	85.7	80.6	24.5	50.8	27.9
	school	8	8	8	8	5	$8{ }^{8} 8$	32.1	283.4	270.0	128.4	161.1	44.6
	sgb-book	26	26	22	26	26	26 26	0.1	25.3	24.0	0.1	2.5	0.2
	sgb-games	4	All instances complete					0.2	3.6	3.4	0.5	1.3	0.1
	sgb-miles	42	42	42	42	37	42 42	9.1	66.4	62.2	25.6	41.4	23.0
	sgb-queen	50	50	50	50	49	50	7.0	33.0	31.2	29.4	15.6	3.5
	hanoi	5	All instances complete					2.0	5.4	3.7	2.0	2.0	2.0
	langford	4	All instances complete					0.7	1.6	1.6	1.3	1.8	2.1
	lard	10	All instances complete					35.9	83.0	67.9	91.0	34.1	32.3
	marc	10	All instances complete					24.2	37.8	25.0	28.2	23.7	23.7
	os-taillard-4	30	All instances complete					109.2	153.0	196.3	129.8	135.2	118.1
	os-taillard-5	30	All instances complete					924.7	1,229.6	1,475.5	1,059.1	1,187.3	1,012.1
	23 -Feb	10	All instances complete					0.4	0.6	0.5	0.6	0.9	0.9
	24 -Feb	10	All instances complete					0.5	0.7	0.7	0.7	1.1	1.1
	$25-\mathrm{Feb}$	10	All instances complete					0.6	0.8	0.8	0.9	1.3	1.3
	26-Feb	10	All instances complete					0.7	1.0	0.9	1.0	1.6	1.6
	27-Feb	10	All instances complete					0.8	1.2	1.1	1.3	1.9	1.9
สี่	2-30-15	50	All instances complete					0.1	0.4	0.3	0.3	0.7	0.5
	2-30-15-fcd	50	All instances complete					0.1	0.4	0.3	0.3	0.8	0.5
	2-40-19	50	All instances complete					0.4	1.2	1.1	0.9	2.2	1.2
	2-40-19-fcd	50	All instances complete					0.4	1.2	1.1	0.9	2.2	1.2
	2-50-23	50	All instances complete					1.1	3.2	3.0	2.3	4.9	2.6
	2-50-23-fcd	50	All instances complete					1.1	3.2	3.0	2.3	4.9	2.6
$\begin{aligned} & \text { 淢 } \\ & \hline \end{aligned}$	Graphs	14	14	8	9	10	9 14	12.6	263.1	367.9	19.0	375.6	34.9
	GraphsMod	12	12	2	9	8	$8{ }^{8} 12$	0.1	0.1	0.1	0.1	1.0	1.0
	Scens11	12	12	0	10	12	1.12	-	-	-	-	-	-
	Scens	11	11	7	9	11	9 11	13.9	160.5	141.4	14.6	78.5	16.0
	ScensMod	13	13	7	13	13	$12 \quad 13$	1.7	132.5	142.1	2.2	100.8	4.8
	tightness0.1	100	All instances complete					0.1	0.2	0.2	0.2	0.3	0.4
	tightness0.2	100	All instances complete					0.1	0.4	0.4	0.3	0.6	0.4
	tightness0.35	100	All instances complete					0.2	0.8	0.7	0.4	1.4	0.6
	tightness0.5	100	All instances complete					0.4	2.0	1.9	0.8	3.6	1.1
	tightness0.65	100	All instances complete					0.5	5.5	5.3	1.2	10.4	2.2
	tightness0.8	100	All instances complete					1.6	31.4	35.1	3.5	69.3	12.6
	tightness0.9	100	All instances complete					9.6	320.1	487.0	25.5	644.9	134.3

Appendix C

Results of Randomly Generated

Problems

In this appendix, we include the results of our experiments on three randomly generated data sets:

- $\langle 50,50, t, 20 \%\rangle$
- $\langle 50,25, t, 40 \%\rangle$
- $\langle 50,50, t, 40 \%\rangle$

A summary and detailed description of the $\langle 50,25, t, 20 \%\rangle$ data set can be found in Section 5.2.

C. $1\langle 50,25, t, 40 \%\rangle$

The complete results are summarized in Table C. 1

Table C.1: Comparing CPU times on random problems $\langle 50,25, t, 40 \%\rangle$

	$\begin{aligned} & 0 \\ & Q \\ & Q \\ & + \\ & U \\ & U \end{aligned}$	$\begin{gathered} \tilde{\#} \\ 0 \\ 0 \\ 0 \\ 2 \\ 4 \\ \vdots \\ + \\ 0 \\ 4 \end{gathered}$	$\begin{aligned} & \text { Ü } \\ & \text { O} \end{aligned}$			$\begin{aligned} & \text { Bे } \\ & \text { N} \\ & \vdots \\ & 0 \\ & + \\ & 0 \\ & \hline \end{aligned}$		-5VT过-t00z-Od+OV	$\begin{aligned} & + \\ & + \\ & 0 \\ & 0 \\ & + \\ & + \\ & \hline \end{aligned}$			$\begin{aligned} & \infty \\ & U_{1} \\ & + \\ & + \\ & \hline \end{aligned}$	$$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 4 \\ & 0 \\ & + \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & Q \\ & a \\ & A \\ & + \\ & 0 \\ & 4 \end{aligned}$		$\begin{aligned} & \text { Ǹ } \\ & \text { O } \\ & + \\ & \text { < } \end{aligned}$
46.0%	3.6	11.	17.3	14.5	15.6	15.0	13.	15.8	14.8	3.7	15.3	14.2	35.4	13.2	, 3	23.2	16.5
48.0\%	3.6	11.8	20.7	15.3	16.0	15.6	15.5	16.	15.4	14.5	16.0	15.	38.5	15.5	15.	25.7	19
50.0\%	3.6	12.3	25	16.1	17.0	17.3	17.8	17.8	16.8	16.2	18.1	18.1	49.8	19.3	19.1	29.2	24.2
52.0\%	3.6	13.5	35.3	18.3	18.9	20.3	22.7	20.5	19.9	19.7	22.4	23.1	70.6	27.5	26.8	38.2	34.9
53.0\%	3.7	19.6	73.5	27.	27	29.9	49	29	34	35.4	38.1	39.8	157.9	72.8	71.5	94.0	97.
53.5\%	3.7	25.0	34.5	52.8	53.2	55	56.2	56.6	79.2	80.4	83.2	84	85.8	86.2	88	100.5	139.5
54.0\%	3.7	19	17.0	45.3	46.0	48	30	49	65.6	66	70	71.	41.0	. 3	43.8	. 0	80.3
56.0%	3.8	11.9	3.9	25.0	26.1	25.8	12.2	27.0	30.6	29.5	31.9	31.7	9.3	12.8	14.8	9.3	31.5
58.0\%	3.9	8.9	1.6	11.4	12.2	11.4	9.3	12.3	11.2	10.4	11.2	10.4	3.7	6.7	7.8	5.4	10.0
60.0\%	4.1	3.9	0.9	5.8	6.1	5.8	4.0	6.1	5.1	4.9	5.1	4.9	2.1	3.3	4.0	3.5	

Figure C.1: $\langle 50,25, t, 40 \%\rangle$: Comparing the best previously known algorithms

Figure C.2: $\langle 50,25, t, 40 \%\rangle$: Comparing the most competitive algorithms

Figure C.3: $\langle 50,25, t, 40 \%\rangle$: Improving PC-8

Figure C.4: $\langle 50,25, t, 40 \%\rangle$: Improving PC-2001

Tightness
Figure C.5: $\langle 50,25, t, 40 \%\rangle$: Impact of the propagation queue and PEO

Figure C.6: $\langle 50,25, t, 40 \%\rangle$: Impact of support structures

C. $2\langle 50,50, t, 20 \%\rangle$

The complete results are summarized in Table C. 2
Table C.2: Comparing CPU times on random problems $\langle 50,50, t, 20 \%\rangle$

	$\begin{aligned} & u \\ & Q_{1} \\ & 1 \\ & + \\ & u \\ & 4 \end{aligned}$	$\begin{aligned} & \stackrel{e}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & 4 \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { OU } \end{aligned}$					$\begin{aligned} & \text { O} \\ & \text { N} \\ & \text { U̇ } \\ & \text { + } \\ & 0 \\ & 4 \end{aligned}$		$\begin{aligned} & U \\ & Q \\ & Q_{1} \\ & \vdots \\ & \vdots \\ & \vdots \\ & 4 \end{aligned}$	$\begin{aligned} & a_{1} \\ & 4 \\ & + \\ & 0 \\ & Q_{1} \\ & + \\ & U_{4} \end{aligned}$	$\begin{aligned} & + \\ & 0_{0}^{\prime} \\ & 0 \\ & + \\ & + \\ & \hline \end{aligned}$		$\begin{aligned} & \text { U } \\ & \substack{1 \\ 1 \\ \infty \\ 0 \\ 0 \\ +\\ 0 \\ 0 \\ 4 \\ \hline} \end{aligned}$	$\begin{aligned} & \infty \\ & 0_{1} \\ & + \\ & + \\ & u_{1} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Un } \\ & + \\ & U \\ & 4 \end{aligned}$	
66.0\%	9.3	31.2	39.4	43.5	71.2	69.5	75.1	75.8	47.9	49.0	68.5	70.6	69.9	76.5	80.8	151.0	101.8
68.0\%	9.6	33.6	51.9	51.9	80.5	79.9	87.4	91.0	63.4	65.0	88.0	83.5	86.4	96.0	105.7	205.9	137.2
70.0\%	9.8	40.8	93.6	81.2	103.6	104.7	114.5	120.8	117.9	121.5	154.6	121.4	130.2	142.4	158.6	357.4	266.4
71.0\%	10.1	69.4	104.5	156.4	241.5	242.5	251.6	259.6	264.8	278.2	300.6	365.8	387.3	388.9	416.8	420.1	700.8
72.0\%	10.3	49.8	25.3	60.6	184.9	184.4	201.8	199.6	86.0	81.6	82.9	265.4	268.5	290.0	296.6	108.4	263.4
74.0\%	11.0	33.2	7.8	33.3	109.2	103.1	98.4	93.4	33.3	31.3	19.5	121.7	115.8	106.1	102.6	34.4	102.6
76.0\%	11.8	20.2	2.5	20.8	49.6	46.5	49.6	46.6	20.1	22.2	13.2	45.1	42.1	45.0	42.0	12.3	38.2
78.0\%	12.4	8.8	1.4	9.1	22.1	21.1	22.1	21.1	9.6	10.1	9.4	17.9	16.9	17.8	16.9	7.9	15.8

Figure C.7: $\langle 50,50, t, 20 \%\rangle$: Comparing the best previously known algorithms

Figure C.8: $\langle 50,50, t, 20 \%\rangle$: Comparing the most competitive algorithms

Figure C.9: $\langle 50,50, t, 20 \%\rangle$: Improving PC-8

Figure C.10: $\langle 50,50, t, 20 \%\rangle$: Improving PC-2001

Figure C.11: $\langle 50,50, t, 20 \%\rangle$: Impact of the propagation queue and PEO

Figure C.12: $\langle 50,50, t, 20 \%\rangle$: Impact of support structures

C. $3\langle 50,50, t, 40 \%\rangle$

The complete results are summarized in Table C. 3
Table C.3: Comparing CPU times on random problems $\langle 50,50, t, 40 \%\rangle$

	$\begin{aligned} & U \\ & Q_{1} \\ & A \\ & + \\ & U \\ & 4 \end{aligned}$						$\begin{aligned} & +\infty \\ & \infty_{1}^{\prime} \\ & \dot{1}_{1} \\ & + \\ & u_{1} \end{aligned}$			$\begin{aligned} & \infty \\ & U_{1}^{\prime} \\ & + \\ & U_{1} \end{aligned}$		$\begin{aligned} & \text { U } \\ & \text { O} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & \vdots \\ & 0 \\ & \vdots \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & \underset{y}{1} \\ & + \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { On } \\ & \text { U } \\ & U \end{aligned}$	$\begin{aligned} & n \\ & 4 \\ & + \\ & 0 \\ & 2 \\ & a_{1} \\ & + \\ & \vdots \\ & 4 \end{aligned}$	$$
60.0\%	15.6	50.7	65.3	69.6	70.7	67.1	67.1	63.5	69.0	66.9	63.9	88.8	71.4	71.2	164.5	120.9	87.4
62.0\%	16.8	55.0	73.4	76.2	79.2	77.2	75.9	74.1	81.3	82.8	75.0	110.4	92.8	91.7	199.3	147.8	113.7
64.0\%	17.2	59.0	83.0	84.6	91.2	91.9	90.8	92.3	103.6	111.4	90.5	147.6	128.8	125.8	282.0	190.6	164.1
65.0\%	17.7	64.2	93.2	93.5	101.8	104.4	107.9	112.0	126.2	137.4	108.3	191.9	171.2	165.8	355.5	242.1	217.3
66.0\%	18.0	124.8	191.3	192.2	198.8	205.8	300.2	326.3	326.4	358.6	364.6	410.1	804.8	809.2	875.8	1,020.9	1,110.7
66.5\%	18.3	96.9	240.7	240.7	249.8	254.8	404.2	426.9	431.7	458.8	153.9	93.6	281.3	298.8	214.8	326.0	531.9
67.0\%	18.4	79.1	188.9	188.8	201.7	201.1	295.7	303.7	323.3	334.4	97.6	48.4	148.6	162.2	110.4	162.6	306.1
68.0\%	18.8	61.7	128.5	132.5	134.5	131.0	175.2	170.9	181.4	180.9	63.9	17.9	77.0	84.8	41.5	55.3	168.7
70.0\%	20.0	39.5	54.5	57.9	57.6	54.1	53.6	50.1	53.5	50.1	41.3	5.3	29.3	36.9	13.0	26.8	46.8

Figure C.13: $\langle 50,50, t, 40 \%\rangle$: Comparing the best previously known algorithms

Figure C.14: $\langle 50,50, t, 40 \%\rangle$: Comparing the most competitive algorithms

Figure C.15: $\langle 50,50, t, 40 \%\rangle$: Improving PC-8

Tightness
Figure C.16: $\langle 50,50, t, 40 \%\rangle$: Improving PC-2001

Figure C.17: $\langle 50,50, t, 40 \%\rangle$: Impact of the propagation queue and PEO

Figure C.18: $\langle 50,50, t, 40 \%\rangle$: Impact of support structures

Bibliography

[Arnborg, 1985] Stefan A. Arnborg. Efficient Algorithms for Combinatorial Problems on Graphs with Bounded Decomposability-A Survey. BIT, 25:2-23, 1985.
[Bessière and Régin, 2001] Christian Bessière and Jean-Charles Régin. Refining the Basic Constraint Propagation Algorithm. In Proceedings of the $17^{\text {th }}$ International Joint Conference on Artificial Intelligence, pages 309-315, 2001.
[Bessière et al., 2005] Christian Bessière, Jean-Charles Régin, Roland H.C. Yap, and Yuanlin Zhang. An Optimal Coarse-Grained Arc Consistency Algorithm. Artificial Intelligence, 165(2):165-185, 2005.
[Bessière et al., 2008] Christian Bessière, Kostas Stergiou, and Toby Walsh. Domain Filtering Consistencies for Non-Binary Constraints. Artificial Intelligence, 172:800822, 2008.
[Bessiere, 2006] Christian Bessiere. Handbook of Constraint Programming, chapter Constraint Propagation, pages 29-83. Elsevier, 2006.
[Bliek and Sam-Haroud, 1999] Christian Bliek and Djamilla Sam-Haroud. Path Consistency for Triangulated Constraint Graphs. In Proceedings of the $16^{\text {th }}$ International Joint Conference on Artificial Intelligence, pages 456-461, 1999.
[Bui et al., 2007] Hung H. Bui, Mabry Tyson, and Neil Yorke-Smith. Efficient Message Passing and Propagation of Simple Temporal Constraints: Results on SemiStructured Networks. In Workshop on Spatial and Temporal Reasoning held during AAAI 2007, pages 1-8, 2007.
[Cheeseman et al., 1991] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the Really Hard Problems Are. In Proceedings of the $12{ }^{\text {th }}$ International Joint Conference on Artificial Intelligence, pages 331-337, 1991.
[Chmeiss and Jégou, 1996] Assef Chmeiss and Philippe Jégou. Path-Consistency: When Space Misses Time. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 196-201, 1996.
[Chmeiss and Jégou, 1998] Assef Chmeiss and Philippe Jégou. Efficient PathConsistency Propagation. International Journal on Artificial Intelligence Tools, $7(2): 121-142,1998$.
[Chmeiss, 1996] Assef Chmeiss. Sur la Consistance de Chemin et ses Formes Partielles. In Actes du Congrès AFCET-RFIA 96, pages 212-219, 1996.
[Debruyne and Bessière, 1997] Romuald Debruyne and Christian Bessière. Some Practicable Filtering Techniques for the Constraint Satisfaction Problem. In Proceedings of the $15^{\text {th }}$ International Joint Conference on Artificial Intelligence, pages 412-417, 1997.
[Debruyne, 1999] Romuald Debruyne. A Strong Local Consistency for Constraint Satisfaction. In Proceedings of ICTAI 99, pages 202-209, 1999.
[Dechter and Pearl, 1988] Rina Dechter and Judea Pearl. Network-Based Heuristics for Constraint-Satisfaction Problems. Artificial Intelligence, 34:1-38, 1988.
[Dechter, 2003] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[Eén and Biere, 2005] Niklas Eén and Armin Biere. Effective Preprocessing in SAT Through Variable and Clause Elimination, volume 3569 of LNCS, pages 61-75. Springer, Berlin, 2005.
[Freuder, 1978] Eugene C. Freuder. Synthesizing Constraint Expressions. Communications of the ACM, 21 (11):958-966, 1978.
[Freuder, 1982] Eugene C. Freuder. A Sufficient Condition for Backtrack-Free Search. JACM, 29 (1):24-32, 1982.
[Fulkerson and Gross, 1965] D. R. Fulkerson and O. A. Gross. Incidence Matrices and Interval Graphs. Pacific Journal of Mathematics, 15 (3):835-855, 1965.
[Geschwender et al., 2016] Daniel J. Geschwender, Robert J. Woodward, Berthe Y. Choueiry, and Stephen D. Scott. A Portfolio Approach for Enforcing Minimality in a Tree Decomposition. In Proceeding of the International Conference on Principles and Practice of Constraint Programming, pages 1-10, 2016.
[Gottlob, 2011] Georg Gottlob. On Minimal Constraint Networks. In Proceedings of $17^{\text {th }}$ International Conference on Principle and Practice of Constraint Programming (CP 11), volume 6876 of Lecture Notes in Computer Science, pages 325-0339. Springer, 2011.
[Han and Lee, 1988] C.-C. Han and C.-H. Lee. Comments on Mohr and Henderson's Path Consistency Algorithm. Artificial Intelligence, 36:125-130, 1988.
[Haralick and Elliott, 1980] Robert M. Haralick and Gordon L. Elliott. Increasing Tree Search Efficiency for Constraint Satisfaction Problems. Artificial Intelligence, 14:263-313, 1980.
[Hopcroft and Tarjan, 1973] John E. Hopcroft and Robert Endre Tarjan. Efficient Algorithms for Graph Manipulation. Communications of the ACM, 16(6):372-378, 1973.
[Karakashian et al., 2010] Shant Karakashian, Robert Woodward, Christopher Reeson, Berthe Y. Choueiry, and Christian Bessiere. A First Practical Algorithm for High Levels of Relational Consistency. In Proceedings of the 244 AAAI Conference on Artificial Intelligence, pages 101-107, 2010.
[Karakashian et al., 2013] Shant Karakashian, Robert Woodward, and Berthe Y. Choueiry. Improving the Performance of Consistency Algorithms by Localizing and Bolstering Propagation in a Tree Decomposition. In Proceedings of the $2^{27}{ }^{\text {th }}$ Conference on Artificial Intelligence, pages 466-473, 2013.
[Kjærulff, 1990] U. Kjærulff. Triagulation of Graphs - Algorithms Giving Small Total State Space, 1990.
[Lecoutre et al., 2007a] Christophe Lecoutre, Stéphane Cardon, and Julien Vion. Conservative Dual Consistency. In Proceedings of the 22nd Conference on Artificial Intelligence, pages 237-242, 2007.
[Lecoutre et al., 2007b] Christophe Lecoutre, Stéphane Cardon, and Julien Vion. Path Consistency by Dual Consistency. In Proceedings of the $13^{\text {th }}$ International Conference on Principle and Practice of Constraint Programming, volume 4741 of Lecture Notes in Computer Science, pages 448-452. Springer Verlag, 2007.
[Lecoutre et al., 2011] Christophe Lecoutre, Stéphane Cardon, and Julien Vion. Second-Order Consistencies. Journal of Artificial Intelligence Research (JAIR), 40:175-219, 2011.
[Long et al., 2016] Zhiguo Long, Michael Sioutis, and Sanjiang Li. Efficient Path Consistency Algorithm for Large Qualitative Constraint Networks. In Proceedings of the $25^{\text {th }}$ International Joint Conference on Artificial Intelligence, pages 12021208, 2016.
[Mackworth and Freuder, 1984] Alan K. Mackworth and Eugene C. Freuder. The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems. Artificial Intelligence, (25) 1:65-74, 1984.
[Mackworth, 1977] Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8:99-118, 1977.
[Boerkoel Jr. and Durfee, 2013] James C. Boerkoel Jr. and Edmund H. Durfee. Distributed Reasoning for Multiagent Simple Temporal Problems. J. Artif. Intell. Res. (JAIR), 47:95-156, 2013.
[McGregor, 1979] J. J. McGregor. Relational Consistency Algoritms and their Application in Finding Subgraph and Graph Isomorphims. Information Sciences, 19:229-259, 1979.
[Mohr and Henderson, 1986] Roger Mohr and Thomas C. Henderson. Arc and Path Consistency Revisited. Artificial Intelligence, 28:225-233, 1986.
[Montanari, 1974] Ugo Montanari. Networks of Constraints: Fundamental Properties and Application to Picture Processing. Information Sciences, 7:95-132, 1974.
[Planken et al., 2008] Léon Planken, Mathijs de Weerdt, and Roman van der Krogt. P3C: A New Algorithm for the Simple Temporal Problem. In Processings of the 18th International Conference on Automated Planning $8 \mathcal{S}$ Scheduling, pages 256263, 2008.
[Schneider et al., 2014] Anthony Schneider, Robert J. Woodward, Berthe Y. Choueiry, and Christian Bessiere. Improving Relational Consistency Algorithms Using Dynamic Relation Partitioning. In Proceedings of the International Conference on Principles and Practice of Constraint Programming, volume 8656 of LNCS, pages 688-704. Springer, 2014.
[Singh, 1996] Moninder Singh. Path Consistency Revisited. International Journal on Artificial Intelligence Tools, 5(1-2):127-142, 1996.
[Woodward et al., 2011] Robert Woodward, Shant Karakashian, Berthe Y. Choueiry, and Christian Bessiere. Solving Difficult CSPs with Relational Neighborhood Inverse Consistency. In Proceedings of $25^{\text {th }}$ AAAI Conference on Artificial Intelligence (AAAI 11), pages 112-119, 2011.
[Woodward et al., 2012] Robert J. Woodward, Shant Karakashian, Berthe Y. Choueiry, and Christian Bessiere. Revisiting Neighborhood Inverse Consistency on Binary CSPs. In Eighteenth International Conference on Principles and Practice of Constraint Programming (CP 2012), volume 7514 of Lecture Notes in Computer Science, pages 688-703. Springer, 2012.
[Woodward et al., 2014] Robert J. Woodward, Anthony Schneider, Berthe Y. Choueiry, and Christian Bessiere. Adaptive Parameterized Consistency for NonBinary CSPs by Counting Supports. In Proceedings of the International Conference on Principles and Practice of Constraint Programming, volume 8656 of LNCS, pages 755-764. Springer, 2014.
[Xu and Choueiry, 2003] Lin Xu and Berthe Y. Choueiry. A New Efficient Algorithm for Solving the Simple Temporal Problem. In Mark Reynolds and Abdul Sattar, editors, Proceedings of the $10^{t} h$ International Symposium on Temporal Representa-
tion and Reasoning and Fourth International Conference on Temporal Logic, pages 212-222. IEEE Computer Society Press, 2003.
[Yannakakis, 1981] Mihalis Yannakakis. Computing the Minimum Fill-In is NPComplete. SIAM Journal on Algebraic and Discrete Methods, 2 (1):77-79, 1981.
[Yorke-Smith, 2005] Neil Yorke-Smith. Exploiting the Structure of Hierarchical Plans in Temporal Constraint Propagation. In Proceedings of the $20^{\text {th }}$ National Conference on Artificial Intelligence, pages 1223-1228, 2005.
[Zhang and Yap, 2001] Yualin Zhang and Roland H.C. Yap. Making AC-3 an Optimal Algorithm. In Proceedings of the $17^{\text {th }}$ International Joint Conference on Artificial Intelligence, pages 316-321, 2001.

[^0]: Reeson, Christopher G., "On Path Consistency for Binary Constraint Satisfaction Problems" (2016). Computer Science and Engineering: Theses, Dissertations, and Student Research. 113.
 http://digitalcommons.unl.edu/computerscidiss/113

[^1]: ${ }^{1}$ The comparison between inverse consistency properties and PPC is beyond the scope of this thesis.

[^2]: ${ }^{1}$ The terms constraint graph and constraint hypergraph are also commonly used in the literature for binary and non-binary CSPs, respectively.

[^3]: ${ }^{2}$ See both the text and the footnote on page 109 [Montanari, 1974].

[^4]: ${ }^{3}$ The same holds for V_{3} relative to V_{2}.

[^5]: ${ }^{4} \mathrm{~A}$ singleton test is called probing in SAT solvers.

[^6]: ${ }^{5}$ Han and Lee [1988] found an error in PC-3 [Mohr and Henderson, 1986], which they fixed in PC-4. Chmeiss and Jégou [1996] showed that 'PC-4 is really inefficient in practice' [Chmeiss and Jégou, 1998]. Finally, Chmeiss and Jégou [1998] showed that 'PC-8 often outperforms' both PC-5 and PC-6.

[^7]: ${ }^{6}$ Line 8 of PC-2 (Algorithm 4) is a correction of line 6 of the algorithm reported by Dechter [2003] (Figure 3.11 [2003]). The corrected line adds to the propagation queue triplets (i, k, j) exclusively with $i<j$, excluding triplets with $i>j$. Indeed, (i, k, j) and (j, k, i) effectuate the same consistency checking, and including both triplets in the propagation queue duplicates the constraint-checking effort.

[^8]: ${ }^{7}$ In the instantiation ordering the variables are numbered from 1 to n.
 ${ }^{8}$ In order to triangulate the graph, we use the Min-Fill heuristic, and add, as universal constraints, the fill edges generated by Min-Fill [Kjærulff, 1990].

[^9]: ${ }^{9}$ In practice, we found it is more efficient to keep only one copy of the problem in memory and to apply the AC algorithm while keeping undo records. We use AC2001 in our implementation and restore the domains in memory using the undo records after each singleton test, as well as using undo records for the Last structure.

[^10]: ${ }^{10} \mathrm{DPC}+$ simply replaces the scalar minimum and addition operators of $\Delta \mathrm{STP}$ with the relational operators intersection and composition respectively.

[^11]: ${ }^{1}$ Note that the error was fixed in the implementation of Bliek and Sam-Haroud [1999] and, thus, does not affect their experiments (private communication).

[^12]: ${ }^{2}$ See Section 2.8.5.

[^13]: ${ }^{3}$ See Definition 2.5.5 in Section 2.5.2.
 ${ }^{4}$ See Figure 4 on page 185 [Lecoutre et al., 2011].

[^14]: ${ }^{5}$ See Proposition 4 on page 186 [Lecoutre et al., 2011].

[^15]: ${ }^{6}$ This problem was first identified by Christopher Thiel in Spring 2008.

[^16]: ${ }^{7}$ Figure 9 of their paper.

[^17]: ${ }^{1}$ See discussion in Section 3.3.

[^18]: ${ }^{2}$ This example was shown in Figures 2.9, 2.10, and 2.17.

[^19]: ${ }^{1}$ http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

[^20]: ${ }^{2}$ Table B. 18 reports the results of benchmarks where no filtering occurs and Table B. 19 those where filtering occurs.

[^21]: ${ }^{3}$ Table B. 20 reports the benchmarks where no filtering occurs and Tables B. 21 and B. 22 report the benchmarks where filtering occurs.

[^22]: ${ }^{1}$ This evaluation was sugggested by Peter Revesz, a member of the Examining Committee.

