154 research outputs found

    IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency

    Get PDF
    This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality prediction

    Machine learning for the sustainable energy transition: a data-driven perspective along the value chain from manufacturing to energy conversion

    Get PDF
    According to the special report Global Warming of 1.5 °C of the IPCC, climate action is not only necessary but more than ever urgent. The world is witnessing rising sea levels, heat waves, events of flooding, droughts, and desertification resulting in the loss of lives and damage to livelihoods, especially in countries of the Global South. To mitigate climate change and commit to the Paris agreement, it is of the uttermost importance to reduce greenhouse gas emissions coming from the most emitting sector, namely the energy sector. To this end, large-scale penetration of renewable energy systems into the energy market is crucial for the energy transition toward a sustainable future by replacing fossil fuels and improving access to energy with socio-economic benefits. With the advent of Industry 4.0, Internet of Things technologies have been increasingly applied to the energy sector introducing the concept of smart grid or, more in general, Internet of Energy. These paradigms are steering the energy sector towards more efficient, reliable, flexible, resilient, safe, and sustainable solutions with huge environmental and social potential benefits. To realize these concepts, new information technologies are required, and among the most promising possibilities are Artificial Intelligence and Machine Learning which in many countries have already revolutionized the energy industry. This thesis presents different Machine Learning algorithms and methods for the implementation of new strategies to make renewable energy systems more efficient and reliable. It presents various learning algorithms, highlighting their advantages and limits, and evaluating their application for different tasks in the energy context. In addition, different techniques are presented for the preprocessing and cleaning of time series, nowadays collected by sensor networks mounted on every renewable energy system. With the possibility to install large numbers of sensors that collect vast amounts of time series, it is vital to detect and remove irrelevant, redundant, or noisy features, and alleviate the curse of dimensionality, thus improving the interpretability of predictive models, speeding up their learning process, and enhancing their generalization properties. Therefore, this thesis discussed the importance of dimensionality reduction in sensor networks mounted on renewable energy systems and, to this end, presents two novel unsupervised algorithms. The first approach maps time series in the network domain through visibility graphs and uses a community detection algorithm to identify clusters of similar time series and select representative parameters. This method can group both homogeneous and heterogeneous physical parameters, even when related to different functional areas of a system. The second approach proposes the Combined Predictive Power Score, a method for feature selection with a multivariate formulation that explores multiple sub-sets of expanding variables and identifies the combination of features with the highest predictive power over specified target variables. This method proposes a selection algorithm for the optimal combination of variables that converges to the smallest set of predictors with the highest predictive power. Once the combination of variables is identified, the most relevant parameters in a sensor network can be selected to perform dimensionality reduction. Data-driven methods open the possibility to support strategic decision-making, resulting in a reduction of Operation & Maintenance costs, machine faults, repair stops, and spare parts inventory size. Therefore, this thesis presents two approaches in the context of predictive maintenance to improve the lifetime and efficiency of the equipment, based on anomaly detection algorithms. The first approach proposes an anomaly detection model based on Principal Component Analysis that is robust to false alarms, can isolate anomalous conditions, and can anticipate equipment failures. The second approach has at its core a neural architecture, namely a Graph Convolutional Autoencoder, which models the sensor network as a dynamical functional graph by simultaneously considering the information content of individual sensor measurements (graph node features) and the nonlinear correlations existing between all pairs of sensors (graph edges). The proposed neural architecture can capture hidden anomalies even when the turbine continues to deliver the power requested by the grid and can anticipate equipment failures. Since the model is unsupervised and completely data-driven, this approach can be applied to any wind turbine equipped with a SCADA system. When it comes to renewable energies, the unschedulable uncertainty due to their intermittent nature represents an obstacle to the reliability and stability of energy grids, especially when dealing with large-scale integration. Nevertheless, these challenges can be alleviated if the natural sources or the power output of renewable energy systems can be forecasted accurately, allowing power system operators to plan optimal power management strategies to balance the dispatch between intermittent power generations and the load demand. To this end, this thesis proposes a multi-modal spatio-temporal neural network for multi-horizon wind power forecasting. In particular, the model combines high-resolution Numerical Weather Prediction forecast maps with turbine-level SCADA data and explores how meteorological variables on different spatial scales together with the turbines' internal operating conditions impact wind power forecasts. The world is undergoing a third energy transition with the main goal to tackle global climate change through decarbonization of the energy supply and consumption patterns. This is not only possible thanks to global cooperation and agreements between parties, power generation systems advancements, and Internet of Things and Artificial Intelligence technologies but also necessary to prevent the severe and irreversible consequences of climate change that are threatening life on the planet as we know it. This thesis is intended as a reference for researchers that want to contribute to the sustainable energy transition and are approaching the field of Artificial Intelligence in the context of renewable energy systems

    Modelling and Analysis of Network Security Policies

    Get PDF
    Nowadays, computers and network communications have a pervasive presence in all our daily activities. Their correct configuration in terms of security is becoming more and more complex due to the growing number and variety of services present in a network. Generally, the security configuration of a computer network is dictated by specifying the policies of the security controls (e.g. firewall, VPN gateway) in the network. This implies that the specification of the network security policies is a crucial step to avoid errors in network configuration (e.g., blocking legitimate traffic, permitting unwanted traffic or sending insecure data). In the literature, an anomaly is an incorrect policy specification that an administrator may introduce in the network. In this thesis, we indicate as policy anomaly any conflict (e.g. two triggered policy rules enforcing contradictory actions), error (e.g. a policy cannot be enforced because it requires a cryptographic algorithm not supported by the security controls) or sub-optimization (e.g. redundant policies) that may arise in the policy specification phase. Security administrators, thus, have to face the hard job of correctly specifying the policies, which requires a high level of competence. Several studies have confirmed, in fact, that many security breaches and breakdowns are attributable to administrators’ responsibilities. Several approaches have been proposed to analyze the presence of anomalies among policy rules, in order to enforce a correct security configuration. However, we have identified two limitations of such approaches. On one hand, current literature identifies only the anomalies among policies of a single security technology (i.e., IPsec, TLS), while a network is generally configured with many technologies. On the other hand, existing approaches work on a single policy type, also named domain (i.e., filtering, communication protection). Unfortunately, the complexity of real systems is not self-contained and each network security control may affect the behavior of other controls in the same network. The objective of this PhD work was to investigate novel approaches for modelling security policies and their anomalies, and formal techniques of anomaly analysis. We present in this dissertation our contributions to the current policy analysis state of the art and the achieved results. A first contribution was the definition of a new class of policy anomalies, i.e. the inter-technology anomalies, which arises in a set of policies of multiple security technologies. We provided also a formal model able to detect these new types of anomalies. One of the results achieved by applying the inter-technology analysis to the communication protection policies was to categorize twelve new types of anomalies. The second result of this activity was derived from an empirical assessment that proved the practical significance of detecting such new anomalies. The second contribution of this thesis was the definition of a newly-defined type of policy analysis, named inter-domain analysis, which identifies any anomaly that may arise among different policy domains. We improved the state of the art by proposing a possible model to detect the inter-domain anomalies, which is a generalization of the aforementioned inter-technology model. In particular, we defined the Unified Model for Policy Analysis (UMPA) to perform the inter-domain analysis by extending the analysis model applied for a single policy domain to comprehensive analysis of anomalies among many policy domains. The result of this last part of our dissertation was to improve the effectiveness of the analysis process. Thanks to the inter-domain analysis, indeed, administrators can detect in a simple and customizable way a greater set of anomalies than the sets they could detect by running individually any other model

    IoT-MQTT based denial of service attack modelling and detection

    Get PDF
    Internet of Things (IoT) is poised to transform the quality of life and provide new business opportunities with its wide range of applications. However, the bene_ts of this emerging paradigm are coupled with serious cyber security issues. The lack of strong cyber security measures in protecting IoT systems can result in cyber attacks targeting all the layers of IoT architecture which includes the IoT devices, the IoT communication protocols and the services accessing the IoT data. Various IoT malware such as Mirai, BASHLITE and BrickBot show an already rising IoT device based attacks as well as the usage of infected IoT devices to launch other cyber attacks. However, as sustained IoT deployment and functionality are heavily reliant on the use of e_ective data communication protocols, the attacks on other layers of IoT architecture are anticipated to increase. In the IoT landscape, the publish/- subscribe based Message Queuing Telemetry Transport (MQTT) protocol is widely popular. Hence, cyber security threats against the MQTT protocol are projected to rise at par with its increasing use by IoT manufacturers. In particular, the Internet exposed MQTT brokers are vulnerable to protocolbased Application Layer Denial of Service (DoS) attacks, which have been known to cause wide spread service disruptions in legacy systems. In this thesis, we propose Application Layer based DoS attacks that target the authentication and authorisation mechanism of the the MQTT protocol. In addition, we also propose an MQTT protocol attack detection framework based on machine learning. Through extensive experiments, we demonstrate the impact of authentication and authorisation DoS attacks on three opensource MQTT brokers. Based on the proposed DoS attack scenarios, an IoT-MQTT attack dataset was generated to evaluate the e_ectiveness of the proposed framework to detect these malicious attacks. The DoS attack evaluation results obtained indicate that such attacks can overwhelm the MQTT brokers resources even when legitimate access to it was denied and resources were restricted. The evaluations also indicate that the proposed DoS attack scenarios can signi_cantly increase the MQTT message delay, especially in QoS2 messages causing heavy tail latencies. In addition, the proposed MQTT features showed high attack detection accuracy compared to simply using TCP based features to detect MQTT based attacks. It was also observed that the protocol _eld size and length based features drastically reduced the false positive rates and hence, are suitable for detecting IoT based attacks

    Big data reference architecture for industry 4.0: including economic and ethical Implications

    Get PDF
    El rápido progreso de la Industria 4.0 se consigue gracias a las innovaciones en varios campos, por ejemplo, la fabricación, el big data y la inteligencia artificial. La tesis explica la necesidad de una arquitectura del Big Data para implementar la Inteligencia Artificial en la Industria 4.0 y presenta una arquitectura cognitiva para la inteligencia artificial - CAAI - como posible solución, que se adapta especialmente a los retos de las pequeñas y medianas empresas. La tesis examina las implicaciones económicas y éticas de esas tecnologías y destaca tanto los beneficios como los retos para los países, las empresas y los trabajadores individuales. El "Cuestionario de la Industria 4.0 para las PYME" se realizó para averiguar los requisitos y necesidades de las pequeñas y medianas empresas. Así, la nueva arquitectura de la CAAI presenta un modelo de diseño de software y proporciona un conjunto de bloques de construcción de código abierto para apoyar a las empresas durante la implementación. Diferentes casos de uso demuestran la aplicabilidad de la arquitectura y la siguiente evaluación verifica la funcionalidad de la misma.The rapid progress in Industry 4.0 is achieved through innovations in several fields, e.g., manufacturing, big data, and artificial intelligence. The thesis motivates the need for a Big Data architecture to apply artificial intelligence in Industry 4.0 and presents a cognitive architecture for artificial intelligence – CAAI – as a possible solution, which is especially suited for the challenges of small and medium-sized enterprises. The work examines the economic and ethical implications of those technologies and highlights the benefits but also the challenges for countries, companies and individual workers. The "Industry 4.0 Questionnaire for SMEs" was conducted to gain insights into smaller and medium-sized companies’ requirements and needs. Thus, the new CAAI architecture presents a software design blueprint and provides a set of open-source building blocks to support companies during implementation. Different use cases demonstrate the applicability of the architecture and the following evaluation verifies the functionality of the architecture

    An Industrial Data Analysis and Supervision Framework for Predictive Manufacturing Systems

    Get PDF
    Due to the advancements in the Information and Communication Technologies field in the modern interconnected world, the manufacturing industry is becoming a more and more data rich environment, with large volumes of data being generated on a daily basis, thus presenting a new set of opportunities to be explored towards improving the efficiency and quality of production processes. This can be done through the development of the so called Predictive Manufacturing Systems. These systems aim to improve manufacturing processes through a combination of concepts such as Cyber-Physical Production Systems, Machine Learning and real-time Data Analytics in order to predict future states and events in production. This can be used in a wide array of applications, including predictive maintenance policies, improving quality control through the early detection of faults and defects or optimize energy consumption, to name a few. Therefore, the research efforts presented in this document focus on the design and development of a generic framework to guide the implementation of predictive manufacturing systems through a set of common requirements and components. This approach aims to enable manufacturers to extract, analyse, interpret and transform their data into actionable knowledge that can be leveraged into a business advantage. To this end a list of goals, functional and non-functional requirements is defined for these systems based on a thorough literature review and empirical knowledge. Subsequently the Intelligent Data Analysis and Real-Time Supervision (IDARTS) framework is proposed, along with a detailed description of each of its main components. Finally, a pilot implementation is presented for each of this components, followed by the demonstration of the proposed framework in three different scenarios including several use cases in varied real-world industrial areas. In this way the proposed work aims to provide a common foundation for the full realization of Predictive Manufacturing Systems

    New Trends in the Use of Artificial Intelligence for the Industry 4.0

    Get PDF
    Industry 4.0 is based on the cyber-physical transformation of processes, systems and methods applied in the manufacturing sector, and on its autonomous and decentralized operation. Industry 4.0 reflects that the industrial world is at the beginning of the so-called Fourth Industrial Revolution, characterized by a massive interconnection of assets and the integration of human operators with the manufacturing environment. In this regard, data analytics and, specifically, the artificial intelligence is the vehicular technology towards the next generation of smart factories.Chapters in this book cover a diversity of current and new developments in the use of artificial intelligence on the industrial sector seen from the fourth industrial revolution point of view, namely, cyber-physical applications, artificial intelligence technologies and tools, Industrial Internet of Things and data analytics. This book contains high-quality chapters containing original research results and literature review of exceptional merit. Thus, it is in the aim of the book to contribute to the literature of the topic in this regard and let the readers know current and new trends in the use of artificial intelligence for the Industry 4.0

    Machine Learning for Cyber Physical Systems

    Get PDF
    This open access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains selected papers from the fifth international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Berlin, March 12-13, 2020. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments

    Design and evaluation of a cloud native data analysis pipeline for cyber physical production systems

    Get PDF
    Since 1991 with the birth of the World Wide Web the rate of data growth has been growing with a record level in the last couple of years. Big companies tackled down this data growth with expensive and enormous data centres to process and get value of this data. From social media, Internet of Things (IoT), new business process, monitoring and multimedia, the capacities of those data centres started to be a problem and required continuos and expensive expansion. Thus, Big Data was something that only a few were able to access. This changed fast when Amazon launched Amazon Web Services (AWS) around 15 years ago and gave the origins to the public cloud. At that time, the capabilities were still very new and reduced but 10 years later the cloud was a whole new business that changed for ever the Big Data business. This not only commoditised computer power but it was accompanied by a price model that let medium and small players the possibility to access it. In consequence, new problems arised regarding the nature of these distributed systems and the software architectures required for proper data processing. The present job analyse the type of typical Big Data workloads and propose an architecture for a cloud native data analysis pipeline. Lastly, it provides a chapter for tools and services that can be used in the architecture taking advantage of their open source nature and the cloud price models.Fil: Ferrer Daub, Facundo Javier. Universidad Católica de Córdoba. Instituto de Ciencias de la Administración; Argentin
    • …
    corecore