
Machine Learning for the Sustainable Energy Tran-
sition: a Data-Driven Perspective along the Value
Chain from Manufacturing to Energy Conversion

Department of Astronautical, Electrical and Energy Engineering
PhD in Energy and Environment (XXXV cycle)

Eric Stefan Miele
ID number 1643696

Advisor
Prof. Alessandro Corsini

Co-Advisor
Dr. Fabrizio Bonacina

Academic Year 2022/2023

Thesis defended on 25 May 2023
in front of a Board of Examiners composed by:

Lucia Fontana (chairman)
Fulvio Palmieri
Marco Sabatini

Machine Learning for the Sustainable Energy Transition: a Data-Driven Per-
spective along the Value Chain from Manufacturing to Energy Conversion
PhD thesis. Sapienza University of Rome

© 2023 Eric Stefan Miele. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: ericstefan.miele@uniroma1.it

mailto:ericstefan.miele@uniroma1.it

iv

This thesis is dedicated to friendship. It might sound like a broad and abstract
concept but it has never been so meaningful and concrete to me. The past years have
been a complete rollercoaster. Physically, mentally, and emotionally. Nevertheless,

good people supported me, making this thesis and this journey possible. Old
immovable pillars were there to give structure during deep quakes. First, I want to

thank my brothers Mastro and Jules, who heard me out countless times and have
been soul companions while facing the strongest waves. Words are useless to describe
what you mean to me. It is inevitable to mention mom and dad as the foundations

of everything. Always there, no matter what, no matter when, no matter where.
From the highest peak to the lowest chasm, they were always there. I am so grateful
for my family. I want to thank Gioia and Christian, who have always been ready to

share my enthusiasm for everything and fuelled my creativity. Books, movies,
games, and art have been so important to me during this journey and having

someone with whom I could share all of this has been a blessing. I want to thank my
childhood friend Kyle with whom I recently reconnected after many years through a
falafel at Kichererbse or a hike into the misty mountains. May the future hold more
adventures for us together. I am grateful for newly blossomed friendships. Florian,
Jakob, Ronja, Nina, Jannik, Gwen, Sara, Ludwig. From concerts to musicals, from

ramen to homemade Käsespätzle, from dragons to vampires, I treasure these
memories as a pirate would do with his shiniest gems. All of you made this journey
something truly special, something that changed my perspective, way of living, and

way of being forever. It is unavoidable to thank Victor and Rebecca, adventurers like
me in a foreign country. With Victor, we shared our first experience living abroad.

We explored with curiosity, from Leipzig to forest walks, and shared the enthusiasm
for a new chapter in our lives. Rebecca has been, even if for just a glimpse, part of
what I and Victor call the owl’s nest. Lovecraftian and gloomy themes, curious and
artsy, nerdy and enthusiastic, we could be the same person in parallel universes, as
you once said. I want to deeply thank those who became a new family and made me

feel at home at any time. Julian, Elias, Rene, Viki, Paula, and Katha. Living
together with you all has been just amazing. From Hellsing to David Lynch, from

jam sessions to tea tasting sessions, from music to politics. These moments are
chiseled in my memory like the stars are chiseled in the dark sky during a summer
night along the Ammer. Finally, I want to give special thanks to Alessandro, Nicole,

and Fabrizio, who made this journey possible. Alessandro opened the doors to the
realm of energy systems and impactful applications and provided me with the tools to
read the world through different lenses. During this journey, he became a reference

point and has been the biggest promoter of my technical and, more importantly,
personal growth. As Alessandro opened the doors in Rome, Nicole opened the doors
in Tübingen, allowing me to dive into a new dimension. She warmly welcomed me

into her research group and always supported my proposals with constructive
feedback. Fabrizio has been more than a colleague during this journey. He has been
a reference from day zero all the way until the last day. We worked on almost every
project together and exchanged ideas on a daily basis. We grew together and learned
a lot from each other. But, most importantly, I remember the laughs, stories we told
each other, and deep talks about life. I treasure the knowledge of this journey with
the hope of making this world a better place, even if just by a tiny bit. But above

everything else, I treasure the journey itself.

v

Abstract

According to the special report Global Warming of 1.5◦C of the IPCC, climate action
is not only necessary but more than ever urgent. The world is witnessing rising
sea levels, heat waves, events of flooding, droughts and desertification resulting in
the loss of lives and damage to livelihoods, especially in countries of the Global
South. To mitigate climate change and commit to the Paris agreement, it is of the
uttermost importance to reduce GreenHouse Gas emissions coming from the most
emitting sector, namely the energy sector. To this end, large-scale penetration of
Renewable Energy Systems into the energy market is crucial for the energy transition
toward a sustainable future by replacing fossil fuels and improving access to energy
with socio-economic benefits. With the advent of Industry 4.0, Internet of Things
technologies have been increasingly applied to the energy sector introducing the
concept of smart grid or, more in general, Internet of Energy. These technologies
are steering the energy sector towards more efficient, reliable, flexible, resilient, safe,
and sustainable solutions with huge environmental and potential social benefits. To
realize these solutions, new information technologies are required and among the
most promising possibilities are Artificial Intelligence and Machine Learning which in
many countries have already revolutionized the energy industry. This thesis presents
different Machine Learning algorithms and methods for the implementation of new
strategies to make Renewable Energy Systems more efficient and reliable. It presents
various learning algorithms, highlighting their advantages and limits, and evaluates
their application for different tasks in the energy context. In addition, different tech-
niques are presented for the preprocessing and cleaning of time series data, nowadays
collected by sensor networks mounted on every Renewable Energy System. With
the possibility to install large numbers of sensors that collect vast amounts of data,
it is vital to detect and remove irrelevant, redundant, or noisy features, and alleviate
the curse of dimensionality, thus improving the interpretability of predictive models,
speeding up their learning process, and enhancing their generalization properties.
Therefore, this thesis discusses the importance of dimensionality reduction in sensor
networks mounted on Renewable Energy Systems and, to this end, presents two
novel unsupervised algorithms. The first approach maps time series data in the
network domain through visibility graphs and uses a community detection algorithm
to identify clusters of similar variables and select representative parameters. This
method can group both homogeneous and heterogeneous physical parameters, even
when related to different functional areas of a system. The second approach pro-
poses the Combine Predictive Power Score, a method for feature selection with a
multivariate formulation that explores multiple sub-sets of expanding variables and
identifies the combination of features with the highest predictive power over specified
target variables. This method proposes a selection algorithm for the optimal combi-
nation of variables that converges to the smallest set of predictors with the highest
predictive power. Once the combination of variables is identified, the most relevant
parameters in a sensor network can be selected to perform dimensionality reduction.
Data-driven methods open the possibility of supporting strategic decision-making,
resulting in a reduction of Operation and Maintenance costs, machine faults, repair
stops, and spare parts inventory size. Therefore, this thesis presents two approaches

vi

in the context of predictive maintenance to improve the lifetime and efficiency of
the equipment based on anomaly detection algorithms. The first approach proposes
an anomaly detection model based on Principal Component Analysis that is robust
to false alarms, can isolate anomalous conditions, and can anticipate equipment
failures. The second approach has at its core a neural architecture, namely a Graph
Convolutional Autoencoder, which models the sensor network as a dynamical func-
tional graph by simultaneously considering the information content of individual
sensor measurements (graph node features) and the nonlinear correlations existing
between all pairs of sensors (graph edges). The proposed neural architecture can
capture hidden anomalies in wind farms even when the turbines continue to deliver
the power requested by the grid and can anticipate equipment failures. Since the
model is unsupervised and completely data-driven, this approach can be applied to
any wind turbine equipped with a SCADA system. When it comes to Renewable
Energys, the unschedulable uncertainty due to their intermittent nature represents
an obstacle to the reliability and stability of energy grids, especially when dealing
with large-scale integration. Nevertheless, these challenges can be alleviated if the
natural sources or the power output of Renewable Energy Systems can be forecasted
accurately, allowing power system operators to plan optimal power management
strategies to balance the dispatch between intermittent power generation and load
demand. To this end, this thesis proposes a multi-modal spatio-temporal neural
network for multi-horizon wind power forecasting. In particular, the model com-
bines high-resolution Numerical Weather Prediction forecast maps with turbine-level
SCADA data and explores how meteorological variables on different spatial scales,
together with the turbines’ internal operating conditions impact wind power fore-
casts. The world is undergoing a third energy transition with the main goal of
tackling global climate change through decarbonization of the energy supply and
consumption patterns. This is not only possible thanks to global cooperation and
agreements between parties, power generation systems advancements, and Internet
of Things and Artificial Intelligence technologies but also necessary to prevent the
severe and irreversible consequences of climate change that are threatening life on
the planet as we know it. This thesis is intended as a reference for researchers that
want to contribute to the sustainable energy transition and are approaching the field
of Artificial Intelligence in the context of Renewable Energy Systems.

vii

Contents

1 Introduction 1
1.1 Sustainable Energy Transition . 1
1.2 Renewable Energy Systems . 7
1.3 From Internet of Things to Internet of Energy 16
1.4 The Role of Artificial Intelligence . 22

2 Methodology 29
2.1 Data Preprocessing Methods for Time Series 29

2.1.1 Handling Missing Values . 29
2.1.2 Outlier Detection . 32
2.1.3 Smoothing . 35
2.1.4 Transformations . 37
2.1.5 Scaling . 40
2.1.6 Sliding Windows . 42

2.2 Machine Learning Algorithms . 43
2.2.1 Supervised Learning . 44
2.2.2 Unsupervised Learning . 49
2.2.3 Deep Learning . 59
2.2.4 Training and Evaluation . 91

3 Framework for Energy Applications 101
3.1 Dimensionality Reduction in Energy System Sensor Networks 101

3.1.1 Time Series Clustering: A Complex Network-Based Approach
for Feature Selection in Multi-Sensor Data 102

3.1.2 Unsupervised Feature Selection of Multi-Sensor SCADA Data
in Horizontal Axis Wind Turbine Condition Monitoring . . . 117

3.2 Predictive Maintenance for Renewable Energy Systems 130
3.2.1 Anomaly Detection in Photovoltaic Production Factories via

Monte Carlo Pre-Processed Principal Component Analysis . . 131
3.2.2 Deep Anomaly Detection in Horizontal Axis Wind Turbines

using Graph Convolutional Autoencoders for Multivariate
Time Series . 146

3.3 Power Forecasting for Renewable Energy Systems 164
3.3.1 Multi-horizon Wind Power Forecasting Using Multi-Modal

Spatio-Temporal Neural Networks 165

viii Contents

4 Conclusions 181

Bibliography 189

1

Chapter 1

Introduction

1.1 Sustainable Energy Transition

According to the special report Global Warming of 1.5◦C of the Intergovernmental
Panel on Climate Change (IPCC), climate change impacts are worse than expected,
and climate action is not only necessary but also urgent [1]. More recently, the IPCC
report of 2021 indicated that several climate changes are already irreversible and
mostly caused by anthropogenic activities [2].
Modern society is heavily based on the combustion of fossil fuels for electricity and
heat generation in the energy and related sectors, manufacturing activities, industrial
operations, transportation, agriculture, forestry, and the building industry [3]. This
leads, inevitably, to the production and emission of GreenHouse Gases (GHGs) like
Carbon Dioxide (CO2), Methane (CH4), Sulphurdioxide (SO2), Nitrous Oxides
(NOx), which are the main causes of the global warming that is threatening the
very existence of humanity. It is well known that climate is important to mankind
and other living organisms on planet Earth, yet there is overwhelming evidence of
changing climatic conditions due to the greenhouse effect as demonstrated by the
increase in global average surface temperature, rising sea levels, heat waves, events
of flooding, droughts and desertification [4].
The greenhouse effect is a natural process that has taken place over millions of years
and consists in the long-term increase of the planet’s temperature resulting from
the interaction between solar energy and GHGs accumulated in the atmosphere [5].
These gasses can absorb and radiate thermal energy and, therefore, are necessary to
keep the global temperature above the freezing point, warm the planet, and maintain
life [6]. Nevertheless, global GHG concentrations have been growing drastically
during the last century due to anthropogenic activities, threatening life itself.
The overabundance of GHGs in the atmosphere is responsible for re-absorbing the
solar energy radiating from the earth’s surface back out to space. The trapped
heat energy and radiations are then radiated back to Earth, heating both the lower
atmosphere and the planet’s surface. This has led to serious long-term disruptions to
global weather and climate systems which are all interconnected and finely balanced.
As a result, extreme weather events and disasters have become more and more
frequent. Moreover, climate changes have created severe problems for plant and
animal species around the globe, some of which have not been able to adapt fast

2 1. Introduction

enough and are facing the risk of extinction [7].
The greenhouse effect was discovered by Jean Baptiste-Joseph de Fourier in 1827,
demonstrated experimentally by John Tyndall in 1861, and quantified by Svante
Arrhenius in 1896. Then, in 1957, Roger Revelle and Hans Suess remarked that
the accumulation of CO2 in the atmosphere should be monitored and controlled
because it represents a large-scale geophysical experiment whose consequences were
unknown [8]. Therefore, in 1958 Charles Keeling started the ongoing program of
continuous measurements of atmospheric CO2 levels at Mauna Loa (Hawaii) in the
United States, which demonstrated the steady rising of CO2 levels during the second
half of the last century [4]. Although CO2 is less potent than CH4 or NOx, it is
more abundant, lingers longer in the atmosphere, and, therefore, is responsible for
about two-thirds of the total temperature rise. Additionally, when dissolved in ocean
water, CO2 reacts with water molecules and produces carbonic acid which lowers
the PH of the body of water. This has already caused a 30% increase in the acidity
of the ocean since the beginning of the industrial revolution, leading to biological
effects that interfere with marine life [6].
Figure 1.1 shows the global CO2 emissions and concentrations from 1750 to 2022. It
is important to note that global emissions remained constant between 1750 and 1840,
after which they started to increase rapidly. The atmospheric concentration slightly
increased between 1750 and 1960, after which they strongly grew because of the
industrial activities powered by fossil fuels. It is evident that the industrialization
process triggered a rapid increase in CO2 levels, leading to a stronger greenhouse
effect, global warming, and, ultimately, climate change of anthropogenic nature [7].
Human activities have led to about 1◦C rise in average global temperature above
pre-industrial levels which are further projected to reach 1.5◦C between the year
2030 and 2052 if current GHG emission rates remain unaltered [9].

Figure 1.1. Concentration of carbon dioxide emissions between the year 1750 and 2020 [6].

The United Nations Conference on the Environment held in Stockholm, Sweden,
in 1972 was the first world conference to address the environment as a major
issue. Participants adopted several principles for sound environmental management
including the Stockholm Declaration and the Action Plan for the Human Environment.
The Stockholm Declaration placed environmental issues as a major international
concern and laid the foundation of dialogue between industrialized and developing

1.1 Sustainable Energy Transition 3

countries on the connection between economic growth, pollution, and human well-
being. One of the most important outcomes of the Stockholm conference was the
creation of the United Nations Environment Programme (UNEP) [10].
Then, in 1992, Agenda 21, the Rio Declaration on Environment and Development,
and the Statement of Principles for the Sustainable Management of Forests were
adopted by more than 178 Governments at the United Nations Conference on
Environment and Development (UNCED), also known as Earth Summit, held in
Rio de Janeiro, Brazil. Agenda 21 is a comprehensive plan of global, national, and
regional actions to be taken by the United Nations (UN) system, governments and
major groups in all areas of human impact on the environment. The Commission on
Sustainable Development (CSD) was created in December 1992 to ensure effective
follow-up of UNCED, to monitor and report on the implementation of the agreements
[11]. The World Summit on Sustainable Development (WSSD) held in Johannesburg,
South Africa, in 2002 strongly reaffirmed its commitment to the full implementation
of Agenda 21, the Program for Further Implementation of Agenda 21, and the
Rio Principles [12]. During the Earth Summit, the United Nations Framework
Convention on Climate Change (UNFCCC) was signed by 154 states to combat
dangerous human interference with the climate system.
In 1997, 192 parties adopted the Kyoto Protocol, an international treaty that extends
the UNFCCC by committing countries to limit and reduce GHG emissions under
agreed individual targets. The Kyoto Protocol was based on the principle of common
but differentiated responsibilities, acknowledging that individual countries have
different capabilities in fighting climate change due to economic developments.
Therefore, it placed a heavier burden on developed countries to reduce emissions
since historically responsible for the current levels of GHGs in the atmosphere [13].
In December 2012, the Doha Amendment to the Kyoto Protocol was adopted in
Doha, Qatar, for a second commitment period, starting in 2013 and lasting until
2020 [14].
In 2015, the Paris Agreement was negotiated and adopted by 196 parties at the
21st United Nations Climate Change Conference of Parties (COP21) near Paris,
France. The Paris Agreement is a milestone in the multilateral climate change
process because, for the first time, a binding agreement led all nations to a common
purpose to make ambitious efforts to combat climate change and adapt to its
impacts. The ambition in the agreement is to maintain the increase in global average
temperature to well below 2◦C above pre-industrial levels and pursue efforts to limit
the temperature to 1.5◦C. The commitment to aim for 1.5◦C degrees is important
because every fraction of a degree of warming results in the loss of lives and damage
to livelihoods [15]. The Paris Agreement works on a 5-year cycle of increasingly
ambitious climate action carried out by countries. Delayed for a year due to the
COVID-19 pandemic, in 2021 countries updated their plans for reducing emissions
at the 26st United Nations Climate Change Conference of Parties (COP26), where
it became clear that commitments laid out in Paris 6 years earlier did not come
close to limiting global warming to 1.5◦C degrees, and that the time window for
achieving it is closing [16].
During the same year of the Paris Agreement, the 2030 Agenda for Sustainable
Development was adopted by all UN Member States, as a universal call to action to
end poverty, protect the planet, and ensure that by 2030 humankind as a whole can

4 1. Introduction

enjoy peace and prosperity. At its core are the 17 Sustainable Development Goals
(SDGs), which are an urgent call for action by all countries in a global partnership.
SDGs recognize that ending poverty and other deprivations must advance together
with strategies that improve health and education, and reduce inequality, all while
tackling climate change and working to preserve oceans, forests, and biodiversity
[17].
To reduce GHG levels most effectively and understand which emissions can and
cannot be eliminated with current technology, it is essential to first understand the
different sources of emission. The diagram in Figure 1.2 shows the global GHG
emissions by sector for the year 2016, where global emissions were 49.4 billion tonnes
CO2eq. About one-fifth comes from agriculture and land and 8% from industry
and waste. The remaining three-quarters of global emissions are, instead, produced
by the energy sector from a wide variety of sub-sectors, from power generation to
industrial manufacturing [18].

Figure 1.2. Global GHG emissions by sector, shown for the year 2016 where global GHG
emissions were 49.4 billion tonnes CO2eq [18].

Electricity is essential in modern society as it accounts for an increasing share
of energy production and consumption in all countries, and plays a vital role in
all important human activities and operations, either directly or indirectly [19].
Electricity demand has been growing over the past decades and is expected to
continue increasing due to rising household incomes, electrification of transport,
and increasing thermal energy applications, as well as continued growth in digitally
connected appliances and air conditioning [20]. In response, also the global energy
supply has been increasing steadily over the past years, as shown in Figure 1.3 where
the world total energy supply is plotted over time by source, from 1971 to 2019.
More specifically, the share of the world’s total energy supply more than doubled

1.1 Sustainable Energy Transition 5

during the past 50 years, as reported in Figure 1.4, and the share of energy produced
by fossil fuels accounted for more than 80% of the total supply in 2019, making the
energy sector a leading source of GHG emissions causing global warming [21].

Figure 1.3. World total energy supply by source, 1971-2019 (EJ) [21].

Figure 1.4. Share of world total energy supply by source, 1973 and 2019 [21]. Notably, it
includes international aviation and international marine bunkers.

To mitigate climate change and protect the planet from irreversible consequences,
it is evident that part of the solution is to reduce emissions coming from the
energy sector. This can be achieved by deploying a large-scale Renewable Energy
(RE) supply in energy systems and corresponds to the SDG no. 7 accounting
for affordable and clean energy to substantially increase the share of RE by 2030.
Moreover, achieving 100% Renewable Energy System (RES) would also contribute to
the fulfillment of SDG no. 6 (clean water and sanitation), no. 9 (industry, innovation,
and infrastructure), no. 11 (sustainable cities and communities), no. 12 (responsible
production and consumption) and no. 13 (climate action) [22].
RE sources are derived from naturally occurring sources that replenish themselves
through natural forces. As an inexhaustible source of clean energy, RE sources
play a key role in the energy transition towards a sustainable future [23]. Not only

6 1. Introduction

RE sources can help mitigate GHG emissions, climate change, and environmental
pollution, but can also improve access to energy for a large part of the population
since locally available, and contribute to local socio-economic benefits through job
creation and improved local economies [24, 25].
With the increasing presence of distributed generation systems that are mainly
based on variable RE sources, centralized power transmission and distribution
networks that were initially conceived and designed to distribute electricity from
central power stations to consumers are no longer valid. Economies of scale are
starting to adapt to new distributed generation technologies that have increased
the viability of small-scale energy systems, and the use of information technology
has created new opportunities for a less hierarchical and more flexible energy and
infrastructure management model [26]. Decentralized small-scale energy systems
like Energy Community (EC) are becoming more and more important as a resilient
answer to the global energy crisis characterizing the current historical period, which
is witnessing the COVID-19 pandemic emergency and the war in Ukraine [27, 28].
The technical feasibility of 100% RE systems has been extensively scrutinized by
more than 180 publications and is gaining momentum among various stakeholders
[22]. Examples are Sweden, where the goal is to achieve net zero GHG emissions
by 2040, and Denmark with the target of net zero emissions by 2050 [29, 30]. In
addition, many countries, such as Bangladesh, Barbados, Cambodia, Colombia,
Ethiopia, Ghana, Mongolia, Vietnam, Hawaii, or California, are targeting 100% RE
by 2045 or 2050 [31]. Already today, some countries, such as Norway and Costa
Rica, derive their electricity almost exclusively from RE sources such as hydropower
[31]. Similarly, several cities have committed to using 100% RE for all energy
consumption by 2050. These cities include Copenhagen (2050), Denmark, Frankfurt
and Hamburg (2050), Germany, Malmö and Växjö (2030), Sweden, Oxford Country
(2050), Australia, Vancouver (2050), Canada, and The Hague (2040), Netherlands
[31].
The world has experienced two major energy transitions in the past. The first
replaced wood with coal, and, during the second, oil and gas replaced coal as
the main energy source. Today, the world is undergoing a third energy transition
with the main goal to tackle global climate change through decarbonization of the
energy supply and consumption patterns [32]. For most of history, the idea of a
broad-scale energy transition was unthinkable as decisions were made at the local,
regional or individual level, with limited or no coordination [33]. Today, it is not
only possible thanks to global cooperation and agreements between parties but also
necessary to prevent the severe and irreversible consequences of climate change that
are threatening life on the planet as we know it.

1.2 Renewable Energy Systems 7

1.2 Renewable Energy Systems

In 2020, RE use increased by 3% as demand for all non-renewable sources decreased
by more than 3%. The primary driver was an almost 7% growth in electricity gener-
ation from renewable sources, together with an overall decline in global electricity
demand caused by the COVID-19 emergency. Specifically, the share of renewables
in global electricity jumped from 27% in 2019 to 29% in 2020, led by wind and
solar PhotoVoltaic (PV), which grew by 12% and 23%, respectively [34]. These two
sources contributed to two-thirds of renewables expansion, reaching 10.7% of the
global power mix in 2021, and are witnessing the fastest growth since the 1970s, as
shown in Figure 1.5. Therefore, wind and solar PV will be discussed next as the
main energy sources instrumental in the sustainable energy transition.

Figure 1.5. Share of wind and solar PV in world electricity generation, 1971-2021 [34].

Wind Energy

In 2021, wind energy contributed to 6.6% of the global electricity generation and
is expected to continue growing with the possibility of becoming the main energy
resource in the near future. Moreover, offshore wind capacity additions more than
tripled in 2021 to nearly 56 GW [35].
In 1887, Professor James Bryce invented the world’s first Wind Turbine (WT) to
generate electricity from wind. Several months later, Charles F. Brish constructed
the first Horizontal-Axis Wind Turbine (HAWT) which has become the most common
type nowadays, making him the inventor of the modern WT industry. Then, in
1956, the first three-bladed turbine was built by Johannes Jul, namely, the Gedser
WT, which greatly inspired the development of later technologies. Moreover, Jul

8 1. Introduction

also designed a novel emergency aerodynamic tip break to slow the rotation of the
rotor when the blade is subjected to an excessive amount of centrifugal force, laying
the foundation for modern safety measures in WTs [36].
The development of WTs is progressing rapidly, and, in the past few decades, their
capacity, rotor diameter and height have been steadily increasing, as shown in Figure
1.6. Currently, the biggest WT in the world is the offshore MySE 16.0-242 turbine,
produced by MingYang Smart Energy, with a capacity of 16 MW, a 242-meter
diameter rotor, 118 m long blades, and a staggering 46000 m2 swept area equivalent
of more than six soccer fields [37]. Moreover, WTs are expected to grow even further
in the near future, as depicted in Figure 1.7, with an estimate of median turbine
capacity reaching 5.5 MW and 17 MW for onshore and offshore WTs, respectively,
in 2035 [38].

Figure 1.6. Average turbine nameplate capacity, hub height, and rotor diameter for
land-based wind projects in the US [39].

Figure 1.7. Expected turbine size in 2035 for onshore and offshore wind, compared with
2019 medians [38]. For offshore wind, a global 2019 median is provided, while for onshore
wind, a US median is shown given the lack of data to estimate a global median.

When the wind blows through a WT, the blades absorb some of the kinetic
energy and convert it into aerodynamic lift, creating a rotational momentum that

1.2 Renewable Energy Systems 9

enables the turbine to spin. The curved design of the blades also referred to as
airfoil shaped, deflects the airflow downwards, and, according to Newton’s Third
Law of Motion, creates an opposite force having two components, namely lift and
drag, as shown in Figure 1.8. The lift force is responsible for propelling the blade,
allowing it to rotate around the center of the turbine, called the hub. Notably, the
force response of the blades is governed by the geometry of the flow, better known
as the angle of attack α, and the relative speed of the wind. The rotating hub is
connected to the main shaft inside the nacelle which is linked to an alternator for
electricity generation.

Figure 1.8. Lift and drag force of a WT airfoil [40].

More specifically, the main components of a HAWT, shown in Figure 1.9, are
listed below.

1. Rotor Blades: the rotor blades are installed to provide angular momentum
that enables the turbine to spin, and, ultimately, to generate electricity.

2. Hub: the hub connects the rotor blades to the main shaft and is a rotating
component.

3. Control Monitoring System: also referred to as CMS, this system allows the
operators to monitor the overall performance of the turbine, together with the
status of all its components.

4. Main Shaft: the main shaft is composed of two components, namely the low-
speed shaft and the high-speed shaft. The low-speed shaft is connected to the
hub of the turbine and rotates at a lower speed compared to the high-speed
shaft. The high-speed shaft is connected to the generator. The higher speed
is required to increase the rotational speed of the magnetic field within the
generator, which allows for higher speed power generation.

5. Gearbox: this component connects the low-speed and high-speed shafts and
consists of multiple gears with different ratios that allow the rotating speed to
increase.

6. Disk Brake: the braking system is used to stop the WT for routine operations
or during emergencies. When strong winds blow, the turbine could spin too
fast or even out of control, causing an overload to the generator which could

10 1. Introduction

lead to an onboard fire. The disk brake is usually mounted on the high-speed
shaft.

7. Generator Coupling: this component is used to transmit the rotational power
from the high-speed shaft to the generator.

8. Cooling Radiator : the cooling radiator cools down the turbine to prevent
overheating inside the nacelle.

9. Wind Measuring System: this system, usually composed of an anemometer and
an air velocity meter, measures the wind speed and direction, allowing the WT
to align into the wind to maximize the absorbed kinetic energy. Modern designs
use digital measurements instead of conventional designs like, for example, the
Doppler LiDAR system [41].

10. Generator : the generator is typically an alternator that converts mechanical
energy to electrical energy in the form of alternating current. This is achieved
by a rotating magnetic field produced by a rotor with a fixed armature coil.
Specifically, the main shaft has multiple poles with permanent magnets and is
surrounded by a static armature coil fitted outside the rotor. When spinning,
the magnetic field intersects the armature coil and generates an altering current.

11. Yaw Drive: the yaw drive is responsible for the orientation of the rotor towards
the wind.

12. Hydraulic System: the hydraulic system is used for multiple functions in a
WT, which include blade pitch adjustment, yaw and rotor braking, cooling,
and lubrication.

13. Yaw Bearing: the yaw bearing is one of the most crucial components in a
WT since it has to support enormous static and dynamic loads during the
operation of the turbine, providing smooth rotation when orienting the nacelle
under all weather conditions.

14. Tower : the tower allows the blades to be elevated from ground level to an
altitude where winds are usually faster and smoother. The tower is also used to
support the whole system including the nacelle and all the other components.

The power that can be captured from the wind through a WT is equal to

P = 1
2ρairCpπr2v3, (1.1)

where ρair is the air mass density, Cp the power coefficient, r the rotor radius
(or the blade length), and v the wind speed. Notably, the power coefficient depends
on the specific design of the blade, the blade pitch angle θ, and the tip speed ratio
(blade tip speed divided by wind speed). The maximum possible value for the power
coefficient is Cp = 0.593, meaning that the efficiency of a WT can never exceed
59.3%. This is also referred to as the Betz Limit [43]. However, in practical designs,
due to various forms of energy loss, the Betz Limit is never reached, resulting in
efficiencies of around 30-40%.

1.2 Renewable Energy Systems 11

Figure 1.9. A cross-section of a HAWT showing its main internal components [42].
1. Rotor Blades, 2. Hub, 3. Control System Monitoring, 4. Main Shaft, 5. Gearbox, 6.
Disk Brake, 7. Generator Coupling, 8. Cooling Radiator, 9. Wind Measuring System,
10. Generator, 11. Yaw Drive, 12. Hydraulic System, 13. Yaw Bearing, 14. Tower.

Overall, WTs have little environmental impact compared to other traditional forms
of energy. When operating, they emit no waste that pollutes the air or water and do
not require water to cool the generator. Therefore, WTs play a key role in reducing
the use of fossil fuels in power generation, thereby tackling pollution and mitigating
GHG emissions.

Solar PV Energy

In 2021, solar energy was the fastest-growing RE contributing to 3.6% of the global
electricity generation and is expected to continue growing in the future [35].
The PV effect was observed for the first time in 1839 by Edmond Becquerel through
an electrode in a conductive solution exposed to light [44] and, in 1873, Willoughby
Smith discovered the photoconductive potential of selenium. Three years later, in
1876, William Grylls Adams and Richard Evans Day observed that selenium creates
electricity when exposed to sunlight [45, 46]. In 1883, the first solar cell made
from selenium wafers was invented by Charles Fritts, attracting the attention of the
scientific community and sparking further research and development, and, in 1904,
Wilhelm Hallwachs made the first semiconductor-junction solar cell with copper and
copper oxide [47, 48].
However, these discoveries were not based on a solid understanding of the science
behind the operation of the first PV devices, and a theoretical foundation was
formulated from 1905 to 1950. Key events were Einstein’s photon theory in 1905, for
which he later won a Nobel prize in physics, and, in 1918, Jan Czochralski’s method
to grow single crystals of metal, adapted decades later by Gordon Teal and John
Little to produce single-crystalline germanium and, later, silicon [49, 50].

12 1. Introduction

The solar era began in the 1950s when Bell Laboratory scientists focused on PV
developments and began utilizing silicon to produce solar cells. This breakthrough
is credited to Daryl Chapin, Calvin Fuller, and Gerald Pearson who created the
first silicon PV cell in 1954 [51]. This led the US government to invest in solar cell
technology from 1960 to 1980, first for applications on space satellites and then
for initial terrestrial applications. Another driver for PV investments was the oil
embargo in 1973 which drove the US to seek energy independence [52].
From the 1980s, solar technology developed also worldwide, and many companies
around the globe, especially in East Asian countries, started producing utility-
scale solar technology, leading to cost reduction, and efficiency improvements [48].
Nevertheless, solar energy generation became mainstream only in the mid-2010s,
when costs declined by about 90% over the decade, as shown in Figure 1.10, allowing
PV technology to become a deployable energy solution, also in the residential market
[53].

Figure 1.10. Average monthly solar PV module prices by technology and manufacturing
country sold in Europe, 2010 to 2021 [53].

The typical solar cell is composed of two types of semiconductor layers called
p-type and n-type silicon layers, obtained by introducing impurities into silicon
crystals. The p-type silicon layer is made by doping silicon with atoms having
one less electron in the outer energy level than silicon, like boron. By having one
less electron than needed to form a bond with the surrounding silicon atoms, an
electron vacancy or hole is created. The n-type silicon layer, instead, is made by
doping silicon with atoms that have one more electron in the outer energy level
than silicon, such as phosphorus. This last, for example, has five electrons in its
outer energy levels and bonds with neighboring silicon atoms. However, during the
bonding process, one electron does not participate and remains free to move within
the silicon structure.

1.2 Renewable Energy Systems 13

When stacked on top of each other, as shown in Figure 1.11, the excess of electrons
in the n-type layer and the lack of electrons (holes) in the p-type layer result in
electrons moving into holes near the junction of the two layers, also called depletion
zone. When all the holes in the depletion zone are filled in with electrons, the
p-type side of the depletion zone, originally having holes, will contain negatively
charged atoms (ions), and the n-type side, originally having an excess of electrons,
will contain positively charged ions. This results in an internal electric field that
prevents electrons in the n-type layer to fill in holes in the p-type layer.
When rays of photons strike the surface of the PV cell, electrons are liberated
from the neighboring silicon atoms and become free to move around within the
semiconductor. The electron excitation causes them to become released from the
previously formed bonds, allowing them to move through the junction, creating and
filling in holes in the cell. As there are billions of photons striking the cell every
second, plenty of electrons are knocked loose. When connecting the n-type and
p-type layers with a metallic wire, the electrons can travel from the n-type layer to
the p-type layer by crossing the depletion zone due to the collision with photons
and, then, go back to the n-type layer through the external wire, creating a flow of
electricity.

Figure 1.11. Schematic representation of a solar cell, showing the n-type and p-type layers,
with a close-up view of the depletion zone around the junction between the n-type and
p-type layers [54].

When assembling PV modules as a pre-wired, field-installable unit, it forms a
solar panel, with a standard output voltage of 12V or 24V . The area of modern
solar panels ranges from 1.7m2 to 3.12m2, with power outputs from 300W to more
than 680W , as shown in Figure 1.12 [55]. Multiple solar panels form a complete
power-generating unit named solar array which can be connected in series for a
higher voltage and in parallel for higher currents to achieve the desired power output.

The efficiency of a solar PV panel is measured under Standard Test Conditions

14 1. Introduction

Figure 1.12. Modern solar panel sizes and power [55].

(STC), considering a cell temperature of 25◦C, solar irradiance of 1000 W
m2 and

air mass of 1.5, and represents the amount of sunlight the panel can turn into
usable energy. Under STC, a 150W panel generates 150W of electricity when solar
irradiance is 1000 W

m2 , and the panel is at 25◦C. Specifically, the efficiency of a panel
is calculated as

η = Pmax

A · E
, (1.2)

where Pmax is the maximum power rating at STC, A the area of the solar panel,
and E the solar irradiance at STC, namely 1000 W

m2 . It is important to note the
importance of the area of the solar panel. For example, a 10% efficient 100W panel
and a 20% efficient 100W panel will both produce the same amount of power, even
though the 20% efficient panel is half the total size of the 10% efficient panel. Overall,
the efficiency of a solar panel is influenced by multiple factors like temperature,
irradiance level, cell type and design, and interconnection between cells.
The very first solar cell built by Bell Laboratory scientists in 1954 had an efficiency
of 6%. Then, between 1957 and 1960, several breakthroughs were made by Hoffman
Electronics, increasing the efficiency from 8% to 14% [48], and, in 1985, the University
of South Wales achieved 20% efficiency for silicon cells [56]. In 1999, Spectrolab, Inc.
and the National Renewable Energy Laboratory developed a PV solar cell having
32.3% efficiency, and, later in 2016, broke that record again reaching an efficiency
of 34.5% [57, 58]. The latest advancement in solar PV technology was achieved by
NREL researchers who developed a six-junction III-V solar cell with an efficiency of
47.1% [59]. These efficiencies are based on measurements taken in clean laboratory
environments under STC and do often not reflect what solar PV panels produce
when installed on the field. Many studies demonstrated the actual outputs could be
reduced by as much as 60% in a dusty or polluted climate without regular cleaning
[60].
As for wind energy, solar PV technology provides clean and renewable energy
with little environmental impact. When operating, PV systems do not pollute or
emit GHGs, providing distributed power generation. Differently from wind energy

1.2 Renewable Energy Systems 15

technologies, Operation and Maintenance (O&M) costs for solar PV are lower,
having almost no mechanically moving parts, and a very modular design. Moreover,
solar panels have enormous potential in residential areas since they are easy to
install on rooftops without any interference with people’s lifestyles. Other land-use
efficient solutions have been proposed like agrovoltaic systems, where shaded space
underneath solar panels is used to grow crops, making solar farms and agriculture
share ground, rather than making them compete against one another [61, 62]. As for
wind energy, also solar PV plays a key role in the ongoing energy transition towards
a sustainable future.

16 1. Introduction

1.3 From Internet of Things to Internet of Energy

In recent years, Internet of Things (IoT) has evolved into one of the most important
technologies of the last century. Everyday objects such as cars, kitchen appliances,
or thermostats, can now connect to the Internet through embedded devices, enabling
seamless communication between people, processes, and, in general, things. Figure
1.13 shows the number of IoT devices connected over the last decade, with 50.1
billion devices in 2020 [63].

Figure 1.13. Number of connected IoT devices (billions) from 2012 to 2020 [63].

In such a highly connected world, digital systems record, monitor, and coordinate
interactions between connected things making the physical and digital worlds meet
and collaborate. Moreover, low-cost computing, big data, the cloud, analytics, and
mobile technology, have allowed physical things to share and collect data with almost
no human intervention. In general, the IoT refers to the network of physical objects
(things) that are embedded with sensors, software, and other technologies to connect
and exchange data with other devices over the Internet [64].
During the last decades, smart sensors have been increasingly integrated into manu-
facturing machinery, energy systems and infrastructure, enabling industries to boost
their efficiency, productivity, and safety. This is referred to as Industrial Internet
of Things (IIoT), namely the application of IoT technology in industrial settings,
providing machinery control and optimization via communicating sensors. Moreover,
industries have recently adopted Machine to Machine (M2M) communications for
wireless control, reaching new levels of automation without any human intervention.
For these reasons, IIoT is often referred to as the fourth wave of the industrial
revolution (see Figure 1.14), namely Industry 4.0 (I4.0) [65].

The first industrial revolution began in the 18th century through the use of
steam power and the mechanization of production. The most iconic and significant
invention of this revolution was the power loom (or mechanical loom), developed by
Edmund Cartwright in 1784 and used to weave threads together to produce fabric,

1.3 From Internet of Things to Internet of Energy 17

Figure 1.14. History of I4.0 [66].

which allowed to automatize a great share of the weaving process [67]. The second
revolution took place during the 19th century through the discovery of electricity
and the concept of assembly line production, introduced by Henry Ford during the
1870s in the automobile industry, leading to significantly faster manufacturing times
and lower production costs [68]. The third industrial revolution began in the 20th
century when informatics were incorporated into industrial processes laying the
foundations for modern automation. One of the most important inventions of this
revolution is the Programmable Logic Controller (PLC), proposed by Dick Morley
in 1968 and first deployed in the automotive sector in 1969. PLCs allow controlling
the functions of a system by using the internal logic programmed into them and
are nowadays considered the standard automated control system in manufacturing
industries [69].
Currently, we are witnessing the fourth industrial revolution characterized by the
application of information and communication technologies to industry. It extends
the developments of the previous industrial revolution by expanding network con-
nections among systems, introducing the concept of Cyber-Physical System (CPS)
where communication between the physical and virtual worlds is made possible
through sensors or actuators. The networking of all systems is leading to the concept
of smart industry driven by IIoT technologies, in which systems, components and
people communicate seamlessly and processes are nearly autonomous [65].
IIoT has become increasingly relevant for factory applications where sensors allow
monitoring the manufacturing process, analyzing variations, and acting accord-
ingly [70]. Some applications include automation to enable machines to perform
complicated tasks autonomously, logistics management for storage and distribu-
tion optimization, predictive maintenance to monitor the status of components
and predict equipment failure, and safety to ensure security for industrial work-
ers [71, 72, 73, 74]. IIoT finds other applications in smart transportation, where
distributed network technologies allow to control, track, and increase awareness of
traffic patterns of vehicles, pedestrians, metro, and train stations, contributing to

18 1. Introduction

the general concept of smart cities [75]. Another example of IIoT use case is smart
farming which aims at making farming organized, self-learned, and self-aware, with
improved productivity. This is made possible by integrated IoT devices that sense
light, temperature, humidity, soil, and moisture by fulfilling the energy requirements
[76].
Nevertheless, one of the most important applications of IIoT is the energy sector
where a variety of solutions are adopted to increase flexibility, reliability, efficiency,
and security, giving birth to the concept of smart grids. The smart grid, regarded as
the next-generation power grid, is an intelligent electricity distribution infrastructure
that uses two-way flows of electricity and information to create a widely distributed
automated energy delivery network [77]. In 2008, Jeremy Rifkin extended the
concept of smart grids by coining the term Internet of Energy (IoE) which refers
to an internet-style solution for electricity based on bidirectional information and
power flow [78]. In general, IoE refers to a new paradigm for the operation of many
power system elements such as distributed RE sources, plug-in Eletric Vehicles
(EVs), Factory Energy Management (FEM) systems, Buildings Energy Management
(BEM) systems, Home Energy Management (HEM) systems, and energy storage
technologies, which can be monitored or optimized through the Internet [79]. A
comprehensive architecture of the IoE communication network is presented in Figure
1.15.

Figure 1.15. Overview architecture of the IoE communication network [80].

The general idea is that energy goes from source to load, with a direct analogy
to the routing of information on the Internet, as shown in Figure 1.16. Different

1.3 From Internet of Things to Internet of Energy 19

detailed architectures have been proposed to implement the concept of IoE and the
underlying key technologies include energy routers, storage devices, distributed RE
sources, plug-and-play interfaces, and EVs [81].

Figure 1.16. Analogy between the IoE and the Internet [81].

Energy routers are essential for an IoE network to dynamically and efficiently
manage the energy supply and demand. These devices have the role to improve the
reliability, efficiency, and safety of the power grid, and optimizing energy usage by
processing information, dispatching electricity, and converting voltage. Moreover,
energy routers are designed to communicate with each other to balance energy supply
and demand on a wider scale and sell surplus energy to the grid when the local
supply exceeds the local demand. This is made possible by their ability to receive,
process, and transmit grid status information regarding current generation capacity,
and current demand. More specifically, energy routers consist of three modules,
namely a solid-state transformer for voltage conversion, a distributed grid intelligent
control unit to optimize energy generation and distribution, and a communication
unit for communicating with other energy routers [82].
Storage systems are fundamental to increasing grid robustness by improving the
stability of grid operations and by providing a reliable energy supply. These systems
are particularly useful when the grid is under stress during peak demand periods
and is not able to effectively balance supply and demand. In such a scenario, storage
systems can support power generation systems to meet the electricity demand,
thereby preventing possible blackouts by smoothing the energy supply. This becomes
crucial when power generation systems are distributed and based on RE sources,
due to their intermittent nature. When the sun does not shine or the wind is too

20 1. Introduction

weak, and, therefore, distributed RE systems do not deliver power, storage devices
can provide previously-stored excess power to the grid. Some of the most common
storage devices include batteries, supercapacitors, fuel cells, flywheels, compressed
air, and pumped hydro [83].
Plug-and-play interfaces facilitate the connection of distributed REs, storage devices,
and loads to the IoE network. Just like regular plug-and-play devices, such as USB
flash drives, which are automatically recognized by the computer when plugged
in, IoE plug-and-play devices are automatically recognized when connected to the
energy network. These interfaces have different interface types, namely Alternating
Current (AC) or Direct Current (DC), to allow a wide variety of components to
seamlessly connect to the network. This is made possible by open-standard com-
munication protocols which allow plugged-in devices to be immediately recognized.
When, for example, a RE system is plugged into the network to provide power, the
plug-and-play interface sends an energy generation request to the closest energy
router which checks the local power demand and decides whether granting access to
the system. Similarly, when RE systems do not deliver power, the plug-and-play
interface sends a stop signal to the energy router, thus disconnecting the generation
system from the grid [84].
EVs can be both a source or a load on the grid, and therefore have the potential
to either support or burden the electricity grid depending on their state of charge
and usage patterns. These devices can support the grid by providing power supply
during peak demand periods, acting like batteries that increase the stability of the
network. Since the number of EVs has been steadily growing over the past years,
intelligent EV energy management systems are crucial to properly integrate these
devices into the IoE network and benefit from their potential [85].
The concept of IoE has been attracting attention among academics, companies, and
governments. Examples are the ARTEMIS IoE project where 38 partner companies
from 10 EU countries developed IoE solutions for electric mobility infrastructure
and smart grid communications, and the Future Renewable Electric Energy De-
livery (FREEDM) Center funded by the US National Science Foundation where
an electric power distribution system suitable for plug-and-play of distributed RE
and distributed energy storage devices was created [86, 87]. In 2008, the E-Energy
project was launched in Germany to motivate the development of efficient energy
systems based on information and communication technology and, in 2015, China
funded the Global Energy Internet (GEI) project to extend the Chinese smart grid
and integrate RE using the Internet [88, 89]. Another example is Japan where, in
2011, the Digital Grid Consortium (DGC) proposed the concept of a digital grid
composed of asynchronous and addressable digital grid routers capable of sending
discrete energy packets over existing transmission lines to any location using IP
addresses [90].
IoT, IIoT, and especially IoE are steering the industry towards more efficient, reli-
able, safe, and sustainable solutions with huge environmental and social potential
benefits. The future of smart power grids depends more and more on the Internet
for monitoring and control of distributed RE systems but can only be realized when
substantial changes to electricity infrastructure, business models, and regulations are
implemented. These are not only technical challenges and, therefore, require a col-
lective and political effort to transform the current energy market into a sustainable

1.3 From Internet of Things to Internet of Energy 21

alternative.

22 1. Introduction

1.4 The Role of Artificial Intelligence

Humankind continues to struggle when it comes to transforming human activities
into a sustainable long-term alternative that ensures existential survival. Climate
change is presenting complex challenges threatening life on the planet and all the
available technological expertise is required to develop long-term solutions immedi-
ately, especially for energy systems which are the backbone of modern society [91, 92].
Among the most promising possibilities is Artificial Intelligence (AI) which in many
countries has already revolutionized the energy industry by incorporating learning
algorithms to perform different types of tasks, such as controlling, forecasting, and
operating energy systems [93].
AI is often related to the concept of Machine Learning (ML), a sub-field that allows
computer systems to automatically build mathematical models based on sample data,
dating back to the late 1950s when many algorithms were proposed for classification
and regression problems. Before the 1980s, almost all learning methods were based
on linear models, like Linear Regression (LR) or logistic regression and, during
the 1990s, researchers started to propose efficient learning algorithms for nonlinear
functions, based on computational learning, mathematical and probabilistic theories.
One example is Support Vector Machines (SVM)s, a discriminative two-class classifier
that outputs a hyperplane as an optimal decision boundary to separate different
classes, maximizing the distance between data points and the hyperplane itself [94].
Another example are ensemble methods, meta-algorithms that combine several ML
techniques to improve predictions [95].
In 1999, when computers started becoming faster at processing data and Graphics
Processing Unitss (GPUs) were developed, computational speed increased by many
orders of magnitude. This allowed Artificial Neural Networks (ANNs) to compete
with classical ML algorithms, leading to a new sub-field of AI, namely Deep Learning
(DL). The theory was already developed in the past years but was never successfully
used in real applications because of its computational requirements. ANNs were
already proposed in 1943 and the backpropagation algorithm required to train them
in 1974 [96, 97] . An ANN is a biologically-inspired model based on a collection
of connected basic units called neurons or perceptrons. Neurons are grouped into
layers and multiple layers form a Deep Neural Network (DNN). In general, an
ANN is considered a Universal Function Approximator since it can approximate any
function, even if highly nonlinear, given enough neurons and layers, and represented
a breakthrough for AI [98].
Then, in 1979, a hierarchical and multilayered network named Neocognitron was
introduced to deal with the processing of images and recognize visual patterns [99].
This network can be considered the first Convolutional Neural Network (CNN) that
laid the foundations of DL in the field of Computer Vision [100]. Many more CNNs
were developed during the years reaching state-of-the-art performances in tasks like
object recognition. One example is AlexNet, a neural architecture that won several
international competitions during 2011 and 2012 [101].
Since standard ANNs are not able to take into account the order and the temporal
correlation between successive inputs, in 1991, Recurrent Neural Networks (RNNs)
were introduced, a variant of ANNs with a memory cell able to capture temporal
dependencies [102]. With RNNs, temporal sequences of data are considered as inputs

1.4 The Role of Artificial Intelligence 23

for the model, making the neural architecture suitable in the context of time series
forecasting or sequence learning.
To increase the flexibility of the predictive model, Sequence-to-Sequence (S2S) archi-
tectures were proposed, allowing to generate predictions for multiple time steps [103].
The architecture is composed of two components named encoder and decoder that
allow predicting multiple time steps given the same input sequence. Since RNNs
are often unreliable due to optimization problems, the Long Short-Term Memory
(LSTM) cell was proposed as a replacement for the standard memory cell [104].
RNNs dealing with temporal sequences often suffer from the incapability to process
long sequences, forgetting or ignoring useful information. Attention mechanisms
tackle this problem by allowing the model to look at the entire input sequence and
assign more importance (or attention) to the most relevant elements [105]. One of
the most effective and successful attention mechanisms is Self-Attention, heavily
used in neural architectures like the Transformer which reached state-of-the-art
performances in various sequence learning tasks [106].
In 1997, the Bidirectional Recurrent Neural Network (BRNN) was proposed, a neural
architecture able to output predictions taking into account separately both future
and past information in the sequence [107]. One of the most recent and promising
neural architectures was proposed in 2016, namely Graph Convolutional Networks
(GCNs), which leverages and exploits the topological structure of knowledge graphs
[108].
AI experienced a continuous expansion in a wide variety of applications and con-
tributed to the automation of important but repetitive and time-consuming tasks,
allowing humans to focus on higher-value work. Moreover, learning algorithms
proved their ability to reveal insights hidden in massive quantities of unstructured
data that would require an amount of human management and analysis that is
not only unavailable but also unfeasible. In fact, AI can integrate thousands of
machines and other resources to solve complex problems almost without any human
intervention [91].
As discussed in the previous chapters, RE represents one of the most promising
and immediate ways to tackle climate change by reducing the impact of the energy
sector on the global emission rates. Therefore, the potential and capabilities of AI
become essential to allow RE systems to penetrate the energy market by mitigating
the variability of RE sources, thus balancing the offset between supply and demand
in the energy grid. Moreover, AI technologies support the RE industry by providing
better O&M decisions, monitoring the power infrastructure, increasing the security
of system operations, and new market designs [109].
One of the main applications of AI in the context of REs is predictive maintenance
which is becoming an essential component in modern I4.0 environments and ap-
plications [110, 111]. Compared to classical retrospective and reactive approaches
of quality control and condition monitoring that recognize problems after their
occurrence, predictive maintenance aims at isolating untypical system behaviors and
undesired patterns at an early stage [112]. In this way, when extreme or catastrophic
system failures occur, any severe damage to the infrastructure, the machines, or the
whole system can be avoided, together with any severe risks for operators working
with the system. Moreover, predictive maintenance is important for guaranteeing a
higher quality of production items, thus reducing repair and production costs, waste

24 1. Introduction

and pollution of the environment [113].
Manual supervision is usually unrealistic to be conducted in a reasonable amount of
time with reasonable efforts and costs for companies and is, therefore, considered
a bottleneck. Moreover, it is affected by human inconsistencies caused by fatigue,
uncertainty, boredom, or different cognitive abilities during different workloads or
daytimes [114]. To increase the level of automatization and consistency of predictive
maintenance, AI models based on ML algorithms are employed since capable of
automatically and permanently producing forecasts to isolate arising problems and
faults at an early stage or conducting a diagnosis about a predicted upcoming
abnormal behavior. Even though data-driven models generate consistent outputs
over time and are not affected by human errors, they may still suffer from low
experience when designed for only very particular system operating conditions or
when trained on insufficient or outdated historical data. Therefore, these models
must be regularly re-calibrated or have the ability to self-adapt over time using
routinely collected data [115].
Predictive maintenance is particularly relevant for wind energy, where difficult
access to wind farms and their remote location, especially when offshore or in
mountainous areas, the considerable height of WTs, and the size of the required
equipment, give rise to high O&M costs. Many works broadly agree that O&M
costs of wind farms account for approximately 25% to 35% of the total cost of power
generation, and could increase by recurring failures of different WT components
[116, 117, 118, 119, 120, 121]. Therefore, early detection of potential failures and
appropriate CBM strategies are vital for operators and manufacturers for better
dispatch, maintenance planning, and determination of required operating equipment.
ML algorithms can contribute to reducing O&M costs with predictive models able
to monitor and detect scenarios that might trigger maintenance, when WTs behave
differently from the expected normal operating conditions. Moreover, the use of
Supervisory Control And Data Acquisition (SCADA) systems for historical data
generation has led to a variety of approaches based on data-driven ML techniques
for effective CBM strategies [122, 123]. A review of ML methods for WT CBM was
written by Stetco et. al in which the authors cover different works dealing with
various tasks, for example, blade fault detection, generator temperature monitoring,
or power curve monitoring [124]. They state that most models in the literature use
SCADA or simulated data to train classification and regression models. Specifically,
NNs, SVM, and Decision Tree (DT) are the most commonly used methods. Moreover,
the authors highlight the importance of DNNs since capable of learning complex
non-linear functions, thus achieving better performance than more traditional models
as data volume grows [124].
Even though the O&M costs of solar PV are lower compared to wind power, they
can still be significant enough to consider and develop reliable anomaly detection
and maintenance strategies. Many believe that the PV systems require almost no
maintenance and regular monitoring due to many research and reliability studies
around PV panels and cells but this is not necessarily the case for PV systems as a
whole [125]. In fact, many factors can cause PV systems’ performance to deviate
from the expected one. For example, the design or installation of the system could
be flawed, leading to overall system performance degradation. Moreover, the power
output and efficiency of the entire system can be already reduced when only an

1.4 The Role of Artificial Intelligence 25

individual cell of a single panel is compromised. Another problem is the long-term
accumulation of dirt and debris on the panels which can significantly reduce the
power output, especially when not mounted at an angle that allows adequate water
runoff or in drier climates [126, 127]. This problem can greatly impact maintenance
costs when the panels are mounted in remote locations making routine cleaning
more difficult. Another critical component is the inverter which can lead to lower
conversion efficiency or even fail when incorrectly sized [128].
If failures and performance degradation are not properly monitored and handled, it
can lead to loss of energy generation and the failure of components, thus increasing
O&M costs. For this reason, many predictive maintenance and anomaly detection
strategies based on ML algorithms have been recently developed. For example,
Platon et al. developed a fault-detection approach developed and validated using
data measured from a real PV system. The proposed model aims at identifying
values not representative of normal PV system operation by comparing the measured
AC to the model’s prediction and achieves a fault detection rate greater than 90%
for different irradiance intervals [129]. Another example is the work by De Benedetti
et al. in which the authors developed a model to predict the AC power production
using an ANN taking in input solar irradiance and panel temperature measurements.
They compared the model’s prediction to the live trend data collected from the PV
system and analyzed the resulting residual vector to detect anomalies and produce
daily predictive maintenance alerts [130].
Another important application of AI for WTs is wind power forecasting since it can
increase wind reliability by dealing with its intermittent nature. In fact, when accu-
rate wind power forecasts are available, the power output of WTs can be scheduled
accordingly and have a significant economic and technical impact on the energy
grid, where a balance is highly desired between the power supply and demand [131].
A critical review of wind power forecasting methods is provided in the work of
Hanifi et al. in which the authors discuss physical methods, ML models, and hybrid
approaches for very short- (few minutes to 30 seconds), short- (30 minutes to 6
hours), medium- (6 hours to 1 day), or long-term (1 day to a month) forecasting [132].
The most frequently used ML models for wind power forecasting are NNs and SVMs,
due to the ability to adapt to many specific cases. These two families of models can
be computationally demanding, therefore also the K-Nearest Neighbors (KNN) and
the Random Forest (RF) algorithms have been extensively used to forecast wind
with lower computational time [133].
When it comes to solar PV systems, their power output is directly affected by the
variability of meteorological parameters like air temperature, solar irradiance, hu-
midity, or cloudiness, and the current state of the systems which can be, for example,
dusty, inefficient, or damaged. Therefore, it becomes essential to design accurate
and reliable models for PV systems, usually described by non-linear equations that
are computationally demanding to solve. Recently, data-driven models have been
gaining momentum since able to provide satisfactory results comparable to the
physical models without requiring the same amount of computational power [134].
For example, Yaïci et. al used an ANN to predict the performance parameters of a
thermal collector used for domestic hot water and space heating, and Ahmad et al.
proposed a data-driven model to predict the hourly useful solar thermal energy in a
thermal system using Support Vector Regression (SVR) and tree-based algorithms

26 1. Introduction

[135, 136].
As for wind power, also in the case of solar PV, it is important to accurately forecast
the renewable source, namely solar radiation, to balance the energy demand and
supply. A review of ML methods for solar radiation forecasting was written by
Voyant et al. in which the authors discuss many types of available algorithms [137].
Specifically, the most commonly used methods to estimate solar radiation are ANNs,
Autoregressive Integrated Moving Average (ARIMA), SVM, SVR, k-mean, and
tree-based algorithms.
Even though these are the main applications in the context of RE systems, AI
has potentially limitless other applications in the energy sector, especially with the
concept of smart grids and IoE, as discussed in the previous section. For example,
since batteries do not have enough capacity to store large amounts of energy yet,
load forecasting is crucial to ensure an adequate energy supply. ML techniques have
been extensively implemented for load forecasting since providing satisfactory results
while dealing with high volatility, complexity, and irregularity. Many approaches
have been proposed for both residential buildings and industrial-scale electric loads,
employing a wide variety of ML algorithms including ANNs, DNNs, CNNs, SVMs,
and LSTMs [138, 138, 139]. Smart grids are usually coupled with the idea of a
decentralized power grid and, therefore, optimization techniques in the context of
both large-scale electrical grids and microgrids are required to balance supply and
demand. Many ML algorithms have been proposed as distributed grid controllers,
from supervised learning methods to Reinforcement Learning (RL), a sub-field of AI
dealing with learning agents [140, 141, 142, 143]. Other RL algorithms have been
employed to set prices in multi-microgrid settings for power grid balancing purposes,
and ML models have been developed to enhance current structural designs and
materials of batteries, PV cells, or solar thermal systems [141, 144, 145, 146]. Figure
1.17 presents an overview of many other sustainable energy systems applications
where ML has been applied.

The next chapters discuss and propose data-driven approaches based on AI in
the context of RE systems, and more in general, for the energy sector. Specifically,
Chapter 2 deals with the most important preprocessing techniques used for time
series collected from RE systems and covers the most commonly used ML algorithms
and techniques. Then, Chapeter 3 presents novel algorithms together with their
application in energy systems. In particular, Chapter 3.1 deals with the topic of
dimensionality reduction for sensor networks, crucial in modern energy systems
where hundreds of quantities are continuously monitored. Chapter 3.2 discusses
predictive maintenance approaches in the context of RE systems, and Chapter 3.3
deals with energy forecasting as an important aspect for current smart energy grids.

1.4 The Role of Artificial Intelligence 27

Figure 1.17. An overview of sustainable energy systems applications where ML has been
applied, alongside common ML paradigms used within each setting [92].

29

Chapter 2

Methodology

2.1 Data Preprocessing Methods for Time Series

A large amount of data collected from sensor networks in energy systems is stored
in the form of time series. However, time series can have un-ordered and missing
timestamps, missing values, noise, or outliers, and, therefore, preprocessing becomes
an essential part of time series analysis for cleaning real data. Moreover, different
signals can be difficult to compare when having different distributions or scales.
Preprocessing is essential not only to improve the quality of data but also to increase
the performance of predictive models trained on time series [147]. This chapter
covers the most commonly used techniques for handling missing values, outlier
detection, denoising, transformations, and sliding windows.

2.1.1 Handling Missing Values

Since time series models work with complete data, missing values must be replaced
with meaningful ones before the actual analysis. Broadly speaking, this problem is
handled in two ways, namely by deleting or replacing missing values, or by erasing
the entire time series. However, removing missing values can be a poor solution due
to the temporal ordering of the data and the correlation between observations in
successive time steps. Estimating missing values without distorting the components
of the series is desirable. Figure 2.1 presents an example of time series having missing
values that will be used to demonstrate different methods to handle missing values.

Mean/Median/Mode Imputation Mean imputation replaces missing values
in a time series by estimating the mean of the available values in the sequence as
shown in Figure 2.2 [148]. Median and mode imputation replace missing values with
the median and mode of the time series, respectively. All three methods are fast
and simple to implement but can introduce distortions to the signal.

Last Observation Carried Forward The Last Observation Carried Forward
(LOCF) method imputes a missing value by replacing it with the first available
value previous to the current missing one [149]. This imputation method can also
introduce distortions as demonstrated by Figure 2.3.

30 2. Methodology

1992 1994 1996 1998 2000 2002 2004 2006 2008
Time

0

100

200

300

400

500

600

700

Va
lu
e

Figure 2.1. An example of time series having missing values, namely from 1998 to 1999
and from 2004 to 2005.

1992 1994 1996 1998 2000 2002 2004 2006 2008
Time

0

100

200

300

400

500

600

700

Va
lu
e

Figure 2.2. An example of mean imputation.

Next Observation Carried Backward The Next Observation Carried Backward
(NOCB) method imputes a missing value by replacing it with the first available
value next to the current missing one [150] and can introduce distortions as shown
in Figure 2.4.

Linear Interpolation Linear interpolation imputes a missing value by looking
at both the first past and the first future available values in the time series [151].
In particular, this method connects these values with a straight line to impute the
missing value in between. If too many subsequent values are missing and linearly
interpolated, a strong distortion can be introduced in the time series as shown in
Figure 2.5.

2.1 Data Preprocessing Methods for Time Series 31

1992 1994 1996 1998 2000 2002 2004 2006 2008
Time

0

100

200

300

400

500

600

700

Va
lu
e

Figure 2.3. An example of LOCF imputation.

1992 1994 1996 1998 2000 2002 2004 2006 2008
Time

0

100

200

300

400

500

600

700

Va
lu
e

Figure 2.4. An example of NOCB imputation.

Spline Interpolation Spline interpolation fits a piecewise cubic polynomial which
is twice continuously differentiable to the available points around the missing value
[151]. This method can be very slow but can also provide smooth and meaningful
missing value replacements. An example of spline interpolation is provided in Figure
2.6.

Feature Removal When too many values are missing, it can become impossible to
replace them with meaningful values without introducing distortion or inconsistencies.
In this case, a possibility is to erase the entire time series from the dataset. This
operation has to be performed carefully and could be adopted when there is a large
pool of available signals that contain similar information with respect to the involved
one. When the signal is irrelevant, redundant, or duplicate, it can be removed with

32 2. Methodology

1992 1994 1996 1998 2000 2002 2004 2006 2008
Time

0

100

200

300

400

500

600

700

Va
lu
e

Figure 2.5. An example of linear interpolation for missing values imputation.

1992 1994 1996 1998 2000 2002 2004 2006 2008
Time

0

100

200

300

400

500

600

700

Va
lu
e

Figure 2.6. An example of spline interpolation for missing values imputation.

no further risks.

2.1.2 Outlier Detection

When performing outlier detection in time series data, the goal is to identify un-
expected or rare instances which deviate excessively from the distribution of sam-
ples. Outliers can be caused by sensor measurement errors, noise, data acquisition
problems, or anomalies in the system generating the time series. For this reason,
depending on the application, it is important to handle outliers properly. When
performing a forecasting task, for example, outliers can be deleted or corrected to
clean the dataset before training a learner. When, instead, the aim is to detect
anomalous patterns in the context of predictive maintenance, outliers have to be

2.1 Data Preprocessing Methods for Time Series 33

isolated and analyzed carefully on their own.
Outliers can be divided into three main categories, namely global or point-wise
outliers, contextual or conditional outliers, and collective outliers. Global outliers
are data points having a value far outside the entirety of the dataset. Contextual
outliers are samples that significantly deviate from the rest of the dataset when
considering the same context. In this case, the same value can be classified as an
outlier in one specific context and a normal sample in a different one. In time series,
the context usually depends on time and a good example is when having seasonalities
in the data. A collective outlier is a subset of samples that deviates significantly
from the dataset, where the value of individual observations is neither a global nor a
contextual outlier. This kind of outlier usually involves multiple time series which
together are classified as outliers as a result of their unusual combination.

Sigma Rule A common method to isolate global outliers is the so-called sigma
rule of thumb [152]. This is a conventional heuristic that assumes that the time
series has a normal distribution and expresses that nearly all values lie within k
standard deviations σ of the mean µ. When k = 3, a µ ± 3σ range is defined as
containing 99.73% of the data. Points that fall outside this range are classified as
anomalies. Figure 2.7 shows the percentage of samples included by the k-sigma rule
for different values of k.

Figure 2.7. Percentage of samples included by the k-sigma rule for different values of k
[153].

Rolling Sigma Rule The sigma rule isolates outliers by computing a static
interval for the whole time series. For this reason, a rolling sigma rule can be
adopted by defining a µ± kσ range on a rolling basis, where the lower and upper
limits are computed for every subsequent subset of observations. In this way, the
rolling sigma rule is applied locally by considering the surrounding measurements of
every sample, making this method useful to detect contextual anomalies.

Boxplot A boxplot is a method for graphically analyzing the locality, spread and
skewness of data through their quartiles [154]. Specifically, a boxplot displays a

34 2. Methodology

five-number summary composed of the following:

• median (Q2/50th Percentile): the middle value.

• first quartile (Q1/25th Percentile): the middle observation between the lowest
value and the median.

• third quartile (Q3/75th Percentile): the middle observation between the median
and the highest value.

• upper limit: Q3 + λ · IQR

• lower limit: Q1− λ · IQR

IQR represents the InterQuartile Range computed as the distance between the third
and first quartiles (Q3 − Q1). A boxplot can be used to detect global outliers by
considering values smaller than the lower limit or greater than the upper limit.
These limits depend on the parameter λ which is usually set to 1.5. An example of
a boxplot is provided in Figure 2.8.

Figure 2.8. Example of a boxplot [155].

Isolation Forest Isolation Forests (IFs) are based on Decision Tree (DTs) (see
Section 2.2.1.2) that are created in an unsupervised manner since there are no labels
indicating which samples are outliers and which are not [156]. The idea behind this
method is that anomalies are few and isolated data points deviating from the vast
majority of the observations.
The IF algorithm constructs an ensemble of DTs by selecting a random subsample
of the data for each tree. As for standard DTs, each tree structure breaks down the
subsample into incrementally smaller subsets that contain instances with similar
values. Specifically, each tree splits observations by randomly selecting a feature
and, then, randomly selecting a split value between the maximum and minimum
values of the selected feature. The number of splittings required to reach leaf nodes
is equivalent to the path length from the root node to the leaf node itself. Since
random partitioning produces noticeably shorter paths for anomalies, the average

2.1 Data Preprocessing Methods for Time Series 35

path length over the ensemble is a measure of how likely is it that a sample is
anomalous. Samples ending in short branches are considered anomalies because
the DT could easily separate them from other observations. On the other hand,
subsamples that require many branches in the tree to become homogeneous are
unlikely to be anomalous. A graphical representation of an IF is presented in Figure
2.9.

Figure 2.9. A graphical representation of an IF used to perform anomaly detection for
WTs [157].

Density-based Clustering The Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm (see Section 2.2.2.1) can be employed to detect
collective outliers involving different time series. This can be achieved by classifying
as outliers all the data points that do not belong to dense clusters at the end of the
algorithm.
Another option is to consider as outliers all the points that do not belong to the
densest cluster, depending on the application. An example is provided in Figure
2.10, where the power curve of a wind turbine is cleaned from outliers by filtering
the data points that do not belong to the densest cluster, namely the main power
curve.

2.1.3 Smoothing

Time series smoothing is essential when dealing with signals that contain noise
or short-term fluctuations. The goal of the smoothing procedure is to filter out
the irregular roughness of the time series and make the signal clearer to analyze.
Specifically, smoothing attempts to remove the higher frequency components of a
signal so that the lower frequency patterns can emerge.

Simple Moving Average When using a simple moving average, each point in
the time series is smoothed by computing a weighted average of the values that

36 2. Methodology

Figure 2.10. An example of outlier detection using the DBSCAN algorithm on the power
curve of a WT. Points that do not belong to the densest cluster, namely the main power
curve, are classified as outliers.

surround it [158]. In particular, given a time series x1, · · · , xT , the simple moving
average computes the smoothed value of each point xt as

x̂t = 1
p

i−l+p∑
k=i−l

xk, (2.1)

where p is the window (or filter) size defining how many samples are averaged. The
parameter l controls the alignment of the moving average and different values lead
to different smoothing methods, specifically:

• l = p: the smoothing procedure is referred to as backward moving average.
Each point is computed by averaging all previous values within the time
window. This method is suitable for real-time data since newly recorded values
can immediately be smoothed using previous data in the time series. In this
way, however, all information only comes from the left side of the point and
can lead to poor results if the data has different trends on the left and right
sides of the smoothed point.

• l = 0: the smoothing procedure is referred to as forward moving average. The
smoothed value is computed by averaging all subsequent values within the
time window. Similarly to the backward moving average, all information only
comes from one side of the smoothed value. Moreover, this method is not
suitable for real-time applications since the time window is not available for
newly recorded values.

• l = [p/2]: the smoothing procedure is referred to as centered moving average,
where [p/2] is an integer division. Each point is computed by averaging all
values within the time window, where the value being smoothed is at the

2.1 Data Preprocessing Methods for Time Series 37

center of the window. In this way, half of the window contains previous values
and half of the window subsequent values. Differently from the other two
methods, information comes from both sides of the smoothed point, making
this procedure more stable and with a smaller bias. As for the forward moving
average, this method is not suitable for real-time applications since the right
side of the window is not available for newly recorded values.

Figure 2.11 provides a visual representation of the backward moving average, forward
moving average, and centered moving average.

Centered Moving Average

Forward Moving Average

Backward Moving Average

Figure 2.11. A visual representation of the backward moving average, forward moving
average, and centered moving average.

Savitzky-Golay Filter The Savitzky-Golay filter is a method used to remove
higher-frequency components of time series and has the characteristics of a low-pass
filter [159]. As for simple moving averages, this filter smooths each data point by
considering values in a time window p. For every window, a polynomial of order
k is fitted by minimizing the distance between the values in the window and the
polynomial. Then, the smoothed value is computed by evaluating the polynomial
at the point of interest. An example of smoothing using the Savitzky-Golay filter
considering different polynomial orders is provided in Figure 2.12.

2.1.4 Transformations

It is often the case that time series require some prior transformation before being
modeled by predictive algorithms. For example, many ML models require signals
to have a Gaussian distribution to be more robust and reliable. The goal of time
series transformations is to simplify the time series by removing known sources of
variation or by making the patterns more consistent across time. It is important
to remember that when transforming an input signal, an inverse transformation is
required for the model predictions to have a meaningful output.

Difference Transform The difference transform can be used to remove the trend
or seasonal patterns from a signal to simplify the time series [161]. A first-order
differencing can be used to remove the trend by subtracting the previous value from

38 2. Methodology

Figure 2.12. An example of the Savitzky-Golay filter used to smooth the active power
signal of a wind turbine considering different window lengths k with the same polynomial
order p [160].

each value in the series. This procedure can be repeated on the obtained differenced
series to remove second-order trends, and so on. Similarly, seasonal patterns can
be removed by subtracting the value from the prior season from each value in the
series. Given a time series x1, · · · , xT , the difference transformation replaces each
point xt with

xt = xt − xt−k, (2.2)

where k defines the interval of differencing. When k = 1, it performs a first-order
differencing and, when dealing with seasonalities, k should coincide with the length
of the seasonal cycle. An example of first-order differencing applied to a time series
with a trend is provided in Figure 2.13.

1992 1994 1996 1998 2000 2002 2004 2006 2008
Time

5

10

15

20

25

30

Va
lu
e

(a) Time series before first-order differencing.

1992 1994 1996 1998 2000 2002 2004 2006 2008
Time

−12

−10

−8

−6

−4

−2

0

2

4

Va
lu
e

(b) Time series after first-order differencing.

Figure 2.13. An example of first-order differencing applied to a time series with a trend.

Power Transform The power transformation is a family of methods to stabilize
the variance of a signal across time that removes a shift from the data distribution
to make it more normal-like [162]. The power transformation replaces each data
point by calculating its log, square root, or inverse to remove the skewness in the
data. A generalized version of the power transformation finds a parameter λ that

2.1 Data Preprocessing Methods for Time Series 39

best transforms a variable to a Gaussian-like probability distribution as
x̂t = xλ

t , (2.3)
where xt is the original value and x̂t is its transformed version. An example of a
power transformation applied to time series with a skewed distribution is shown in
Figure 2.14.

Figure 2.14. Example of a power transformation applied to a time series having a skewed
distribution [163].

Box-Cox Transform The Box-Cox transformation [164] belongs to the familiy of
power transformations and replaces each data point xt with

x̂t(λ) =

xλ

t −1
λ , λ ̸= 0.

log(xt), λ = 0.
(2.4)

The translation by −1 and scaling by λ for λ ̸= 0 is performed so that the trans-
formation is continuous, making it easier for theoretical analysis. When λ = 0, the
natural logarithm is applied.
The Box-Cox transformation can be used only when xt > 0. For this reason, a
second parameter λ2 can be introduced to allow this transformation to work with
both negative and positive values. The Box-Cox transformation can be rewritten
accordingly as

x̂t(λ) =

(xt+λ2)λ1−1

λ1
, λ ̸= 0.

log(xt + λ2), λ = 0.
(2.5)

where λ1 represents the λ parameter in the previous Equation 2.4. The parameters
λ1 and λ2 can be estimated using the profile likelihood statistical method [165].

40 2. Methodology

Yeo-Johnson Transform The Yeo-Johnson transformation [166] is another power
transformation method that replaces each data point xt with

x̂t(λ) =

(xt+1)λ−1
λ , xt ≥ 0, λ ̸= 0.

log(xt + 1), xt ≥ 0, λ = 0.

− (−xt+1)2−λ−1
2−λ , xt < 0, λ ̸= 2.

−log(−xt + 1), xt < 0, λ = 2.

(2.6)

As for the Box-Cox transformation expressed in Equation 2.5, the Yeo-Johnson
transformation also allows negative values of the input. Moreover, when λ = 1 it
produces the identity transformation. If xt is strictly positive, then the Yeo-Johnson
transformation coincides with the Box-Cox transformation of (xt + 1) expressed in
Equation 2.4. When strictly negative, it is a Box-Cox transformation of (−xt + 1),
but with power 2− λ. For all other values, the Yeo-Johnson transformation results
in a mixture of the previous two transformations.

2.1.5 Scaling

Comparing and combining different time series is a reoccurring challenge when
dealing with multi-variate datasets, and many ML algorithms perform better when
the input variables have a consistent scale or distribution. For this reason, scaling
time series is an essential preprocessing step and is critical in guaranteeing that each
variable does not bias predictions. Figure 2.15 presents an example of raw time
series that will be used to demonstrate different scaling methods.

20
17
-09
-05

20
17
-09
-07

20
17
-09
-09

20
17
-09
-11

20
17
-09
-13

20
17
-09
-15

20
17
-09
-17

20
17
-09
-19

20
17
-09
-21

Time

397

398

399

400

401

Va
lu
e

Figure 2.15. An example of raw time series before being scaled.

Min-Max Scaling The Min-Max scaling is a method that rescales a time series
from its original range to a new range between 0 and 1 [167]. Specifically, each value
xt in the time series is rescaled as

x̂t = xt − xmin
xmax − xmin

. (2.7)

2.1 Data Preprocessing Methods for Time Series 41

Notably, the Min-Max scaler requires an accurate estimate of the minimum xmin
and maximum xmax values in the time series which can be obtained from the
available data. It is important to notice that, when dealing with outliers, these
values could impact the estimate of both minimum and maximum, and result in a
poor normalization as shown in Figure 2.16. Moreover, when dealing with trends,
minimum and maximum could be difficult to estimate. This scaling method is
suitable when the range of original values is known a priori. This is the case with
most measurements collected from sensor networks in energy systems, where the
minimum and maximum values of a variable are bound by physical constraints.
The Min-Max scaler can be generalized to map the original range to a new range
between any arbitrary values a and b as

x̂t = a + (xt − xmin)(b− a)
xmax − xmin

. (2.8)

20
17
-09
-05

20
17
-09
-07

20
17
-09
-09

20
17
-09
-11

20
17
-09
-13

20
17
-09
-15

20
17
-09
-17

20
17
-09
-19

20
17
-09
-21

Time

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu
e

Figure 2.16. An example of time series scaled using the Min-Max scaler.

Standardization Standardization rescales the data by subtracting the mean and
dividing the result by the standard deviation of the data sample [167]. In this way,
the time data has a zero mean (centered), with a standard deviation of 1. The
resulting distribution is called a standard Gaussian distribution, hence the name of
the scaling method. Specifically, each sample xt is scaled as

x̂t = xt − µ

σ
, (2.9)

where µ is the mean and σ the standard deviation of the data sample.
Standardization assumes that the data has a Gaussian distribution and works best
for samples having such a distribution. This scaling method can still be applied
to time series not having a Gaussian distribution but results might be unreliable
or poor. Differently from the Min-Max scaler which considers the minimum and
maximum estimates, the mean and standard deviation estimates are more robust

42 2. Methodology

towards outliers, making the Standardization method more reliable. Figure 2.17
presents an example of time series scaled using the Standardization method.

20
17
-09
-05

20
17
-09
-07

20
17
-09
-09

20
17
-09
-11

20
17
-09
-13

20
17
-09
-15

20
17
-09
-17

20
17
-09
-19

20
17
-09
-21

Time

−3

−2

−1

0

1

2

3

Va
lu
e

Figure 2.17. An example of time series scaled using the Standardization method.

Robust Scaling Even when using the Standardization scaling method, outliers
can often influence the estimate of the sample mean and variance. For this reason,
the Robust scaling method scales each sample xt by using statistics that are robust
to outliers, namely the median xmedian and the IQR, as

x̂t = xt − xmedian
IQR . (2.10)

An example is provided in Figure 2.18 where it can be seen that the scaled time
series approximately lies in the range (−1, 1).

2.1.6 Sliding Windows

A simple ML algorithm could take in input the current value xt at time t and predict
the next value xt+1 at t + 1. Nevertheless, more complex models like NNs can take
in input a window of past measurements from time t− a to t and as target sequence,
a window of future samples from time t + 1 to t + b, depending on the task [168].
When extracting windows of inputs and outputs from a time series x1, . . . , xT for
each time step t, it is possible to define an input sliding window

st,i = (xt−a, . . . , xt), (2.11)

and an output sliding window

st,o = (xt+1, . . . , xt+b), (2.12)

where a ≥ 0, b ≥ 0, and t = 1, 1 + p, 1 + 2p, . . . , T .
The length of the input sliding window li = a + 1 (the +1 is due to the inclusion

2.2 Machine Learning Algorithms 43

20
17
-09
-05

20
17
-09
-07

20
17
-09
-09

20
17
-09
-11

20
17
-09
-13

20
17
-09
-15

20
17
-09
-17

20
17
-09
-19

20
17
-09
-21

Time

−2

−1

0

1

2

Va
lu
e

Figure 2.18. An example of time series scaled using the Robust scaler.

of the current measurement at time t) and the output sliding window lo = b highly
depends on the application. For example, a model that forecasts the next 10 time
steps (lo = 10) of a time series given the past 19 observations and the current
observation (li = 20) considers sliding windows with a = 19 and b = 10.
The other important parameter is the stride p which determines the number of time
steps between extracted windows. Depending on the size of the window and the
stride parameter, subsequent input windows and subsequent output windows can
have an overlap. When setting p = 1, there is maximum overlap and this can be
seen as a form of data augmentation. A visual explanation of the sliding window
approach with overlap is shown in Figure 2.19.

Time

Value

Window 1

Window 2

Window 3

Window 4Stride

Figure 2.19. A visual explanation of the sliding window approach with overlap.

2.2 Machine Learning Algorithms

Machine Learning (ML) is a subfield of Artificial Intelligence that uses algorithms
to learn and extract patterns from data. ML methods are usually divided into

44 2. Methodology

broad categories based on how feedback is provided to the model during the training
process. The most common classification includes supervised learning when dealing
with labeled datasets and unsupervised learning when analyzing unlabeled datasets.
Deep Learning (DL), instead, is a subfield of ML that uses biologically-inspired
artificial NNs to automate as much as possible the feature extraction process, thus
eliminating the need for manual human intervention and enabling the use of larger
datasets.
This chapter provides a description of the ML and DL algorithms employed in the
applications described in Chapter 3.1, 3.2 and 3.3 for dimensionality reduction in
sensor networks, predictive maintenance in energy systems and power forecasting.

2.2.1 Supervised Learning

Supervised learning algorithms try to learn a function mapping input features to
known targets exploiting a labeled dataset. Both classification and regression tasks
fall in this category [169].

2.2.1.1 Classification

ML algorithms trained for a classification task learn how to assign a categorical
label to examples from the problem domain D, defined as

D = {(xi, yi)}ni=1, (2.13)

where xi ∈ Rd, yi ∈ {1, 2, . . . , k}, n is the number of samples, d the number of input
features, and k the number of classes. A classification algorithm tries to approximate
a function f : x −→ y mapping the input feature vector x to its discrete output class
y. The model is trained on a training set S ∈ D and can successively be used to
perform predictions over unseen data (xi, yi) /∈ S as

ŷi = f(xi), (2.14)

where ŷi is the prediction of the model.
Classification is a common task in ML and many algorithms have been proposed,
like Logistic Regression, Decision Trees, Random Forests, Support Vector Machines
or K-Nearest Neighbors [170, 171, 172, 94, 173].

2.2.1.2 Regression

Regression models are used to predict a continuous value, approximating a function
mapping input features to real-valued outputs. The domain formulation is the same
as in Equation 2.13, with the difference that yi ∈ R. A regression algorithm tries to
approximate the function y = f̂(x) + ϵ that generated the observations (ϵ indicates
a random error) by learning a function f : x −→ y that maps the input feature
vector x to its real-valued output y. Also in this case, predictions over unseen data
(xi, yi) /∈ S can be computed using Equation 2.14, where ŷi ∈ R.
A wide variety of algorithms belong to this category, like Linear Regression, Lasso
Regression, Ridge Regression, Polynomial Regression, Decision Trees, Random
Forests, Support Vector Regression or K-Nearest Neighbors [174, 175, 176, 177, 171,
172, 178, 173].

2.2 Machine Learning Algorithms 45

Linear Regression Linear Regression (LR) is a linear model that assumes a
linear relationship between the input variables and the single output variable [174].
It approximates the real function producing the observations by using a polynomial
and calculates the output y as a linear combination of the input variables x. Given
a dataset as expressed in Equation 2.13 with yi ∈ R, LR can be formulated as

y = β0 + xT β, (2.15)

where β = (β1, . . . , βd) are the regression coefficients and β0 the intercept (the
predicted value of y when x is a zero vector).
The most common approach for fitting LR is the least-squares method, which
computes the best-fitting coefficients for the observed data by minimizing the sum
of the squared deviations of the observations from the fitted polynomial as

β0, β = arg min
β0,β

n∑
i=1

(yi − β0 + xi
T β)2. (2.16)

An example of LR between density-corrected monthly average wind speed and 30-day
normalized available energy from a wind plant is shown in Figure 2.15.

Figure 2.20. Example of LR between density-corrected monthly average wind speed and
30-day normalized available energy from a wind plant [179].

Decision Trees A Decision Tree (DT) is a model that can be used for solving both
classification and regression tasks [171]. As for LR, DTs predict a target variable
based on the value of the input variables. As the name suggests, this model has a
tree structure that breaks down the dataset into incrementally smaller subsets that
contain instances with similar values, while associating decisions to each branch. The
final result is a tree with decision nodes and leaf nodes, which represent the possible

46 2. Methodology

predictions of the model. DT estimates the output by asking a series of boolean
questions about the data, each question narrowing the possible outcomes until the
model is confident enough to make a prediction. The answer to each question (true
or false) generates a new branch in the tree.
The algorithm starts from the root node representing the whole sample space and
selects the feature that partitions the data into subsets having the highest homo-
geneity by minimizing their standard deviation (also known as variance reduction
criteria). If a numerical sample is completely homogeneous its standard deviation
is zero. The partitioning of the sample space is performed by the condition f < v,
where f is the selected feature and v is the mean value of f , thus generating a
decision node having two new branches with subsets of data. For each subset, the
same process is repeated recursively until reaching a stopping condition, namely a
maximum tree depth, a minimum number of nodes in a subset or a minimum value
of standard deviation. When reaching a leaf node, the algorithm predicts the mean
value of the target associated with the subset of samples in that node.
An example of fault diagnosis of Wind Turbine (WT) structures is provided in Figure
2.21. It is evident that the tree structure has a natural visualization, with its nodes
and edges, and is very suitable for interpretability since it allows to analyze "what
if" scenarios.

Figure 2.21. Example of a DT used for fault diagnosis of WT structures [180]. Notably,
the predictions of a DT can be discrete (classification) as in this case, or continuous
(regression).

2.2.1.3 Ensemble Methods

It is important to mention ensemble methods, meta-algorithms that combine several
ML techniques into one predictive model to improve predictions [95]. There are

2.2 Machine Learning Algorithms 47

various ensemble families, but the two most widely used are bagging and boosting.
BAGGing, or Bootstrap AGGregating, combines bootstrapping, namely a resampling
technique used to estimate statistics on a population by sampling a dataset with
replacement (bootstrap sample), and an aggregation algorithm to form the final
ensemble model. Sampling with replacement ensures each bootstrap sample is
independent of the others, as it does not depend on previously chosen samples. In
particular, multiple independent models (weak learners) are trained on different
bootstrap samples, and their predictions are combined by an aggregation algorithm,
for example by averaging their outputs. The prediction F (x) produced by M weak
learners can be formulated as

F (x) =
M∑

i=1
fm(x), (2.17)

where fm(x) is the prediction of the m-th model. The aggregation of many weak
learners usually outperforms a single learner over the entire dataset. A popular
example of bagging is the Random Forest algorithm, which trains multiple DTs and
aggregates their output to perform predictions [172].
In contrast to bagging, where multiple models are trained in parallel, boosting meth-
ods train them sequentially, with each new model trying to correct its predecessor.
The final ensemble model is composed of several weak learners having different
accuracies, which together can provide better overall performance. The prediction
F (x) of the ensemble model is a weighted sum of M weak learners and can be
formulated as

F (x) =
M∑

i=1
αmfm(x) (2.18)

where fm(x) is the prediction of the m-th learner and αm its weight coefficient.
Finding all together the best coefficients and weak learners is a difficult optimization
problem since each model depends on the previous one. Therefore, an iterative
optimization process is adopted, where the best coefficient αm and weak learner fm

are computed for each iteration m and incrementally added to the current ensemble
model as

Fm(x) = Fm−1(x) + αmfm(x), (2.19)

where Fm−1(x) is the prediction of the ensemble model without the m-th weak
learner. At each iteration, αm and fm are computed as

αm, fm = arg min
αm,fm

n∑
i=1

L(yi, Fm−1(xi) + αmfm(xi)), (2.20)

where
L(yi, Fm(xi)) = 1

2(yi − Fm(xi))2 (2.21)

when considering the commonly used squared error as loss function L for the
optimization process.
One of the most popular boosting algorithms is Gradient Boosting (GB) [181]. When
training a new weak learner, it is useless to uncover the same pattern in the data as
the previous model. For this reason, GB trains the next learner to fit the gradient of

48 2. Methodology

the error with respect to the predictions of its predecessors. When using the Mean
Squared Error (MSE), the gradient is proportional to the residuals of the previous
learner. In particular, GB applies a gradient descent step to the minimization
problem expressed in Equation 2.20 to find a local minimum of the loss function
L defined in Equation 2.21 with respect to the predicted value Fm(xi). The local
maximum-descent direction of the loss function is the negative gradient and can be
written as

−∂L(yi, Fm(xi))
∂Fm(xi))

= −
∂ 1

2(yi − Fm(xi))2

∂Fm(xi))
= yi−Fm(xi) = yi−Fm−1(xi)−αmfm(xi).

(2.22)
In order to minimize the loss function, it is necessary to set the gradient to zero as

yi − Fm−1(xi)− αmfm(xi) = 0, (2.23)

which leads to the equation

αmfm(xi) = yi − Fm−1(xi), (2.24)

meaning that the prediction αmfm(xi) of the m-th weak learner is, ideally, equal to
the residual

rim = yi − Fm−1(xi) (2.25)

of the previous learner when considering the MSE as loss function. Except for the
first learner, which predicts the mean value of y as

F0(x) = 1
2 arg min

ŷ

n∑
i=1

L(yi, ŷ), (2.26)

the next weak learners are, therefore, trained to predict the residuals rim of their
predecessors. GB reformulates the Equation 2.19 as

Fm(x) = Fm−1(x) + ναmfm(x), (2.27)

where ν ∈ (0, 1], the learning rate, should be sufficiently small to guarantee the
validity of the linear approximation adopted for the gradient descent optimization
step towards the local minimum of the loss function. Finally, figure 2.22 illustrates
the difference between a single learner, bagging and boosting methods.

XGBoost Regressor XGBoost, which stands for Extreme Gradient Boosting, is
an optimized distributed gradient boosting library designed to be highly efficient,
flexible and portable [183]. It implements ML algorithms under the GB framework
and uses DTs as weak learners. In particular, XGBoost provides a parallel tree
boosting (also known as GBDT, GBM) that solves many data science problems in
a fast and accurate way. The same code runs on major distributed environment
(Hadoop, SGE, MPI) and is the leading ML library for regression, classification, and
ranking problems.

2.2 Machine Learning Algorithms 49

Figure 2.22. Difference between a single learner, bagging and boosting methods [182].

2.2.2 Unsupervised Learning

Unsupervised learning employs algorithms to analyze, cluster, and discover hidden
patterns in unlabeled datasets [184]. Since data labeling requires manual intervention,
it is often the case that the data is unlabelled, especially when dealing with large data
streams coming from sensor networks. Unsupervised learning includes clustering and
dimensionality reduction. Moreover, this chapter introduces concepts of Complex
Network Analysis used to perform unsupervised dimensionality reduction in sensor
networks.

2.2.2.1 Clustering

In clustering, the goal is to discover hidden structures within the data by grouping
similar samples together. Specifically, clustering tries to divide the population into
multiple groups so that data points in the same group are more similar to each other
than points in other groups. Partitional and density-based methods are two of the
most widely used families of algorithms when dealing with clustering.

DBSCAN The Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) algorithm groups data points together that are spatially close and have many
nearby neighbors based on the assumption that clusters are dense regions in the
multidimensional space separated by lower density regions [185]. DBSCAN has two
main hyperparameters, namely ϵ and m, and classifies data points into core points,
border points, and noise points as shown in Figure 2.23.
For each data point, the algorithm creates a hypersphere with ϵ as the radius (neigh-
borhood) and checks whether at least m points fall inside it using the Euclidean
distance. If the condition is satisfied, the point is classified as a core point, if the
number of points is less than m, it is considered a border point and if no points
fall inside the hypersphere it is classified as a noise point. When a core point is
identified, a new cluster is created composed of all points within its hypersphere. If
another core point is included, its neighborhood is added also to the cluster. During
the algorithm, a noise point can be revisited multiple times while exploring different
neighborhoods and eventually assigned to a cluster.

DBSCAN is very sensitive to the hyperparameter choice and slight variations can

50 2. Methodology

Figure 2.23. 2D example of the DBSCAN algorithm presenting core points, border points
and noise points [186].

significantly change the results produced by the algorithm. The minimum number
of neighbors m should be at least one greater than the number of dimensions of
the dataset and is usually set as twice the number of dimensions, even though it
can strongly depend on the domain application. ϵ, instead, can be chosen looking
at the k-distance graph, generated by plotting the average distance between each
point and its k = m − 1 closest neighbors in ascending order [187]. As shown in
Figure 2.24, the point of maximum curvature (knee) corresponds to a sharp change
in the gradient of the k-distance curve and can be considered as the optimal value
of ϵ. If the chosen value is too small, a higher number of clusters is created, and too
many points are classified as noise. If instead, ϵ becomes too large, smaller clusters
are merged into bigger ones until, eventually, all points belong to the same cluster,
thus losing detail about previous groupings and outliers. The value of ϵ associated
with the point of maximum curvature of the k-distance point represents the optimal
tradeoff between the number of clusters, their density, and outliers.

Unlike most partitional algorithms as K-means [189], DBSCAN is not bound to
a fixed number of centroids but computes the number of clusters based on the shape
of data which can be arbitrary. For this reason, the algorithm is very flexible and
can also be used to detect outliers by considering noise point that are not included
in any cluster at the end of the algorithm as shown in Figure 2.25.

Time Series Clustering Conventional clustering algorithms are unable to capture
temporal dynamics and sequential relationships among data [190]. For these reasons,
tremendous research efforts have been devoted to identifying time series-specific algo-
rithms. The most common approaches involve modifying the conventional clustering
algorithms to adapt them to deal with raw time series or to convert time series into
static data (feature vectors or model parameters) so that conventional clustering
algorithms can be directly applied. The former class of approaches includes direct
methods, also called raw data-based [191, 192, 193, 194], while the latter refers to
indirect methods that can be distinguished between model-based [195, 196, 197] and
feature-based [198, 199, 200].
In addition, according to the way clustering is performed, the algorithms can be

2.2 Machine Learning Algorithms 51

Figure 2.24. Example of k-distance plot used to identify the optimal value of ϵ [188].

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

Clusters
−1
0
1
2

Clusters
−1
0
1
2

Figure 2.25. Example of the DBSCAN algorithm with a 2D dataset. Points in purple are
outliers or noise points, while the other points belong to different clusters.

grouped into whole time-series clustering and subsequence clustering, a valid al-
ternative to reduce the computational costs by working separately on time series
segments. Detailed reviews of clustering algorithms for time series can be found in
[201, 202, 203].

52 2. Methodology

2.2.2.2 Dimensionality Reduction

Dimensionality reduction is a popular sub-field of unsupervised learning that has the
goal to transform data from a high-dimensional space into a low-dimensional space
retaining properties of the original data. It is often the case that data collected from
control monitoring systems in engineered processes and machines have redundant
measurements related to physical quantities when sensors are mounted at different
points of the system and monitor the same parameters. For this reason, large data
streams collected from sensor networks usually contain an overabundant number of
features, some of which can be redundant or even useless. Moreover, high-dimensional
data becomes difficult to analyze and visualize since the sample density decreases
exponentially with the increase of the dimensionality. It is also important to mention
that high-dimensional datasets imply more computational power requirements when
training ML algorithms and can impact the learner’s performance, especially when
dealing with redundancies or noisy data.
All these phenomena are referred to as curse of dimensionality [204] and can be
tackled following two possible approaches: feature selection and feature extraction
[205].

2.2.2.3 Feature Selection

Feature selection is the process of selecting a subset of relevant features for the
problem. In general, there are three groups of feature selection methods: filters,
wrappers and embedded methods [206]. While filters do not rely on ML but on fea-
tures’ correlation thresholds, wrappers use ML techniques and the selection process
is based on the (out-of-sample) performance of a learning algorithm.
The most commonly used techniques under wrapper methods are the Sequential
Selection algorithms, e.g., Sequential Forward Selection (SFS) and Sequential Back-
ward Selection (SBS) [207, 208]. The SFS begins the search with an empty set of
features, adding one feature at a time while trying to find the best set of combined
selected parameters according to the evaluation criteria. The SBS, instead, refers to
a search that begins with the full set of features, including all independent variables,
and then removes the unimportant features until achieving the final set of selected
significant parameters. Even though this latter approach may capture interacting
features more easily, it is not fast nor computationally cost-effective [209]. Finally,
embedded methods are a combination of filters and wrappers, where filters are
integrated into the learner construction process [208]. This class includes the large
family of DT methods. To mention but a few, XGBoost, or RF [183, 172].
Feature selection approaches can be further categorized into supervised and unsuper-
vised. The former performs feature selection by data class labels, while the latter
relies on the intrinsic properties of the data. Recently, unsupervised feature selection
methods are attracting an ever-growing interest due to the widespread occurrence of
unlabeled datasets in many applications [210, 211].

2.2.2.4 Feature Extraction

Feature extraction methods reduce the dimensionality of data by combining input
features into derived values while preserving most of the original information content.

2.2 Machine Learning Algorithms 53

Principal Component Analysis Principal Component Analysis (PCA) is a
popular feature extraction method for dimensionality reduction that produces a
reduced number of latent variables by linearly combining the input features of the
data [212].
In particular, PCA computes a new set of orthonormal (and hence linearly inde-
pendent) dimensions, ordered in descending order according to the variance of data
when projected on them. Therefore, the goal of the algorithm is to find a projection
matrix W such that the projected data has the maximum possible variance in the
lower dimensional space. Given a dataset

X = (x1, . . . , xi, . . . , xn)T , (2.28)

where xi ∈ Rd is the i-th multivariate sample, its projection on W can be written as

Z = XW. (2.29)

In order to compute W such that the variance of Z is maximized, PCA computes
the eigenvectors and eigenvalues of the covariance matrix of X which is defined as

C = 1
n

n∑
i=1

(xi − x̄)(xi − x̄)T , (2.30)

where x̄ is the mean vector of X, or as

C = 1
n

XXT , (2.31)

when the data is centered in zero (x̄ = 0). This can be achieved using the eigende-
composition method and, after sorting the eigenvectors in decreasing order according
to the magnitude of their corresponding eigenvalues, the first k eigenvectors (or prin-
cipal components) are selected as the k < d directions of the new feature space. The
eigenvalues, instead, determine the importance of each new dimension by explaining
the variance of the data after projection. Another popular method for computing the
eigenvectors and eigenvalues of the data matrix is the Singular Value Decomposition
(SVD) algorithm [213].

2.2.2.5 Complex Network Analysis

Complex Network Analysis (CNA), even though not classified as unsupervised
learning, is discussed in this section since it is employed for unsupervised feature
selection and extraction.
CNA studies how to analyze, describe and visualize complex networks that display
substantial non-trivial topological features, with patterns of connection between
their elements. Many real systems have been modeled as complex networks, like
telecommunication networks, social networks, or public transport networks. Recently,
they have also been adopted for the study of time series, making them suitable
for the analysis of data streams collected from sensor networks [215]. The next
paragraphs will describe principles of graph theory to better understand CNA and
how it can be used for time series.

54 2. Methodology

Figure 2.26. 2D example of the PCA algorithm showing the first two principal components
maximizing variance [214].

Basic Principles A graph is a pair G = (V, E), where V and E are the set of
nodes and edges, respectively. Nodes represent elements composing the network,
while edges are the relationships between pairs of nodes which are typically expressed
as an N ×N adjacency matrix A, where N is the number of nodes. The element
aij of the matrix A is associated with the edge that connects nodes i and j, and
assumes real values when dealing with weighted graphs or binary values (0 or 1) when
considering unweighted graphs as shown in Figure 2.27. In the first case, weights
quantify the relationship between nodes on a continuous scale, while, in the second,
they simply indicate if the connection exists or not.

A

G

F

B

E

C

D

(a) Unweighted graph.

A

G

F

B

E

0.4

C

D

1.0
0.1

0.3

0.7

0.3

0.6

0.5

(b) Weighted graph.

Figure 2.27. Example of an unweighted and weighted graph.

Moreover, when the graph is unidirected, the condition aij = aji holds, but not
necessarily when dealing with directed graphs, where connections are not symmetrical.
Figure 2.28 shows an example of undirected and directed graphs.

Networks can be composed of many nodes and edges, making the analysis and
the unveiling of hidden relationships very challenging. For this reason, global and

2.2 Machine Learning Algorithms 55

A

G

F

B

E

C

D

(a) Unidirected graph.

A

G

F

B

E

C

D

(b) Directed graph.

Figure 2.28. Example of an unidirected and directed graph.

local network measures are used, respectively, to extrapolate synthetic topological
information from the whole network and study the role nodes play in its structure.

Local Network Measures Local network measures are used to extract node-
specific properties of the graph. The first historically proposed one is the degree
centrality which allows detecting the most influential nodes within the network [216].
This measure is based on the simple concept that the centrality of a vertex in a
network is closely related to the total number of its connections. In particular, the
weighted degree centrality of a node i in a graph reads as

ki =
∑
j∈L

wij , (2.32)

where L is the number of nodes, wij is the weight of the edge connecting nodes i and
j, and k = (k1, k2, . . . , kL) is also called the degree sequence of the graph. When
dealing with a weighted graph, this local measure is called weighted degree centrality,
and an example is provided in Figure 2.29.

Another measure is the eigenvector centrality, which is used for determining
elements that are related to the most connected nodes [217]. The betweenness
centrality, instead, can highlight which nodes are more likely to be in the network
communication paths, and, finally, the closeness centrality measures how quickly
information can spread from a given node [218, 218].

Global Network Measures Global network measures are used to extract general
characteristics from networks that can be employed to classify a graph, analyze
its structure, or compare different networks [219]. These metrics are based on the
evaluation of the topology of the entire network and provide information about the
node arrangement and the edge connectivities from a global perspective.
Modularity is one of the most important global network measures and evaluates
the strength of the division of a network into groups (or communities) [220]. High
values of modularity correspond to dense connections between the nodes composing

56 2. Methodology

A

G

F

B

E

0.4

C

D

1.0
0.1

0.3

0.7

0.3

0.6

0.5

Figure 2.29. Example of weighted degree centrality as local network measure. Notably,
the size of the nodes is proportional to their centrality.

communities and sparse connections between nodes in different groups, and an
example is shown in Figure 2.30.

Figure 2.30. Example of network topology characterized by high modularity where three
different communities are connected by sparse edges [221].

Modularity can be expressed as

Q =
n∑

c=1
[Lm

m
− γ(kc

2m
)2], (2.33)

where n is the number of communities, m is the number of edges, Lc is the number
of intra-community links for community c, kc is the sum of degrees of the nodes in
community c, and γ is the resolution parameter [222]. This last regulates the tradeoff
between intra- and inter-group edges and is commonly set to 1. Modularity is often
used in optimization methods for detecting community structures in networks as
discussed in the next section.

2.2 Machine Learning Algorithms 57

Community Detection Community detection algorithms are used to identify
groups of nodes (communities) that are strongly connected by edges (relations),
sharing common properties or playing similar roles in the network. In particular,
nodes that are central in a community may be strongly influential on the control
and stability of the group, while boundary nodes are crucial in terms of mediation
and exchanges between different communities as shown in Figure 2.31 [223].

Figure 2.31. Example of community detection where six communities are identified [224].

Many community detection methods have been proposed to date and a possible
classification includes traditional, modularity-based, spectral, and statistical inference
algorithms.
Traditional methods include graph partitioning, which selects groups of predefined
size by minimizing the number of inter-group edges [225, 226]; distance-based
methods, where a distance function is minimized starting from local network measures
[227]; and hierarchical algorithms that produce multiple levels of groupings evaluating
a similarity measure between vertices [228].
Modularity-based methods, instead, try to maximize the modularity measure, which
evaluates the strength of division into communities [229, 230, 231, 232]. One of
the most popular algorithms is Louvain’s method which is based on a bottom-up
approach where groups of nodes are iteratively created and aggregated in larger
clusters. In particular, nodes are initially considered independent communities and
the best cluster partition is identified by moving single nodes to different communities
searching for local maxima of the modularity measure. Then, a new network is
constructed by modeling clusters as graph vertices and by computing edge weights
as the sum of the connection weights between adjacent nodes belonging to different
communities. These steps are iteratively repeated until convergence, corresponding
to a local maximum in modularity.
Another category of community detection methods are the spectral algorithms
[233], which detect communities by using the eigenvectors of matrices such as the
Laplacian matrix of the graph. Finally, statistical inference algorithms aim at
extracting properties of the graph based on hypotheses involving the connections

58 2. Methodology

between nodes [234, 235].

Visibility Graph The visibility graph algorithm is a method to transform time
series into complex network representations. This concept was originally proposed
in the field of computational geometry for the study of mutual visibility between
sets of points and obstacles, with applications such as robot motion planning [236].
The idea was extended to the analysis of univariate time series, making it possible
to map a time series into a network that inherits several properties of the time series
itself [237]. Moreover, visibility graphs are able to capture hidden relations, merging
complex network theory with nonlinear time series analysis [238].
In particular, the visibility graph algorithm maps a generic time series s = (s1, s2, . . . , sL)
into a graph by considering a node (or vertex) for every observation si for i = 1, . . . , L,
where L is the length of the time series. The edges of the graph, instead, can be
generated using two different algorithmic variants: the natural visibility graphs and
the horizontal visibility graphs.
The natural visibility graph algorithm generates an edge with a unitary weight
between two nodes if their corresponding observations in the series are connected by
a straight line that is not obstructed by any intermediate observation [237]. Formally,
two nodes a and b have visibility if their corresponding observations sa = (ta, va)
and sb = (tb, vb) satisfy the condition

vc < vb + (va − vb)
tb − tc

tb − ta
(2.34)

for any intermediate observation sc = (tc, vc) such that a < c < b. ta and tb represent
the timestamps of the two samples, while va and vb are the actual observed values. A
computationally more efficient algorithmic variant is the horizontal visibility graph,
based on a simplified version of Equation (2.34) [239, 240].
Visibility graphs can be enhanced by considering its weighted version [241], where
the weight between any pair of nodes sa = (ta, va) and sb = (tb, vb) reads as

wab =
√

(tb − ta)2 + (vb − va)2. (2.35)

A schematic illustration of the weighted visibility graph construction is shown in
Figure 2.32, while its graph representation is presented in Figure 2.33.

Visualization Exploratory tools for visualization are essential to study the com-
position of a network, by revealing structural relationships that may otherwise be
missed. As described by Sakkalis, there is a large variety of specialized exploratory
network layouts (e.g., force-directed, hierarchical, circular, etc.) based on different
criteria [243]. Among them, force-directed layouts are extensively applied to identify
communities with denser relationships and capture the modularity of the network.
An example of force-directed layout is the Frushterman–Reingold algorithm, shown
in Figure 2.34, which considers nodes as mass particles and edges as springs between
the particles [244]. The algorithm minimizes the energy of this physical system to
find the optimal configuration. This process is only influenced by the connections
between nodes, thus, in the final configuration, the position of a node cannot be
interpreted on its own but has to be considered related to the others.

2.2 Machine Learning Algorithms 59

Figure 2.32. A schematic illustration of the algorithm for the construction of the weighted
natural visibility graph. Notably, the time series is represented as a bar chart and si is
the i-th observation [242].

Figure 2.33. The results of the visibility graph algorithm in terms of graph representation
[242].

2.2.3 Deep Learning

Deep Learning (DL) is a subset of ML that uses biologically-inspired Artificial Neural
Network (ANNs) to extract meaningful patterns from data. Classical ML algorithms
leverage structured data to make predictions and usually require some pre-processing
steps before they can be trained. DL algorithms, instead, can ingest and process
unstructured data, like text and images, thus automating feature extraction and
reducing the dependency on human experts.

60 2. Methodology

Figure 2.34. An example of force-directed layout based on the Frushterman–Reingold
algorithm [245].

2.2.3.1 Artificial Neural Networks

An ANN is a biologically-inspired model based on a collection of connected basic
units called neurons or perceptrons [96, 246]. A perceptron is nothing more than a
simple linear classifier that takes in input a real-valued vector x = (x1, x2, . . . , xn)T ,
computes a weighted sum of the inputs and produces a real-valued output after
applying an activation function.
The output of a neuron can be formalized as

o = σ(
n∑

i=1
wixi + b) = σ(w · x + b), (2.36)

where w = (w1, w2, . . . , wn) is a vector of real-valued weights, and b is an additional
bias independent from the inputs used to shift the output. σ is the activation
function and resembles the firing system of biological neurons. Several activation
functions can be chosen based on the requirements, for example, the step function,
the sigmoid, the hyperbolic tangent, the ReLU and many others. All these activation
functions will be discussed in detail in Section 2.2.3.2. The perception is shown
graphically in Figure 2.35.

Neurons are grouped into layers. Layers that receive input data are called input
layers, the ones that produce the prediction of the network are called output layers
and all the layers between the input and the output layers are called hidden layers.
Every layer has the role of producing a new representation for the inputs it received.
In general, layers that have dense connections between all the neurons are also called
Fully-Connected (FC) or dense layers. ANNs with exactly one hidden layer are
called shallow Neural Networks (NNs), while networks having more than one hidden
layer are called Deep Neural Network (DNN).
A DNN (shown in Figure 2.36) is a ML model that uses a hierarchical composition

2.2 Machine Learning Algorithms 61

Figure 2.35. Graphical representation of the perceptron.

of n parametric functions to model an input x. Each function fi (i = 1, . . . , k) is
modeled using a layer of neurons, which are elementary units applying an activation
function to the previous layer’s weighted representation of the input to generate a
new representation. Each layer is parameterized by a weight vector wi representing
the weights applied to the outputs of the previous layer fi−1. In general, the output
of a DNN can be written as

o = fn(wk, fn−1(wn−1, . . . , f2(w2, f1(w1, x)))). (2.37)

Figure 2.36. Example of DNN with three hidden layers [247].

A NN where the information only flows from the input in the direction of
the output is called feedforward network. In general, these networks perform a
feedforward step to obtain a prediction for some input vector x.
The training phase of a NN learns values for its parameters W = (w1, . . . , wk). This
is done by adjusting the weight parameters to reduce a cost function quantifying
the error between the prediction of the network (obtained through the feedforward
step) and the correct output associated with the input vector x. The adjustment is

62 2. Methodology

typically performed using techniques derived from the backpropagation algorithm
(described in Section 2.2.3.5) which successively propagate error gradients with
respect to network parameters from the network’s output layer to its input layer
[248]. The amount of weights adjustment performed at every training step is defined
by the learning rate hyperparameter.
During the evaluation phase the set of parameters W is fixed to make predictions of
inputs unseen during training and only the feedforward step is performed.

2.2.3.2 Activation Functions

Since activation functions have been mentioned multiple times in the previous section,
they will be discussed here. As previously said, activation functions resemble the
firing system of biological neurons and are responsible for the flow of information.
They decide which information flows to the next layer and how much of it. Given
an input space, they can map it into a completely different (usually smaller) output
space.
These functions, when non-linear, are very important because they allow a network
to model an arbitrarily complex function. In general, NNs are considered Universal
Function Approximators since they can approximate any function, even if extremely
non-linear, given enough layers and parameters [98]. If instead only linear activation
functions are chosen, this property does not hold since the NN would just be a
composition of n linear functions and so a linear function itself, unable to capture
non-linearities.
Moreover, these function have to be differentiable, so that the backpropagation
algorithm can be applied through the computation of gradients.
Some of the most common activation functions will be discussed next.

Step Function

The step function (shown in Figure 2.37) is a threshold-like function defined as

f(x) =
{

1, if x ≥ 0
0, otherwise

(2.38)

When the input is greater or equal to zero, the neuron fires and outputs the unitary
value, otherwise no information passes. This function is avoided in practice since it
is not differentiable and is limited to output only two values, namely 0 or 1.

Linear function

The linear function (Figure 2.38) outputs a weighted combination of the inputs,
based on the slope c, defined as

f(x) = c · x. (2.39)

It is more expressive than the step function because it can output continuous values.
Nevertheless, its derivative is a constant that coincides with the slope c and does
not depend on the input. For this reason, this function is not suitable to adjust the
weights of the network through the backpropagation algorithm. In fact, when all the
activation functions are linear, the NN becomes a linear function itself.

2.2 Machine Learning Algorithms 63

−6 −4 −2 0 2 4 6
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

Figure 2.37. Step function.

−6 −4 −2 0 2 4 6
x

−6

−4

−2

0

2

4

6

y

Figure 2.38. Linear function.

Sigmoid

The sigmoid function is defined as

σ(x) = 1
1 + e−x

(2.40)

and outputs a real value between 0 and 1. Differently from the previous functions,
this function is non-linear, as evident from Figure 2.39. The sigmoid function allows
a NN to model non-linear mappings between inputs and outputs, and is suitable for
the backpropagation algorithm since always continuously differentiable.
On the other hand, the sigmoid function has small variations in the output inde-
pendently from the input around its saturation values, i.e. 0 and 1. This is because
the value of the exponent −x becomes infinitesimally small around those values,
making this function a slow learner when the gradients are small. This problem is
also known as the vanishing gradient problem.

64 2. Methodology

The sigmoid function is commonly used when the output is required to be between
0 and 1, making it very suitable to capture a probability distribution, for example
in a binary classification model.

−6 −4 −2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0
y

Figure 2.39. Sigmoid function.

Softmax

The softmax function is the generalization of the sigmoid and is defined as

f(x, i) = exi∑N
j=1 exj

. (2.41)

This function can model a probability distribution over N different classes (or more
in general outcomes), making the sum of the probabilities of all classes sum up
to 1. It provides a probability distribution between 0 and 1 for every class and
is commonly used in multi-classification models. In particular, the formula 2.41
expresses the probability relative to the i-th class.

Hyperbolic Tangent

The hyperbolic tangent is a variant of the sigmoid function defined as

tanh(x) = 2
1 + e−2x

− 1 = 2 · σ(2x)− 1 (2.42)

where the output values are limited between -1 and 1 as shown in Figure 2.40. This
function is non-linear and continuously differentiable. Even though the gradient
is stronger for the hyperbolic tangent than the sigmoid, it still suffers from the
vanishing gradient problem. Since the two functions are very similar, the choice
between the sigmoid and the hyperbolic tangent highly depends on the application
requirements.

2.2 Machine Learning Algorithms 65

−6 −4 −2 0 2 4 6
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

Figure 2.40. Hyperbolic tangent function.

Rectified Linear Unit

The Rectified Linear Unit (ReLU) is defined as

ReLU(x) = max(0, x) (2.43)

and is shown in Figure 2.41. For negative inputs, it outputs 0, while for positive
inputs it becomes the identity function. ReLU is non-linear even though it has
a linear component for positive inputs and can be used to learn and model non-
linearities. Moreover, since half of the input space maps to zero, this function allows
fewer neurons to fire, making the network computationally lighter.
When inputs approach zero or are negative, the gradients become zero, preventing
the network to learn through the backpropagation algorithm. When this happens,
the involved neurons will stop responding to input variations, causing them to "die"
and making part of the network passive and unresponsive. This problem is also
known as the dying ReLU problem.

Leaky ReLU

To overcome the dying ReLU problem, other activation functions were proposed like
the Leaky ReLU (shown in Figure 2.42) which is defined as

f(x) =
{

x, if x ≥ 0
αx, if x < 0

(2.44)

For non-negative input values, it becomes the identity function (same as ReLU),
while, in the negative region, it outputs a scaled version of the negative inputs based
on the slope α (usually in the order of 0.01) of the function. In this way, the weights
of the network can be adjusted even when the inputs approach zero or are negative,
preventing neurons from dying.

66 2. Methodology

−6 −4 −2 0 2 4 6
x

0

1

2

3

4

5

6

y

Figure 2.41. ReLU function.

−6 −4 −2 0 2 4 6
x

0

1

2

3

4

5

6

y

Figure 2.42. Leaky ReLU function.

Exponential Linear Unit

The Exponential Linear Unit (ELU), shown in Figure 2.43), is defined as

ELU(x) =
{

x, if x ≥ 0
α(ex − 1), if x < 0

(2.45)

This function lies in between the ReLU function and the Leaky ReLU function.
It has a positive linear component and for negative inputs, it produces negative
outputs. Differently from the Leaky ReLU, ELU, after a slow smoothing produced
by its exponential component, will converge to −α and the gradients will become
zero like ReLU.

2.2 Machine Learning Algorithms 67

−6 −4 −2 0 2 4 6
x

−1

0

1

2

3

4

5

6

y

Figure 2.43. ELU function.

2.2.3.3 Loss Functions

To train a NN it is fundamental to define a proper loss function quantifying the
difference between the ground truth and the predictions produced by the model. Also
referred to as cost function or error function, it provides insight into the performance
of the network, where higher values reflect poor predictions and lower values better
ones. The cost function reduces the performance of the whole model down to a
single number, a scalar value, which allows candidate solutions to be ranked and
compared. Importantly, the choice of the loss function is directly related to the
activation function used in the output layer of the NN. Therefore, it becomes crucial
that the activation function can map the extracted features to a space where the
loss function can properly quantify the network’s prediction error.
The objective during the training process is to minimize the chosen loss function
by computing its gradients with respect to the network weights which are adjusted
accordingly. How weights are updated at each iteration is discussed in Section 2.2.3.4.
Many different loss functions can be chosen depending on the application domain
and the task.

Mean Squared Error

The Mean Squared Error (MSE), also known as L2 loss, is used in regression tasks
where the targets and the model’s predictions are real-valued. The MSE is computed
as the average of the squared differences between the predicted values ŷi and target
values yi and is formulated as

MSE = 1
n

n∑
i=1

(yi − ŷi)2. (2.46)

The result is always non-negative independent from the sign of the predicted and
actual values. Since the errors are squared, large deviations from the ground truth
generate large errors, thus punishing the model for making large mistakes.

68 2. Methodology

It is important to choose a proper activation function for the output layer of the
network to map the predictions to the same space as the target values. If, for example,
the target values range between -1 and 1, the Sigmoid function (see Equation 2.40)
would be unsuitable since mapping the predicted values between 0 and 1. When
target values are negative, the MSE would be greater or equal to the squared of
the target values since the predictions can assume 0 as the smallest value. In this
case, the hyperbolic tangent (see Equation 2.2.3.2) would be more suitable since
mapping the outputs between −1 and 1, which coincides with the range of target
values. These considerations are valid for all losses used in regression tasks.

Mean Absolute Error

The Mean Absolute Error (MAE), also known as L1 loss, is a loss function for
regression problems. The MAE is defined as the average of the absolute difference
between the actual and predicted values and is computed as

MAE = 1
n

n∑
i=1

(yi − ŷi). (2.47)

Differently from MSE, the MAE does not square the errors and, therefore, is more
robust to outliers. On the other hand, the magnitude of the gradients is not
dependent on the error size, but only on its sign, leading to large gradients even
when the error is small, which can potentially lead to convergence problems for the
network.

Huber Loss

The Huber loss is also typically used in regression problems. This function is less
sensitive to outliers than the MSE as it squares the errors only inside a predefined
interval. The error of a prediction ŷi with respect to the ground truth yi can be
written as

Lδ =
{

1
2(yi − ŷi)2, if |yi − ŷi| < δ
δ((yi − ŷi)− 1

2δ), otherwise (2.48)

For loss values less than δ, the MSE is computed. For errors greater than δ, instead,
the MAE is considered. In this way, the Huber loss function combines the advantages
of both MAE and MSE, where the hyperparameter δ regulates the range of values
for which the MAE and the MSE are computed. Figure 2.44 presents the MSE,
MAE and Huber loss plotted together.

Binary Cross Entropy

The Binary Cross-Entropy (BCE) is a loss function used for binary classification
problems where the target values can assume only two categorical values (0 or 1).
The BCE calculates a score that summarizes the average difference between the
actual and predicted probability distributions for predicting class 1 and can be
expressed as

BCE = − 1
n

n∑
i=1

yi · log ŷi + (1− yi) log(1− ŷi). (2.49)

2.2 Machine Learning Algorithms 69

Figure 2.44. MSE, MAE and Huber losses [249].

Sigmoid is the only activation function compatible with the BCE loss function since
this last needs to compute the logarithms of ŷi and (1− ŷi), which are only defined
when ŷi is between 0 and 1. For this reason, the output layer of the network should
have the sigmoid function (see Equation 2.40) when using the BCE loss function.

Categorical Cross Entropy

The Categorical Cross-Entropy (CCS) can be seen as a generalization of the BCE
when the target classes are more than two. In fact, this loss function is used in multi-
class classification tasks where a sample belongs to one of many possible categories.
The CCS calculates a score that summarizes the average difference between the
actual and predicted probability distributions for all classes in the problem and can
be written as

CCS = −
n∑

i=1
yi · log ŷi. (2.50)

The softmax function defined in Equation 2.2.3.2 is the most suitable activation
function to use with the CCS since the output of the network needs to be positive so
that the logarithm of every output value ŷi exists. Moreover, the softmax activation
function also provides a proper probability distribution for all classes.

Kullback Leibler Divergence

The Kullback Leibler Divergence (KL-Divergence) measures the similarity between
two probability distributions [250]. This loss function calculates how much informa-
tion is lost if the predicted probability distribution is used to approximate the target
distribution. A zero KL-Divergence loss suggests the distributions are identical.
The KL-Divergence between two distributions Q and P of a discrete random variable
X can be written as

KL(P ||Q) =
∑
x∈X

P (x) log P (x)
Q(x) , (2.51)

70 2. Methodology

For distributions Q and P of a continuous random variable, instead, the KL-
Divergence is expressed as

KL(P ||Q) =
∫ +∞

−∞
p(x) log p(x)

q(x)dx, (2.52)

where q and p are the probability density functions of Q and P , respectively.

2.2.3.4 Optimizers

Optimizers are widely used in the field of DL to minimize the loss functions defined in
Section 2.2.3.3 and adjust the network weights based on the model prediction errors.
The process of parameter optimization is usually associated with the image of a hiker
trying to get down a mountain with a blindfold on, where the mountain represents
the chosen loss function. The hiker is unable to see the destination downhill (global
minima) but can tell if going down (making progress) or going up (losing progress).
Eventually, if the hiker keeps taking small steps that lead downwards, it will reach
its destination or a plateau (local minima).

Gradient Descent

Gradient Descent (GD) is one of the first algorithms employed for NN optimization
and is very popular. GD is a first-order optimization algorithm that considers the
first-order derivative of the loss function to compute the weight adjustment necessary
to reach a minimum of the error function. The value of a weight wt,i in the network
is updated at every iteration t as

wt+1,i = wt,i − α
∂L

∂wt,i
, (2.53)

where ∂L
∂wt,i

is the partial derivative of the chosen loss function L with respect to the
weight wt,i. The weights of the whole network are optimized as

wt+1 = wt − α∇wtL, (2.54)

where ∇wtL is the gradient of L and denotes the direction of the maximum rate
of change of the loss function. The hyperparameter α is the learning rate which
represents the step size during the optimization process. Without the learning rate
as a scaling factor for the gradients, the optimizer could take steps that are too large
and skip over the optimal value for a given weight. For this reason, the learning
rate has to be sufficiently small to allow convergence, but also sufficiently large to
converge to the optimum as fast as possible. This parameter is usually set in the
order of 0.001. Figure 2.45 shows how different learning rates can lead or not to
convergence.

The GD algorithm computes the gradients on the whole dataset and, therefore,
is extremely demanding both in terms of time and memory when the dataset is too
large.

2.2 Machine Learning Algorithms 71

Figure 2.45. Comparison between different learning rates [251].

Stocastic Gradient Descent

Stochastic Gradient Descent (SGD), instead of considering the whole dataset, ran-
domly selects a subset of the training samples at each iteration [252]. Frequent
adjustments computed for random subsets of the dataset can lead to high variance
in the network’s weights and cause high loss fluctuations when using SGD.

Mini-Batch Stocastic Gradient Descent

Mini-Batch Stochastic Gradient Descent (Mini-Batch SGD) splits the dataset into
multiple batches and updates the network weights after every batch. This creates
a balance between the robustness of GD and the efficiency of SGD, reducing the
variance of the parameters and stabilizing convergence. Since the algorithm uses
batching, the entire dataset is not required to be loaded in the memory, thus making
the process more efficient to implement.

Stocastic Gradient Descent with Momentum

SGD with momentum accelerates the convergence towards the relevant direction,
thus reducing loss fluctuations and the number of iterations required to reach the
optimal minimum. To do so, it adds a momentum term to regular SGD, simulating
the inertia of an object in movement. In this way, the direction of the previous
update is retained to a certain extent during the update, while the current gradient
is used to correct the final direction. The network weights are updated as

wt+1 = wt − vt, (2.55)

where the velocity vector v is computed as

vt = βvt−1 + α∇wtL (2.56)

β is an extra hyperparameter regulating the amount of momentum considered in
the optimization process and can be interpreted as friction to control the velocity.

72 2. Methodology

Adaptive Gradient Descent

All the optimizers discussed previously are limited by the fact that a single constant
learning rate is used to update all parameters during the entire optimization process.
Adaptive Gradient Descend (AdaGrad), instead, adapts the learning rate with larger
updates for those parameters that are related to infrequent features and smaller
updates for frequent ones [253]. AdaGrad updates the network weights as

wt+1 = wt −αt∇wtL, (2.57)

where the adaptive learning rate vector is computed as

αt = α√
ϵ +

∑t
j=1(∇wj L)2

, (2.58)

α is the initial learning rate hyperparameter and ϵ is a simple smoothing term that
avoids division by zero.
With AdaGrad the learning rate decreases aggressively and monotonically because
the squared gradients in the denominator keep accumulating at each iteration. In
this way, due to small learning rates, the model eventually becomes unable to learn
and the accuracy of the model is compromised.

Root Mean Square Propagation

Root Mean Square Propagation (RMSProp) is a special case of AdaGrad since the
learning rate is an exponential average of the gradients instead of the cumulative sum
of squared gradients. RMSProp combines the concept of momentum with AdaGrad
and updates the parameters as

wt+1 = wt −αt∇wL, (2.59)

where the adaptive learning rate vector is computed as

αt = α√
ϵ + vt

(2.60)

and the vector vt as
vt = ρvt−1 + (1− ρ)(∇wtL)2. (2.61)

ρ is the hyperparameter regulating the exponential smoothing and is usually set in
the order of 0.9.

Adaptive Moment Optimization

Adaptive Moment Optimization (Adam) is an extension of SGD that updates the
learning rate for each weight individually as done by AdaGrad or RMSProp [254].
In addition, instead of adapting learning rates based on the first moment of the
gradients, it also uses the second moment, meaning that it computes not only the
exponential average of the gradient but also the exponential average of the square
gradients. Adam updates the weights as

wt+1 = wt − α
m̂t√
ϵ + v̂t

, (2.62)

2.2 Machine Learning Algorithms 73

with
m̂t = mt

1− βt
1

(2.63)

v̂t = vt

1− βt
2

(2.64)

and
mt = β1mt−1 + (1− β1)∇wtL (2.65)

vt = β2vt−1 + (1− β2)(∇wtL)2 (2.66)

Since the exponential average of gradients mt and the exponential average of square
gradients vt are both initialized as 0 at the first iteration, they will be biased towards
0 as both β1 and β2 are usually chosen close to 1. That is why the Adam algorithm
uses m̂t and v̂t in the update formula, namely a bias-corrected version of mt and vt.
The hyperparameters β1 and β2 which regulate the decay rate of the average of the
gradients are usually set to 0.9 and 0.999, respectively.
Adam is extensively used in countless applications and is adopted as a benchmark
for DL papers and recommended as a default optimization algorithm. Moreover,
the method is straightforward to implement, has a fast running time, low memory
requirements, and requires less tuning than most of the other optimization algorithms.

2.2.3.5 Backpropagation Algorithm

This section discusses the backpropagation algorithm, the most popular method
used to compute the gradients during the optimization process of a NN [255]. The
algorithm follows the use of the chain rule and product rule in differential calculus.
These rules depend on the differentiation of the activation functions, therefore
discontinuous and non-differentiable ones like the step function discussed in Section
2.2.3.2 are avoided.
The derivation of the backpropagation algorithm begins by applying the chain rule
to the partial derivatives of the error function L. Given the weight wl

ij for node j
in layer l for the incoming node i, the partial derivative of the loss function L with
respect to the weight can be written as

∂L

∂wl
ij

= ∂L

∂zl
j

∂zl
j

∂wl
ij

, (2.67)

where zl
j is the weighted sum of node j in layer l before it is passed to the activation

function and is expressed as

zl
j =

ml−1∑
k=1

wl
kjal−1

k + bl
j , (2.68)

being ml−1 the number of neurons in layer l − 1 and bl
j the bias. The activation al

j

of neuron j in layer l is defined as

al
j = σ(zl

j), (2.69)

where σ is a generic activation function. An example of a 3-layer network is provided
in Figure 2.46.

74 2. Methodology

Figure 2.46. Example of a NN with two hidden layers.

Equation 2.67 says that the change in the loss function due to the weight wl
ij is

equal to the product of the change in the loss function due to the weighted sum zl
j

times the change in the weighted sum zl
j due to the weight wl

ij .
The first term is referred to as error term and can be written as

δl
j = ∂L

∂zl
j

, (2.70)

while the second term as

∂zl
j

∂wl
ij

= ∂

∂wl
ij

(
ml−1∑
k=1

wl
kjal−1

k + bl
j) = al−1

i . (2.71)

In this way, Equation 2.67 can be rewritten as

∂L

∂wl
ij

= δl
jal−1

i (2.72)

so that the partial derivative of wl
ij is the product of the error term δl

j at node j in
layer l, and the activation al−1

i of node i in layer l − 1.
The error term δl

j at layer l depends on the errors δl+1
k at the next layer l + 1 as

follows

δl
j =

ml+1∑
k=1

wl+1
jk δl+1

k σ′(zl
j), (2.73)

where σ′ is the derivative of the activation function used in the network layers. Due
to this recursive formulation, the errors flow backwa1rd, from the last layer to the
first layer.

2.2 Machine Learning Algorithms 75

2.2.3.6 Vanishing and Exploding Gradients

As the backpropagation algorithm propagates the errors from the output layer toward
the input layer, the gradient can become smaller and approach zero, thus leaving
the weights of the first layers nearly unchanged. This phenomenon is referred to as
vanishing gradients and can lead the optimization algorithm to never converge to
the optimum [256].
On the contrary, when the gradients get larger as the backpropagation algorithm
progresses, large weight updates can occur and cause the optimization algorithm
to diverge. This is known as the exploding gradients problem [257]. One way to
tackle this problem is the gradient clipping technique, where gradients larger than a
specific threshold are clipped and set to another value.

2.2.3.7 Initalizations

When designing a NN, the weight initialization is usually considered a minor concern,
even though it has serious effects on the learning phase. Tuning hyperparameters
like the number of layers, neurons and activation functions is fundamental when
defining a NN, together with the choice of the loss function and the optimizer.
Nevertheless, the initialization of the network’s weights can determine whether
the algorithm converges at all, with some initial points being so unstable that the
algorithm encounters numerical difficulties and fails altogether [258]. The goal is
to prevent exploding or vanishing gradients during the training phase of the NN.
Current weight initialization techniques vary based on the activation function used
in the nodes that are being initialized.

Uniform Xavier The standard initialization of the weights belonging to nodes
that use the sigmoid or hyperbolic tangent activation functions is called Glorot or
Xavier [257]. This initialization computes the initial value of the weight w of a node
as

w ∼ U [− 1√
n

,
1√
n

], (2.74)

where U is the uniform probability distribution and n is the number of inputs to
the node.
To ensure that the variance of the outputs is roughly equal to the variance of the
inputs with the goal to avoid the vanishing or exploding gradients problems, the
initial value of the weight w of a node can be computed as

w ∼ U [−
√

6√
n + m

,

√
6√

n + m
], (2.75)

where U is the uniform probability distribution, n is the number of inputs to the
node (the number of nodes in the previous layer) and m is the number of outputs
from the layer (the number of nodes in the current layer).

Normalized Xavier The normalized Xavier initialization is a variant of the
Uniform Xavier initialization that computes the initial value of the weight w of a

76 2. Methodology

node as
w ∼ N (0,

2
n + m

), (2.76)

where the value is drawn from a Gaussian distribution with zero mean and
√

2
n+m

as standard deviation.

He The Xavier initialization was found to be problematic when used in combination
with the ReLU activation function, popular in the hidden layers of many NNs. For
this reason, a modified version of the Xavier initialization was developed specifically
for nodes and layers that use the ReLU activation function, called the He initialization
[259]. This initialization computes the initial value of the weight w of a node as

w ∼ N (0,
2
n

), (2.77)

where the value is drawn from a Gaussian distribution with zero mean and
√

2
n as

standard deviation, being n the number of inputs to the node.

2.2.3.8 Multi-Task Learning

Considering a single task during the training of a network can lead the model
to ignore relevant information. When the network is trained to perform different
tasks and shares representations and weights among tasks, the model might better
generalize on the original task. This approach is called Multi-Task Learning (MTL)
[260] [261]. In general, dealing with more than one loss function can be considered
as MTL.
This approach can be interpreted as a way of introducing an inductive bias which
induces a model to prefer some hypotheses over others. In the case of MTL, the
inductive bias is provided by the auxiliary tasks and leads the model to prefer
hypotheses that satisfy multiple tasks, generally leading to solutions that generalize
better. When the model is a DNN, MTL is usually performed with either hard or
soft parameter sharing between hidden layers.

Hard Parameter Sharing Hard parameter sharing works by sharing the hidden
layers between all tasks, while every task has a separate output layer on its own, as
shown in Figure 2.47. When learning multiple tasks simultaneously, the network
has to adjust its parameters to capture all tasks at the same time. For this reason,
hard parameter sharing can reduce the risk of overfitting.

Soft Parameter Sharing Soft parameter sharing consists in having separate
parameters for every task as shown in Figure 2.48. To force the parameters of
all separate tasks to be similar, the distance between the weights of the model is
regularized, for example through a L2 regularization (explained in Section 2.2.4.2).

2.2 Machine Learning Algorithms 77

Figure 2.47. MTL with hard parameter sharing [262].

Figure 2.48. MTL with soft parameter sharing [262].

2.2.3.9 Types of Neural Networks

This section discusses different families of networks and provides an overview of the
most popular types of NNs.

2.2.3.10 Feedforward Neural Networks

The Feedforward Neural Networks (FNN) was the first and simplest type of ANN
where the information only flows in one direction (forward), from the input nodes to
the output nodes passing through the hidden nodes. There are no cycles or loops in
the network’s connections.

Multi-layer Perceptron A Multi-Layer Perceptron (Multi-Layer Perceptron) is
a FNN which is composed of a series of fully connected layers of neurons. MLPs
are very flexible and can be used to learn a mapping from inputs to outputs for
multiple tasks, from classification to regression. The number of neurons in each
layer, the number of layers and the activation functions used in the network are
hyperparameters that have to be tuned. An example of a MLP having one hidden
layer with five neurons is provided in Figure 2.49.

2.2.3.11 Recurrent Neural Networks

FNNs are not designed to take into account the temporal correlation between inputs.
This family of networks can not take into account the order in which the inputs are

78 2. Methodology

Figure 2.49. Example of MLP having one hidden layer with five neurons [263].

fed and, therefore, is unable to capture the correlation between successive inputs.
It is sufficient to think about a video composed of frames. A FNN would produce
an output for every single frame, but would not capture the correlation between
successive frames.
In order to overcome this problem, Recurrent Neural Network (RNN) were introduced
[102]. A RNN can model a sequence of t inputs and at every time step i of the
sequence it takes into account not only the i-th element of the input sequence but
also the state of the network from the previous time step. This allows the network
to capture the temporal correlation between inputs of the same sequence.
A RNN could be seen as a FNN having a self-loop, as shown in Figure 2.50, which
allows the network to feed itself its internal state across time steps. The internal state
can be considered the memory of the network used to capture temporal dependencies.

Figure 2.50. RNN with a self-loop [264].

It is possible to unroll the RNN self-loop, as shown in Figure 2.51, and consider
the network as a FNN which takes in input each element of the input sequence
together with the hidden internal state of the previous time step.

At every time step t we have that:

• xt is the t-th element of the input sequence, i.e. the input at time step t.

• ht−1 is the hidden state of the network at the previous time step t− 1.

2.2 Machine Learning Algorithms 79

Figure 2.51. Unrolled RNN [264].

• ht = σ(U · xt + W · ht−1) is the new hidden state at time step t, where σ is
an activation function.

• ot = σ(V · ht) is the output of the network at time step t, where σ is an
activation function.

• U, V, W are trainable weight matrices shared across all the time steps.

RNNs are trained using an extension of the backpropagation algorithm called back-
propagation through time [265]. The temporal component is reduced to ordered
series of calculations linking one time step to the following, allowing the backpropa-
gation algorithm to optimize the network’s weights. This is because a RNN, when
unrolled, is nothing more than nested composite functions. Introducing the temporal
component only extends the series of functions for which derivatives are calculated
through the chain rule.

Bidirectional Recurrent Neural Networks A Bidirectional Recurrent Neural
Network (BRNN) is obtained by combining two separate RNNs as shown in Figure
2.52 [107].

Figure 2.52. Structure of a BRNN.

The original input sequence is fed to one of the RNNs, and the sequence in
reverse time order is fed to the other one. The outputs of the two networks are

80 2. Methodology

usually concatenated, generating a single merged output at every time step. This
particular structure allows the network to have both information from the past and
the future of the sequence simultaneously at every time step. The RNN that receives
the original sequence as input and provides information about the past is called
the backward network, while the one receiving in input the sequence in reverse time
order providing information about the future is called the forward network.
With this structure, at every time step t we have that:

• xt is the t-th element of the input sequence, i.e. the input at time step t. xt
is fed to both the RNNs.

• ht−1 and h′
t−1 are, respectively, the hidden states of the backward and forward

networks at the previous time step t− 1.

• ht = σ(U · xt + W ·ht−1) and h′
t = σ′(U ′ · xt + W ′ ·h′

t−1) are the new hidden
states of the networks at time step t, where σ and σ′ are activation functions.

• ot = Concat(σ(V · ht), σ′(V ′ · h′
t)) is the output of the whole network at time

step t, obtained by concatenating the output of the two networks at time step
t.

• U, V, W are the trainable weight matrices shared across all the time steps of
the backward network, while U ′, V ′, W ′ are the weight matrices of the forward
network.

BRNNs are trained similarly to normal RNNs since the two networks are separated
and do not interact with each other. However, during backpropagation, some
attention is required since updating input and output layers can not be done at once.

Long-Short Term Memory As discussed in Section 2.2.3.2, activation functions
can map large input spaces into small input spaces, e.g. between 0 and 1. Therefore,
a large change in the input of the activation function may cause a small change in
the output, leading to small derivatives. Considering a DNN with multiple hidden
layers all having a final activation function, small derivatives are multiplied together
at every step of the backpropagation algorithm. This leads the gradient to decrease
exponentially the more it propagates back to the input layers. This phenomenon
is also known as the vanishing gradient problem (discussed in Section 2.2.3.6 and
affects both FNNs as well as RNNs when dealing with long sequences [102, 266].
In general, the gradient expresses how much the weights of the network need to
be adjusted with respect to the variation of the error. When the gradients are too
small to adjust the weights significantly, it becomes very difficult for the optimizer
to move in the direction where the error decreases, preventing the network to learn.
Another issue that affects these networks is the so-called exploding gradient problem
(also discussed in Section 2.2.3.6). When gradients are too large and cumulate across
layers, they produce large updates to the weights of the network and can lead to an
unstable model with poor performance. Proper training is possible when gradients
are small (but not too small) and controlled.
T face these problems, Long Short-Term Memory (LSTM) cells were proposed [104].
These particular cells replace the standard memory cell of a standard RNN (as shown

2.2 Machine Learning Algorithms 81

in Figure 2.53) and help to preserve and control the gradient when backpropagated
through time.

Figure 2.53. On the top the standard RNN. On the bottom, a RNN with an LSTM cell
[267].

LSTMs use a gating system which allows them to store, write or read from the
memory of the cell. Gates block or pass on information based on its magnitude and
importance, through a filtering system composed of their own sets of weights which
are adjusted during training. The internal structure of an LSTM cell is shown in
detail in Figure 2.54.

Figure 2.54. Internal structure of an LSTM cell [268].

At every time step, the cell decides how much information to keep or to discard
from the cell state in the previous time step ct−1. This operation is performed
through the forget gate

ft = σ(Wf · [ht−1, xt] + bf) (2.78)

82 2. Methodology

which outputs a number between 0 and 1 and determines the amount of information
to keep. σ is the sigmoid activation function, ht−1 the output of the cell in the
previous time step and [ht−1, xt] the concatenation of ht−1 and xt which is the
current element of the input sequence. The output of the forget gate is multiplied
by the previous cell state ct−1.
Then, the LSTM cell decides what and how much information to store in the current
cell state. This is achieved by the input gate

it = σ(Wi · [ht−1, xt] + bi) (2.79)

which also outputs a number between 0 and 1 that determines how much information
to add to the new cell state.
The candidate information that will be added to the new cell state is computed as

ĉt = tanh(Wc · [ht−1, xt] + bc) (2.80)

and the new cell state is computed as

ct = ft · ct−1 + it · ĉt (2.81)

The new candidate cell state vector ĉt is weighted by the input gate it and added to
what remains of the previous cell state ct−1 after passing through the forget gate ft.
Finally, the output ht of the cell is computed as a filtered version of the new cell
state ct. First, ct is passed through a tanh function to push the values between -1
and 1 and, then, it is multiplied by the output gate

ot = σ(Wo · [ht−1, xt] + bo) (2.82)

which determines how much of the filtered version of the cell state ct will contribute
to the output vector. All the weights Wf , bf , Wi, bi, Wo, bo are adjusted during the
training phase.

Gated Recurrent Unit The Gated Recurrent Unit (GRU) is a streamlined
version of the LSTM cell that often achieves comparable performance but with the
advantage of being faster to compute since having fewer parameters to train [269].
Differently from an LSTM cell, GRU lacks the output gate as shown in Figure 2.55.

At every time step, the cell decides how much information to keep or to discard
from the previous hidden state ht−1. This operation is performed through the reset
gate

rt = σ(Wr · xt + Ur · ht−1 + br) (2.83)

where σ is the sigmoid activation function. When off (rt close to 0), the reset
gate effectively makes the unit act as if it is reading the first element of the input
sequence, allowing it to forget the previously computed state. This effectively allows
the hidden state to drop any information that is found to be irrelevant later in the
future, thus, allowing a more compact representation.
Then, the cell decides how much of the previous state ht−1 will contribute to the
new state ht. This is achieved by the update gate

zt = σ(Wz · xt + Uz · ht−1 + bz) (2.84)

2.2 Machine Learning Algorithms 83

Figure 2.55. Internal structure of GRU [268].

The candidate information that will be added to the new hidden state is computed
as

ĥt = tanh(Wh · xt + Uh · (rt ⊙ ht−1) + bh), (2.85)

where ⊙ is an element-wise multiplication. Finally, the new hidden state is computed
as

ht = zt · ht−1 + (1− zt) · ĥt (2.86)

All the weights Wr, Ur, br, Wz, Uz, bz, Wh, Uh, bh are adjusted during the training
phase.

2.2.3.12 Attention Mechanism

Networks that deal with sequences often suffer from the incapability to remember
long sequences. It is common that after a certain number of time steps it forgets part
of the information relative to earlier elements in the sequence. Attention mechanisms
were introduced to address this issue [270, 271].

Self-attention Self-attention allows the network to look at past and future in-
formation, even if far away, to help the network to produce better encodings for
the elements in the input sequence [106]. To compute self-attention it is necessary
to create 3 matrices W Q, W K , W V which are trainable during the learning phase.
Then, a Query vector (qi), a Key vector (ki) and a Value vector (vi) are computed
for each of the input vectors xi as

qi = xi ·W Q, (2.87)

ki = xi ·W K , (2.88)

and
vi = xi ·W V . (2.89)

These three vectors are abstractions necessary for calculating and understanding the
concept of attention.
A score for every element xi against every element in the sequence is computed by

84 2. Methodology

performing the dot product between the Query vector qi of the i-th element and the
Key vectors of all the elements, one at the time. This score determines how much
focus to place on other elements in the input sentence to produce an encoding for
the current element. The score between the current element i and another element
j of the sequence is computed as

si,j = qi · kj, (2.90)

where i = 1, . . . , n and j = 1, . . . , n, being n the number of elements in the sequence.
Then, all the scores are divided by a constant

√
dk which is the square root of the

dimension of the Key vectors to provide more stable gradients as follows

ni,j =
qi · kj√

dk
. (2.91)

For every input xi, all the scores ni,j are passed through a softmax function which
normalizes the scores making them positive and sum up to 1 as

s′
i,k = eni,k∑n

j=1 eni,j
, (2.92)

where s′
i,k is the softmax score of the k-th element with respect to the current input

element xi. For every input, the softmax score determines how important each
element in the sentence is with respect to the current element. Of course, the most
important score will be s′

i,i, i.e. the importance of the input xi with respect to itself.
Afterward, normalized softmax scores are multiplied by the Value vectors of the
elements in the sequence as

v′
i,j = s′

i,j · vj (2.93)

In this way, v′
i,j represents the original Value vector of the j-th element of the

sequence scaled by its importance with respect to the current element of interest xi.
The importance is established by the previously computed softmax score.
Finally, all the scaled Value vectors are summed up together to compute the new
encoding for the input element xi as

zi =
n∑

j=1
v′

i,j. (2.94)

All these computations can be performed through matrix calculations as shown in
Figure 2.56. First, it is necessary to stack all the input vectors xi to obtain a single
matrix representation as

X = [x1x2 · · ·xn]T (2.95)

Then, compute the Query, Key and Value matrices as

Q = X ·W Q, (2.96)

K = X ·W K , (2.97)

and
V = X ·W V . (2.98)

2.2 Machine Learning Algorithms 85

Finally, the new encodings are computed as

Z = softmax(Q ·KT

√
dk

) · V (2.99)

where
Z = [z1z2 · · · zn]T . (2.100)

Figure 2.56. Matrix calculations to compute self-attention [272].

Multi-Head Attention Multi-Head Attention (MHA) is a module for attention
mechanisms which computes self-attention several times in parallel [106]. The main
idea is that there are multiple triples of Query, Key, and Value matrices, all randomly
initialized. Every triple is used to project the input vectors to different representation
subspaces which are combined to produce the final encodings.
Each triple (Qi, Ki, Vi) is used to calculate a separate self-attention referred to as
head. Considering h heads, the i-th head computes a different encoding of the input
sequence as

Zi = softmax(Qi ·KT
i√

dk
) · Vi. (2.101)

It is now necessary to condense the h encoding matrices by concatenation as

Zc = Concat(Z1, Z2, . . . , Zh). (2.102)

This new condensed matrix is multiplied by an additional weight matrix WO, which
linearly projects it to the final output space as

Z = Zc ·W0. (2.103)

Notably, the final projected matrix

Z = [z1z2 · · · zn]T (2.104)

contains the encodings for all the elements in the original input sequence.

86 2. Methodology

2.2.3.13 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a family of NNs that can process data
having a regular and structured grid-like topology, such as images [273]. In fact,
every image can be represented as a matrix of pixel values where channels refer to
the components of an image. Standard images have three channels, namely red,
green and blue (RGB), which can be imagined as three stacked 2D matrices, each
having pixel values ranging from 0 to 255.
As for neurons in biological vision systems which respond only to stimuli in the
restricted region of the visual field called the receptive field, also neurons in a CNN
process data only in its receptive field. A CNN is structured in such a way that
simpler patterns are detected in the shallow layers, like lines or curves, and more
complex patterns in deeper layers, like faces or objects. Typically, a CNN has three
kind of layers: convolutional, pooling, and FC.
Convolutional layers perform a dot product between the matrix of learnable parame-
ters referred to as kernel and the restricted portion of input image delimited by the
receptive field as shown in Figure 2.57.

Figure 2.57. Operation performed in a convolutional layer [274].

The kernel is spatially smaller than the original image but extends to all channels.
For example, if the image has three channels, the kernel height and width are spatially
limited to the size of the receptive field, but the depth extends up to all three channels.
During the forward pass, the kernel slides across the image from left to right until
the complete width is parsed. Then, it slides down and continues from right to left
and so on. This operation produces a new representation of the input that takes into
account the locality of spatial features. The output is a 2D representation of the
image known as an feature map that represents the response of the kernel at each
spatial subregion of the input image. The sliding size of the kernel is called stride.
To ensure that the output has the same width and height as the input image, it is
common to use what is known as padding which consists of the addition of extra
pixels on the borders of the input image (usually zero-values). The padding is
typically one less than the kernel size. For example, if the kernel has size 3× 3, a
2-pixel padding would be used, 1 pixel on each side of the image. Without padding,
the border pixels are lost from the output as they participate in only a single receptive
field instance. In Figure 2.57 the input image has size 8× 8 and the output 6× 6 if

2.2 Machine Learning Algorithms 87

no padding is added.
Being the kernel typically smaller than the input, instead of having a weight for
each input value as for dense layers, fewer parameters are stored and shared among
different receptive field instances, leading to sparse interaction in convolutional layers.
In this way, not only the memory requirement of the model is reduced but also the
statistical efficiency is improved. Due to parameter sharing, these layers have the
property of equivariance to translation, meaning that if the input is changed, the
output changes accordingly.
Pooling layers are responsible for reducing the spatial size of the feature maps. Not
only do they reduce the complexity of the model, but also contribute to extracting
dominant features which are rotational and positional invariant. The main types
of pooling layers are Max Pooling and Average Pooling. Max Pooling returns the
maximum value from the portion of the image covered by the kernel, while Average
Pooling computes the average.
FC layers serve the purpose to map the extracted representation of the convolutional
and pooling layers to the output space according to the task of interest. The final
feature maps are usually flattened into a column vector and then fed to one or
multiple FC layers to produce predictions. The general structure of a CNN is shown
in Figure 2.58.

Figure 2.58. Structure of a CNN [275].

The number of layers, the number and size of the kernels, the type of pooling
and the whole structure of the CNN can be chosen arbitrarily. Many different
architectures have been proposed in the last years and have proven to be very
successful among researchers and industrial applications. Some examples are ResNet,
EfficientNet, and MobileNet for classification, YOLOv5, RetinaNet, and Faster
R-CNN for object detection, SegNet and Mask R-CNN for semantic segmentation
[276, 277, 278, 279, 280, 281, 282, 283].

1D Convolution When the input data has no 2D grid-like topology but instead
is 1-dimensional like in time series, 1D CNNs can be used [284]. Each kernel has one
dimension less with respect to 2D CNNs and slides across the data from left to right.
The kernel is spatially smaller than the original input, extends to all channels, and
shares the weights across different receptive field instances as shown in Figure 2.59.

As for 2D CNNs, 1D CNNs have convolutional, pooling and FC layers.

88 2. Methodology

Figure 2.59. Operation performed in a 1D convolutional layer [285].

2.2.3.14 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of NNs designed to perform inference
on data described as graphs by leveraging their topological information [286]. In
general, a graph consists of a set of nodes and a set of edges. Each node can have a
fixed-length feature vector associated with it and the same goes for each edge in the
graph. The basic idea behind most GNN architectures is graph convolution as an
extension of the convolution operation performed in CNNs.
Even though images are usually considered as regular grids with channels, as
discussed in the previous section, they can also be seen as graphs having a regular
structure, where each pixel is a node and neighbors are determined by the kernel
size. In this way, a 2D convolution is performing a weighted average of neighbor
pixels of a node which are ordered and have a fixed size. GNNs can be thought of
as a generalization of CNNs where the input can have a non-regular structure and
a complex topology. In fact, in GNNs a convolutional operation can be performed
by taking the average value of the node features along with its neighbors which
are unordered and variable in size. The difference between the 2D and the graph
convolutional operations is graphically shown in Figure 2.60.

Figure 2.60. 2D convolution versus graph convolution [286].

Graph convolution computes a new latent feature vector for each node in the next
layer as a function of the neighbors’ features in the previous layer of the network. As

2.2 Machine Learning Algorithms 89

for any NN, latent representations can be used to compute predictions and, usually,
GNNs are employed to perform node, edge, or graph classification/regression.
A large number of GNN architectures fall in the family of spectral methods which
deal with the representation of a graph in the spectral domain. These methods are
based on graph signal processing and define the convolution operator in the spectral
domain using the Fourier transform F . The graph "signal" x is transformed to the
spectral domain as

F (x) = UT x. (2.105)

Then, the transformed graph signal is multiplied by a filter g in the spectral domain
as

F (g) · F (x), (2.106)

and, finally, the result is transformed back to its original domain using the inverse
graph Fourier transform F −1 as

F −1(x) = UT x. (2.107)

Given feature matrix X, an adjacency matrix A indicating whether pairs of vertices
are adjacent or not, and a filter G, the graph convolution can be written as

G ∗X = F −1(F (G) · F (X)) = U(UT G · UT X). (2.108)

U is a matrix defined by the eigenvectors of L = UΛUT , being Λ a diagonal matrix
containing the eigenvalues of L. L is the graph Laplacian and is computed as

L = D −A, (2.109)

being D the diagonal node degree matrix where

Dii =
∑

j

Aij . (2.110)

The diagonal elements of L will have the degree of the node if A has no self-loops.
The non-diagonal element Lij = −1 (i ̸= j) if there is a connection. If there is no
connection Lij = 0 (i ≠ j). Calculating the eigenvectors of the Laplacian returns
the Fourier basis for the graph.
However, computing eigenvalues and eigenvectors requires a SVD of L, which is
computationally demanding. Moreover, being the filter applied on the entire graph,
the notion of locality is lost for standard convolutions. Therefore, the graph con-
volution operation is usually approximated by a Chebyshev expansion [287]. This
approximation is a recurrent expansion that is used to estimate the k-the power of
L which has a direct interpretation: it traverses nodes that are up to k steps away,
thus introducing the notion of locality. The bigger the power the bigger the local
receptive field of the graph convolution.

90 2. Methodology

Graph Convolutional Networks A Graph Convolutional Network (GCN) is a
GNN belonging to the spectral family that uses the Chebyshev expansion approxi-
mation with k = 1 (it considers only direct neighbors for each node at every layer)
[108]. The input of a GCN is a graph G = (V, E), where V and E are the set
of nodes and edges respectively. V is represented as an N × F feature matrix X,
composed by the feature vectors of length F associated with each of the N nodes.
The structural information of the graph enclosed in E is, instead, represented as an
N ×N adjacency matrix A.
GCNs produce a node-level output O in the form of an N ×K matrix, where K is
the number of output features computed for each node. This matrix can be written
as a function of the feature matrix X and the adjacency matrix A as

O = f(X, A) = σ(AXW), (2.111)

where W is a F ×K trainable weight matrix.
When multiplying by A, a weighted sum is computed for each node between the
feature vectors of all direct neighboring nodes excluding itself. For this reason, self-
loops are added by defining Â = A+I, where I is the N×N identity matrix. Since A
is typically not normalized, the matrix multiplications defined in Equation 2.111 can
cause a change of scale in the feature vectors. To prevent numerical instabilities and
vanishing/exploding gradients, the adjacency matrix can be normalized by computing
D

1
2 ÂD

1
2 , where D is the diagonal node degree matrix defined in Equation 2.109.

Considering the previous adjustments, the output of a GCN layer can be rewritten
as

O = f(X, A) = σ(D
1
2 ÂD

1
2 XW). (2.112)

It is possible to define a multi-layer GCN by feeding the output feature matrix of a
layer together with the adjacency matrix A as input for the next layer.

2.2.3.15 Autoencoders

An Autoencoder (AE) is a NN trained to learn a compressed representation for a
set of data in an unsupervised manner [288]. First, it produces a reduced encoding
for the input data. Then, it tries to reconstruct the original input from the reduced
encoding. In particular, it aims at learning an identity function under specific
constraints, for example with a limited number of neurons in the hidden layers. An
AE consists of two parts, namely an Encoder and a Decoder.
The Encoder maps the input x ∈ Rn to a latent space and, by considering a FC
network, the output he

(l+1) of the l-th layer can be written as

he
(l+1) = σ(W (l)

e · he
(l)), (2.113)

where We
(l) are the trainable weights of the layer and σ is a non-linear activation

function. Considering an Encoder with Le layers, we have that he
(0) = x and that

he
(Le) = h, where h ∈ Rk is the compressed version of the input.

The Decoder, instead, maps the compressed representation h back to its original
space and, by considering again a FC network, we have that

hd
(l+1) = σ(W (l)

d · hd
(l)), (2.114)

2.2 Machine Learning Algorithms 91

where hd
(l+1) is the output of the l-th layer, Wd is the trainable weight matrix and

σ is a non-linear activation function. Considering Ld layers, we have that hd
(0) = h

and that h(Ld) = x′, where x′ is the reconstruction of the input vector x
Since the goal of an AE is to reconstruct the input as accurately as possible (ideally
x′ = x), it is trained by minimizing the reconstruction error L(x′, x) = ∥x′ − x∥.
It is important to notice that, based on the specific application, other neural
architectures different from FC networks can also be considered as Encoder or
Decoder with an arbitrary number of hidden layers.

2.2.4 Training and Evaluation

This section covers data splitting for training and evaluating a ML or DL model,
and the problem of overfitting and underfitting. Finally, the most commonly used
evaluation metrics used to estimate the performance of a model are presented,
together with data validation techniques for assessing its generalization capabilities
over an out-of-sample data set.

2.2.4.1 Data Split

A dataset used to fit a model is generally split into three disjoint subsets, namely:

• Training set: samples used to train the model. This set is usually between
60% and 80% of the original sample.

• Development set: samples used to periodically evaluate the model during
the training phase to select the best model. The model’s parameters are not
adjusted to fit this data. This set is usually between 10% and 20% of the
original sample.

• Test set: after the whole training is completed, this set is used to perform a
final evaluation of the model on unseen data. This set is usually between 10%
and 20% of the original sample.

Monitoring the performance of the algorithm on the training set and the validation
set (during the training phase), and on the test set (after the training phase), allows
us to assess the convergence of the optimization process, the accuracy of the model,
its robustness and its ability to generalize.

2.2.4.2 Overfitting and Underfitting

ML algorithms try to adjust their parameters to learn a function mapping inputs
to outputs. It can happen that models adjusted their parameters excessively to
correctly predict samples used for training while providing poor predictions for
unseen samples in the validation and/or test set. This means that the model is
unable to generalize correctly. If the predictions are excessively good on the training
set and poor on the other sets, it means the parameters of the network have been
excessively adjusted to fit only a subset of the data. This phenomenon is called
overfitting.
If instead, the model can neither predict well on the training set nor generalize to new

92 2. Methodology

data, it suffers from underfitting, thus having poor performance on the training data
and the other sets. Figure 2.61 presents an example of underfitting and overfitting
in a 2D scenario.

Figure 2.61. A 2D example of overfitting and underfitting [289].

When dealing with algorithms that optimize their parameters using a loss function,
overfitting and underfitting can be tackled through regularization techniques which
allow the model to better generalize. The most commonly used regularizations are
L1, L2 and dropout.

L1 Regularization Given a loss function L quantifying the error between the
prediction of the model and the correct output associated with the inputs, the L1
regularization computes the sum of the absolute values of all the parameters of the
model and adds them to the original loss as follows

Lreg = L + λ
k∑

i=1
|wi|, (2.115)

where k is the total number of parameters and λ is the regularization parameter
used as scaling factor for determining how much the regularization term

∑k
i=1 |wi|

influences the total loss function [290].

L2 Regularization The L2 regularization, instead, adds the sum of the squared
parameters to the original loss as

Lreg = L + λ
k∑

i=1
w2

i . (2.116)

When minimizing the new loss function Lnew, the model is encouraged to keep its
parameters small, preventing overfitting and allowing it to better generalize [291].

Dropout One of the most popular techniques used to prevent overfitting in NNs
is dropout [292]. At every training step, a certain number of nodes are randomly
selected and "deactivated", as shown in Figure 2.62, making the network ignore all
their incoming and outgoing connections with other neurons.

In this way, at every iteration, the network adjusts only a random subset of its
weights to generalize better. This is because the network is forced not to rely too

2.2 Machine Learning Algorithms 93

Figure 2.62. Example of a NN before (left) and after (right) dropout regularization [293].

much on any specific subset of neurons since they might be deactivated at any time.
The amount of dropout, i.e. the percentage of deactivated neurons, is determined by
a hyperparameter named dropout or dropout rate.

2.2.4.3 Evaluation Metrics

After training a model, it is essential to evaluate it using proper metrics. In this
way, the accuracy and robustness of an algorithm can be quantified and compared
to other models. The next sections describe the most popular evaluation metrics
for classification and regression tasks, together with evaluation metrics used for
unsupervised feature selection.

2.2.4.4 Evaluation Metrics for Classification

Metrics that quantify and compare discrete output predictions are adopted to
evaluate the performance of classification models. Before diving into the different
metrics, it is important to define what true positives, true negatives, false positives
and false negatives are in the context of multi-class classification:

• True Positive (TPX): number of samples belonging to class X correctly pre-
dicted as belonging to class X.

• False Positive (FPX): number of samples belonging to class X incorrectly
predicted as not belonging to class X.

• True Negative (TNX): number of samples not belonging to class X correctly
predicted as not belonging to X.

• False Negative (FNX): number of samples not belonging to class X incorrectly
predicted as belonging to class X.

Confusion Matrix The Confusion Matrix is a tabular visualization of the ground-
truth labels compared to the model predictions. The entry (i, j) of the matrix
represents the number of samples that belong to class i and are predicted as class

94 2. Methodology

j. Ideally, the matrix has only positive values on the main diagonal (where i = j),
meaning that the ground-truth class always coincides with the predicted class. The
Confusion Matrix is not a proper performance metric but is used to compute other
classification evaluation metrics. An example of normalized confusion matrix to
evaluate fault classification in power systems is provided in Figure 2.63.

Figure 2.63. An example of normalized confusion matrix to evaluate fault classification in
power systems [294]. Notably, it is a multi-class classification task with 20 classes.

Accuracy Accuracy is the ratio between the number of correct predictions and
the total number of samples and can be computed for a class X as

AccuracyX = TPX
TPX + FPX + TNX + FNX

. (2.117)

To compute the overall accuracy of the model for all classes, three different approaches
can be considered, namely macro, weighted and micro averaging [295]. A macro-
average computes the metric independently for each class and then takes the average,
thus treating all classes equally as

Accuracy = 1
k

∑
X

AccuracyX, (2.118)

where k is the number of classes and the sum goes over all possible classes. A
weighted average computes the accuracy metrics for each label and finds their
average weighted by support (the number of samples belonging to each label) as

Accuracy =
∑
X

nX
n

AccuracyX, (2.119)

2.2 Machine Learning Algorithms 95

where n is the total number of samples and nX is the number of samples belonging
to class X. A micro-average aggregates the contributions of all classes to compute
the average metric as

Accuracy =
∑

X TPX∑
X(TPX + FPX + TNX + FNX) . (2.120)

The macro, weighted and micro-averaging approaches can also be used to compute
the overall performance of a classifier when using the other metrics covered in the
next paragraphs. When dealing with binary classification, all metrics lose the X
subscript.

Precision Precision for a class X is the ratio between the number of correct
predictions for class X and the total number of samples that were predicted as
belonging to class X and can be computed as

PrecisionX = TPX
TPX + FPX

. (2.121)

In the context of predictive maintenance, this metric is used to assess what percentage
of alarms triggered by the model for a specific failure is true. A Precision value of
1 indicates that the algorithm is very robust and reliable, meaning that no false
alarms are triggered. A model can be extremely precise, even though predicting
a specific failure only a few times. For this reason, the following Recall metric is
complementary to Precision.

Recall Recall for a class X is the ratio between the number of correct predictions
for class X and the total number of samples that belong to class X, and can be
computed as

RecallX = TPX
TPX + FNX

. (2.122)

In the context of predictive maintenance, this metric is used to assess what percentage
of occurrences of a specific failure is correctly predicted by the model. A Recall value
of 1 indicates that the algorithm can predict all failure events of a specific category.
The limit case is when the model predicts all events as belonging to that specific
class, thus resulting in maximum Recall. This is, of course, not a high-performing
model and, therefore, Recall is usually considered together with Precision using the
F1-score discussed next.

F1-Score The F1-Score is the harmonic mean between Precision and Recall and
ranges between 0 and 1. This metric expresses how precise the model is in predicting
a specific class, as well as how robust it is. The F1-Score for a class X can be
computed as

F1-ScoreX = 2
1

PrecisionX
1

RecallX
= 2 · PrecisionX · RecallX

PrecisionX + RecallX
. (2.123)

This metric represents a balance between Precision and Recall and is recommended
when dealing with imbalanced classification problems.

96 2. Methodology

Area under Receiver operating characteristics curve The Area Under
Receiver Operating Characteristics curve, better known as AUC-ROC curve, makes
use of the concept of true positive rate and false positive rate for a class X which
are defined as

TPRX = TPX
TPX + FNX

(2.124)

and
FPRX = FPX

FPX + TNX
. (2.125)

The TPRX corresponds to the proportion of samples correctly classified as belonging
to class X with respect to the total number of samples belonging to class X. The
FPRX corresponds to the proportion of samples incorrectly classified as belonging
to class X with respect to the total number of samples not belonging to class X.
The TPRX and FPRX can assume different values based on a threshold applied to
the output of the predictive model. High threshold values can lead to both a low
false positive rate and a low true positive rate since the model avoids predicting
class X. Low thresholds, instead, can lead to both a high true positive rate and a
high false positive rate since the model most likely predicts X as output label. For
this reason, different thresholds are considered to generate a graph where the FPRX
is plotted on the x-axis and the TPRX on the y-axis as shown in Figure 2.64.

Figure 2.64. Example of an AUC-ROC curve [296].

The top left corner of the plot is the ideal point where the false positive rate is
zero and a true positive rate is one. This is unrealistic, but a larger area under the
curve (AUC-ROC) is usually better. This value ranges from 0 to 1 and the greater
the value, the better the performance of the classifier.

2.2.4.5 Evaluation Metrics for Regression

Many evaluation metrics commonly adopted for regression tasks coincide with the
loss functions used to train a NN (see Section 2.2.3.3).

2.2 Machine Learning Algorithms 97

Mean Squared Error The MSE is the average of the squared difference between
the target value and the predicted value as defined in Equation 2.46. Due to the
squaring of errors, this metric is sensitive to outliers which produce large errors, and
small errors are penalized, leading to an underestimation of the model’s performance.
The interpretation of the MSE has to be done by keeping in mind the squaring factor
of the errors.

Root Mean Squared Error The Root Mean Squared Error (RMSE) corresponds
to the square root of the average of the squared difference between the target value
yi and the value predicted ŷi and is computed as

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2. (2.126)

This metric does not penalize smaller errors as the MSE and is less sensitive to
outliers since it uses the square root. The interpretation is easier than the MSE
since the scale of the errors is the same as the variable.

Mean Absolute Error The MAE is the average of the difference between the
ground truth and the predicted values as defined in Equation 2.46. This metric
is robust towards outliers since it does not square the errors as for the MSE. The
MAE, since computing the absolute value, does not take into account the sign of the
error and does not provide information about under-predicting or over-predicting
the data. The interpretation of this metric is straightforward as the magnitude of
the MAE matches the original scale of the variable.

2.2.4.6 Evaluation Metrics for Unsupervised Feature Selection

To evaluate an unsupervised feature selection method for time series, two main
indicators are widely used: redundancy and information gain.

Redundancy The redundancy of information among a set of time series y =
(y1, y2, . . . , yN) is quantified by the metric WI , which reads as

WI(y) = 1
|y|2

∑
yi,yj∈y

MI(yi, yj), (2.127)

where MI(yi, yj) is the mutual information between time series yi and yj [297]. A
low value of WI is associated with a set of time series that are maximally dissimilar
to each other. It is also possible to consider the rate of variation of this metric,
represented by the Redundancy Reduction Ratio (RRR)

RRR = WI(y)−WI(ȳ)
WI(y) , (2.128)

where ȳ is the set time series after the feature selection.

98 2. Methodology

Information Gain The information gain is computed in terms of the Shannon
entropy H [298], which reads as

H(X) =
∑

i

p(xi) log2(xi), (2.129)

where X is the data matrix associated with the set of time series y, being every row
a sample of the observations and every column a different time series, and xi is the
i-th row of the matrix. The information gain is computed as the variation of entropy
between the original time series and the time series after the feature selection ȳ. If
the rate of variation is considered, it is possible to define the Information Gain Ratio
(IGR):

IGR = H(X)−H(X̄)
H(X) (2.130)

where X and X̄ are the data matrices associated to y and ȳ.

2.2.4.7 Model Validation

Model validation is essential to assess that a model is robust enough to generalize
to an unseen data set, without overfitting on the training data and achieving
approximately the same performance on both samples.
As seen in Section 2.2.4.1, the available dataset is usually split into training, validation
and test sets. However, by partitioning the available data into three sets, the number
of samples that can be used to train the model is reduced and can lead to a problem
of underfitting. Moreover, the results can depend on a particular random choice
for the training and validation sets, thus generating a bias. Even though a test
set should still be held out for final evaluation, the validation set is no longer a
limitation when performing a procedure called Cross-Validation (CV) [299].

2.2.4.8 K-Fold Cross-Validation

In K-Fold Cross-Validation (KFCV), the training data is divided into k subsets
referred to as folds [300]. Then, a model is trained using k−1 of the folds as training
data and validated on the remaining part of the data. This operation is performed
k times, one for each of the folds as shown in Figure 2.65.

Finally, the overall performance of the model is calculated by averaging the
values computed for the k trials. Training k separate models can be computationally
expensive but prevents the reduction of the training sample size as when fixing an
arbitrary validation set once.

2.2.4.9 Leave-One-Out Cross-Validation

When the number of folds k is equal to the number of samples n (k = n), then
KFCV takes the name of Leave-One-Out Cross-Validation (LOOCV) [302]. LOOCV
provides a much less biased measure of the performance since n models are trained
and their scores averaged, each considering n− 1 observations as training set and a

2.2 Machine Learning Algorithms 99

Figure 2.65. A visual representation of how KFCV operates considering 5 folds [301].

single sample as validation set. When n is large and/or the model is complex and
takes longer to train, LOOCV can become extremely demanding both in terms of
time and computational resources.

2.2.4.10 5× 2-fold Cross-Validation

5× 2-fold Cross-Validation (5x2CV) is a very popular approach for comparing the
performance of two different models, especially when performing model selection
[303]. 5x2CV computes 5 iterations of KFCV with k = 2 and, at each iteration,
the available data is randomly partitioned into two equal-sized sets S1 and S2.
Each learning algorithm (A or B) is trained on each set and tested on the other
set and four error estimates are computed: p

(1)
A and p

(1)
B (error of model A and B,

respectively, trained on S1 and tested on S2) and p
(2)
A and p

(2)
B (error of model A

and B, respectively, trained on S2 and tested on S1). Subtracting corresponding
error estimates produces two estimated differences

p(1) = p
(1)
A − p

(1)
B (2.131)

and
p(2) = p

(2)
A − p

(2)
B . (2.132)

From these two differences, the estimated variance is

s2 = (p(1) − p̄)2 + (p(2) − p̄)2 (2.133)

where
p̄ = p(1) + p(2)

2 (2.134)

100 2. Methodology

Let s2
i be the variance computed for iteration i, and let p

(1)
1 be the p(1) for the very

first of the 5 iterations. Then, it is possible to define the following t statistic

t = p
(1)
1√

1
5

∑5
i=1 s2

i

. (2.135)

The null hypothesis is that both models have the same performance and that the
score difference between the two algorithms for each fold is assumed to follow a
normal distribution centered in zero. With this assumption, statistic t is assumed
to follow a t distribution with 5 degrees of freedom. To test the null hypothesis
the value of t is computed to check if it satisfies a t distribution with 5 degrees of
freedom or if it is an outlier. When the t value is close enough to zero, the null
hypothesis can not be rejected and the models are assumed to be equal. Otherwise,
one of the models performs better than the other.

101

Chapter 3

Framework for Energy
Applications

3.1 Dimensionality Reduction in Energy System Sensor
Networks

Recent advances in wireless communications and electronics allowed the development
of low-cost, low-power, multi-functional sensor nodes that are small in size and
communicate over short distances. Each of these sensor nodes consists of sensing,
data processing, and communicating components, and, when interconnected with
other nodes, composes a sensor network [304].
Sensor networks usually count a large number of tiny sensor nodes that are deployed
either inside the phenomenon of interest or very close to it, where each sensing device
is capable of monitoring specific quantities, (e.g. temperature, pressure, vibration,
etc.). One of the main advantages of sensor networks is that the location of each
sensor node is not predetermined and can be engineered strategically, allowing
monitoring of any quantity of interest. Moreover, since sensor nodes are fitted with
an onboard processor, instead of sending the raw collected data, they use their
processing abilities to locally carry out simple computations and transmit only what
is useful [305].
In many energy systems, sensor networks are interfaced with a SCADA system,
which stands for Supervisory Control And Data Acquisition [306]. SCADA systems
are evolving rapidly and are nowadays considered a vital element penetrating the
energy market that allows operators to supervise the behavior of energy systems as
a whole. These systems record measurements coming from the underlying sensor
network regularly (usually every 10 minutes) and allow the operator to determine if
corrective actions are required. Moreover, SCADA systems also record the energy
output, availability and error signals, providing a database of insightful data which
can be analyzed or used to train predictive models.
On the other hand, with the possibility to install large numbers of sensors that collect
measurements over months or even years, vast amounts of time series are generated
and stored in databases. Moreover, when monitoring different points of an energy
system, it can happen to measure redundant information or record signals that are
strongly correlated or present similar trends even though having a different nature

102 3. Framework for Energy Applications

[307]. The existence of redundant and noisy data not only makes it significantly
more difficult to analyze the available data but also contributes to the degradation of
the performance of learning algorithms, making them less scalable and reliable [308].
For these reasons, it is vital to detect and remove irrelevant, redundant, or noisy
features, and alleviate the curse of dimensionality in the context of sensor networks
installed in energy systems, allowing to improve the interpretability of predictive
models, speed up their learning process, and enhance their generalization properties
[297, 207].
The next sections present two papers we published in the context of dimensionality
reduction for sensor networks. Specifically, the work in Section 3.1.1 [242] proposes
an unsupervised algorithm based on time series clustering to group similar signals
together, opening the possibility to reduce their dimensionality by selecting repre-
sentative variables for each identified cluster. Even though the use case is not a,
strictly speaking, RES, it involves a CHP plant using natural gas. By recovering
and using heat from on-site electricity production, these systems typically achieve
total system efficiencies from 65% to 80% and can reach 90%, making them suitable
and necessary during the transition towards a sustainable future. Moreover, the
proposed algorithm can be applied to any RE system to reduce the dimensionality
of the monitored signals. The second paper presented in Section 3.1.2 [309] proposes
a novel algorithm for unsupervised feature selection that leverages the predictive
power of combinations of variables to assess their overall importance.

3.1.1 Time Series Clustering: A Complex Network-Based Approach
for Feature Selection in Multi-Sensor Data

Introduction

The primary goal of industrial Internet of Things (IoT) has been linking operations
and information technology for insight into production dynamics. This potential
flexibility entails a floor of technologies made of distributed networks of physical
devices embedded with sensors, edge computers, and actuators used to identify,
collect, and transfer data among multiple environments. Such IoT-based Cyber-
Physical Systems (CPS) establish a direct integration of engineering systems into
digital computer-based ones, where the measurement or sensing technologies play an
essential role in capturing the real world. Data collected are then the main ingredient
to lift efficiency, accuracy, and economic benefits with the added merits of minimum
human intervention [310, 311].
A consequence of such transformation is that the sensor layer, customarily used
to measure, is now the means to map the actual status (of the process) into the
cyber-world to derive process information, collect it in databases, and use it as a
basis for the models which can be adapted (ideally by self-optimization) to the real
situations. In this vein, the CPS provides a holistic view of the engineering systems
and enables a bi-directional physical to digital interaction via multi-modal interfaces
[312, 313]. Unlike the classic concepts derived from control theory, CPS forms the
basis to describe even complex interactions and thus anticipate process deviations
or interpretation and prediction of system behavior, diagnosis of exceptional events,
explanation of causal mechanisms, and reactive response to urgent events [314].

3.1 Dimensionality Reduction in Energy System Sensor Networks 103

On the other hand, CPS are disclosing large quantities of data to create augmented
knowledge about process control. These high-dimensional datasets typically include
heterogeneous measures acquired through a large variety of sensors which may have
different sampling rates and communication protocols [315]. Following this trend,
in recent years, there has been a rapid development of mathematical modeling
techniques and analytical tools able to address the aforementioned problems, while
meeting the new IoT requirements to assist process decision-makers.
In this scenario, AI is playing a major role to support the development of intelligent
systems in process control engineering [316]. Examples are data preprocessing
tasks, such as outlier removal [317], the replacement of missing values [318], and the
definition of machine learning models for predictive and prescriptive maintenance [319,
320, 321]. Moreover, AI can be used to model a system without the computational
complexity of a full simulation or a physical analysis, learning functional dependencies
between system components from the data [322]. Even though most AI models are
data-driven, overabundant high-dimensional data can have a negative impact on
model behavior and efficiency, not only because of the computational complexity
but also in terms of accuracy [315]. The existence of redundant and noisy data
contributes to the degradation of the performance of learning algorithms, making
them less scalable and reliable [308].
Remedial strategies must fundamentally select the most representative features of
the original dataset, by using feature selection techniques. Feature selection, part
of the larger family of dimensionality reduction approaches, aims at extracting a
smaller set of representative features that retains the optimal salient characteristics
of the data, especially in terms of global information content.
The dimensionality problem is particularly evident in data collected from control
monitoring systems in engineered processes and machines, due to the strong presence
of redundant data related to physical quantities, with similar trends, monitored
in different points of the system, or to parameters of different nature but strongly
correlated [307]. By detecting and removing irrelevant, redundant, or noisy features,
feature selection can alleviate the curse of dimensionality from industrial sensor
networks, improving model interpretability, speeding up the learning process, and
enhancing model generalization properties [297, 207].
Feature selection techniques can be both supervised and unsupervised depending on
the availability of the data class labels used for guiding the search for discriminative
features [323]. Recently, unsupervised feature selection has been attracting an ever-
growing interest, especially in the control and monitoring field, because of the lack
of ground truth data in many real-world applications [324].
Traditional unsupervised feature selection methods based on dependence measures,
such as correlation coefficients, linear dependence, or statistical redundancy, are
already widely used [324]. Recently, feature clustering demonstrated its merit in
terms of accuracy with respect to other unsupervised approaches [325]. In addition,
clustering algorithms outperform state-of-the-art methods in detecting groups of
similar features [326, 327], as well as in selecting metrics (one or more features) out
of every cluster to reduce the dimensionality of the data with more or less granularity
based on the application.
It has been recently demonstrated that network approaches can provide novel insights
for the understanding of complex systems [238, 328], outperforming classical methods

104 3. Framework for Energy Applications

in the ability to capture arbitrary clusters [329]. In particular, the weakness of
conventional techniques resides in the use of distance functions that allow finding
clusters of a predefined shape. In addition, they identify only local relationships
among neighbor data samples, being indifferent to long-distance global relationships
[329]. Examples of network methods for time series clustering can be found in the
literature, making use of Dynamic Time Warping (DTW) and hierarchical algorithms
[330] and community detection algorithms [329].
In this paper, we propose an unsupervised feature selection algorithm based on a
novel feature clustering technique tailored to time series collected from real industrial
IoT sensor networks. The clustering approach complements different tools from
complex network theory, which are becoming promising in the field of nonlinear
time series analysis for their ability to characterize the dynamical complexity of a
system [238]. In particular, we used visibility graphs [237] to map time series in the
network domain, then node degree sequences extraction [331] to characterize them,
and, finally, community detection algorithms [332] to perform time series clustering.
The proposed method was tested on the sensor network of a 1 MW Combined Head
and Power (CHP) plant central monitoring system. The heterogeneous dataset
includes measurements from the engine, the auxiliaries, the generator, and the
heat recovery subsystem. Finally, we compared with other traditional time series
clustering methods in terms of redundancy and information content for feature
selection.
The rest of the paper is organized as follows. First, we present the unsupervised
feature selection method, then, describe the case study. After, we report experimental
results to support the proposed approach and, finally, summarize our work and draw
some conclusions.

Methods

This section discusses the proposed method, starting from the problem of time series
clustering up to the task of unsupervised feature selection. Given a set of N time
series y = y1, y2, . . . , yN , the main steps of the proposed clustering approach are
here summarized.

a) Remove time series noise through a low-pass filter.

b) Segment time series yn into consecutive non-overlapping intervals s1
n, s2

n, . . . , sT
n

corresponding to a fixed time amplitude L, where T is the number of segments
extracted for each time series.

c) Transform every signal segment st
n (t = 1, . . . , T and n = 1, . . . , N) into a

weighted natural visibility graph Gt
n.

d) Construct a feature vector kt
n = ((kt

n)1, (kt
n)2, .., (kt

n)L) for each visibility graph
Gt

n, where (kt
n)i is the degree centrality of the ith node in the graph and kt

n

the degree sequence of the graph.

e) Define a distance matrix Dt for every tth segment (t = 1, . . . , T), where the
entry dt

ij is the Euclidean distance between the degree centrality vectors kt
i

3.1 Dimensionality Reduction in Energy System Sensor Networks 105

and kt
j . Every matrix gives a measure of how different every pair of time series

is in the tth segment.

f) Compute a global distance matrix D that covers the entire time period T where
the entry (i, j) is computed as dij = 1

T

∑T
t=1 dt

ij , averaging the contributions
of the individual distance matrices associated to every segment.

g) Normalize D between 0 and 1, making it possible to define a similarity matrix
as S = 1−D, which measures how similar every pair of time series is over the
entire time period.

h) Build a weighted graph C considering S as an adjacency matrix.

i) Cluster the original time series by applying a community detection algorithm
on the graph C and visualize the results through a force-directed layout.

Figure 3.1 illustrates the flowchart of the methodology.
After the initial stages of data filtering (Step a) and time series segmentation

(Step b), for the transformation of every signal into the network domain (Step d),
we used the natural weighted visibility graphs. The natural variant was preferred
to the horizontal one because it can capture properties of the original time series
with higher detail, avoiding simplified conditions. The weighted variant, on the
other hand, is used to magnify the spatial distance between observations that have
visibility and thus avoid binary edges in favor of weighted edges in the visibility
graph.
Since we used natural weighted visibility graphs to map time series into networks, for
the extraction of a feature vector for each signal segment (Step e), we considered the
weighted degree centrality sequence of the network, as suggested in [333], because
it can fully capture the information content included in the original time series
[331, 334].
Then, after the construction of the segment distance matrices Dt and the normalized
global similarity matrix S together with its graph representation C (Steps f–h), we
used the modularity-based Louvain’s method (Step i) for community detection since
fast and well-performing in terms of modularity.

To achieve a modular visualization of the clusters detected by the discussed
method and their mutual connections, we used a force-directed algorithm, namely
the Frushterman–Reingold layout, as a graphical representation.
Finally, for specific unsupervised feature selection purposes, we considered a rep-
resentative parameter for each cluster. Such parameters were identified based on
their importance within the communities, by considering the signals with the highest
total degree centrality in their respective groups.
Every part of the proposed approach was developed in Python 3.6 [335], using the
Numpy [336] and NetworkX [337] packages.

Case Study

This section deals with the case study considered for the applications of the proposed
method, which is an internal combustion engine used in industrial cogeneration (or
CHP).

106 3. Framework for Energy Applications

Figure 3.1. Flowchart of the proposed time series clustering methodology.

The CHP system consists of a four-stroke ignition engine (P = 1032 kW) fueled
with vegetable oil, coupled to a three-phase synchronous generator. The electricity
produced is used to meet the self-consumption of the plant and the production
surplus is fed into the grid.
The heat recovery takes place both from the engine cooling water circuit and from
the exhaust gases. In particular, the heat exchange with engine cooling water
(t = 65− 80 ◦C) is used both to meet part of the plant heating requirement and for
the preheating of the fuel before the injection phase. The return water from the
plant is cooled by a ventilation system consisting of four fans (P = 15 kW).
The exhaust gases, after being treated in a catalyst, are conveyed inside a boiler
of 535 kW thermal power, which is used to produce steam at about 90 ◦C useful
for different production lines. A schematic representation of the system is shown in
Figure 3.2.

The system is equipped with a sensor network for condition monitoring and
control purposes that samples every minute for a total of 90 physical quantities at
different points.
The data used for the case study go from 25 June 2014 to 5 May 2015.
The early preprocessing phase involved the removal of the constantly flat parameters
and the cumulative signals, thus reducing the number of the starting parameters to
78. The final list of monitored CHP plant variables considered for the analysis is
reported in Table 3.1.
In the preprocessing phase, the outliers caused by sensor errors were also removed.
To deal with unusual dynamics linked to system shutdowns, observations with zero
active power were filtered out. Afterward, we resampled the data every 15 min to
filter constant signal intervals and reduce the number of measurements processed

3.1 Dimensionality Reduction in Energy System Sensor Networks 107

Figure 3.2. Schematic block diagram of the CHP system with measuring points.

by the algorithm. The resulting data matrix used as input for the analysis had
30,240 rows and 78 columns. Finally, we built time series segments including 24 h of
observations to capture the typical daily cycle of the plant.

Results

This section provides a detailed discussion of the experimental results obtained by
the proposed approach, followed by a comparison with two traditional time series
clustering methods.
Figure 3.3 shows the plot of the 78 standardized signals during a representative
period of about two months. Data were extracted during a total measuring time of
almost 11 months.

The dataset was then analyzed by applying the method described in Section
3.1.1. After the application of a low-pass filter for noise removal, Steps b–d of the
workflow, time series were segmented into non-overlapping intervals st

n, then mapped
into natural visibility graphs Gt

n, and finally feature vectors were extracted in terms
of degree sequences kt

n. Afterward, in Steps e–g, a global distance matrix D was
computed by combining the contribution of all the distance matrices Dt, followed
by the definition of the similarity between all the pairs of time series. The resulting
similarity matrix S is shown in Figure 3.4.

As per Step h, the similarity matrix S is represented in the form of a weighted
graph, also called similarity graph C, where each node corresponds to a specific

108 3. Framework for Energy Applications

Table 3.1. List of monitored CHP plant parameters.

ID Variable ID Variable ID Variable

T0 Condenser Temp. [◦C] T26 Engine 1 Out Temp. [◦C] H52 Gen Frequency [Hz]
T1 Hot Water Temp. [◦C] T27 Engine 2 Out Temp. [◦C] V53 Gen L1-L2 Concat. Volt. [V]
F2 Steam Flow Rate [m3/h] L28 Tank 1 Level [%] V54 Gen L2-L3 Concat. Volt. [V]
P3 Steam Out Pressure [bar] T29 Tank 1 Temp. [◦C] V55 Gen L3-L1 Concat. Volt. [V]
P4 Steam Pressure [bar] L30 Tank 2 Level [%] A56 Gen Phase 1 Current [A]
T5 Steam Temp. [◦C] T31 Zone 4 Temp. [◦C] V57 Gen Phase 1 Volt. [V]
W6 Steam Thermal Power [kW] L32 Tank Level [lt] A58 Gen Phase 2 Current [A]
T7 Cold Water Temp. [◦C] P33 Tank Pressure [bar] V59 Gen Phase 2 Volt. [V]
W8 Thermal Power [kW] T34 Zone 1 Temp. [◦C] A60 Gen Phase 3 Current [A]
F9 Water Flow Rate [m3/h] T35 Zone 2 Temp. [◦C] V61 Gen Phase 3 Volt. [V]

T10 Casing Out Temp. [◦C] T36 Zone 3 Temp. [◦C] S62 Gen Power Factor
T11 Cylinder 1A Temp. [◦C] T37 Tank 2 Temp. [◦C] VR63 Gen Reactive Power [Var]
T12 Cylinder 1B Temp. [◦C] T38 Zone 5 Temp. [◦C] W64 Grid Active Power [W]
T13 Cylinder 2A Temp. [◦C] T39 Zone 6 Temp. [◦C] VA65 Grid Apparent Power [VA]
T14 Cylinder 2B Temp. [◦C] P40 Carter Pressure [mbar] H66 Grid Frequency [Hz]
T15 Cylinder 3A Temp. [◦C] P41 Oil Pressure [bar] V67 Grid L1-L2 Concat. Volt. [V]
T16 Cylinder 3B Temp. [◦C] L42 Sump Level [%] V68 Grid L2-L3 Concat. Volt. [V]
T17 Cylinder 4A Temp. [◦C] T43 Oil Temp. [◦C] V69 Grid L3-L1 Concat. Volt. [V]
T18 Cylinder 4B Temp. [◦C] T44 SCR Out Temp. [◦C] V70 Grid Phase 1 Volt. [V]
T19 Cylinder 5A Temp. [◦C] T45 DX Turbine In Temp. [◦C] A71 Grid Phase 2 Current [A]
T20 Cylinder 5B Temp. [◦C] T46 DX Turbine Out Temp. [◦C] V72 Grid Phase 2 Volt. [V]
T21 Cylinder 6A Temp. [◦C] T47 SX Turbine In Temp. [◦C] V73 Grid Phase 3 Volt. [V]
T22 Cylinder 6B Temp. [◦C] T48 SX Turbine Out Temp. [◦C] T74 Intercooler In Temp. [◦C]
S23 Speed [rpm] L49 Urea Tank Level [%] T75 Plant Delta Temp. [◦C]
T24 Supercharger Temp. [◦C] W50 Gen Active Power [W] T76 Plant In Temp. [◦C]
T25 Engine 1 In Temp. [◦C] VA51 Gen Apparent Power [VA] T77 Plant Out Temp. [◦C]

signal and the edge weights quantify pairwise similarities between time series. To
carry out the community detection phase, only the most important edges were taken
into account. In particular, we performed edge pruning by filtering the pairwise
similarities lower than the second quantile of their probability distribution.
Then, as for Step i, using Louvain’s algorithm (see Section 2.2.2.5), we identified 12
different communities within the filtered similarity graph, which globally cover 70
parameters. Table 3.2 provides the detail of the variables contained in each cluster
with reference to the parameter IDs presented in Table 3.1.

Table 3.2. Clusters obtained through Louvain’s algorithm.

Cluster ID Variable ID

Cluster 1 T29, T34-T39
Cluster 2 L28, L30
Cluster 3 T11-T22, T44-T48
Cluster 4 T7, T10, T24-T27, T31, T43, T74, T76
Cluster 5 W8, F9
Cluster 6 T0, F2, P3, P4, T5, W6
Cluster 7 T1, T75, T77
Cluster 8 S23, H52, H66
Cluster 9 V53-V55, V57, V59, V61, V67-V70, V72, V73
Cluster 10 W50, VA51
Cluster 11 A56, A58, A60
Cluster 12 W64, VA65, A71

The eight signals shown in Figure 3.5 were not clustered since they were charac-
terized by independent dynamics. This subset includes engine lube oil parameters,

3.1 Dimensionality Reduction in Energy System Sensor Networks 109

Figure 3.3. Overall standardized time series sampled from 6 September 2014 to 21
November 2014.

Figure 3.4. Similarity matrix represented as a heat map where the entry (i, j) quantifies
the similarity between signals i and j.

i.e., carter pressure, sump level, and pressure; generator parameters, i.e., power
factor and reactive power; parameters in the fuel primary storage, i.e., tank level
and pressure; and parameters in the exhaust gas treatment, i.e., urea tank level.

Time series clustering results are illustrated with reference to the functional
groups shown in the block diagram in Figure 3.2. Most of the fuel parameters were
grouped into two distinct homogeneous clusters (see Figure 3.6). Fuel temperatures
from the primary storage to the output of tanks 1 and 2 are included in Cluster 1
(Figure 3.6a), while Cluster 2 (Figure 3.6b) groups the fuel levels in the two tanks.

Engine sensor signals fall, together with other strictly related parameters, into
two distinct clusters (see Figure 3.7). In particular, Cluster 3 (Figure 3.7a) includes
all the cylinder temperatures and the exhaust temperatures, while Cluster 4 (Figure
3.7b) includes the casing temperatures, the supercharger temperatures, and the
temperatures monitored at the engine auxiliaries, e.g., cooling water, lube oil, and
intercooler subsystems. Cluster 4 also contains some parameters by the heat exchange

110 3. Framework for Energy Applications

Figure 3.5. Signals that were not included in clusters: lube oil carter pressure (P40), lube
oil sump level and pressure (L42 and P41), generator power factor (S62) and reactive
power (VR63), fuel tank level and pressure (L32 and P33) in the primary storage, and
urea tank level (L49).

(a) Cluster 1 (b) Cluster 2

Figure 3.6. Fuel parameters: (a) the trends of the time series included in Cluster 1, i.e.,
temperatures of the fuel in the storage area (T29 and T34–T39); and (b) the trends of
the time series included in Cluster 2, i.e., fuel levels in tank 1 (L28) and tank 2 (L30).

with the engine cooling, such as water inlet temperatures of the process heat circuit
and inlet fuel temperature.
All the parameters of the high-temperature heat recovery circuit (process steam
demand) were, instead, separated into two distinct groups (see Figure 3.8). In
detail, Cluster 5 (Figure 3.8a) includes the thermal power and hot water flow rate,
monitored at the boiler inlet, while, in Cluster 6 (Figure 3.8b), all the specific steam
parameters are grouped together, such as steam flow rate, pressure, and thermal
power, as well as the temperature of the condensed water.

As mentioned above, low-temperature heat circuit sensor signals, measured at
the plant inlet, are part of Cluster 4 together with other engine and auxiliaries
signals (see Figure 3.7b), while the water temperatures at the plant outlet and the
delta in–out temperature are in Cluster 7 (see Figure 3.9).

The two principal properties of the electric power supply, frequencies and voltages,
were divided into two clusters (see Figure 3.10). Notably, in Figure 3.10a, it is
possible to note how the engine speed was included in Cluster 8 together with
the generator and grid frequencies. On the other hand, Cluster 9 includes all the

3.1 Dimensionality Reduction in Energy System Sensor Networks 111

(a) Cluster 3 (b) Cluster 4

Figure 3.7. Engine sensor signals and strictly related parameters: (a) the trends of the
time series included in Cluster 3, i.e., temperatures of the cylinders (T11–T22) and
temperatures of the exhaust gases (T44=-T48); and (b) the trends of the time series
included in Cluster 4, i.e., temperatures referred to the external casing of the engine
(T10 and T24), engine auxiliaries (T25–T27, T43, and T44) and parameters influenced
by the heat exchange with the cooling water (T7, T76, and T31).

(a) Cluster 5 (b) Cluster 6

Figure 3.8. Process high-temperature user parameters: (a) the trends of the time series
included in Cluster 5, i.e., thermal power (W8) and flow rate (F9) of the hot water at
the boiler inlet; and (b) the trends of the time series included in Cluster 6, i.e., steam
parameters such as flow rate (F2), pressure (P3), temperature (T5), and thermal power
(W6) as well as the condensed water temperature (T0).

generator and grid voltages.
Other electrical parameters, such as powers and currents, have instead been

divided into three different clusters (see Figure 3.11). In particular, Cluster 10
(Figure 3.11a) and Cluster 11 (Figure 3.11b) distinguish, respectively, the generator
powers from the generator currents, while Cluster 12 (Figure 3.11c) groups together
the grid powers and currents. The latter refers only to Phase 2 current because
the Phase 1 and 3 currents were removed in the preprocessing phase due to sensor
malfunctions.
The clustering results show that the proposed approach is independent of the nature
of the monitored parameters and their functionality within the system. For example,
Clusters 1, 2, 7, 9, 10, and 11 (Figures 3.6a, 3.9a, 3.10b, and 3.11a,b) include only
homogeneous variables (e.g., temperatures) belonging the same functional area (e.g.,
engine). Among those, it is interesting to note how the parameters within Cluster 2,
i.e., the fuel levels in the tanks for primary storage, seem to be very different from the

112 3. Framework for Energy Applications

Figure 3.9. Process low-temperature user parameters: the trends of the time series included
in Cluster 7, i.e., water temperatures at the plant outlet (T1, T77) and delta in–out
temperature (T75).

(a) Cluster 8 (b) Cluster 9

Figure 3.10. Generator and Grid frequencies and voltages: (a) the trends of the time series
included in Cluster 11, i.e., respectively engine speed (S23), and frequencies monitored
both at the generator (H52) and at the grid (H66); and (b) the trends of the time series
included in Cluster 12, i.e., voltages monitored both at the generator (V53–V55, V57,
V59, and V61) and at the grid (V67–V70, V72, and V73).

Euclidean point of view, but the method identified a similarity in their global trends.
On the other hand, Clusters 5, 6, and 12 (Figures 3.8a,b, and 3.11c) represent some
examples of communities populated by heterogeneous physical parameters recorded
in the same functional area.
Finally, a particular interest derives from the hidden relationships identified between
parameters characteristic of different functional areas. Examples are Cluster 3
(Figure 3.8a), which includes temperatures of cylinder and exhaust; Cluster 4 (Figure
3.8b), which groups together temperatures referred to the engine external casing,
the engine auxiliaries, heat recovery, and fuel pre-heating systems and the inlet fuel;
and Cluster 8 (Figure 3.10a), which is composed by frequencies and voltages related
to both the generator and the grid.
After the identification of clusters, exploratory network analysis was used to render a
graphical representation of their degree of similarity (the higher the similarity between
nodes, the smaller their spatial distance), thus improving the cluster visualization.
The Frushterman–Reingold layout applied to the similarity graph C, after edge
pruning, provided the results shown in Figure 3.12.
The force-directed layout gives evidence of a central core of strongly connected

3.1 Dimensionality Reduction in Energy System Sensor Networks 113

parameters, which includes, respectively, most of the fuel temperatures in the storage
area (Cluster 1), all the temperatures of cylinders and exhaust (Cluster 3), all the
process low-temperature parameters (Cluster 7), and most of the generator and grid
parameters (Clusters 8–11).

(a) Cluster 10 (b) Cluster 11

(c) Cluster 12

Figure 3.11. Generator and Grid electric powers and currents: (a) the trends of the time
series included in Cluster 10, i.e., generator parameters such as active power (W50) and
reactive power (VA51); (b) the trends of the time series included in Cluster 11, i.e.,
generator electric currents Phase 1 (A56), Phase 2 (A58), and Phase 3 (A60); and (c)
the trends of the time series included in Cluster 12, i.e., grid parameters such as active
power (W64), reactive power (VA65), and electric current Phase 2 (A71).

Notably, only two parameters of Cluster 3 are outside the central core, namely
T29 and T34, measuring, respectively, the fuel temperature in the primary storage
and in tank 2 (the latter being a backup tank). It is also possible to notice how
the temperatures of engine cooling water (T25–T27) and lube oil (T43) subsystems
represent a key group in bridging the central core to the other variables of Cluster 4.
Similarly, the steam parameters in the high-temperature heat recovery (Cluster 6),
although not directly included in the central core, appear to be strictly connected
to it. As expected, no correlation is active among the fuel levels inside the tanks
(Cluster 2), the power and flow rate of the hot water at the boiler inlet (Cluster 5),
the grid power and currents (Cluster 12), and the rest of the network.
To improve the interpretation of the results by adding quantitative information to
the exploratory analysis, we calculated the cumulative percentage distribution of
the average degree centrality of each cluster (see Figure 3.13).

The bar chart in Figure 3.13 attributes a specific ranking to the clusters according
to their average contribution to the degree centrality of the network. Overall, the
results confirm the considerations made so far in relation to the core communities

114 3. Framework for Energy Applications

Figure 3.12. Frushterman–Reingold layout applied to the similarity graph after performing
edge pruning.

(Clusters 1, 3, 7, and 8–11), to the boundary communities (Clusters 4 and 6), and
the communities unrelated to the network (Clusters 2, 5, and 12).
As for the communities included in the central core, it is possible to obtain a distinc-
tion between the roles played in the network. In detail, Cluster 10, which groups
engine speed and generator and grid frequencies together, is the most influential on
the control and stability of the global systems, followed by Cluster 3, which includes
cylinder temperatures and exhaust gases.
Finally, after cluster identification and analysis, feature selection was performed by
selecting in each cluster the representative signal as the one with the highest degree
contribution in its group. Table 3.3 shows the selected variables associated with
each cluster, together with their degree centrality in the similarity graph, and their
share contribution to the sum of the degree centralities within the reference cluster.
The representative parameters shown in the table are visually confirmed by the
force-directed layout in Figure 3.12. For example, variable T0 (condense tempera-
ture) appears to be the most influential node of Cluster 6 (process high-temperature
user parameters), having a high number of connections not only with variables of
its cluster but also with those belonging to the central core of strongly connected
signals. Another example is the parameter T43 (oil temperature) with respect to
Cluster 4 (parameters strictly related to the engine).
As reported in the case study, the data matrix considered as input for the analysis
has 30,240 × 78 dimensions. After the application of the proposed method, by
considering the 12 representative cluster variables, listed in Table 3.3, together with
the 8 independent signals shown in Figure 3.5, we obtained a final data matrix of
size 30,240 × 20, thus reducing the dimensionality by 74.4%.

3.1 Dimensionality Reduction in Energy System Sensor Networks 115

Figure 3.13. Cumulative percentage distribution of the average degree centrality of clusters.

Performance Metrics

An exhaustive evaluation of the proposed method can be obtained by appropriate
measures of clustering partitioning and feature selection information content.
The lack of ground truth data in the present condition monitoring application
precluded the evaluation of the clustering results through classical external indices.
In addition, since we used a modularity-based method for community detection,
modularity was identified as the most appropriate metric for the final clustering. A
first evaluation of the clustering results was performed using the modularity measure,
which quantifies the goodness of the communities on a scale that goes from −1 to 1.
In particular, we obtained a modularity index of 0.72, representative of good-quality
results.
Since the proposed approach belongs to the category of unsupervised feature selection
methods, the final evaluation was performed in terms of Redundancy Reduction
Ratio (RRR) and Information Gain Ratio (IGR), defined, respectively, in Equations
(2.128) and (2.130).
The proposed method was compared with standard approaches for time series
clustering (see Table 3.4). In particular, a raw data-based method was considered,
which uses the Euclidean distance as time series similarity measure and a partitioning
clustering, namely K-Means, for grouping variables. In addition, we included a
feature-based method in the comparison, which involves the extraction of statistical
parameters characteristic of the time series (i.e., average, median, standard deviation,
skewness, and kurtosis) and the subsequent application of the K-Means algorithm
for clustering.

Table 3.4 shows that the time series clustering approach seems to be particularly
efficient in terms of feature selection, allowing a total redundancy reduction of 29.05%
in the starting dataset by obtaining, at the same time, a global information gain of
10.60%.

It is also interesting to note that both performance metrics are better than those

116 3. Framework for Energy Applications

Table 3.3. Representative signals chosen for every cluster according to their node degree
centrality.

Cluster ID Number
of Ele-
ments

Most Represen-
tative Variable
ID

Absolute
Degree
Value

Within Cluster
Degree Contribu-
tion

Cluster 1 7 T38 29.44 19.51%
Cluster 2 2 L30 1.00 50.00%
Cluster 3 17 T19 34.62 6.61%
Cluster 4 10 T43 18.20 15.34%
Cluster 5 2 W8 1.00 50.00%
Cluster 6 6 T0 9.03 23.50%
Cluster 7 3 T75 25.83 33.96%
Cluster 8 3 H66 31.06 34.18%
Cluster 9 12 V72 30.91 8.70%
Cluster 10 2 VA51 31.67 50.30%
Cluster 11 3 A56 30.67 35.31%
Cluster 12 3 W64 2.00 33.33%

Table 3.4. Comparison of the feature selection performances between the proposed approach
and two standard methods: a raw data-based method and a feature-based one. The
evaluation was performed by considering the RRR and IGR indices.

Method Optimal
Clusters

RRR IGR

Proposed approach 12 29.05% 10.60%
Raw-data based 12 9.52% 8.39%
Feature based 10 20.96% 7.90%

obtained with the standard approaches considered. In particular, the proposed
method outperforms the raw data-based clustering approach in terms of both RRR
and IGR indices, with an overall performance improvement of 19.53% and 2.21%,
respectively. Looking at the results obtained with the feature-based method, also in
this case the proposed approach provides better results with an increase of 8.09%
and 2.70% for the RRR and IGR indices, respectively.

Conclusions

With the advent of I4.0 the increasing availability of sensor data is leading to the
rapid development of models and techniques able to deal with it. In particular,
data-driven AI models are becoming essential to analyze complex systems based on
large data streams.
State-of-the-art models fail when dealing with overfitting in the data and suffer from
performance loss when variables are highly correlated with each other. Many feature
selection methods have been introduced to address these problems. Notably, it has
been demonstrated that clustering-based methods for unsupervised feature selection

3.1 Dimensionality Reduction in Energy System Sensor Networks 117

outperform traditional approaches in terms of accuracy.
The complexity of nonlinear dynamics associated with data streams from sensor
networks makes standard clustering methods unsuitable in this context. For these
reasons, in this paper, we propose a new clustering approach for time series useful
for unsupervised feature selection, exploiting different complex network tools. In
particular, we mapped time series segments in the network domain through natural
weighted visibility graphs, extracted their degree sequences as feature vectors to
define a similarity matrix between signals, used a community detection algorithm to
identify clusters of similar time series, and selected a representative parameter for
each of them based on the variable degree contributions.
The analysis of the results highlights two advantages deriving from the proposed
method. The first is the ability to group together both homogeneous and hetero-
geneous physical parameters even when related to different functional areas of the
system. This is obtained by capturing time series similarities not necessarily linked
to the Euclidean distance. In the feature selection perspective, the approach, by
considering 12 representative variables for the identified clusters and 8 independent
signals that were not clustered, reduced the dimensionality of the dataset by 74.4%.
Second, as an additional advantage for feature selection purposes, the method allows
the discovery of hidden relationships between system components enriching the
information content of the signal roles within the network.
Since the construction of a natural weighted visibility graph has time complexity
O(L2), being L the number of samples in a time series interval, the proposed ap-
proach was intended as an offline filtering tool. In particular, being the visibility
graph the bottleneck of the algorithm, the global time complexity is in the order of
O(TL2), where T is the number of consecutive non-overlapping segments. Running
the algorithm on a dataset of 11 months with time windows of 24 h took approxi-
mately 15 min. The idea is to consider the whole dataset at disposal to identify the
overall most relevant signals, by averaging the contributions of all intervals. Thus,
the resulting reduction in the dimensionality of data streams opens the possibility
to simplify the condition monitoring system and its data.
If instead, a real-time tool for feature selection or time series clustering is of interest,
it is possible to imagine the integration of the proposed algorithm into sensor network
now-casting models, e.g., on a sliding window of 24 h the algorithm runs in less than
3 s.

3.1.2 Unsupervised Feature Selection of Multi-Sensor SCADA Data
in Horizontal Axis Wind Turbine Condition Monitoring

Introduction

WT control and monitoring are based on multi-level Supervisory Control And
Data Acquisition (SCADA) systems, able to connect individual turbines, wind farm
substations, and meteorological stations to a central computer [338]. As WTs and
farms grow in terms of size and complexity, SCADA systems are established as an
industry standard of vital importance to guarantee effective operation, monitoring,
control and reporting.

Since SCADA systems collect hundreds of data, several studies introduced health

118 3. Framework for Energy Applications

status metrics of wind generators [339], or prediction algorithms for the power
output to be used in combination with weather forecasts within the framework
of non-programmable renewable power trading [340]. However, the low temporal
resolution of SCADA data, together with the averaging effect, negatively affects the
capabilities of SCADA-based monitoring approaches to detect some of the significant
operating dynamics. In addition, the development of standardized data analytics
on SCADA system may be difficult for two reasons. First, such a large amount
of data might suffer from overfitting problems and, second, it may be affected
by the individual evolution of turbine life cycles [341]. As a consequence, these
circumstances encourage the development of data analytics approaches to determine
and choose the most representative variables (from the SCADA infrastructure) that
characterize WT operations.

Feature selection is typically considered a critical preprocessing step of input
data sets to increase learners’ performance [342]. The variable selection can be
accomplished using either heuristic rules or automatic approaches based on a variety
of techniques [124]. In general, there are three groups of feature selection methods:
filters, wrappers and embedded methods [206]. While filters do not rely on ML but
on features’ correlation thresholds, wrappers use ML techniques and the selection
process moves from the (out-of-sample) performance of a learning algorithm. The
most commonly used techniques under wrapper methods are the Sequential Selection
algorithms, e.g., Sequential Forward Selection (SFS) and Sequential Backward
Selection (SBS) [207, 208]. The SFS begins the search with an empty set of features,
adding one feature at a time while trying to find the best set of combined selected
parameters according to the evaluation criteria. The SBS, instead, refers to a search
that begins with the full set of features, including all independent variables, and then
removes the unimportant features until achieving the final set of selected significant
parameters. Even though this latter approach may capture interacting features
more easily, it is not fast nor computationally cost-effective [209]. Finally, embedded
methods are a combination of filters and wrappers, where filters are integrated into
the learner construction process [208]. This class includes a large family of DT
methods. To mention but a few, XGBoost regressor [343], or RF [206].

In wind energy applications, the largest interest in feature selection algorithms
is driven by the demand for forecasting wind speed as well as wind power output.

Limiting the attention to recently published papers, the survey of the literature
proposes several unsupervised embedded method applications. To this end, Li
Song et al. [344] proposed a Conditional Mutual Information feature selection in
combination with a feedforward NN to determine wind farm generation predictors.
Li Guo et al. [206] proposed the use of RF algorithm as a selector in combination
with recurrent NN. A recent trend regarding wind power curve analysis involving
feature selection has been presented in [345]. In this paper, the feature selection was
performed through a sequential algorithm, and the results showed how the most
important feature was the average wind speed on active power. In addition, the
authors carried out tests on different WTs inferring that the selected features were
peculiar to each turbine model.

In the context of short-term wind power forecasting, Zheng and Wu in [343]
proposed the use of the XGBoost model with weather similarity analysis supported
by Pearson correlation selector. Wind speed and wind direction turned out to be

3.1 Dimensionality Reduction in Energy System Sensor Networks 119

the first two most influential variables. Another approach has been advanced by
Qin et al. [346] where wind power prediction was weather division-based day ahead
with the support of a filter feature selection. In particular, the analysis was carried
out to compare the performance of six different filters. In [347] an exploration of
feature selection influence on a 1 to 24-hour ahead forecast using a list of atmospheric
variables was done through the SVR algorithm, varying the hyper-parameters to
optimize the error. It was shown that wind prediction could be improved by more
than 10% by adding and combining relevant input influential parameters. Recently,
Huang et al. [342] suggested the concertation of three strategies including Maximal
Information Correlation, along with Pearson and Spearman correlations for short-
term wind power forecast. They showed that rotor speed, wind speed, and wind
direction were the model input variables better reflecting the key features of the
turbine-generated power.

The present paper proposes a novel unsupervised method for feature selection in a
genuinely multivariate formulation, named Combine Predictive Power Score (CPPS).
The method is cast as an embedded method combining a Pearson correlation filter
with a learner based on MLP. Here the filter is intended to group homogeneous
variables in the input data set to reduce the dimensionality of the search logic. The
new method can be interpreted as an extension of the Predictive Power Score (PPS)
approach [348], proposed as a data-type-agnostic wrapper. The CPPS augmentation
resides in the selection of multi-variate WT predictors for different targets. Moreover,
the search in the multi-dimensional feature space is carried out in a SFS fashion
explored using q expanding subsets of variable combinations. The paper illustrates
the CPPS method and the data preparation steps. Then, the case study is described
which includes 9 WTs in an Italian on-shore wind farm. Finally, the results compare
the performance of CPPS with the PPS baseline in the prediction of key target
parameters.

Methodology

In this section, we present the workflow of the proposed methodology. In particular,
we discuss data preparation which includes the creation of derived variables, outlier
removal, time series clustering and scaling. Then, we introduce the PPS, a method
for variable importance on which the proposed feature selection algorithm is based,
namely CPPS.

Data Preparation

This phase is preliminary for the proposed feature selection method, essential to
clean, enhance, and format the data properly.

Derived Variables In addition to the variables monitored by the SCADA system,
we compute two derived variables, namely turbulence t and the yaw offset angle θo

120 3. Framework for Energy Applications

between the wind direction θw and the nacelle direction θn, defined as:

t = vSD

v
θo = (θw − θn + 180)%360− 180

where vSD and v are the wind speed standard deviation and mean in meters/seconds
over the last 10 minutes.

Outlier Removal We applied both monovariate and multivariate outlier removal.
First, we define a 6-hours sliding window for each signal and filter samples outside
the interquartile range of the window. Then, we perform a density-based clustering
[185] on the power curve of each turbine, filtering samples not belonging to the main
power curve cluster, as shown in Fig 3.14.

Figure 3.14. The figure shows how the density-based clustering identifies samples belonging
to the power curve (cluster 0), thus isolating outliers (cluster -1).

Time Series Clustering To avoid highly correlated variables being selected as
important features for each other, similar signals have been grouped using a time
series clustering algorithm. In particular, we compute the correlation matrix using
the Pearson correlation coefficient between pairs of variables. Then, we build a
weighted graph considering the correlation matrix as an adjacency matrix and apply
the Louvain method for community detection to cluster the original time series in
homogeneous groups.

Figure 3.15 presents the output of time series clustering through a force-directed
algorithm, namely the Fruchterman-Reingold layout. Each node is associated with a
variable, while edges represent the mutual correlation between signals.

Moreover, the proposed methodology considers groups of homogeneous variables
instead of single features for the process of feature selection.

3.1 Dimensionality Reduction in Energy System Sensor Networks 121

Figure 3.15. The Fruchterman-Reingold layout shows groups of homogeneous variables with
the same color, as the output of the time series clustering algorithm. Grey nodes don’t
belong to any cluster. It is important to notice that some variables are not included in
the graph since edge pruning was applied to weak connections for visualization purposes.

Time Series Scaling Since the proposed algorithm is based on a NN having
multiple inputs and multiple outputs, it is necessary to scale the time series of the
monitored variables. In particular, this was achieved by using the RobustScaler
[349] which scales variables using statistics that are robust to outliers by removing
the median and scaling data according to the interquartile range.

Feature Selection

In the next section, we describe the PPS for feature selection. Then, we present an
original algorithm, namely CPPS, which extends PPS taking into account the effect
of combining multiple variables.

Predictive Power Score PPS is an asymmetric, data-type-agnostic score that
can detect linear or non-linear relationships between two variables [348]. The score is
calculated using only one variable trying to predict another one and can be employed
to select features as predictors for a target.

Since we are dealing with the regression of real-valued variables, the PPS considers
the MAE as an evaluation metric. As baseline score, we calculate the MAE of a
naive model (MAEft

naive) that always predicts the median of the target variable ft.
Then, we select a candidate variable fi as input for a model regressing the target
variable ft and compute the MAE (MAEmodel

fi,ft
). In this way, we can define the PPS

122 3. Framework for Energy Applications

for a candidate feature ft and the target variable ft as:

PPS(fi, ft) = 1−
MAEmodel

fi,ft

MAEnaive
ft

(3.1)

The authors of the PPS selected DT as regression model [350].
The PPS ranges from 0 to 1 and assumes values close to 1 when the candidate

input feature of the model has a high predictive power over the target. Otherwise,
values close to 0 indicate that the candidate feature has low predictive power.

Combined Predictive Power Score In this paper, we propose a feature selection
algorithm, namely the CPPS, that extends PPS by considering combinations of
candidate input features Fg = {fi} ⊆ F for the prediction of multiple targets features
T = {ft}, where F is the set containing all input features, fi is a candidate input
and ft a target.

In this way, the CPPS can detect linear or non-linear relationships between
different groups of variables. The model employed for the definition of the CPPS
has, therefore, to regress a multivariate output by considering multivariate inputs.
We used a MLP having one hidden layer with 5 · |Fg| units and ReLU activation
[351].

Similarly to Equation 3.1, the CPPS for a candidate group of variables Fg and a
target group T is defined as:

CPPS(Fg, T) = 1−
MAEmodel

Fg ,T

MAEnaive
T

where MAEmodel
Fg ,T is the MAE of the MLP regression model and MAEnaive

T is the
MAE of the naive model that always predicts the median of each target variable in
T .

The pseudocode in Algorithm 1 shows how the combination of input variables as
predictors for a specific target group T are selected by maximizing the CPPS.

Being C a set containing combinations of variables, CPPS_k(C, T, k) computes
the score CPPS(Fg, T) for each combinations of variables Fg ∈ C with respect to
the target group T , sorts them in descending order and selects the k-th group.

The inputs of the algorithm are F , T , q and ϵ, namely the set of original input
features, the set of target features, the number of best combinations of variables to
consider during each iteration and the minimum increase of the CPPS required to
avoid early stopping.

At each iteration we consider the q combinations of variables in C that achieve
the highest CPPS and merge them with the original features one at a time, thus
generating new combinations Fg for the next iteration. At the beginning of the
algorithm, C is initialized with combinations that coincide with the single variables
in F .

The algorithm stops when an iteration achieves a CPPS improvement with
respect to the previous iteration lower than ϵ.

To consider the output of the time series clustering algorithm previously discussed,
for each feature fi added to a new combination Fg, all variables belonging to the
same homogeneous groups are added to the combination.

3.1 Dimensionality Reduction in Energy System Sensor Networks 123

Data: F, T, q, ϵ
Result: Fopt

C ← {{fi}, fi ∈ F};
do

Cnew ← {};
for k ← 1 to q do

Fk = CPPS_k(C, T, k);
foreach fi ∈ F do

Fg = Fk ∪ {fi};
Cnew = Cnew ∪ {Fg};

end
end
Cold ← C;
C ← Cnew;

while CPPS(CPPS_k(C, T, 1), T)− CPPS(CPPS_k(Cold, T, 1), T) > ϵ;
Fopt = CPPS_k(C, T, 1);

Algorithm 1: The algorithm shows how the predictors for a target group are
selected by maximizing the CPPS.

The selection process of predictors presented in Algorithm 1 provided an average
speedup of 18x with respect to trying random combinations of features up to triplets.

Case Study

The dataset considered for the proposed methodology of feature selection is gathered
from the SCADA system of 9 WTs belonging to the same wind farm. The data
is collected every 10 minutes over one year of operation and is composed of 36
monitored variables shown in Table 3.5.

The next section will present the results relative to three of the turbines, as
representative of the whole wind farm.

Results and Discussion

In this section, we present the results obtained by the proposed CPPS method,
comparing them with the PPS on data collected from three turbines, namely Turbine
1, Turbine 2 and Turbine 3, as representative for the whole wind farm in terms of
predictors.

Figure 3.16 shows the results for Turbine 1 in terms of CPPS evaluated for
the target variable Active Power. The score is cumulative, meaning that each new
variable (or group of homogeneous variables) on the x-axis is added to the previous
ones, defining incremental combinations of features.

As can be seen, considering the cumulative contribution of the group consisting
of the Generator RPM and Rotor RPM parameters together with the Blade Pitch
Angle, a CPPS score of 0.913 is achieved. The optimal trade-off between the number
of selected features and the predictive power corresponds to the point of maximum
curvature of the CPPS curve, where the further addition of parameters does not
improve the score significantly. It is important to note that, to avoid a signal highly

124 3. Framework for Energy Applications

Table 3.5. Parameters monitored by the WT SCADA system.

Variable ID Description

Active Power Total active power
I2 Current

Wind Speed Wind speed
Ambient Temp Ambient temperature
Spinner Temp Spinner temperture

Controller Hub Temp Controller hub temperature
Bearing Temp HSS gearbox bearing temperature
Gearbox Temp Gearbox oil temperature
BusBar Temp Busbar temperature

VCP Temp Temperature on the VCP
Generator Phase1, 2, 3 Temp Generator temperature in stator windings phase 1, 2, 3

Generator Temp NDE generator bearing temperature
Generator RPM Generator RPM

Rotor RPM Rotor RPM
HVTrafo Phase1, 2, 3 Temp Temperature in HV transformer phase 1, 2, 3

Inverter Phase1 Temp Inverter phase 1 temperature
Rotor Inv Phase1, 2, 3 Temp Rotor inverter phase 1, 2, 3 temperatures

Blade Pitch Angle Blade pitch angle
Controller Top Temp Temperature in the top nacelle controller

Generator SlipRing Temp Temperature in the split ring chamber
Grid Choke Temp Grid choke temperature

Hydraulic Pres Hydraulic pressure
Hydraulic Temp Hydraulic temperature

Nacelle Temp Temperature in nacelle
V2 Voltage

Nacelle Dir Nacelle direction
Wind Dir Wind direction

Turbulence (t) Wind turbulence
Offset Angle (θo) Offset between the wind and nacelle directions

3.1 Dimensionality Reduction in Energy System Sensor Networks 125

*
HQ
HU
DW
RU
�5
30
�

5
RW
RU
�5
30

%O
DG
H�
3L
WF
K�
$Q
JO
H

7X
UE
XO
HQ
FH

$P
EL
HQ
W�
7H
P
S

*
HQ
HU
DW
RU
�6
OLS
5
LQ
J�
7H
P
S

%X
V%
DU
�7
HP
S

9&
3�
7H
P
S

1
DF
HO
OH
�'
LU
��
:
LQ
G�
'
LU

*
HD
UE
R[
�7
HP
S

1
DF
HO
OH
�7
HP
S

*
UL
G�
&
KR
NH
�7
HP
S

2
II
VH
W�
$Q
JO
H

,Q
YH
UW
HU
�3
KD
VH
��
7H
P
S�

5
RW
RU
�,
QY
�3
KD
VH
��
��
��
��
7H
P
S

%H
DU
LQ
J�
7H
P
S

+
\G
UD
XO
LF
�7
HP
S

9�

���

����

���

����

���

9DULDEOH

&
3
3
6

&336�������

Figure 3.16. CPPS computed for Turbine 1 considering the Active Power as a target. Each
new variable on the x-axis adds to the previous ones, forming the combined input group
for which the CPPS is computed. The dashed line is drawn in correspondence to the
point of maximum curvature of the scores.

correlated to a target being selected as its predictor, we filtered variables belonging
to the same homogeneous group. In the case of the Active Power, the current I2
and the Wind Speed were filtered since trivial predictors. Combining one of these
two variables with any other feature did not improve the CPPS significantly, thus
leading to their selection as the only predictor. After removing the Wind Speed and
I2, instead, multiple features were selected as predictors for the Active Power to
achieve a similar CPPS, showing the importance of variable combinations.

Figure 3.17, on the other hand, presents the same results for the Active Power
of Turbine 1 in terms of the PPS. Also in this case the variable with the highest
predictive power with respect to the selected target is the Generator RPM, but the
scores highlight an overall lower predictive power when compared to the proposed
method. In fact, by considering the individual contribution of the three main
predictors obtained with the CPPS method, we see that the Generator RPM, Rotor
RPM, and Blade Pitch Angle achieve, respectively, a PPS of 0.75, 0.74 and 0.14.
This means that the CPPS method achieves a score 0.16 higher than the standard
PPS.

In terms of MAE, we compared the selected features by both methods using
the same MLP model as a regressor. Considering the optimal combination selected
using the CPPS composed by Generator RPM, Rotor RPM, and Blade Pitch Angle,
the model achieves an error of 0.045. When considering, instead, the three most
important features selected using the standard PPS, namely Rotor RPM, Generator
RPM, and Bearing Temp, the MAE reaches 0.11, more than doubling. This confirms
that, by considering the right combination of variables as input, a regression model
can achieve higher performances.

126 3. Framework for Energy Applications

*
HQ
HU
DW
RU
�5
30

5
RW
RU
�5
30

%H
DU
LQ
J�
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
7H
P
S

5
RW
RU
�,
QY
�3
KD
VH
��
7H
P
S

5
RW
RU
�,
QY
�3
KD
VH
��
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
7H
P
S

+
97
UD
IR
�3
KD
VH
��
7H
P
S

+
97
UD
IR
�3
KD
VH
��
7H
P
S

*
UL
G�
&
KR
NH
�7
HP
S

5
RW
RU
�,
QY
�3
KD
VH
��
7H
P
S

+
97
UD
IR
�3
KD
VH
��
7H
P
S

*
HQ
HU
DW
RU
�7
HP
S

*
HD
UE
R[
�7
HP
S

,Q
YH
UW
HU
�3
KD
VH
��
7H
P
S

%X
V%
DU
�7
HP
S

9&
3�
7H
P
S

%O
DG
H�
3L
WF
K�
$Q
JO
H

+
\G
UD
XO
LF
�7
HP
S

+
\G
UD
XO
LF
�3
UH
V

&
RQ
WU
RO
OH
U�
7R
S�
7H
P
S

�

���

���

���

���

���

���

���

9DULDEOH

3
3
6

Figure 3.17. PPS computed for Turbine 1 considering the Active Power as a target.

Table 3.6 presents the CPPS scores for the three turbines. As for the plot in
Figure 3.16, the variable (or group of homogeneous variables) in each row adds to the
previous ones, forming the combination of features for which the CPPS is computed.

After the point of maximum curvature in correspondence with the Blade Pitch
Angle, the proposed method selects the Turbulence, reaching a higher CPPS and
a better performance of the predictive model. On the other hand, including this
variable in the set of predictors for the Active Power only adds 0.023 points to
the CPPS at most, contributing an order of magnitude less than the Blade Pitch
Angle. The trade-off between the number of variables and model performance
highly depends on the application. It is interesting to notice that the CPPS and
the model performances start to degrade when adding too many variables to the
predictors, making the feature selection process essential for the definition of an
accurate regressor.

For comparison purposes, we compute the PPS for the same turbines and the
results are shown in Table 3.7. The scores highlight that the Generator RPM and
Rotor RPM are among the variables with the highest predictive power, reaching
a maximum score of 0.796. It is worthwhile noting that the Blade Pitch Angle,
included in the optimal combination of features by the CPPS method, achieves low
scores, from 0.14 for Turbine 1 to 0.002 for Turbine 2. In fact, this variable on its
own has almost no predictive power for the Active Power, but, when combined with
the Generator RPM or Rotor RPM, achieves a CPPS over 0.9.

Notably, the multivariate output formulation of the proposed CPPS is useful
when considering as target a group of correlated variables, like the Rotor RPM and
the Generator RPM, the temperature in the HV transformer for all three phases of
the generator temperature in the stator windings for all three phases. In this way, it
is possible to select predictors for the target variables altogether, without having to
compute a representative signal for the group.

3.1 Dimensionality Reduction in Energy System Sensor Networks 127

Table 3.6. CPPS computed for three turbines in the same farm considering the Active
Power as a target. Each new line refers to a variable that adds to the previous ones,
forming the combined input group for which the CPPS is computed.

Turbine 1 CPPS Turbine 2 CPPS Turbine 3 CPPS

Generator RPM
Rotor RPM

0.712 Generator RPM
Rotor RPM

0.74 Generator RPM
Rotor RPM

0.74

Blade Pitch Angle 0.913 Blade Pitch Angle 0.875 Blade Pitch Angle 0.903
Turbulence 0.919 Turbulence 0.898 Turbulence 0.923

Ambient Temp 0.922 Controller Hub Temp
Spinner Temp

0.901 Nacelle Dir, Wind Dir 0.921

Generator SlipRing Temp 0.926 Generator Phase1, 2, 3 Temp 0.9 Controller Hub Temp
Spinner Temp

0.913

BusBar Temp 0.916 Offset Angle 0.902 V2 0.903
VCP Temp 0.918 Nacelle Dir

Wind Dir
0.905 Generator Phase1, 2, 3 Temp 0.9

Nacelle Dir
Wind Dir

0.908 Nacelle Dir, Wind Dir 0.893 Offset Angle 0.9

Gearbox Temp 0.901 HVTrafo Phase1, 2, 3 Temp 0.89 Gearbox Temp 0.895
Nacelle Temp 0.905 Hydraulic Temp 0.883 Bearing Temp 0.893

Grid Choke Temp 0.897 V2 0.881 Nacelle Dir
Wind Dir

0.896

Offset Angle 0.892 Bearing Temp 0.864 Generator Temp 0.892
Inverter Phase1 Temp

Rotor Inv Phase1, 2, 3 Temp
0.888 Nacelle Temp 0.878 Hydraulic Temp 0.878

To provide an example of the proposed algorithm in a multivariate output
scenario, the predictors for the Rotor RPM and Generator RPM were computed. As
can be seen in Figure 3.18, the group composed by the Active Power, Wind Speed
and I2 retains the highest CPPS of 0.89 and, by adding the Blade Pitch Angle,
the score reaches 0.948. After the point of maximum curvature, the addition of
further variables like V2 or Turbulence to the set of predictors degrades the CPPS,
confirming that the optimal trade-off between the number of selected features and
predictive power is achieved.

Being the standard formulation of the PPS limited to the computation of the
predictive power with respect to a single target variable, the comparison was carried
out considering both the Rotor RPM and the Generator RPM as targets. Figure
3.19 and 3.20 show that the predictors for the two variables are the same and that
the scores are very similar, belonging the two features to the same homogeneous
group.

Also in this case the variables with the highest scores are the Wind Speed, Active
Power, and I2, with a PPS of 0.89, 0.88, and 0.88, respectively. Differently from the
CPPS results, the next most important feature is the Bearing Temp with a score of
0.68 and not the Blade Pitch Angle which has no predictive power at all.

The variables selected by the CPPS and PPS methods were also compared in
terms of MAE using the same MLP regressor model for the prediction of the Rotor
RPM and Generator RPM. By considering the Active Power, Wind Speed, I2 and
Blade Pitch Angle as predictors, the model achieves a MAE of 0.023. Training a
regression model considering the Active Power, Wind Speed, I2 and Bearing Temp,
instead, leads to a MAE of 0.046. The process of feature selection has improved the
performance of the model and also the prediction of the Generator RPM and Rotor
RPM.

These results highlight the advantages of the CPPS method which can consider
multiple combinations of variables as predictors and select the optimal combination

128 3. Framework for Energy Applications

$F
WLY
H�
3R
Z
HU
�

:
LQ
G�
6S
HH
G�
�,
�

%O
DG
H�
3L
WF
K�
$Q
JO
H

9�

7X
UE
XO
HQ
FH

%H
DU
LQ
J�
7H
P
S

2
II
VH
W�
$Q
JO
H

*
HD
UE
R[
�7
HP
S

*
UL
G�
&
KR
NH
�7
HP
S

%X
V%
DU
�7
HP
S

*
HQ
HU
DW
RU
�6
OLS
5
LQ
J�
7H
P
S

9&
3�
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
��
��
��
7H
P
S

*
HQ
HU
DW
RU
�7
HP
S

$P
EL
HQ
W�
7H
P
S

,Q
YH
UW
HU
�3
KD
VH
��
7H
P
S�

5
RW
RU
�,
QY
�3
KD
VH
��
��
��
��
7H
P
S

���

����

����

����

����

����

9DULDEOH

&
3
3
6

&336�������

Figure 3.18. CPPS computed for Turbine 1 considering the Rotor RPM and Generator
RPM as a target group. Each new variable on the x-axis adds to the previous ones,
forming the combined input group for which the CPPS is computed. The dashed line is
drawn in correspondence to the point of maximum curvature of the scores.

:
LQ
G�
6S
HH
G

$F
WLY
H�
3R
Z
HU ,�

%H
DU
LQ
J�
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
7H
P
S

5
RW
RU
�,
QY
�3
KD
VH
��
7H
P
S

5
RW
RU
�,
QY
�3
KD
VH
��
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
7H
P
S

5
RW
RU
�,
QY
�3
KD
VH
��
7H
P
S

*
HD
UE
R[
�7
HP
S

+
97
UD
IR
�3
KD
VH
��
7H
P
S

+
97
UD
IR
�3
KD
VH
��
7H
P
S

*
HQ
HU
DW
RU
�7
HP
S

*
UL
G�
&
KR
NH
�7
HP
S

+
97
UD
IR
�3
KD
VH
��
7H
P
S

%X
V%
DU
�7
HP
S

,Q
YH
UW
HU
�3
KD
VH
��
7H
P
S

9&
3�
7H
P
S

+
\G
UD
XO
LF
�7
HP
S

�

���

���

���

���

���

���

���

���

���

9DULDEOH

3
3
6

Figure 3.19. PPS computed for Turbine 1 considering the Rotor RPM as a target.

to maximize the score.
The CPPS was computed for all WTs in the wind farm and it is always the

case that the score converges after finding the optimal combination of variables
incrementally when the addition of further variables does not improve significantly
the results in terms of MAE.

3.1 Dimensionality Reduction in Energy System Sensor Networks 129

:
LQ
G�
6S
HH
G

$F
WLY
H�
3R
Z
HU ,�

%H
DU
LQ
J�
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
7H
P
S

5
RW
RU
�,
QY
�3
KD
VH
��
7H
P
S

5
RW
RU
�,
QY
�3
KD
VH
��
7H
P
S

*
HQ
HU
DW
RU
�3
KD
VH
��
7H
P
S

5
RW
RU
�,
QY
�3
KD
VH
��
7H
P
S

*
HD
UE
R[
�7
HP
S

+
97
UD
IR
�3
KD
VH
��
7H
P
S

+
97
UD
IR
�3
KD
VH
��
7H
P
S

*
HQ
HU
DW
RU
�7
HP
S

*
UL
G�
&
KR
NH
�7
HP
S

+
97
UD
IR
�3
KD
VH
��
7H
P
S

%X
V%
DU
�7
HP
S

,Q
YH
UW
HU
�3
KD
VH
��
7H
P
S

9&
3�
7H
P
S

+
\G
UD
XO
LF
�7
HP
S

�

���

���

���

���

���

���

���

���

���

9DULDEOH

3
3
6

Figure 3.20. PPS computed for Turbine 1 considering the Generator RPM as a target.

Conclusions

In this paper, we propose an unsupervised method for feature selection of multi-sensor
SCADA data in horizontal axis WTs.

The preliminary data preparation phase includes the definition of derived vari-
ables, outlier removal, and time series clustering for the identification of homogeneous
signals and scaling of the sensor signals.

Then, we propose the CPPS, a method for feature selection with a multivariate
formulation. This approach allows selecting combinations of features considering
their predictive power with respect to a group of target variables. In particular, the
CPPS is based on the error of a neural model that regresses the target variables by
considering a combination of the input features. In this work, we also propose an
algorithm for the selection of the combination of variables.

The methodology was tested on a year of data gathered from the SCADA system
of 9 WTs belonging to the same wind farm and the results are reported considering
the Active Power, Rotor RPM and the Generator RPM as target variables.

The results show that the CPPS method outperforms the PPS, achieving higher
scores by considering combinations of features and allowing the improvement of the
performance of regression models. The proposed algorithm converges to the smallest
set of predictors with the highest predictive power, exploring multiple sub-sets of
expanding variable combinations.

Moreover, the CPPS method is also more flexible than PPS, allowing to consider
multivariate inputs and multivariate outputs.

Finally, the proposed unsupervised approach for feature selection can be applied
to any set of multivariate time series, making it suitable, for example, also for other
energy systems.

130 3. Framework for Energy Applications

Table 3.7. PPS computed for three turbines in the same farm considering the Active Power
as a target.

Turbine 1 PPS Turbine 2 PPS Turbine 3 PPS

Generator RPM 0.752 Generator RPM 0.796 Generator RPM 0.795
Rotor RPM 0.743 Rotor RPM 0.788 Rotor RPM 0.783

Bearing Temp 0.66 Generator Phase1 Temp 0.613 Generator Phase3 Temp 0.664
Generator Phase1 Temp 0.653 Generator Phase3 Temp 0.613 Generator Phase1 Temp 0.663
Generator Phase3 Temp 0.653 Bearing Temp 0.572 Bearing Temp 0.656
Rotor Inv Phase1 Temp 0.568 Generator Phase2 Temp 0.462 Generator Phase2 Temp 0.53
Rotor Inv Phase3 Temp 0.553 Grid Choke Temp 0.384 HVTrafo Phase3 Temp 0.522
Generator Phase2 Temp 0.539 HVTrafo Phase1 Temp 0.306 Grid Choke Temp 0.504
HVTrafo Phase1 Temp 0.533 Rotor Inv Phase1 Temp 0.295 Rotor Inv Phase1 Temp 0.488
HVTrafo Phase3 Temp 0.533 Rotor Inv Phase3 Temp 0.293 HVTrafo Phase1 Temp 0.487

Grid Choke Temp 0.521 HVTrafo Phase3 Temp 0.246 Rotor Inv Phase3 Temp 0.484
Rotor Inv Phase2 Temp 0.518 Rotor Inv Phase2 Temp 0.2 Rotor Inv Phase2 Temp 0.447
HVTrafo Phase2 Temp 0.433 Gearbox Temp 0.196 HVTrafo Phase2 Temp 0.435

Generator Temp 0.393 BusBar Temp 0.153 Generator Temp 0.368
Gearbox Temp 0.385 Generator Temp 0.129 Gearbox Temp 0.343

Inverter Phase1 Temp 0.334 HVTrafo Phase2 Temp 0.095 BusBar Temp 0.253
BusBar Temp 0.29 Inverter Phase1 Temp 0.053 Inverter Phase1 Temp 0.165

VCP Temp 0.144 VCP Temp 0.038 VCP Temp 0.134
Blade Pitch Angle 0.14 Hydraulic Temp 0.019 Blade Pitch Angle 0.084

Hydraulic Temp 0.101 Generator SlipRing Temp 0.008 Hydraulic Temp 0.043
Hydraulic Pres 0.06 Blade Pitch Angle 0.002 Ambient Temp 0.0

3.2 Predictive Maintenance for Renewable Energy Sys-
tems

The big amount of data collected by sensor networks, as discussed in the previous
chapter, can contain information about processes, events and alarms, and provide
valuable knowledge and insight into the underlying dynamical systems. In fact, by
applying data-driven methods, it is possible to support strategic decision-making,
resulting in a reduction of O&M costs, machine faults, repair stops, and spare parts
inventory size. Moreover, predictive algorithms trained on collected data streams
can increase the life of critical components, production, and safety [352, 353, 354].
All the mentioned advantages are strongly linked to maintenance procedures which
directly affect the lifetime and efficiency of equipment by identifying faults and
avoiding shutdowns. Nowadays, these procedures have become vital for industries,
due to the growth in complexity of the interactions between different systems.
Generally, maintenance is divided in four categories [355, 356], namely:

• Corrective Maintenance (CM): maintenance procedure applied only when
equipment stops working. This is the simplest maintenance strategy since it
requires stopping the process and repairing/replacing the faulty components.

• Preventive Maintenance (PvM): maintenance procedure performed periodically
with a planned schedule in time or process iterations to anticipate equipment
failures. Also referred to as scheduled maintenance, this strategy can increase
O&M costs by scheduling unnecessary corrective actions.

• Predictive Maintenance (PdM): maintenance procedure that uses predictive
algorithms to determine when maintenance actions are necessary. PdM lever-
ages data collected from sensor networks describing the equipment condition
and overall operational state of the systems, allowing the early detection of
failures based on historical data.

3.2 Predictive Maintenance for Renewable Energy Systems 131

• Prescriptive Maintenance (RxM): maintenance procedure that provides useful
advice for making decisions and determining what actions to take to improve
and optimize the process, such as mobilizing personnel and order spare parts.
Not only RxM employs data-driven algorithms to predict the occurrence of
failures as for PdM but also recommends which actions to take to prevent such
failures.

A good maintenance strategy should improve the equipment condition, reduce failure
rates and minimize O&M costs while maximizing the life of the equipment and the
overall efficiency of the process. For this reason, PdM is the adopted strategy in
many scenarios, due to its ability to optimize the use and management of assets
[357, 358]. Moreover, since RxM is an extension of PdM that highly depends on the
underlying process and the set of possible available maintenance actions, PdM is
considered the preferred strategy to avoid failures and improve efficiency when it
comes to directly harness data coming from sensor networks.
Many works that propose PdM strategies have been putting increasing attention
on what is referred to as anomaly detection [359]. In the context of PdM, anomaly
detection has to goal to identify anomalous patterns that deviate from the normal
behavior of the system. Such patterns can represent early signs of failure and, if not
timely addressed, can lead to breakdowns and the failure of equipment. Over the
last years, PdM has been gaining prominence in multidisciplinary research groups,
becoming a key component in the context of I4.0 and the RE sector [123, 130, 360].
The next sections present two papers we published in the context of predictive
maintenance for RE systems. Specifically, the work in Section 3.2.1 [361] presents an
algorithm for anomaly detection in a production factory of photovoltaic cells, while
the paper in Section 3.2.2 [362] proposes an original unsupervised deep anomaly
detection framework based on GCNs and AEs to isolate and anticipate failures in
WTs.

3.2.1 Anomaly Detection in Photovoltaic Production Factories via
Monte Carlo Pre-Processed Principal Component Analysis

Introduction

In the last years, PdM has been receiving ever-increasing attention and is considered
fundamental in industrial applications. In fact, it contributes to guaranteeing healthy,
safe and reliable systems, as well as to avoiding breakdowns that could potentially
lead to a whole system shutdown.
As known, the main benefit of PCA lies in its capability to reduce the dimensionality
of data by selecting the most important features that are responsible for the highest
variability in the input dataset. PCA allows us to concentrate the analysis on a
compressed version of the original dataset without compromising the reliability and
robustness of a predictive model. Among other factors, a key quality in PCA is
the inherent capability of processing large multivariate datasets as customary in
industrial equipment sensor networks. As a result, PCA formed a field of choice in
predictive analytics in several use cases, e.g. maritime and transport applications,
as well as decision support systems in healthcare [363, 364].
On the other hand, the well-known disadvantage of PCA stems from the sensitivity

132 3. Framework for Energy Applications

to outliers in the data. In this respect, in the literature four known algorithms have
been very recently devised to sort outliers’ observations out, namely the spherical
principal component-based algorithm, PCA based on robust covariance matrix esti-
mation, robust PCA and the PCA projection pursuit algorithm [365].
To this end, based on measurements collected by the sensor network of a PV
production plant, the paper proposes Monte Carlo (MC) simulation as the prepro-
cessing stage to deal with outliers before applying PCA [366, 367]. In this respect,
the proposed approach is shown to be a valid alternative to relying on the classi-
cal IQR method to omit outliers when applying PCA for anomaly detection purposes.

Related works Recently, the scientific community has devoted much attention to
the use of data analytics and machine learning models in the operation domains,
e.g. manufacturing and energy management. In particular, many applications have
focused on PdM and anomaly detection [368, 369, 370].
In this context, industrial systems have adopted PCA for detecting anomalous
scenarios in their operational processes. In particular, Key Performance Indicators
(KPIs) are usually defined starting from the PCA model in order to trigger alarms
and prevent failures [371].
Many works focus on fault isolation techniques which are employed to classify
different occurring errors and to isolate the system variables mostly affected by them
[372]. Specifically, they often propose statistical methods for fault detection, like
Hotelling T 2 or squared prediction errors Q [373, 374].
Even though plenty of these works deal with error classification and isolation in
the context of anomaly detection and PdM, other papers and practical experiments
shed light on innovative strategies to preprocess the input data that will feed the
predictive model. To this end, MC simulation has been largely applied for data
preprocessing to define more robust models. For example, in [375] the authors
process geodetic data by applying MC simulation to perform uncertainty modelling
[376].
However, choosing the statistical method for MC simulation becomes difficult when
the involved dataset is highly affected by the presence of outliers. In this respect,
a robust estimation procedure has been investigated in [377]: the authors exploit
the median since it provides an estimator with the highest breakdown point and it
always guarantees a feasible solution for the considered optimization problem.
In general, MC simulation is used as a valid preprocessing strategy to successfully
manage uncertainty concerning experimental use cases in manufacturing and energy
management, namely for PdM [378, 379, 380, 381] or predictive analytics purposes
[382].
Moreover, the number of data points sampled by MC simulation is another crucial
parameter, since it could lead to inaccurate outputs [383]. This parameter is
particularly challenging to optimize since it strongly depends on the use case and
the quality of data. In [384] the authors test different MC simulations to determine
the relationship between the sample size and the accuracy of the sample mean and
variance.
Even though larger samples could provide for a better estimation of the input

3.2 Predictive Maintenance for Renewable Energy Systems 133

distributions, in [385] the authors demonstrated that a number of MC runs larger
than the sample size can be unnecessary or even harmful to the modeling of the
data.
Despite the clear advantage of such approaches, they often still need to be validated
in practice. So, to the best of the authors’ knowledge, this paper proposes the
application of MC simulation to a real PV production scenario, as an effective way
to preprocess the data stream coming from the sensors deployed throughout the
production site.
The related literature also reports preprocessing techniques for similar anomaly
detection scenarios based on the IQR method (e.g., [386]), which, however, offers only
the property of outlier removal and not the additional benefit of outlier replacement
that is consequential to applying MC simulation, as further discussed in Section
3.2.1.
The nex sections provide the use case description and the problem setting, followed
by our contribution in terms of exploiting MC simulation as an innovative approach
to data preprocessing with respect to the considered anomaly detection and PdM
application. Then, we discuss PCA for anomaly detection, present the experimental
setup and numerical results, and, finally, conclude the paper.

Problem setting

Enel Green Power needs to implement, in the production line of solar cells in the
3SUN Factory, an AI application capable of predicting faults relative to a piece of
process equipment – the so-called Automatic Wet Bench (AWB) machine –, namely
of predicting any malfunctioning of the fans that ventilate the different stations
within the machine. The data collected on the Manufacturing Execution System
(MES) are fed as input to the predictive analytics engine to predict faults.

Figure 3.21. PV cell production line in the 3SUN Factory.

Use Case In Figure 3.21 we show the process steps involved in cell production.
Each process equipment has a specific purpose: raw wafers enter the first machine
in the line, the so-called Wafer Inspection System (WIS), to check the quality of
the input wafers; then, they are subject to texturization and cleaning through the
AWB equipment; next, the Plasma Enhanced Chemical Vapor Deposition (PeCVD)
equipment is used for the deposition of a doped and un-doped layer of Amorphous
Silicon (aSi on both side of the wafers. Then, the Physical Vapour Deposition (PVD)
equipment is used for the sputtering process. Finally, the Screen Printer, Tester
and Sorter equipment are responsible, respectively, for collecting the electric charge
of the cell (fingers) and letting the flow between one cell and the other (Bus Bar)
in the assembled modules, testing the electrical I-V measurements of the cells and
classifying them depending on their performance.

134 3. Framework for Energy Applications

The process equipment we refer to in this paper to predict the occurrence of faults is
the AWB, where the wafers are chemically etched to roughen the surface to maximize
the quantity of absorbed light and therefore the cell efficiency.
Along the production line, two parallel AWB machines are installed, each consisting
of a loading station (the first one) and an unloading station (the last one) and,
midway between the two, several stations where the chemical processes are performed.
Within the AWB stage, the wafers are loaded onto specific containers called carriers,
which move from one station to another until the process ends; the carriers do
not enter all stations but only some of them, as the same task can be carried out
indifferently by one station or another, so that the carrier is moved by the automation
system to the first available station that can carry out the required task.
More specifically, the stations composing the production line serve three main
purposes: pre-conditioning, texturing and cleaning. Each station is equipped with a
sensor that records measurements when carriers enter and exit the station.
We now provide a brief description of the most frequently occurring fault inside the
AWB and for which we design a suitable predictive analytics strategy. Such a fault
is generally due to the malfunctioning of the fans that ventilate the different stations
within each AWB stage.
For each AWB stage, there exist two drying tanks that must work properly in
parallel and can never break down (not even alternatively), otherwise, the AWB
throughput would be halved, thus compromising the whole production line. Since
the fault episode is generally preceded by the occurrence of anomalous vibrations,
there is room for a suitable predictive analytics strategy aimed at anticipating the
occurrence of the fault through the detection of such vibrations. At a specific time
slot, an unexpected error may happen in one of its machines and block production
completely for several days.

Sensor Measurements The sensors mounted onto the production line stations
measure several relevant parameters characterizing each station, such as station
temperature, pump speed, flow speed, and ozone concentration level.
The measurements recorded by the sensors were collected only during the enter, exit
and dosing phases of each carrier, thus leading to a non-constant sampling frequency.
This produced many discontinuities of variable length in the sensor data streams,
making standard time series analysis impossible. For this reason, the collected
measurements were treated as an ordered set of samples rather than time series. To
capture the time evolution of carriers going through a line, each sample is composed
of the measurements coming from all the stations, collected during the enter, exit
and dosing phases of a carrier.
Let k stations out of the total number N account for the main path drawn by a
carrier entering the AWB stage to undergo pre-conditioning, texturing and cleaning.
The remaining (N − k) stations are parallel to the k principal ones and ensure the
robustness of the whole AWB stage in the following way: if one of the k stations fails,
there is at least a redundant station among the available (N − k) that is properly
working and can thus be entered by the carrier to undergo the whole production
process.
For the sake of simplicity and without loss of generality, we assume to have k stations

3.2 Predictive Maintenance for Renewable Energy Systems 135

only, and we neglect the remaining ones. Each station contains m sensors. Each
sensor measures the carrier up to t times.
The considered dataset collects the t measurements carried out by the m sensors in
the k stations over n batches or carriers, assuming a batch to account for a couple
of wafers flowing through the whole production line.
So we wrap all the available data into a structured dataset represented by a matrix
X with n rows and y := k ×m× t columns.
As our approach is completely data-driven, without losing generality and for the
scope of the model, hereinafter we assume k = 7 and m = 6. Moreover, we assume
t = 3, because each sensor measures the carrier three times while it is inside the
considered station.

Monte Carlo based pre-preprocessing

In this section, we illustrate a novel preprocessing approach based on MC simulation
and compare it with a commonly used method based on the IQR. This last is
considered as a reference and the goal is to prove that our approach is a valid
alternative to the IQR method. Since both these methods concern only the outlier
removal phase, we also briefly describe the preliminary preprocessing steps required
to standardize the data and handle missing values or flat signals.

Preliminary data cleaning Independently on the method, a preliminary data
cleaning and preparation stage is required before removing outliers. The following
steps are applied:

• signal filtering when the missing values are above 5% of the total number of
measurements. Above this threshold, data interpolation can lead to distortions
so we preferred to discard the involved signals.

• linear interpolation of signals when the missing values are less than 5% of the
total number of measurements.

• flat signals removal when the derivative is zero for at least 50% of the signal
length since constant measurements do not provide any meaningful information.

• signal standardization to make the scales of the different signals comparable.
This operation was achieved by subtracting the mean value and dividing it by
the standard deviation.

In the next sections, we describe the reference IQR method, followed by the
discussion of the proposed approach based on MC simulation.

IQR method The InterQuartile Range (IQR) method is a simple but effective
method used to identify outliers by isolating samples below the 25th percentile or
above the 75th percentile [387].

136 3. Framework for Energy Applications

Monte Carlo method In this paper, we propose an innovative method for
removing outliers based on MC simulation, which has been largely applied in
other scenarios like an estimation of sum, linear solvers, image recovery, matrix
multiplication, low-rank approximation, etc. [388]. In our case, the idea is to
generate new data points providing a more robust dataset by applying an estimator
to random samples extracted from the original dataset.
By using the median estimator, there is no need to remove outliers from the raw
data since this estimator is proven not to be affected by outliers [389].
Moreover, the size of the estimator dataset can be chosen arbitrarily, and can even
be greater than that of the original one.
In the next sections we discuss the choice of the proper estimator, the number
of samples used for MC simulation and the sliding window approach adopted
to preserve the temporal locality of the sensor signals. Finally, we present the
pseudocode illustrating the general preprocessing approach used to generate the new
estimator dataset as input to the PCA model.

Mean versus Median The mean and the median are considered to be the most
reliable estimators of the central tendency of a frequency distribution. Choosing
the appropriate estimator is a challenging issue when using MC simulation since
different results can lead to different correlations between signals, and thus different
principal components when applying PCA. Let

xi = (xp,z,w) p = 1,··· ,k
z = 1,··· ,m
w = 1,··· ,t

(3.2)

denote the i-th row of the n× y data matrix X accounting for the measurement
of sensor z during phase w in station p relative to batch i. In this way, each column
fj (j = 1, · · · , k×m× t) of X describes the temporal evolution of the measurements
recorded by a specific sensor in a station during the processing of the batches.
Let

RIQR = [rIQR
ij] (3.3)

with i, j ∈ {1, . . . , n}, i ̸= j, −1 ≤ rIQR
ij ≤ 1 and

rIQR
ij =

σfifj

σfi
σfj

(3.4)

denote the correlation matrix computed between the columns of the dataset resulting
from the IQR preprocessing. Recall that σfifj

denotes the covariance between the
columns fi and fj , whereas σfi

denotes the variance of the i-th column.
Let

RMC,median = [rMC,median
ij] (3.5)

and
RMC,mean = [rMC,mean

ij] (3.6)

with (i, j ∈ {1, . . . , n}, i ̸= j), formulated as above, denote the correlation matrix
computed between the columns of the dataset resulting from the median-based and

3.2 Predictive Maintenance for Renewable Energy Systems 137

the mean-based MC simulation preprocessing methods, respectively.
Let

∆ := [δij] = RIQR −RMC (3.7)

account for the deviation between the two matrices, letting RMC denote alterna-
tively the correlation matrix relative to the median-based or the mean-based MC
preprocessing method.
To evaluate which estimator suits our purpose best, we run the following statistical
hypothesis test: {

H0 : δij < α ∀i, j

H1 : δij ≥ α ∀i, j,
(3.8)

considering the difference between the correlation matrix computed after the appli-
cation of the IQR method and the correlation matrix of the new dataset resulting
from the previous section (that is, the MC dataset).
We can state that there exists a significance level α such that δMC,median

i,j < α, ∀i, j,
and ∃(i, j) : δMC,mean

i,j ≥ α, allowing us to choose H0 only under the median-based
MC method.
In particular, in the considered use case, the difference in the correlation matrices
considering the median-based MC method is less than α = 6 · 10−2 in absolute
value and this proves to be a consequence of the median insensitivity to outlier
observations.

Choosing the size of the Monte Carlo sample Choosing the proper number
of samples has a significant effect on MC simulation since it considerably improves
estimation reliability. We recall that samples are chosen out of the data matrix
X, where xi, as defined in (3.2), represents a generic row of X accounting for the
measurement of sensor z during phase w in station p relative to batch i.
Up to the authors’ knowledge, the literature claims that increasing the sample
size reduces the variance and decreases the noise of the simulation results method
[390]. Calibrating the sample size depends on many factors such as dataset size, the
pursued objective and the complexity of the phenomenon the designer is modeling
[391]. Therefore, we have tested different sample sizes before defining a methodology
aimed at finding a suitable number of samples for each round in MC simulation.
By comparison with the highly dispersed original dataset, by increasing the number
of samples we obtain a proportional decrease in variance. The desired sample size
will allow the removal of only the outliers and at the same time preserve the rest of
the information contained in the original dataset.
By excessively increasing the number of samples, the risk is that a significant part
of the information is lost, thus affecting the accuracy of the PCA model. To select
the proper sample size for MC-based outlier removal, we evaluate the impact this
parameter has on the PCA model. To demonstrate that MC preprocessing is a
valid alternative to the IQR-based preprocessing method, we compared the PCA
models resulting from both approaches for different sample sizes, ranging from 1
to 100. In particular, we measured the proportion of the variance of the MC-PCA
components that are explained by the IQR-PCA components in terms of R2. In
this way, high values of R2 correspond to similar PCA models, thus confirming the

138 3. Framework for Energy Applications

equivalent performance of the two preprocessing methods.
From Figure 3.22, it is evident that by considering 3 samples we obtain the highest
value of R2 (around 97.5%), thus demonstrating that, by choosing the proper sample
size, the MC preprocessing method achieves very similar results to those obtained
by the IQR-based preprocessing method.
Figure 3.22 presents the results of the previous steps where it is experimentally
proven that PCA with 3-sample size has the best results.

Figure 3.22. Testing R-squared for different sample sizes.

Preserving Trend Properties through a Suitable Choice of the MC Sample
Since PCA is based on the linear correlation among variables, any trends intrinsic
to the signals themselves will not be considered. For this reason, random sampling
among all the batches for median computation may result in the loss of the temporal
dependencies characterizing signals.
Therefore, we refined the procedure for the MC sample selection accordingly. In
particular, for each batch in the original dataset, we considered a time window
centered around the batch itself. Samples considered for the median computation
were therefore extracted inside the window, thus preserving the temporal locality
among subsequent batches.

Pseudocode for the Preprocessing Method based on MC Simulation The
pseudocode reported in Algorithm 2 illustrates the steps required to generate a new
estimator dataset by using a preprocessing procedure based on MC simulation.

Principal component analysis for anomaly detection

PCA is a well-known method commonly used to reduce the dimensionality of a
dataset, by transforming the original set of variables into a smaller one that still
contains most of the information in terms of variance. In particular, it is a linear
dimensionality reduction method based on SVD that projects the data on a lower

3.2 Predictive Maintenance for Renewable Energy Systems 139

Input X : The original n× y data matrix
Output X̂ : The new estimator n̂× y data matrix
Parameter n̂ : The size of the new estimator dataset
Parameter b : The number of samples considered for MC simulation
i ← 0
while i < n̂ do

idx ← generateRandomInteger[b, n− b− 1]
for j in range[0, y − 1] do

window ← X[idx− b : idx + b, j]
X̂[i, j] = ← median(window)

end
i ← i + 1

end
Algorithm 2: Preprocessing algorithm based on MC simulation.

dimensional space.
Being n̂ the number of samples and let y the number of variables, the n̂× y data
matrix X̂ is centered (by removing the mean of every feature) and SVD is applied
on its covariance matrix, thus leading to a subset of orthonormal dimensions, namely
the Principle Components (PCs) [392]. Since SVD computes PCs incrementally,
their number depends on the pre-defined stopping criterion in searching for the
next PC. A common strategy is to define the number of PCs as a function of the
minimum variance information to be preserved with respect to the original dataset
to compress the data sufficiently without losing too much information.
In this paper, we use PCA to perform anomaly detection. For this purpose, it is
necessary to isolate a subset of data points associated with the normal behavior of
the equipment. This subset is used as input to the PCA algorithm to compute a
set of PCs considering as a stopping criterion high variance preservation (at least
90%). Having defined the y × z projection matrix Π composed by the z PCs, it is
now possible to project each data point x̂i on a lower dimensional space as

ci = x̂iΠ, (3.9)

where ci is the z-dimensional compressed version of x̂i. Then, we transform ci back
to its original space by multiplying it by the inverse of the matrix Π (being Π or-
thonormal, the inverse coincides with its transpose), thus obtaining the reconstructed
version of the input data

x̂′
i = ciΠT . (3.10)

Finally, we compute the reconstruction error of the sample x̂i as

ei = |x̂′
i − x̂i|, (3.11)

where the vector ei contains the residual of every input feature. Since the model is
trained on normal behavior data, the reconstruction error should be low for samples
belonging to the same distribution. However, during an anomalous scenario, the
error is expected to be high since the associated samples will deviate from such
distribution. By considering these vectors as KPIs for the stations in the production

140 3. Framework for Energy Applications

lines, it is not only possible to detect anomalies when high errors occur, but also go
back to the sensors mostly involved by inspecting the residuals of each single input
feature.

Remark. Thanks to the property of outlier replacement, the median-based approach,
the optimal choice of the sample size and the preservation of any temporal dependen-
cies characterizing the input signals, the proposed MC-based preprocessing approach
turns out to be a robust alternative to IQR preprocessing. In fact, as can be seen
from the experimental results, using median-based MC simulation in place of the IQR
method for the preprocessing stage yields very similar results, although the number
of PCs obtained when applying PCA after MC simulation is slightly higher than the
number of PCs obtained when applying PCA after the IQR method.

Remark. The proposed preprocessing approach based on MC simulation is more
suitable to the scenario of energy plants whose data require extensive cleaning. In
this respect, if the input data are not cleaned enough, the IQR method, by isolating
samples below the 25th percentile or above the 75th percentile, may end up removing
a significant part of the original dataset, thus potentially compromising the quality of
the subsequent data analytics task. Instead, MC simulation overcomes this obstacle
by enabling the data scientist to tune the dimension of the dataset resulting from
preprocessing according to the technical specifications of the considered task.

Experimental Results of Anomaly Detection

In the experimental phase, we compared the results of the proposed anomaly
detection approach considering both the IQR and MC preprocessing methods. In
both scenarios, the relevant data were collected from the MES of the 3SUN Factory
and a set of normal behavior samples was defined for training the PCA model.

Training and test sets According to the data format of the matrix X specified
in Equation (3.2), we isolated a week of normal condition samples as training set,
going from July 8th, 2020 to July 15th, 2020. This period was labeled as a period
of standard operation by the operators working in the plant, together with other
periods going from November 1st, 2020 to November 14th, 2020 and from May 1st,
2020 to May 8th, 2020, respectively, which we considered as test sets. The operators
reported a fault in the plant on July 4th, 2020, so we isolated 24 days of data before
the fault as a further test set to see if the proposed model detects the anomaly,
possibly in advance.

Preprocessing Phase Before the application of the anomaly detection approach
based on PCA, we preprocessed the dataset as described in Section 3.2.1. In
particular, 10 signals were filtered since they were completely flat, 12 signals were
discarded since they presented an excessive rate of missing values, and 8 signals were
linearly interpolated. After this phase, the dataset counted 36 variables to which
the two outlier removal methods were applied.

3.2 Predictive Maintenance for Renewable Energy Systems 141

Outlier Removal Results From the results, it is evident that both the IQR
and MC methods were able to filter outliers successfully. In Figure 3.23(a), the
original sensor signals are plotted to highlight the presence of outliers, while in Figure
3.23(b) and Figure 3.23(c), respectively, the preprocessed signals after the IQR and
MC outlier removal methods are presented. It is important to notice that the IQR
method does not handle the substitution of outliers (e.g., by interpolation) and it
is limited to their identification and filtering. The MC method, instead, handles
the presence of outliers by replacing all data points with the median over a sliding
window, without requiring any additional substitution phase for the filtered values.

Anomaly Detection Results The PCA algorithm was run onto the two scenarios,
namely considering an IQR and MC preprocessing phase, by setting as stopping
criterion a minimum of 90% of explained variance. In the case of IQR, the PCs
computed by the PCA algorithm were 16, while using the MC method led to 19 new
dimensions.

Testing in Normal Operating Conditions The robustness of the anomaly
detection model has been tested on normal behavior conditions (Figure 3.24) in
a period going from November 1st, 2020 to November 14th, 2020, namely on the
data collected during the week following the training period. Figure 3.24(a) plots
the reconstruction errors of the model without preprocessing, while Figure 3.24(b)
and Figure 3.24(c) display, respectively, the residuals considering IQR and MC
for preprocessing. In all scenarios, the reconstruction errors are never persistently
exceeding a threshold of 20 units, which was taken as a reference considering the errors
computed on the training data. In fact, the operating conditions are very similar to
the normal behavior period on which the model was trained and demonstrate that
there are no substantial differences between the two preprocessing methods.

Testing in Anomalous Conditions As a final step, we evaluated the model
in a critical period going from June 20th, 2020 to July 8th, 2020, during which a
technical problem led to equipment failure, as reported by the operators. Figure
3.25 shows the residuals of the model considering no outlier removal phase (Figure
3.25(a)), the IQR (Figure 3.25(b)) and the MC (Figure 3.25(c)) preprocessing
methods. In the proximity of the failure event (on July 4th, 2020), the anomaly is
detected by the residuals drastically exceeding the training reference threshold of 20
units, anticipated by another reconstruction error spike on July 3rd, 2020. Without
outlier removal, the residuals never persistently exceed the threshold in the period
preceding the fault. When considering the IQR and MC methods, instead, residuals
above 20 units are already frequent starting from June 20th, 2020, anticipating the
fault by more or less two weeks. As for the normal behavior scenario, also in an
anomalous period, the two preprocessing methods demonstrated their similarity by
achieving comparable results.
It is important to notice that it is possible to isolate the sensors of the stations that
are mostly related to anomalous conditions by inspecting the residual of each input
feature of the model. In this anomalous period, stations 12 and 13 were isolated
by looking at the large residuals two weeks before the fault. During the fault itself,

142 3. Framework for Energy Applications

(a)

(b)

(c)

Figure 3.23. Figure (a) shows the sensor signals without the removal of outliers, while
Figure (b) and Figure (c) represent the signals over time after the IQR and MC methods
were applied respectively for the outlier removal phase.

instead, stations 19 and 20 were involved according to the model reconstruction
errors. The residuals two weeks before the fault and the residuals during the fault are
associated with different stations since the failure of the system caused measurement
errors not only to the most involved stations, namely 12 and 13, but also to other
stations, namely 19 and 20.

3.2 Predictive Maintenance for Renewable Energy Systems 143

(a)

(b)

(c)

Figure 3.24. Figure (a) shows the KPIs associated with all sensors without the removal of
outliers in a normal operating condition period, while Figure (b) and Figure (c) represent
the KPIs (3.11) over time after the IQR and MC methods were applied respectively for
the outlier removal phase.

Discussion

The proposed method for data preprocessing based on MC simulation exhibits the
following features:

• preserving temporal locality with respect to the training dataset;

144 3. Framework for Energy Applications

(a)

(b)

(c)

Figure 3.25. Figure (a) shows the KPIs (3.11) associated to all sensors without the removal
of outliers before and after the break, while Figure (b) and Figure (c) represent the KPIs
(3.11) over time after the IQR and MC methods were applied respectively for the outlier
removal phase.

• outlier removal;

• outlier replacement, by contrast with traditional methods which are limited to
outlier detection only (for example methods based on z-scores [393] or IQR
techniques [394]).

3.2 Predictive Maintenance for Renewable Energy Systems 145

As discussed in Section 3.2.1 and confirmed in [389], the median was chosen as
the most accurate estimator to obtain a suitable dataset using MC simulation to be
provided as input to the PCA-based model. In particular, the median-based MC
method proved to be more effective against outlier observations with respect to the
mean estimator.
Moreover, we selected the optimal sample size for MC simulation by measuring the
proportion of the variance of the MC-PCA components that are explained by the
IQR-PCA components in terms of R2, thus confirming the equivalent performance
of the two preprocessing methods. This was motivated by many considerations in
the literature which report preprocessing techniques for similar anomaly detection
scenarios based on the IQR method [386]. This analysis led to an optimal value of 3
samples to be considered for the median computation. In particular, we adopted a
sliding window sampling approach to preserve the temporal locality of subsequent
batches.
From the results in Section 3.2.1 it is evident that the IQR and MC-based preprocess-
ing methods produce similar results, demonstrating their capability to successfully
deal with outliers. Nevertheless, they present substantial differences. In fact, a
standard method like IQR is limited to isolating outliers and possibly removing
them from the dataset. This is a limitation because filtered observations generate
missing values which require a substitution algorithm (e.g. mean imputation [395],
KNN [396], linear interpolation [397]). The MC method, instead, intrinsically deals
with outlier substitution by computing the median of randomly selected points, thus
generating a new estimator dataset with an arbitrary number of samples.
The PCA models for anomaly detection demonstrated their capability to successfully
anticipate a fault in the equipment as shown in several other works and practical
experiments [368, 369, 370]. In particular, two PCA models were trained, respec-
tively, on the IQR and MC preprocessed datasets. Both models highlighted an
anomalous condition almost two weeks before the equipment failure by producing
KPIs (residuals) above a reference threshold which was used to discriminate between
healthy and anomalous states of the equipment as done in [398].
Moreover, it is important to notice that, without any preprocessing, the algorithm
is unable to detect the anomalies with such an advance and is limited to spotting
only the occurrence of the actual fault, which is also detected by the IQR and MC
approaches.
Both models were also tested in standard operating conditions to prove their robust-
ness to false alarms. In fact, in normal conditions, the residuals of the models never
exceed the reference threshold persistently.
Finally, by inspecting the residual of each input feature of the model, the proposed
approach allows the isolation of the sensors of the stations that are subject to
anomalous conditions.
The authors have selected a reference period to calculate the average downtime for
the AWB stage of the production line shown in Figure 3.21, and then to compute
an estimate of the AWB downtime reduction resulting from the adoption of our
predictive model.
Considering that only 50% of the predicted machine-down events can be avoided –
in fact, only in some cases it is possible to take advantage of scheduled preventive
maintenance to repair the equipment in advance –, the authors measured a reduc-

146 3. Framework for Energy Applications

tion in AWB downtime by 0.55%. Assuming to extend the implementation of the
predictive model to the entire equipment of the 3SUN production line (as shown in
Figure 3.21), the authors expect an overall downtime reduction between 1% and 2%,
which corresponds to an increase in the annual PV panel’s production in the order
of approximately 1-2 megawatts.

Conclusion

In this paper, we have presented a use case of robust anomaly detection applied to
the scenario of a PV production factory – namely, Enel Green Power’s 3SUN solar
cell production plant in Catania, Italy – by considering a MC based preprocessing
technique.
The proposed preprocessing algorithm demonstrated its ability to handle outliers
like other standard methods, with the additional advantage of intrinsically dealing
with outlier substitution and taking into account the temporal locality of subsequent
samples.
After preprocessing, we trained an anomaly detection model based on PCA and
defined a KPI for each sensor in the production line based on the model errors. In
this way, by running the algorithm on unseen data streams, it was possible to isolate
anomalous conditions by monitoring the KPIs and virtually trigger an alarm when
exceeding a reference threshold.
The proposed approach was tested on both standard operating conditions and an
anomalous scenario. In particular, it successfully anticipated a fault in the equipment
with an advance of almost two weeks, but also demonstrated its robustness to false
alarms during normal conditions.
Finally, given the data-driven nature of the approach and its robustness to outliers
and irregular sampling frequencies, this approach could be applied to multiple lines
in the production plant. In fact, as future work, we look forward to testing the
proposed method on multiple types of equipment to further validate its scalability.

3.2.2 Deep Anomaly Detection in Horizontal Axis Wind Turbines
using Graph Convolutional Autoencoders for Multivariate
Time Series

Introduction

Wind energy is possibly one of the game-changer in future decarbonization scenarios,
because of a plurality of factors. To mention but a few, incoming generations of
multi-MW Wind Turbines (WTs) [399], the maturity of technology and infrastruc-
tures, and the cost competitiveness even in off-shore applications [400, 401, 402].
As reported in Hameed et al. [403], the most critical elements in WT energy convert-
ers reside in powertrain components, subject to highly irregular loads driven by wind
turbulence and extreme weather conditions. As such, the fatigue loading of major
structural components can be remarkably greater and peculiar when compared to
other rotating machines.
Therefore, second to CAPEX investments are Operation and Maintenance (O&M)
costs, being the most frequent faults on electric and control systems, followed by
blades and hydraulic groups [404, 405]. In addition, failures (typically in generators

3.2 Predictive Maintenance for Renewable Energy Systems 147

and gearboxes) entail high repair and replacement costs and result in long downtimes
with significant loss of production. Remedial approaches to face O&M challenges
advocate Condition-Based Monitoring (CBM) strategies capable of early detection
and isolation of incipient faults. CBM is a key ingredient to enable condition-based
maintenance, able to outperform the on-schedule state-of-the-art, in a view to identi-
fying (at early stages) component degradation and limit unnecessary outage of WTs.
In mechanical systems, CBM is typically based on the acquisition of high-frequency
data (e.g., vibrational analysis), possibly processed through a variety of methods
(see [124] for a recent review). However, this strategy suffers from several limitations
as it requires the installation of additional sensors on WTs and specific data in-
frastructure, in fact, discouraging the implementation of high-frequency acquisition
systems [403, 406].
On the other hand, modern WTs are integrated with sensor networks as part of
SCADA systems for monitoring power-train status (e.g. bearing temperature, lube
oil sub-system, etc.) with standard practice to record 10-minute averaged values
and other statistics of the sensor time series. CBM of wind power generation plants
through analysis of routinely collected SCADA data is envisaged as a viable means of
forestalling expensive failures and optimizing maintenance through the identification
of faults at the earliest possible stage [407, 408]. The challenge to operators is, there-
fore, in identifying the signature of failures within data streams and disambiguating
those from other behavioral factors. The strong heterogeneity of signals, together
with the loss of high-frequency temporal dependencies caused by the 10-minute
averaging, makes the task very demanding [409].
In view of the lack of a comprehensive physical or mathematical model of WT
operations, many data-driven methods based on 10-minute SCADA were recently
proposed (see [122] for a systematic review). Probabilistic methods fail in modeling
the proper temporal dependencies (and dynamics) in sensor networks [410]. For this
reason, to take into account signals of mutual non-linearity and causal dependencies
among WT components, most of the methods appeared to date rely on the use of
NNs [411].
In the field of early fault detection, NNs are often employed to learn the normal
operating conditions of the system and detect incipient faults by monitoring the
real-time deviations from the standard behavior. The common assumption is that
failure occurrences reflect a change of correlation among signals, causing a high
multivariate reconstruction error.
To this end, several neural architectures have been proposed to capture anomalous
scenarios based on prediction errors, where the neural models regress a target variable
on a multivariate input. For example, approaches based on CNNs [409] have been
developed, together with space-time fusion NNs combining convolutional kernels
with recurrent units, such as LSTM or GRU, to extract multi-scale spatial and
temporal correlations [412, 413, 414].
However, as reported in [415, 416], the standard convolutional operation of CNNs
restricts the model to consider only local spatial structures in the signal time series
rather than the general domain of the process. In addition, recurrent NNs for se-
quenced learning require iterative training, which may suffer from error accumulation,
difficult training, and an increase in computational costs [415].
As a promising alternative to regression models, AE architectures have been recently

148 3. Framework for Energy Applications

employed in unsupervised anomaly detection, given their ability to extract salient
features characteristic of normal operating conditions. Examples of such architec-
tures include deep AEs, denoising AEs, LSTM-based AEs, and CNN-based AEs
[417, 157, 418, 419].
In this paper, we propose an original unsupervised deep anomaly detection framework
that has at its core a neural architecture combining AEs and GCNs. Both AEs
and GCNs have recently been employed for traffic forecasting or shape coding of
buildings in maps where the graph formulation is intrinsic in the application domain
[420, 421, 422]. Instead, we propose to adapt the formulation to multivariate time
series, by modeling the sensor network as a graph where each node represents a
sensor with specific feature vectors extracted from its time series. Owing to its
multivariate formulation, we advocate the method to be able to analyze contextual
anomalies in sensor networks [419].
In detail, we introduce a Graph Convolutional Autoencoder for Multivariate Time
series (MTGCAE), composed by an encoder and a decoder based on GCNs adapted
to multivariate time series. By representing the data as graphs, the structural
information can be encoded to model the relations among entities and furnish more
promising insights underlying the sensor data measurements, outperforming standard
CNNs, especially in modeling arbitrarily structured systems like sensor networks
[423, 424, 425].
To perform anomaly detection, the network is trained to learn the normal behavior
of the system in an unsupervised fashion. By defining local and global indicators
based on the model reconstruction errors, the framework triggers warnings after
the application of a four-stage threshold method that aims at minimizing false
alarms during normal operating conditions. In fact, only significant model errors
are considered by filtering individual spikes and transient disturbances, allowing the
generation of sensor-level warnings that isolate the assembly/sub-assembly mostly
involved in the anomaly.
We tested the model on SCADA data gathered from 4 WTs belonging to the same
wind farm, with a nominal power of 2 MW each [426]. The results showed that the
proposed model can anticipate 10 SCADA log alarms with an average time to failure
of about 23 days involving some of the most critical components, without trigger-
ing any false alarms. Furthermore, to validate the effectiveness of the model, two
recently proposed neural architectures have also been applied to the same dataset,
one based on an LSTM AE [418] and one on the combination of CNNs, LSTM cells
and attention mechanisms [414]. The comparison confirms that the proposed model
outperforms these two approaches in terms of evaluation metrics.
The rest of the paper presents the proposed MTGCAE neural architecture and
discusses the building blocks of the deep anomaly detection framework. Then, we
describe the case study and the obtained results, and, finally, we summarize the
present work and draw our conclusions.

Neural Architecture

In this chapter, we describe the proposed neural architecture, namely a Graph
Convolutional Autoencoder for Multivariate Time series, which is formulated as a
combination of GCNs and AEs adapted for multivariate time series.

3.2 Predictive Maintenance for Renewable Energy Systems 149

Graph Convolutional Autoencoder for Multivariate Time Series (MT-
GCAE) We propose a neural architecture based on the combination of GCNs
and AEs, namely a Graph Convolutional Autoencoder for Multivariate Time series
(MTGCAE), to exploit the extraction of multi-scale spatial and temporal correlations
by encoding data as graphs.
In particular, as shown in Figure 3.26, the neural architecture consists of a multi-layer
GCN which uses as input a graph representation of the sensor network. Each node
in the graph represents one of the N signals and the edges quantify the degree of
correlation between pairs of time series. More specifically, as input feature matrix
X we consider a sliding window which is a N × F matrix. In this way, the feature
vector xi associated with the i-th node (i.e. the i-th sensor in the SCADA system)
is composed by the values of the i-th time series in a time window of length F . As
for the adjacency matrix A, we define the entry (i, j) as the Mutual Information
(MI) between the i-th and j-th signals or nodes in the graph sensor network [427].
The layers of the GCN are divided into an Encoder and a Decoder, each of which
can be composed of multiple layers. Following the typical structure of AEs, the
Encoder compresses the input to a latent representation, while the Decoder tries to
reconstruct the original input as accurately as possible. Unlike standard AEs, here
we adapt the formulation given in Equation 2.113 and 2.114 in order to consider as
input a feature matrix instead of a vector.
With reference to the GCN layer formulation in Equation (2.112), the output He

(l+1)

of the l-th Encoder layer can be written as function of the previous layer output
He

(l) and the adjacency matrix A as:

He
(l+1) = f(He

(l), A) = σ(D
1
2 ÂD

1
2 He

(l)We
(l)) (3.12)

where We
(l) is the trainable weight matrix of the layer and σ is the ReLu activation

function [428]. Considering an Encoder with Le layers, we have that He
(0) = X and

that He
(Le) = H, where H is an N ×K matrix representing the compressed version

of the input feature matrix (K < F) after passing through the Encoder.
The Decoder, instead, maps the compressed feature matrix back to its original space
and can be formulated in a mirrored way as:

Hd
(l+1) = f(Hd

(l), A) = σ(D
1
2 ÂD

1
2 Hd

(l)Wd
(l)) (3.13)

where the subscript d is adopted to discriminate Decoder matrices. Considering Ld

layers, we have that Hd
(0) = H and that H(Ld) = X′, where X′ is the reconstruction

of the input feature matrix X.
Similarly to AEs, the reconstruction error L = ||X′ − X||2F is minimized during
training using the Backpropagation algorithm.
The MTGCAE is trained to reconstruct the sensor signals assuming a reference state.
When reapplying it to unseen data during anomalous conditions, we expect the
prediction of the trained network to deviate from the actual signals, thus generating
residuals.

Deep Anomaly Detection Framework

In this chapter, we discuss the main steps of the proposed deep anomaly detection
framework shown in Figure 3.27. First, we describe how the monitored signals

150 3. Framework for Energy Applications

Figure 3.26. Detail of the proposed MTGCAE neural architecture. Starting from N
sensor signals, the adjacency matrix A is computed through MI and a sliding window
X of length F is extracted as input for the GCN Encoder. The compressed output
representation H, together with the adjacency matrix A, are used by the GCN Decoder
to produce a reconstruction of the input signals X′.

are preprocessed and the proposed MTGCAE model application. Then, we define
global and local health indicators together with a four-stage threshold approach for
anomaly detection.

Figure 3.27. Diagram of the proposed framework for deep anomaly detection.

3.2 Predictive Maintenance for Renewable Energy Systems 151

Signal Preprocessing Before the training of the proposed neural architecture,
all monitored signals are preprocessed by deleting the records having missing values.
When few isolated points, a linear interpolation was applied without introducing
distortion in the data [151].
Then, signals presenting high levels of noise were smoothed using the Savitzky–Golay
filter [429].
Finally, extreme outliers were filtered using the 5-sigma rule and data was scaled
using the min-max normalization.

MTGCAE Model To take into account the temporal dependencies in time
series, data are explored using sliding windows. Given the data matrix Z =
(z1, . . . , zi, . . . , zT)T , where zi is the i-th N -dimensional multivariate sample, with
N the number of signals and T the number of time observations, the i-th sliding
window is an N × F matrix defined as:

Si = (zi−F, zi−F+1, . . . , zi)T , i = (F, F + 1, . . . , N) (3.14)

where F is the length of the window. As a consequence, the dataset S is structured
in successive w = T − F + 1 sliding windows:

S = (S1, . . . , Si, . . . , Sw)T (3.15)

To isolate the reference period used to train the proposed MTGCAE model for
anomaly detection, as discussed in [419], we employed an unsupervised approach
based on the assumption that the hidden layers of deep AEs are capable of capturing
intrinsic properties of the majority of the data, representing the normal operation.
In detail, to sample a subset Sn of normal behavior windows, we trained the proposed
MTGCAE architecture on all windows in S to learn the most common patterns in
the data. Downtimes caused by failures are not captured by the model since rare
operating conditions, thus generating high model residuals during their occurrence.
In this way, it is possible to isolate outages in an unsupervised manner and exclude
them from Sn.
To prevent fault precursors from being included in the dataset of standard behavior
Sn, we exclude all windows falling in a potentially anomalous time period preceding
each downtime consisting of half the Mean Time Between Failure (MTBF), since
further away from the last repair.
Once the normal operating conditions are isolated, the MTGCAE model is trained
on Sn and employed for anomaly detection and early fault prediction.
Based on the above, we split Sn into training Strain and validation Sval both
containing only standard behavior windows, and a testing set Stest which includes
both normal and anomalous windows. In particular, the model is trained for E
epochs using the Adam optimizer, considering early stopping to avoid overfitting
[430].
It is important to notice that the latent representation H of the MTGCAE directly
depends on the parameter K, which should be smaller than the window size F to
compress the inputs properly but should also be large enough to capture the most
common patterns in the data.
Another crucial parameter is the window size F , which defines the temporal depth

152 3. Framework for Energy Applications

of the model. If too small, it will capture only small-scale local patterns and, if
too large, it will process excessively wide time windows and fail to capture their
temporal patterns.

Global Mahalanobis Indicator (GMI) and Local Residual Indicators (LRIs)
The errors of the MTGCAE model are used to specify a rule to warn as early as
possible about incipient anomalies. To this end, we define the Global Mahalanobis
Indicator (GMI), reflecting the operating status of the whole sensor network, and a
Local Residual Indicator (LRI), for each monitored variable.
The GMI is computed as the distance between the model multivariate reconstruction
error and the reference multivariate probability distribution of the errors obtained
on the validation set Sval using Minimum Covariance Determinant [157]. The LRI
for each signal is, instead, defined as its specific reconstruction error.

Four-stage Threshold To generate a prompt warning before the occurrence
of failures and, at the same time, reduce false alarms during normal operation,
a multi-stage threshold is designed for the GMI and LRIs. In particular, as in
[410], it evaluates the magnitude of the model errors to detect deviations from
standard conditions but also considers their duration in time to attenuate the effect
of individual spikes and transient disturbances. To make the warnings produced by
the model more robust to false alarms, we apply a four-stage threshold, considering
first the GMI and, then, the LRIs.
The four sequential filtering steps applied to the local and global indicators are the
following:

Two-stage threshold on GMI:

1. filter GMI values below a threshold dm to consider only significant multivariate
reconstruction errors;

2. filter GMI values that have a duration less than F to consider only residuals
persistent in time for at least the length of the model input sliding window;

Two-stage threshold on LRI:

3. for each signal i, filter LRI values below a threshold di to consider only
significant reconstruction errors;

4. for each signal i, filter LRI values that have a duration less than F to consider
only residuals persistent in time for at least the length of the model input
sliding window.

When the conditions of all four stages are satisfied in the presented order, the
model triggers a warning for the sensor having the highest LRI.

Experimental Results

In this section, the proposed fault detection framework is validated using the open
dataset available at [426]. More details can be found below.

3.2 Predictive Maintenance for Renewable Energy Systems 153

Dataset Description The data is collected from four WTs belonging to the same
wind farm, each having a diameter of 90 m, a maximum rotor speed of 14.9 rpm,
and a maximum rated power of 2 MW at a nominal wind speed of 12 m/s. The wind
farm is ranked class 2 according to the standard IEC 61400 [431]. The complete
description of the technical information of the WTs is given in Table 3.8.

Table 3.8. Technical information of each turbine.

Rated power (kW) 2000
Cut-in wind speed (m/s) 4
Rated wind speed (m/s) 12
Cut-out wind speed (m/s) 25
Rotor diameter (m) 90
Rotor swept area (m2) 6362
Number of blades 3
Max rotor speed (rpm) 14.9
Rotor tip speed (m/s) 70
Rotor power density 1 (W/m2) 314.4
Rotor power density 2 (m2/kW) 3.2
Gearbox Type Planetary/spur
Gearbox stages 3
Generator type Asynchronous
Max generator speed (rpm) 2016
Generator voltage (V) 690
Grid frequency (Hz) 50
Hub height (m) 80

All WTs are equipped with a SCADA system for the monitoring of multiple
parameters collected from the main components together with ambient measurements.
In particular, for each WT we considered a separate dataset composed of 30 monitored
parameters listed in Table 3.9. The dataset covers a period of about 20 months
(from January 1, 2016, to September 1, 2017).

In addition to the sensor signals, we considered the event log that includes all
alarms recorded by the SCADA system on the four WTs during the reported period.
These events include all potential operational risks, which can be seen as anomalies
reducing the remaining useful life of components. In fact, the SCADA system
supervises the operating status of the wind turbines and protects them from extreme
loads. In this way, when a critical signal exceeds predefined operating thresholds, an
event is triggered and recorded in the log file.
Concerning the Reliawind turbine taxonomy presented in [432], the event log available
in [426] mainly contains the details of the anomalies recorded at the assembly and
sub-assembly levels, and only for some alarms at the component/part level. Starting
from this, we filtered out all false alarms and minor events that did not lead to
repair or replacement actions for the component.
Table 3.10 lists all the events we considered for this study, detailing the turbine IDs,
the assembly/sub-assembly involved, the date and time of the alarm recorded by
the SCADA system and the type of action taken by the operators to restore proper
operation (repair or replacement). Figure 3.28, instead, shows the time distribution
of the alarms for each WT over the investigated period.

From the analysis of the logs contained in Table 3.10 and Figure 3.28 it is
possible to notice that most of the recorded alarms concern the drive train and

154 3. Framework for Energy Applications

Table 3.9. Parameters monitored by WT SCADA system.

Signal ID Description Component

Gen_Bear_Temp Temperature in generator bearing 1 (Non-Drive End) Generator Bearings
Gen_Bear2_Temp Temperature in generator bearing 2 (Drive End) Generator Bearings
Gen_RPM Generator rpm Generator
Gen_Phase1_Temp Temperature inside generator in stator windings phase 1 Generator
Gen_Phase2_Temp Temperature inside generator in stator windings phase 2 Generator
Gen_Phase3_Temp Temperature inside generator in stator windings phase 3 Generator
Gen_SlipRing_Temp Temperature in the split ring chamber Generator
Hyd_Oil_Temp Temperature oil in hydraulic group Hydraulic
Gear_Oil_Temp Temperature oil in gearbox Gearbox
Gear_Bear_Temp Temperature in gearbox bearing on high-speed shaft Gearbox
Nac_Temp Temperature in nacelle Nacelle
Nac_Direction Nacelle direction Nacelle
Rtr_RPM Rotor rpm Rotor
Amb_WindSpeed Wind speed Ambient
Amb_WindDir_Relative Wind relative direction Ambient
Amb_WindDir_Abs Wind absolute direction Ambient
Amb_Temp Ambient temperature Ambient
Prod_TotActPwr Total active power Production
Prod_TotReactPwr Total reactive power Production
Grd_Prod_PsblPwr Grid Power Request Grid
HVTrafo_Phase1_Temp Temperature in HV transformer phase L1 Transformer
HVTrafo_Phase2_Temp Temperature in HV transformer phase L2 Transformer
HVTrafo_Phase3_Temp Temperature in HV transformer phase L3 Transformer
Cont_Top_Temp Temperature in the top nacelle controller Controller
Cont_Hub_Temp Temperature in the hub controller Controller
Cont_VCP_Temp Temperature on the VCP-board Controller
Cont_VCP_ChokcoilTemp Temperature in the choke coils on the VCS-section Controller
Cont_VCP_WtrTemp Temperature in the VCS cooling water Controller
Spin_Temp Temperature in the nose cone Spinner
Blds_PitchAngle Blades pitch angle Blades

power sub-systems. In particular, two repairs were carried out on the T01 turbine,
one involving the gearbox and the other the transformer, in response to component
level anomalies detected respectively on the gearbox pump (July 18, 2016) and the
transformer fan (August 11, 2017).
As for the three alarms recorded on the T06 turbine, they refer to generator anoma-
lies that occurred in the period June-November, 2016, and two of these required a
full replacement at the assembly level.
The alarms of the T07 turbine, on the other hand, concern two episodes of high
temperature recorded in the transformer on July 10, 2016, and August 23, 2016, and
an anomaly in the generator that occurred about a year later (August 21, 2017),
which required specific repair interventions.
Finally, in turbine T09, four distinct alarms were recorded on the generator bearings,
two of which concerned high-temperature events on June 7, 2016, and August 22,
2016, requiring a repair of the damaged parts. The other two alarms, instead, were
triggered on October 17, 2016, and January 25, 2017, and involved major damages
that led to the replacement of the components.

MTGCAE Parameter Setting The analysis was carried out for each wind
turbine, from the preprocessing and data preparation to the training of the model.

3.2 Predictive Maintenance for Renewable Energy Systems 155

Table 3.10. Main alarms reported in the maintenance log file available in ref. [426].

Turbine ID Alarm ID Alarm timestamp Assembly/Sub-assembly Type of alarm Type of action
Repair Replacement

T01 A01GX 18/07/2016; 02:10 Gearbox Gearbox pump damaged x
T01 A01T 11/08/2017; 13:14 Transformer Transformer fan damaged x
T06 A06G1 11/07/2016; 19:48 Generator Generator damaged x
T06 A06G2 04/09/2016; 08:08 Generator High temperature generator error x
T06 A06G3 27/10/2016; 16:26 Generator Generator damaged x
T07 A07T1 10/07/2016; 03:46 Transformer High temperature transformer x
T07 A07T2 23/08/2016; 02:21 Transformer High temperature transformer x
T07 A07G 21/08/2017; 14:47 Generator Generator damaged x
T09 A09GB1 07/06/2016; 16:59 Generator bearings High temperature generator bearing x
T09 A09GB2 22/08/2016; 18:25 Generator bearings High temperature generator bearing x
T09 A09GB3 17/10/2016; 09:19 Generator bearings Generator bearings damaged x
T09 A09GB4 25/01/2017; 12:55 Generator bearings Generator bearings damaged x

Figure 3.28. The time distribution of logs recorded by the SCADA system at sub-assembly
and part level for the four WTs.

The MTGCAE was trained for E = 50 epochs considering early stopping to avoid
overfitting. Specifically, we considered one layer for the Encoder having K output
features as latent representation and one layer for the Decoder to reconstruct the
input data. A single layer was sufficient for the autoencoding process and stacking
more layers did not significantly improve the performance of the model.
The parameter K was set to be proportional to F so that the number of neurons
scaled with the length of the input sliding window, allowing the model to increase
its complexity for larger windows. In particular, we set K = F

6 to compress the
inputs to a lower dimension (K < F) and at the same time provide the network
with enough neurons to reconstruct the inputs. The sliding window size F was set
to 144 (24 hours) using grid search aimed at minimizing the MAE on the validation
set. This configuration allowed the model to capture the daily patterns which are
also highlighted by the autocorrelation function of the signals.
To determine the standard operating conditions, we applied the unsupervised ap-
proach discussed in Section 3.2.2 by considering a MTBF of 75 days as reported
in [433]. In this way, as confirmed by the event logs, the main failures and periods
preceding outages were excluded from the standard behavior data which was, then,
split into a training set Strain (70%) and validation set Sval (30%). The test set
Stest, instead, was defined by selecting periods including failure occurrences reported
in the log files.
Based on the reconstruction errors, warnings were triggered by the model according
to the four-stage threshold method presented in Section 3.2.2, allowing to consider

156 3. Framework for Energy Applications

only significant residuals both in terms of magnitude and duration. In particular,
the GMI threshold dm was set to the 3rd quantile of the validation set distribution
of Mahalanobis distances, and the LRI threshold di for the i-th signal to the 3rd
quantile of its reconstruction error distribution.

Reconstruction Errors The MTGCAE model was compared in terms of recon-
struction error for all SCADA signals with two other promising neural architectures
recently applied for anomaly detection in wind turbines, namely LSTM-AE (intro-
duced in [418]) and CNN-LSTM (introduced in [414]). The first is based on LSTMs
and AEs, and the other is a regression model based on the combination of CNNs
and LSTMs.
Table 3.11 shows the scores achieved by the three architectures, by evaluating the
MAE, MSE, RMSE and the MDAPE.

Table 3.11. The table shows the reconstruction errors in terms of MAE, MSE, RMSE
and MDAPE for the proposed MTGCAE model, comparing it with the LSTM-AE and
CNN-LSTM architectures.

Model MAE MSE RMSE MDAPE

MTGCAE 0.038 0.004 0.061 0.058
LSTM-AE 0.053 0.007 0.085 0.08
CNN-LSTM 0.051 0.007 0.082 0.075

Even though MTGCAE performs better, the reconstruction errors of all three
models are low, being the highest error 0.085, reached by the RMSE of the LSTM-AE
model.
Since the training is performed on standard operating condition data, low errors
are expected because all input windows are drawn from the same normal behavior
distribution. High residuals are, instead, expected during anomalous conditions and
failures, as confirmed by the next section.

Deep Anomaly Detection Results As a first result of the proposed deep
anomaly detection framework, Figure 3.29 shows the trend of the GMI and LRIs
in the period that goes from September 26 to November 6, 2016, in the proximity
of the IDA06G3 alarm. This alert notifies of damage on the T06 turbine generator
detected by the SCADA system on October 27, 2016, at 16:26 (see Table 3.10 for
details).
From Figure 3.29a, it can be seen that the GMI detects a possible anomaly from
September 29 to October 3, 2016, identified by indicator values exceeding the global
threshold dm for at least 24 hours (the first two filtering steps of the four-stage
threshold discussed in Section 3.2.2).
Then, looking at Figure 3.29b, we can observe high values of the LRIs in the same
period as for the GMI, relative to the three phases of the generator stator windings
(Gen_Phase1_Temp, Gen_Phase2_Temp, Gen_Phase3_Temp) and also to the
temperature measured in the split ring chamber (Gen_SplitRing_Temp). Therefore,
by applying all the filtering steps provided by the four-stage threshold, the model
triggers a warning associated with the sensor having the highest LRI, namely the

3.2 Predictive Maintenance for Renewable Energy Systems 157

Gen_Phase1_Temp. This anomaly, detected on the temperature of the first phase
of the generator stator winding, anticipates by about 28 days the SCADA alarm
related to the damage of the generator assembly.
It is interesting to notice that, when comparing the grid power request (Figure 3.30)
and the total active power produced by the T06 turbine (Figure 3.30b), no significant
mismatch is found in the proximity of the precursor (dashed box on the left), thus
showing the ability of the model to capture hidden anomalies even when the turbine
continues to deliver the power requested by the grid.
On the other hand, looking at the dashed box on the right after the SCADA alarm
in Figure 3.30b, a long outage of about six days can be observed, needed to replace
the damaged generator. This results in an anomaly in terms of expected power,
which also generates significant residuals in the MTGCAE model indicators (see
Figure 3.29).

As a second result, Figures 3.31a and 3.31b show the evolution of the GMI and
LRIs during a period of about three months (i.e., from May 22 to July 24, 2016),
during which a high temperature anomaly was reported by the SCADA system on
July 10, 2016 at 03:46 (alarm ID A07T1 in Table 3.10).
In this case, after the application of the four-stage threshold to the reconstruc-
tion errors of the MTGCAE model, an anomaly on the temperature of the T07
transformer windings (HVTrafo_Phase1_Temp, HVTrafo_Phase2_Temp, HV-
Trafo_Phase3_Temp) is isolated about 9 days before the SCADA alarm.
As for the previous example, also in this case the model is able to detect an opera-
tional anomaly even if the total active power of the T07 turbine matches the power
required by the grid (see the first dashed box on the left in Figure 3.32).
About one week after the investigated event, anomalous behavior in the power deliv-
ered by the turbine T07 is observed for two days (dashed box on the right), during
which significant residuals are produced by the deep anomaly detection framework
at the assembly level of both the transformer and the generator (see Figure 3.31b).

As the last application, Figure 3.33 details the results in terms of the MTGCAE
global and local indicators in the vicinity of a T09 generator bearing damage,
reported by the SCADA system on October 17, 2016, at 09:19 and labeled as alarm
ID A09GB3 in Table 3.10.
Looking at the GMI and LRIs shown, respectively, in Figure 3.33a and Figure
3.33b, the first warning is triggered about 18 days before the SCADA alarm and is
associated with an anomaly isolated by the generator bearing temperature residuals
(Gen_Bear2_Temp). Also during this anomalous period, turbine T09 seems to be
unable to deliver the power required by the grid (see the first dashed box on the left
in Figure 3.34).
After the SCADA alarm, Figure 3.34 shows a period of forced turbine downtime (the
rightmost dashed box) required to replace the damaged generator bearings, during
which high reconstruction errors are produced by the model.

Deep Anomaly Detection Assessment The best performance corresponds to
the early detection of the greatest number of anomalies and faults recorded by the
SCADA system that required repair or replacement at the assembly/sub-assembly
level, with the minimum false alarms and the maximum time advance.

158 3. Framework for Energy Applications

(a) GMI

(b) LRI

Figure 3.29. 3.29a and 3.29b show, respectively, the trend of the Global Mahalanobis
Indicator (GMI) and the Local Residual Indicators (LRIs) in correspondence of the alarm
ID A06G3. This alarm reports a damage of the T06 generator, detected by SCADA on
October 27, 2016 at 16:26. In particular, Figure 3.29a shows the trend of the global
indicator and the threshold dm applied in the first step of the four-stage filtering method.
Figure 3.29b, on the other hand, reports the local residuals that satisfy all the conditions
necessary to trigger an alarm based on the four-stage threshold. The vertical red line
in the LRI plot represents the MTGCAE model warning associated with possible fault
precursors.

In particular, we considered a discrete event evaluation of the performance where
a True Positive (TP) corresponds to triggered model warnings associated with the
assembly/sub-assembly that presents a SCADA alarm (with reference to the logs
reported in Table 3.10) in the next time window consisting of Tf = 4320 samples (1
month). False Positives (FP), on the other hand, are model warnings that are not
followed by a SCADA alarm associated with the involved assembly/sub-assembly.
Finally, SCADA alarms not anticipated by a model warning within the reference
time window are considered as False Negatives (FN).

3.2 Predictive Maintenance for Renewable Energy Systems 159

(a) Grid Power Request

(b) Total Active Power

Figure 3.30. 3.30a and 3.30b show, respectively, the trend of the Grid Power Request and
the Total Active Power of the T06 WT in correspondence of the alarm ID A06G3. The
dashed boxes detail the periods in which anomalies were detected by the proposed deep
anomaly detection framework (see Figure 3.29).

At this point, we quantified the performance of the model through classification
metrics typically used in the field of Machine Learning:

Precision (P) = TP
TP + FP (3.16)

Recall (R) = TP
TP + FN (3.17)

F1-score (F1) = 2 · Precision · Recall
Precision + Recall (3.18)

In addition, we also consider the average time advance (Avg Advance), which
represents the time between the warnings triggered by the model and the reference
SCADA alarm.
Based on these metrics, as for the model reconstruction errors discussed in Section
3.2.2, the deep anomaly detection capabilities of the proposed MTGCAE were

160 3. Framework for Energy Applications

(a) GMI

(b) LRI

Figure 3.31. 3.31a and 3.31b show, respectively, the trend of the Global Mahalanobis
Indicator (GMI) and the Local Residual Indicators (LRIs) in correspondence of the alarm
ID A07T1. This alarm reports a high-temperature anomaly of the T07 transformer
detected by the SCADA system on July 10, 2016, at 03:46. In particular, Figure 3.31a
shows the trend of the global indicator and the threshold dm applied in the first step
of the four-stage filtering method. Figure 3.31b, on the other hand, reports the local
residuals that satisfy all the conditions necessary to trigger an alarm based on the
four-stage threshold. The vertical red line in the LRI plot represents the MTGCAE
model warning associated with possible fault precursors.

validated against the LSTM-AE and the CNN-LSTM architectures. It is important
to notice that the same framework for anomaly detection presented in Section 3.2.2
was applied when considering LSTM-AE and CNN-LSTM, to make their outputs
comparable with MTGCAE.
Table 3.12 presents the evaluation metrics for the three models on the same test set.

Results show that MTGCAE can detect 10 out of 12 anomalous events without
triggering any false alarm. LSTM-AE, while achieving the same TPs, counts 4
FPs, thus reducing the Precision and F1-score. Finally, the CNN-LSTM model only

3.2 Predictive Maintenance for Renewable Energy Systems 161

(a) Grid Power Request

(b) Total Active Power

Figure 3.32. 3.32a and 3.32b show, respectively, the trend of the Grid Power Request and
the Total Active Power of the T07 WT in correspondence of the alarm ID A07T1. The
dashed boxes detail the periods in which anomalies were detected by the proposed deep
anomaly detection framework (see Figure 3.31).

detects 9 events and presents 4 false alarms, producing lower scores also in terms of
the Recall metric.
Even though MTGCAE achieves a lower average time advance (23 days) with respect
to the other two models, the proposed approach seems to be more reliable given the
lack of FPs, and robust provided the number of FNs.

Conclusions

In this paper, we present an original unsupervised deep anomaly detection framework
in the context of horizontal axis WTs based on SCADA data. The core of the method
is the proposed neural architecture, namely a Graph Convolutional Autoencoder
for Multivariate Time series (MTGCAE), which models the sensor network as a
dynamical functional graph. The main advantage with respect to standard AEs
lies in the capability to simultaneously take into account the information content

162 3. Framework for Energy Applications

(a) GMI

(b) LRI

Figure 3.33. 3.33a and 3.33b show, respectively, the trend of the Global Mahalanobis
Indicator (GMI) and the Local Residual Indicators (LRIs) in correspondence of the
alarm ID A09GB3. This alarm reports damage to the T09 generator bearings, detected
by the SCADA system on October 17, 2016, at 09:19 (see Table 3.10). In particular,
Figure 3.33a shows the trend of the global indicator and the threshold dm applied in the
first step of the four-stage filtering method. Figure 3.33b, on the other hand, reports
the local residuals that satisfy all the conditions necessary to trigger an alarm based on
the four-stage threshold. The vertical red line in the LRI plot represents the MTGCAE
model warning associated with possible fault precursors.

of the individual sensors measurements (graph node features) and the nonlinear
correlations existing between all pairs of sensors (graph edges).
The proposed neural architecture is trained to learn the normal behavior of the system
without providing any kind of data labeling and, based on the model reconstruction
errors, multiple monitoring indicators are defined, namely a GMI for the whole
sensor network, and a LRI for each monitored variable. All indicators are evaluated
by considering both their magnitude and duration in time by a four-stage threshold
method. In this way, only significant model errors are taken into account, allowing

3.2 Predictive Maintenance for Renewable Energy Systems 163

(a) Grid Power Request

(b) Total Active Power

Figure 3.34. 3.34a and 3.34b show, respectively, the trend of the Grid Power Request and
the Total Active Power of the T09 WT in correspondence of the alarm ID A09GB3. The
dashed boxes detail the periods in which anomalies were detected by the proposed deep
anomaly detection framework (see Figure 3.33).

the attenuation of the effect of individual spikes and transient disturbances, thus
reducing false alarms during normal operating conditions. After the four-stage
threshold, a warning is triggered for the sensor having the highest reconstruction
error, allowing the isolation of the assembly/sub-assembly mostly involved in the
anomaly for troubleshooting purposes.
The proposed method was validated on 10-minute SCADA data collected from four
WTs belonging to the same wind farm, with a rated power of 2 MW each. The
dataset counts 12 failures on the most critical components (generator, gearbox, and
transformer) that occurred during 20 months of operation. The model was trained
on normal behavior data isolated using an unsupervised method and was tested on
anomalous periods selected using the maintenance logs.
The presented model was compared with other two promising approaches, namely

164 3. Framework for Energy Applications

Table 3.12. Results of MTGCAE, LSTM-AE and CNN-LSTM models.

Model TP FN FP Avg Advance (Time) P R F1

MTGCAE 10 2 0 23 days, 0:05:42 1.0 0.83 0.91
LSTM-AE 10 2 4 27 days, 12:55:18 0.71 0.83 0.77

CNN-LSTM 9 3 4 28 days, 16:10:20 0.69 0.75 0.72

an architecture based on LSTMs and AEs (LSTM-AE) and one that combines CNNs
and LSTMs (CNN-LSTM). To guarantee a reliable and robust analysis, we trained a
separate model for each WT and considered all 12 anomalies for the final evaluation
metrics.
The results show that the MTGCAE outperforms the other two neural architectures
in terms of Precision (1.0), Recall (0.83) and F1-score (0.91). It is important to
notice that the MTGCAE demonstrates the ability to capture hidden anomalies
even when the turbine continues to deliver the power requested by the grid.
Since the model is unsupervised and completely data-driven, we expect it to be
independent of the specific use case and potentially applicable to any WT equipped
with a SCADA system.

3.3 Power Forecasting for Renewable Energy Systems

Renewable Energy (RE) is considered to be the most promising alternative to fossil
fuels because of its low-carbon impact. However, RE sources bring unschedulable
uncertainty due to their intermittent nature, which is an obstacle to the reliability
and stability of energy grids, especially when dealing with a large-scale integration
[434]. Nevertheless, the challenges coming with the penetration of RE can be
alleviated if the natural sources or the power output of Renewable Energy System
(RES) can be forecasted accurately [435, 436].
When reliable forecasts are available, power system operators can plan an optimal
power management strategy to balance the dispatch between the intermittent power
generations and the load demand while satisfying all system constraints at minimal
operating costs [437, 438]. Without power forecasting, the system would suffer from
over-commitment of generation and higher rates of curtailment, which would cause
a rise in net generation costs. Modern dispatch decisions and scheduling strategies
based on power forecasts play a significant role in Microgrid (MG) which act as local
energy grids with control capability able to disconnect from the traditional grid and
operate autonomously [439, 440].
When operating MGs, the uncertainties that come with REs can be compensated
by performing an optimal sizing of the generation units and the Energy Storage
Systems (Energy Storage Systems) as backup power supply at the time of generation
deficiency [441, 442]. Moreover, since storage is the most costly element in MGs,
estimating the size of the generation units and the ESSs is essential for an optimal
and cost-efficient grid design. Even though the sizing of power systems is still an
open problem for grid operators, research shows that better results are achieved
when forecasts are included in the problem formulation [443, 444].

3.3 Power Forecasting for Renewable Energy Systems 165

Finally, RE forecasting has a strong impact on energy markets and policies [445, 446].
In fact, optimal bidding strategies that incorporate power forecasts are adopted to
improve trading practices and energy market policies that maximize the social welfare
of the market participants [447, 448]. In particular, optimal bidding strategies can
improve the competitiveness of renewable power generation and, therefore, accurate
forecasts play an essential role to guarantee a rapid integration of REs in the energy
market.
The next section presents a paper we submitted proposing a multi-modal spatio-
temporal NN to forecast the output of multiple WTs composing a wind farm.
Specifically, this work presents a neural architecture that takes in input several
data sources, namely turbine-level SCADA data and Numerical Weather Prediction
(NWP) maps covering a mesoscale geographical area surrounding the wind farm.

3.3.1 Multi-horizon Wind Power Forecasting Using Multi-Modal
Spatio-Temporal Neural Networks

Introduction

Wind energy is promoted worldwide as a core energy source for the mitigation
of climate change, allowing for the reduction of carbon emissions while having
declining capital costs driven by Wind Turbine (WT) technological advancements
[449, 450]. However, the rapid increase of wind power energy production on a global
scale has created new challenges when it comes to grid integration, due to the
non-stationarity, randomness, and intermittency of wind [451]. Accurate real-time
forecasting algorithms can help to mitigate these problems and reduce the cost
impacts of wind to a large extent by making wind power more schedulable. Hence,
forecasting models have a significant economic and technical impact on the system by
increasing wind power penetration and allowing efficient operation and maintenance,
planning of unit commitment, and scheduling by system operators [131].
Wind power forecasting methods can generally be grouped into physical, data-driven,
and hybrid methods, and a detailed classification is provided by [452]. This work
focuses on data-driven methods, specifically approaches based on Machine Learning
(ML), which have proven their ability to capture non-linear wind patterns in many
recent works (see the paper of [133] for an overview). In particular, it is of interest
to explore how the combination of different data sources, i.e. multi-modal data, can
impact and improve predictions of data-driven algorithms. Since a single modality
rarely provides complete knowledge of the phenomenon of interest, performing
data fusion starting from multiple modalities can provide insights and benefits to
forecasting models by contributing to a more unified picture and global view of the
system [453].
Recently, multi-modal approaches are employed in a wide variety of applications
concerning climate and energy forecasting. Boussix et al. [454] introduce a ML
framework for tropical cyclone intensity and track forecasting, and show that, when
combining historical storm data, reanalysis maps and historical operational forecasts,
prediction errors comparable to current operational forecast models can be achieved
while computing in seconds. Yang et al. [455] propose a multi-modal Deep Learning
(DL) method for forecasting the daily power generation of small hydropower stations.

166 3. Framework for Energy Applications

In this work, the authors combine daily power generation and precipitation data,
together with the spatial distribution of precipitation observed by meteorological
satellite remote sensing, and conclude that a multi-modal Neural Network (NN) can
effectively improve the accuracy of forecasts. The work of Haputhanthri et al. [456]
employs two Long Short-Term Memory (LSTM) networks that process a stream of
sky images, time series of past solar irradiance readings, and cloud cover readings
as inputs for irradiance nowcasting. Du et al. [457] present an ensemble ML-based
method to forecast wind power production, which uses both the wind generation
forecasted by a Numerical Weather Prediction (NWP) model and the meteorological
observation data from weather stations. The experimental results show that the
proposed ensemble method based on an Artificial Neural Network (ANN), Support
Vector Regression (SVR), and Gaussian processes can improve the performance of
3-hour ahead wind forecasting with respect to NWP forecasts.
The present work casts the task of wind power forecasting in a multi-modal framework
by considering the NWP data provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF) and the data collected from the Supervisory Control
And Data Acquisition (SCADA) systems of the "La Haute Borne" wind farm, made
publicly available by Engie [458]. Other papers have combined NWP and SCADA
data but never considered NWP on a mesoscale level as input to the model together
with turbine operational measurements. For example, Donadio et al. [459] proposed
an ANN that takes in input meteorological variables (temperature, pressure, wind
speed, and direction) interpolated at the WT locations and uses SCADA signals as
turbine-level power outputs rather than predictors for the model. Another example
is the work of Zheng et al. [460], where the authors use meteorological predictions
obtained in the vicinity of the wind farm installation site to predict wind speed and,
then, train a second model to map wind predictions to power outputs. Also in this
case, the SCADA data is employed only as ground truth for the model.
This paper, instead, considers High-RESolution (HRES) NWP forecasts in the form
of incrementally larger maps and SCADA time series as input for the predictive
model to investigate how the area surrounding a wind farm and the turbine’s internal
operating conditions can impact the forecasts of the power output. NWP maps
are in the form of regular square grids on a mesoscale level centered around the
wind farm, and the choice of including a larger area and not only the meteorological
data closest to the specific farm location was motivated by the presence of patterns
that evolve both in time and space. Meteorological variables on different spatial
scales, from full grids to cardinal point features, are not just downscaled to the
farm location, but mapped directly to turbine-level power outputs by training a
data-driven model able to capture wind patterns over larger areas. In this way, the
model learns the downscaling transfer function and the power curves of the turbines
altogether.
In detail, this paper proposes a spatio-temporal NN for wind power forecasting
with a lead time of up to 90 hours. The model is composed of two sub-networks
based on stacked Recurrent Neural Networks (RNNs) with LSTM cells that process,
respectively, the SCADA and the HRES data. The outputs of the two modules are
combined using a non-linear gating mechanism that regulates the flow of HRES
information used for wind power forecasting based on the turbine’s behavior.
The model is tested on four WTs with a rated power of 2050 kW, part of the "La

3.3 Power Forecasting for Renewable Energy Systems 167

Haute Borne" wind farm, for a period that covers four years of operation.
The rest of the paper is organized as follows. Section 3.3.1 describes the different data
sources and Section 3.3.1 presents the architecture of the proposed spatio-temporal
NN, together with the performance metrics used to evaluate the model. Finally,
Section 3.3.1 presents and discusses the wind power forecasting results, and Section
3.3.1 summarizes the present work and draws some conclusions.

Multi-modal data

As we aim to build a forecasting model that uses several data sources, this section
introduces the multi-modal data considered to train and validate the model. Namely,
the first source consists of turbine-level time series collected from SCADA systems,
and information is provided about the wind farm size, location, and layout, together
with turbine-specific details and the monitored variables. The second source consists
of high-resolution NWP maps and information is provided about their size, resolution,
centering position, and the variables considered for the analysis.

SCADA data The SCADA data considered is the open data of the "La Haute
Borne" wind farm made available by Engie [458], located in the Meuse department
of northeastern France. The wind farm is composed of four identical MM82 WTs
produced by Senvion (identified as R80711, R80721, R80736, and R80790 in Figure
3.35), each having a rated power of 2050 kW. All turbines have a hub height of 80 m,
a rotor diameter of 82 m, and an altitude of 411 m. The dataset includes SCADA
signals collected from all four WTs sampled every 10 minutes. In addition to active
power, other variables are monitored, such as wind speed, ambient temperature, or
gearbox temperature.
This study considers 4 years of operation, ranging from January 2014 to December
2017. In particular, the first two years are selected as training set, the third as
validation set, and the last as test set (2:1:1 ratio). In this way, each set contains a
complete seasonal cycle.

NWP data The NWP data explored in this work is provided by the ECMWF.
Specifically, this work considers the highest-resolution atmospheric model providing
10-day forecasts [461], which uses observations and prior information about the
Earth system in the form of physical and dynamic representations of the atmosphere.
This model produces 4 forecast runs per day (midnight, 6 am, noon, and 6 pm) with
hourly steps to step 90 for all four runs, 3-hourly steps from step 93 to 144 and
6-hourly steps from step 150 to 240 for the midnight and noon runs. Forecasts are
available on a regular grid for different variables like temperature, total precipitation,
and wind speed.
In this paper, midnight runs are considered on a 0.25◦ × 0.25◦ resolution grid up to
step 90, thus having hourly high-resolution forecasts. In particular, a 17× 17 map
centered around the "La Haute Borne" wind farm (approximately a 308 km × 445
km patch as shown in Figure 3.36) is considered with the variables horizontal speed
of air moving towards the east (U wind speed component) and the north (V wind
speed component), at a height of 100 m above the surface of the Earth, together
with wind gusts at 10 m height, at each grid point.

168 3. Framework for Energy Applications

Figure 3.35. Layout of the "La Haute Borne" wind farm in France. The farm is composed
by four identical MM92 WTs produced by Senvion identified as R80711, R80721, R80736,
and R80790.

Data processing

Both data sources are preprocessed and augmented before the training of the proposed
spatio-temporal NN.
The SCADA sensor signals are standardized, namely by removing the mean and
scaling to unit variance. Then, outlier removal is carried out using the 6-sigma rule
to filter out only extreme outliers caused by sensor measurement errors [462]. Since
the proposed model integrates turbine-level knowledge into the forecasts, it is also of
interest to include anomalous samples and conditions in the training set to capture
possible machine inefficiencies and failures. Finally, SCADA signals are linearly
interpolated to deal with missing values and resampled hourly to match the NWP
prediction step.
Normalization is applied to the HRES variables, considering samples from the whole
grid at all prediction steps. Since weather data has a clear daily periodicity, two
extra synthetic signals are generated as input for the NN. In particular, they are
sine and cosine transformations of time and read as

fsin(s) = sin(s · 2π

86400),

fcos(s) = cos(s · 2π

86400),

where s represents time measured in seconds and 86400 is the total number of
seconds in a day. These two synthetic signals are added as extra features to each
HRES grid point.
Since the dataset presents only a few short periods of turbine shutdowns compared
to normal operating conditions, the training set is augmented to allow the model to
capture these scenarios. In fact, for each training year, data is duplicated and the
active power is set to zero. The monitored wind speed is left unaltered, enforcing a

3.3 Power Forecasting for Renewable Energy Systems 169

308 km

445 km

Figure 3.36. Map centered around the "La Haute Borne" wind farm in France. The blue
dots represent the HRES 17 × 17 grid, while the red dot refers to the location of the
wind farm.

condition in which turbines do not produce power even though the wind speed falls
between the cut-in and cut-off range. The spatio-temporal NN is, then, trained on
both the original and the augmented versions of the data.

Spatio-temporal neural network

The proposed multi-modal NN processes and combines the two different data sources
previously discussed to produce wind power forecasts. The first includes variables
monitored by the SCADA system in the form of time series and provides the model
information about the internal behavior and performance of the WTs. The second
source includes HRES forecasts in the form of regular square maps centered around
the wind farm of interest, one for each lead time. In this way, the network can access
the meteorological forecasts associated not only with the location of the wind farm
but also with the surrounding area, thus capturing patterns that evolve both in time
and space.
The network is composed of two sub-networks, referred to as SCADA sub-network
and HRES sub-network, that process, respectively, the two data sources, and combine
them using a gating mechanism, as shown in Figure 3.37. The building block of each
sub-network is a RNN with a LSTM cell [463]. Even though the HRES maps are in
the form of images, an LSTM-based neural architecture is preferred over standard
Convolutional Neural Networks (CNNs) since the latter require longer training time
and leads to worse results, probably due to the small map sizes. Even more complex
architectures like Convolutional LSTM networks [464] perform worse on this type of
data with respect to the proposed architecture.
The network is trained using the Backpropagation algorithm considering the L1

loss function, the Adam optimizer, and early stopping to avoid overfitting. Next,
the neural architecture is described in detail.

170 3. Framework for Energy Applications

SCADA sub-network HRES sub-network

x

Conv1D

Gating Mechanism

Historical SCADA time series HRES forecast maps

Figure 3.37. The complete architecture of the proposed spatio-temporal NN.

LSTM LSTMs use a memory cell and a gating mechanism that contains three
non-linear gates, namely, an input gate it, an output gate ot and a forget gate
ft. These gates allow regulating the flow of information into and out of the cell,
to capture both short and long-term dependencies. LSTM cells are formulated as
follows

ft = σ(Wf · xt + Uf · ht−1 + bf)

it = σ(Wi · xt + Ui · ht−1 + bi)

ot = σ(Wo · xt + Uo · ht−1 + bo)

c̃t = tanh(Wc · xt + Uc · ht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct),

where xt, ht and ct are the input, hidden state vector and cell state vector at time
step t, respectively, σ and tanh are the sigmoid and hyperbolic activation functions,
and ◦ denotes the Hadamard product. Wf , Uf , bf , Wi, Ui, bi, Wo, Uo, bo, Wc, Uc,
bc represent the trainable weights of the network. Moreover, residual connections
are added as follows

h̄t = xt + ht, (3.19)

where h̄t represents the output of the LSTM cell at time step t, as shown also in
Figure 3.38. In this way, gradients can flow through the network directly, without
passing through non-linear activation functions, thus preventing gradients to explode
or vanish. It is possible to stack multiple LSTM layers by feeding the output h̄t of
the previous layer as input xt for the next.

3.3 Power Forecasting for Renewable Energy Systems 171

X

X +

X

+

Figure 3.38. LSTM cell internal structure.

SCADA sub-network The SCADA sub-network is composed of an encoder and
a decoder, as shown in Figure 3.39. The encoder takes x = (x1, . . . , xt, . . . , xT)
as input, where xt represents a multivariate sample of SCADA measurements at
time step t, being T the length of the input window. The encoder has L stacked
LSTM layers and produces h̄enc = (h̄enc

1,L, . . . , h̄enc
t,L , . . . , h̄enc

T,L) as output, together with
a hidden state vector henc

T,l and a cell state vector cenc
T,l for each layer l. The decoder

has a symmetrical formulation with respect to the decoder. In fact, it is composed
of L layers and the LSTM cell of layer l is initialized using the hidden state vector
and the cell state vector produced by the encoder at layer L− l. The decoder takes
xdec = (h̄enc

T,L, . . . , h̄enc
T,L, . . . , h̄enc

T,L) as input, namely the output of the last encoder
layer L at the last time step T repeated for each time step t, where t goes from 1 to
the forecast horizon H. The decoder produces h̄SCADA = (h̄dec

1,L, . . . , h̄dec
t,L , . . . , h̄dec

H,L)
as output, where h̄dec

t,L is the output vector computed for time step t.

Encoder LSTM
Layer 1

Encoder LSTM
Layer 1

Encoder LSTM
Layer L

Encoder LSTM
Layer L

Decoder LSTM
Layer 1

Decoder LSTM
Layer 1

Decoder LSTM
Layer L

Decoder LSTM
Layer L

Figure 3.39. The neural architecture of the sub-network processing SCADA data, composed
of an encoder (left) and a decoder (right).

HRES sub-network The HRES sub-network has no decoder component since
the input sequence length matches the output length H. It takes in input m =

172 3. Framework for Energy Applications

(m1, . . . , mt, . . . , mT), where mt represents a HRES multivariate forecast map or a
spatial sub-section of it at time step t = 1, . . . , H. The network has L stacked LSTM
layers and produces h̄HRES = (h̄1,L, . . . , h̄t,L, . . . , h̄H,L) as output, where h̄t,L is the
output vector computed for time step t.
Both sub-networks are bidirectional to allow the model to retain information from

Encoder LSTM
Layer 1

Encoder LSTM
Layer 1

Encoder LSTM
Layer 1

Encoder LSTM
Layer L

Encoder LSTM
Layer L

Encoder LSTM
Layer L

Figure 3.40. The neural architecture of the sub-network processing HRES data.

past (backward) and future (forward) time steps. In fact, the outputs of two separate
networks, one processing the original input sequences and one the input sequences
in reversed order, are concatenated.

Gating mechanism If the output tensors h̄SCADA and h̄HRES have the same
dimension, they can be combined as

h̄ = σ(h̄SCADA) ◦ h̄HRES,

where σ is the sigmoid activation function and ◦ denotes the Hadamard product. In
this way, the SCADA hidden vector acts as a non-linear gate, allowing the regulation
of the flow of HRES information considered for wind power forecasting based on
the turbine operating conditions. This gating mechanism is possible when the two
sub-networks have the same number of neurons in the last layer.

Output Layer Finally, h̄ passes through a 1D Convolutional layer and is mapped
to the output dimension. Wind power forecasts are produced for each lead time up
to step H, making the proposed NN effectively a multi-horizon model.

Spatial features analysis

To explore the spatial input features, different incremental map sizes are considered
in the form of regular grids and then for each map size, a subset of features is

3.3 Power Forecasting for Renewable Energy Systems 173

selected to train different models, thereby reducing the input’s dimensionality and
improving the learner’s performance.
Considering different map sizes helps to evaluate and understand how the area
surrounding the wind farm impacts wind power forecasting, and nine separate
models can be trained using incrementally larger HRES forecast maps, with sizes
from 1× 1 to 17× 17. Figure 3.41 shows an example of a map of size 9× 9, where
thus a square grid of 81 points is provided as spatial features to the NN. In addition

&RQVLGHUHG�IHDWXUHV ,JQRUHG�IHDWXUHV

Figure 3.41. An example of a 9× 9 square grid centered around the wind farm. Features
belonging to the selected grid are considered input features for the model, while the
others are ignored.

to changing the whole grid size, the number of features considered from the grid
can also be reduced. For each incremental square grid, alternative models can be
trained using a subset of features belonging to the perimeter of the forecast map or
features relative to the main wind directions (one for each cardinal point), as shown
in Figure 3.42.

�[��JULG

�[��JULG

�[��JULG

�[��JULG

�[��JULG

��[���JULG

��[���JULG

��[���JULG

��[���JULG

Figure 3.42. Perimeters of incrementally larger features maps (dark-colored and light-
colored) and features associated with the main wind directions (dark-colored), one for
each cardinal point.

174 3. Framework for Energy Applications

Evaluation

This section presents the evaluation of the wind power forecasting model on the
"La Haute Borne" wind farm. The proposed spatio-temporal NN was trained and
evaluated on all four turbines, identified as R80711, R80721, R80736, and R80790,
considering lead times up to 90 hours.
The model is evaluated with respect to both the spatial and operational input
features. To evaluate the spatial input features, different map sizes and reduced
maps are analyzed, while for the operational input features the SCADA data is
considered. All evaluations are quantified using the same set of error metrics, which
are therefore introduced in the following.

Evaluation metrics The performance of the proposed spatio-temporal NN for
wind power forecasting is evaluated using different metrics. In particular, the Mean
Absolute Error (MAE), the Root Mean Squared Error (RMSE), and the Median
Absolute Error (MDAE) are considered. Each metric is computed for all lead times
individually to provide a better insight into the model prediction errors and, then,
normalized by the nominal power of the WTs which is 2050 kW. Considering n
samples for each lead time t, the error measures can be described as

MAEt = 1
2050n

n∑
i=1
|yi,t − ŷi,t|,

RMSEt = 1
2050

√√√√ 1
n

n∑
i=1

(yi,t − ŷi,t)2,

MDAEt = 1
2050Median(|y1,t − ŷ1,t|, . . . , |yn,t − ŷn,t|),

where yi,t is the ground truth wind power and ŷi,t is the proposed model prediction
for sample i at lead time t. Finally, to evaluate the overall model performance with
respect to a baseline, a Skill Score (SS) is computed with

SSt = 1− 1
n

n∑
i=1

|yi,t − ŷi,t|
|yi,t − ȳi,t|

,

where ȳi,t is the prediction of the Extreme Gradient Boosting (XGBoost) regressor
proposed by [465], widely used in many applications involving regression tasks,
including wind power forecasting as done by [466], [467] or [468]. This evaluation
metric expresses the percentage of improvement achieved by the proposed model
with respect to a baseline, which in this case is the XGBoost regressor. When
computing overall performance metrics, each measure is averaged over all lead times.

Evaluation of spatial input features Having trained the model with different
map sizes and different amounts of features as described in Section 3.3.1, the
performance on the forecasting task can then be compared. The comparison between
full maps, perimeters, and cardinal points is carried out to investigate if a subset
of features covering all wind directions is sufficient to produce accurate forecasts.

3.3 Power Forecasting for Renewable Energy Systems 175

This preliminary analysis is performed without considering the SCADA data and
sub-network to focus exclusively on the spatial information included in the forecast
maps.
The HRES sub-network used for this task counts 11 layers with 64 neurons each
and the hyperparameters are selected using a grid search. The analysis is mainly
presented for turbine R80721 which is representative of the whole wind farm, to
avoid an excessive amount of similar results for the reader. Nevertheless, a general
quantitative overview is provided at the end of the chapter for all turbines composing
the wind farm of interest.
As can be seen in Figure 3.43, models trained on perimetric or cardinal point features
have comparable or even better performances with respect to models trained on full
grids. Notably, the 1×1 map size achieves the same MAE in all three scenarios since
the input, namely the central pixel, is the same for all models. The lowest overall
error is achieved by using perimetric or cardinal point features (which coincide also
in this case) with 3 × 3 grids. Considering full maps is not only slower from a
computational point of view, but also degrades the model performances for most
map sizes, except for the 5× 5 and 7× 7 maps. Training a one-layer network using
17 × 17 full grids takes 1:03 minutes, compared to 37 seconds achieved by using
cardinal point features (speedup of 1.7x).
It is interesting to notice that, when using cardinal point features, the lowest MAE
(0.063) achieved using 3× 3 grids is only 0.004 lower than the highest MAE (0.067),
obtained using the largest map size of 17× 17. This means that 8 features, one for
each wind direction, even when spatially distant from the wind farm, are sufficient to
achieve relatively accurate forecasts, thanks to the bidirectional temporal capabilities
of the model. In fact, by looking at HRES meteorological forecasts associated with
the cardinal points from the past and future of each lead time, the network is
supposedly able to model the dynamics of wind and its evolution in time over the
entire geographical area. Figure 3.44 presents the same results in terms of the SS

�[� �[� �[� �[� �[� ��[�� ��[�� ��[�� ��[��

�����

�����

�����

�����

�����

�����

�����)XOO�JULG

3HULPHWHU

&DUGLQDO�SRLQWV

0DS�VL]H

0
$
(

Figure 3.43. The bar chart shows the MAE averaged over lead times achieved by training
separate networks, one for each map size, from 1× 1 to 17× 17. In particular, green
(left) bars refer to the results obtained by training the networks on full feature maps,
purple (central) on perimetric features, and orange (right) on cardinal point features.

176 3. Framework for Energy Applications

evaluation metric. As a baseline for the score, an XGBoost regression was trained
for each lead time selecting as input the whole HRES forecast map. The best results
were also achieved by using the 3× 3 grid with a SS of 25%, and both perimetric
and cardinal point features perform on average better than full maps.

�[� �[� �[� �[� �[� ��[�� ��[�� ��[�� ��[��
��

��

��

��

��

��

��

��

��
)XOO�JULG

3HULPHWHU

&DUGLQDO�SRLQWV

0DS�VL]H

6
6
��
�
�

Figure 3.44. The bar chart shows the SS achieved by training separate networks, one for
each map size, from 1× 1 to 17× 17. In particular, green (left) bars refer to the results
obtained by training the networks on full feature maps, purple (central) on perimetric
features, and orange (right) on cardinal point features.

Evaluation of operational input features After selecting the optimal grid
configuration, namely perimetric/cardinal point features of 3× 3 maps, the SCADA
data and sub-network were integrated into the training process to produce the
final wind power forecasts. This sub-network counts 11 layers with 64 neurons
each and considers a window of 24 hours of observed historical measurements to
capture the last daily cycle of the turbine’s operating conditions. Also in this
case, the hyperparameters are selected using a grid search. The whole model takes
approximately 30 minutes to train on CPU for 60 epochs using an Apple M1 using
the augmented dataset described in Section 3.3.1 and a batch size of 64. Inference,
once the network is trained, takes only a few seconds, making it suitable for real-time
forecasting.
When integrating the SCADA data and sub-network, the model performance for
turbine R80721 increased by only 0.005 in terms of SS, since no major failures or
inefficiencies occurred during the four years of operation considered for this study.
However, it is interesting to notice that without the SCADA component, the network
always predicts a non-zero active power based on the wind speed, even when the
turbine is shut down and outputs no power. When the operating conditions of
the turbine are considered using the SCADA sub-network, instead, the model can
successfully predict a zero active power. An example of such a scenario is provided
in Figure 3.45.

3.3 Power Forecasting for Renewable Energy Systems 177

Figure 3.45. Wind power forecast produced by the spatio-temporal NN for turbine R80721
in a downtime scenario, namely when the turbine is shut down and produces no power.
The plot shows both the forecast produced by the model trained without considering
the turbine’s operational conditions and the output of the NN when trained using the
SCADA data and sub-network. The x-axis ranges from 0 to 114 and includes the observed
history of measurements (0-23) and the 90 forecast lead times (24-113), separated by a
vertical dashed line.

Comparison to benchmarks In order to compare the performance of the spatio-
temporal NN with benchmark algorithms, the MAE for all lead times was computed
for the proposed model, linear regression, the XGBoost regression, and another
promising neural architecture, namely a Convolutional LSTM (ConvLSTM) network
[469]. For both benchmarks, a separate model was trained for each lead time
providing as input the whole 17× 17 forecast map. As shown in Figure 3.46, the
network outperforms the other two regression models overall, achieving an error of
0.044. It is interesting to notice that the MAE for the last two lead times (89 and
90) of the spatio-temporal network increases and becomes comparable to the other
models. This is probably because the bidirectional neural architecture has no access
to information from the future and, therefore, produces worse results. Moreover,
forecasting wind power with lead times close to 90 hours in the future is a challenging
task by itself, which is confirmed by the fact that the temporal resolution of NWP
forecasts decreases. Notably, even though the HRES maps are in the form of images,
the spatio-temporal neural network outperforms a more complex architecture based
on Convolutional LSTMs both in terms of time and prediction error. In fact, the
proposed network requires 30 minutes to train for 60 epochs, while the ConvLSTM
takes 300 minutes, achieving a speedup of 10x. In addition, the lead time errors of
the ConvLSTM are always higher than the proposed network, probably due to the
excessive complexity of the model when dealing with small map sizes.
Looking at Figure 3.46, it can be seen that the errors follow a daily pattern, with
low MAEs during morning lead times and high MAEs during evenings. For example,
during the first daily cycle (lead times from 1 to 24), the minimum MAE (0.044)
corresponds to 4 AM forecasts and the maximum (0.067) to 9 PM predictions, with
a difference of 0.023 during 24 hours. This result is in line with the strong diurnal

178 3. Framework for Energy Applications

cycle of wind forecasts resulting in usually lower predictability from the afternoon
up to midnight due to the presence of atmospheric convection [470, 471]. Even
though there is a daily cycle, the lead time errors follow an overall increasing trend
correlated to the temporal distance from the midnight forecast origin.

�� �� �� ��
����

����

����

���

����

����

&RQY/670

/LQHDU�UHJUHVVLRQ

;*%RRVW�UHJUHVVRU

6SDWLR�WHPSRUDO�QHXUDO�QHWZRUN

/HDG�WLPH

0
$
(

Figure 3.46. Comparison between the proposed spatio-temporal neural network, linear
regression, the XGBoost regressor, and the ConvLSTM network. In particular, MAEs
are plotted for each lead time, from 1 to 90.

An example of wind power forecasts produced by the proposed spatio-temporal
NN is presented in Figure 3.47. The model is not able to predict the fluctuations of
higher frequency which are hard to capture, especially when the meteorological data
is not specific to the wind farm location, but rather to a regular grid surrounding it.
Nevertheless, the network can predict the general trend of the active power produced
by the WT up to almost 4 days in the future.

� �� �� �� �� ���

�

���

����

����

����

)RUHFDVW

$FWXDO

7LPH

$
F
W
LY
H
�3
R
Z
H
U

Figure 3.47. Example of wind power forecasts produced by the spatio-temporal NN for
turbine R80721. The x-axis ranges from 0 to 114 and includes the observed history of
measurements (0-23) and the 90 forecast lead times (24-113), separated by a vertical
dashed line in correspondence with the forecast origin.

3.3 Power Forecasting for Renewable Energy Systems 179

Finally, to provide a general quantitative analysis for the whole wind farm, Table
3.13 presents the evaluation metrics computed for all four WTs. The scores are
comparable among turbines and achieve an average SS of 0.251, meaning that the
proposed spatio-temporal NN performs 25.1% better on the whole wind farm with
respect to an XGBoost regressor trained on the same data.

Table 3.13. The table presents the prediction errors in terms of MAE, RMSE, and MDAE
averaged over lead times, together with the overall SS, for all four WTs.

Turbine ID MAE RMSE MDAE SS

R80711 0.078 0.121 0.045 0.236
R80721 0.063 0.103 0.035 0.255
R80736 0.066 0.109 0.036 0.265
R80790 0.072 0.118 0.040 0.248

Conclusions

This paper proposed a multi-modal spatio-temporal NN for multi-horizon wind
power forecasting considering a lead time of up to 90 hours. In particular, the model
combined high-resolution NWP forecast maps with turbine-level SCADA data, and
explored how meteorological variables on different spatial scales together with the
turbines’ internal operating conditions impact wind power forecasts.
The spatial analysis of HRES maps showed that a subset of features associated with
all wind directions can produce more accurate forecasts with respect to full grids
and reduce computation times. In this way, when no regular grid data is available
in the immediate surrounding of the wind farm, it is still possible to forecast wind
power by considering features corresponding to the main wind directions, even if
spatially distant.
The spatio-temporal NN was compared to linear regression and XGBoost and out-
performed both on all lead times. More specifically, the proposed model improved
the XGBoost baseline with an average skill score of 25.1%.
For future work, it is of interest to extend the analysis to other wind farms where
more anomalies, failures and downtimes occurred and are reported in a maintenance
log. In this way, the network can model these scenarios and improve the wind
power forecasts based on the turbine’s operating conditions. Moreover, it would
be of interest to train the proposed NN on other wind farms having similar wind
conditions to understand if the same subset of NWP maps, namely 3× 3 cardinal
point features, leads to the best results, or if it depends on the topology of the area
surrounding the wind farm.

Acknowledgements

The research detailed in the current paper was based on data from the ECMWF
obtained through an academic license for research purposes. This work was supported
by the German Research Foundation (DFG) under Germany’s Excellence Strategy -
EXC number 2064/1 - Project number 390727645.

181

Chapter 4

Conclusions

Climate action is not an option anymore as constantly reminded by the IPCC reports
on climate change. We are witnessing rising sea levels, heat waves, events of flooding,
droughts and desertification resulting in the loss of lives and damage to livelihoods,
especially in countries of the Global South. Therefore, it is of uttermost importance
that the commitments laid out in Paris in 2015 are respected by all parties to
guarantee that humankind as a whole can enjoy peace and prosperity on this planet.
The cumulative efforts of conferences held in Rio, Stockholm, Kyoto, Johannesburg
and Paris identified sustainable energy development as a key requirement for sustain-
able development, linking the energy sector directly to the environmental, economical,
and social dimensions of society. Nowadays, the energy sector is responsible for more
than two-thirds of global GreenHouse Gas (GHG) emissions and decarbonization
of the global energy systems has become one of the greatest and most important
challenges in the 21st Century requiring international cooperation and agreements
complemented by regional policies and investments.
To mitigate climate change and protect the planet from irreversible consequences, it
is evident that part of the solution is to reduce emissions coming from the energy
sector. To this end, large-scale penetration of Renewable Energy Systems (RESs)
into the energy market plays a key role in the energy transition toward a sustainable
future by replacing fossil fuels. Renewable Energy (RE) sources not only contribute
to the mitigation of GHG emissions, climate change, and environmental pollution but
also improve access to energy since locally available, with socio-economic benefits.
The technical feasibility of 100% RESs has been extensively scrutinized by the
literature and many countries and cities have already declared their commitment
towards net zero GHG emissions or 100% RE for all energy consumption by 2050.
Moreover, with the increasing presence of distributed RE generation systems, central-
ized paradigms of power transmission and distribution are no longer valid, creating
new opportunities for less hierarchical and more flexible energy and infrastructure
management. This is leading to decentralized small-scale energy systems that can
offer a resilient answer to the global energy crisis characterizing the current historical
period, which is witnessing the COVID-19 pandemic emergency and the war in
Ukraine.
With the advent of Industry 4.0, IoT technologies have been increasingly applied to
the energy sector introducing the concept of smart grid or, more in general, Internet

182 4. Conclusions

of Energy (IoE), where an intelligent electricity distribution infrastructure that uses
two-way flows of electricity and information is used to create a widely distributed
automated energy delivery network. The rapid digitalization of the energy sector
and the interconnection of RESs are contributing to the flexibility and resilience
of the next-generation power grids. In this way, smart grids and IoE are steering
the industry towards more efficient, reliable, safe, and sustainable solutions with
huge environmental and social potential benefits. These are not only technical
challenges and, therefore, require a collective and political effort to transform the
current energy market into a sustainable alternative by implementing substantial
changes to electricity infrastructure, business models, and regulations.
To realize the concept of smart grids and IoE, new information technologies are
required and among the most promising possibilities is Artificial Intelligence (AI)
or Machine Learning (ML) which in many countries has already revolutionized the
energy industry by incorporating learning algorithms to perform different types of
tasks, such as controlling, forecasting, and operating energy systems. The potential
and capabilities of AI have become essential to allow RESs to penetrate the energy
market by mitigating the variability of RE sources, by providing better Operation
and Maintenance (O&M) decisions, monitoring the power infrastructure, increasing
the security of system operations, and new market designs.
This thesis presented different ML algorithms and methods for the implementation
of new strategies to make RESs more efficient and reliable. It described and analyzed
various learning algorithms, highlighted their advantages and limits, and evaluated
their application for different tasks. In addition, different techniques were presented
for the preprocessing and cleaning of time series, nowadays collected by sensor
networks mounted on every RES.
With the possibility to install large numbers of sensors that collect vast amounts of
time series, it is vital to detect and remove irrelevant, redundant, or noisy features,
and alleviate the curse of dimensionality, thus improving the interpretability of
predictive models, speeding up their learning process, and enhancing their general-
ization properties. Therefore, this thesis discussed the importance of dimensionality
reduction in sensor networks mounted on RESs and presents an unsupervised algo-
rithm based on time series clustering to group similar signals, opening the possibility
to reduce their dimensionality by selecting representative variables for each identified
cluster. Then, it proposed a novel algorithm for unsupervised feature selection that
leverages the predictive power of combinations of variables to assess their overall
importance.
Data-driven approaches for dimensionality reduction can alleviate data storage,
processing, and transmission issues, which are critical in energy monitoring and
control applications. However, these techniques face several challenges when it
comes to real-time applications. When a large volume of data streams is collected
continuously over time, the computational complexity of dimensionality reduction
algorithms can become a time-consuming bottleneck for the whole data pipeline,
especially when predictive algorithms leverage the incoming data to train models,
leading to delays and potential data loss.
Selecting the most relevant features of variables from the sensor data can be a good
strategy because it is a one-time procedure performed during a preliminary offline
data analysis phase. In contrast, reducing the number of real-time measurements

183

recorded from the sensors is a continuous procedure that involves reducing the fre-
quency of the data. This strategy can help reduce the number of samples that need
to be processed and transmitted but can also lead to loss of information, especially
for sensors where a high temporal resolution, like vibrational sensors, is critical.
The chosen strategy or combination of approaches highly depends on the specific
application and the available computational resources. When the computational
resources are limited, feature selection can greatly reduce the number of processed
signals. Reducing the number of incoming real-time sensor measurements is also
a viable strategy but leads inevitably to a trade-off between data reduction and
information loss.
Over the past years, edge computing has become a promising solution for real-
time applications based on sensor networks by allowing dimensionality reduction
algorithms to operate closer to the data streams’ source [472]. This computing
strategy based on edge devices mounted close to the sensors reduces the amount of
transmitted and stored data, leading to lower network traffic and decreased latency.
In this way, edge computing is particularly beneficial in energy system applications
where timely decisions and actions are critical. Moreover, this computing paradigm
can enhance the security and privacy of the sensor data by reducing the exposure of
the actual monitored data to external networks [473].
However, implementing an edge computing solution for dimensionality reduction
faces several challenges, including edge devices’ limited computational and storage
resources. Additionally, edge devices may have limited power sources, which can
constrain their processing capabilities. To address these challenges, researchers are
developing specialized hardware and software to deploy distributed dimensionality
reduction techniques that can reduce the processing load on individual devices by en-
abling collaboration between edge devices [474]. Edge computing offers a promising
approach for real-time dimensionality reduction in energy system sensor networks
by enhancing sensor data processing efficiency, security, and privacy while reducing
network traffic and latency. However, it still requires a complete paradigm shift
in the context of power grids and energy production and the installation of edge
devices on the monitored energy systems.
Among the data collected by sensor networks, there is information about processes,
events and alarms, that provide valuable knowledge and insight into the underlying
dynamical systems. Therefore, data-driven methods open the possibility to support
strategic decision-making, resulting in a reduction of O&M costs, machine faults,
repair stops, and spare parts inventory size. These procedures are vital for industries,
due to the growth in complexity of the interactions between different systems. This
thesis presents two approaches in the context of predictive maintenance to improve
the lifetime and efficiency of the equipment. The first work proposes an algorithm
for anomaly detection in a production factory of photovoltaic cells, while the second
paper presents an original unsupervised deep anomaly detection framework based on
Graph Convolutional Networks and Autoencoders to isolate and anticipate failures
in Wind Turbines (WTs).
As discussed in these works, data-driven predictive maintenance solutions can sup-
port informed decision-making, reduce maintenance costs and benefit the overall life
span of assets. Still, several limitations arise when working with RESs in the real
world.

184 4. Conclusions

One major challenge involves the need for historical data containing maintenance
events. Even though many of the modern machines are equipped with SCADA
systems that monitor and collect standardized measurements relative to different
parameters, it is not always the case that maintenance events are recorded or avail-
able. Many RESs are still relatively new, with limited long-term performance and
maintenance interventions. In addition, when available, maintenance data is often
stored in different systems and formats, including handwritten notes by technicians,
making it difficult to integrate and analyze effectively. These records are usually
not standardized when provided by the operators and lack consistency in format,
content, or level of detail, leading to several challenges. For example, it can be
difficult to identify the root cause of a problem if the maintenance records do not
provide enough detail or to evaluate how well a predictive maintenance algorithm
performs over time.
Moreover, maintenance records do not always reflect the actual maintenance events
on the assets. Monitoring systems or technicians may not accurately record a
maintenance event’s occurrence time and duration or could report only high-level
or undetailed information related to the failures. This can lead to inconsistencies
and inaccuracies in the maintenance records, making it challenging to analyze the
data and make informed decisions about maintenance and operation. Standardizing
maintenance record-keeping practices and improving data collection processes could
address some of these challenges. Therefore, it is necessary to provide standardized
training for technicians on recording maintenance events accurately and consistently
using electronic systems that can capture real-time data and integrate it with other
systems. Another possibility is to leverage Data Mining and Natural Language
Processing techniques to extract patterns from unstructured maintenance data and
produce standardized maintenance logs.
Even though the standardized format of data provided by the SCADA systems is
highly desirable, as discussed previously, these systems usually record samples at
10-minute intervals. While this is sufficient for many applications, it may not be
adequate to detect performance issues occurring on a faster time scale. For example,
detecting patterns of a vibrating WT blade can be challenging when processing
10-minute data and delay identifying and addressing the problem, thus causing
increased maintenance costs and decreased system performance.
Installing vibrational sensors can help monitor critical components’ conditions in real
time. These sensors measure the amplitude, frequency, and other characteristics of
vibrations in the system, providing detailed information about the state of individual
subsystems. When combining vibrational data with other SCADA measurements, it
is possible to identify potential problems using data-driven models and take correc-
tive action before the machine fails. Unfortunately, installing vibrational sensors is
only sometimes possible or practical since installing and maintaining them can be
expensive, particularly in large-scale systems where many sensors may be required.
Moreover, installing and maintaining the sensors is not always possible when assets
are located in difficult or unsafe areas. For example, WT blades can be more than
100 meters above the ground, making it challenging for technicians to have access.
Moreover, the amount of vibrational data can quickly become unmanageable when
collected from multiple sensors at high frequencies. Storing the data becomes chal-
lenging, especially when stored for long periods and used for future analysis and

185

reference. Cloud-based storage solutions can provide a scalable and cost-effective way
to store and manage vibrational data. Another challenge is related to the real-time
processing of vibrational data. As discussed for dimensionality reduction techniques,
edge computing is a viable solution to address these limitations.
In some cases, it may be possible to use alternative technologies to monitor the
condition of components. For example, acoustic sensors can detect changes in sound
patterns that may indicate a problem with an element, such as a gearbox or generator.
Infrared thermography can also detect temperature changes that may indicate a
problem with electrical connections or other components. However, it is essential
to note that these alternative technologies may not be as effective as vibrational
sensors in detecting specific performance issues. In some cases, it may be necessary
to use a combination of different technologies to understand system performance
comprehensively.
Another difficulty in data-driven predictive maintenance resides in the complexity of
RESs. These systems usually consist of multiple components and subsystems with
complex interactions, making it challenging to identify the root cause of an anomaly.
This complexity can make it hard to develop reliable predictive models capable of
capturing highly non-linear phenomenons, especially when the monitored variables
do not fully describe the state of the asset.
When it comes to REs, the unschedulable uncertainty due to their intermittent
nature represents an obstacle to the reliability and stability of energy grids, especially
when dealing with large-scale integration. Nevertheless, these challenges can be
alleviated if the natural sources or the power output of RES can be forecasted
accurately, allowing power system operators to plan optimal power management
strategies to balance the dispatch between the intermittent power generations and
the load demand while satisfying all system constraints at minimal operating costs.
Moreover, accurate forecasts can contribute to estimating the size of the generation
units and Energy Storage Systems for an optimal and cost-efficient grid design with
a backup power supply at the time of generation deficiency. RE forecasting has a
strong impact on energy markets and policies and contributes to the competitiveness
of renewable power generation and penetration in the energy market. This thesis
proposes a multi-modal spatio-temporal Neural Network to forecast the output
of a wind farm. Specifically, it presents a neural architecture that takes in input
several data sources, namely turbine-level SCADA data and NWP maps covering a
mesoscale geographical area surrounding the wind farm.
Multi-modal approaches are effective in many fields, including RES, because combin-
ing multiple data types can improve predictions and reduce the model’s uncertainty.
Relying solely on one data type is often insufficient and can lead to poor power
forecasts. For example, using only meteorological data to forecast energy production
can be insufficient since the model needs to account for other factors impacting
energy output, such as changes in energy demand or equipment failures. Furthermore,
multi-modal approaches can also help to identify potential correlations and patterns
between the different types of data that would not be evident when considering only
one type of data. For example, by combining energy demand data with geographic
data, multi-modal approaches could identify regions where energy demand is highest
and optimize energy production accordingly.
To train a multi-model power forecasting model, a list of potential data sources is:

186 4. Conclusions

• Sensor data: This includes data measured from sensor networks mounted on
board of RESs such as wind speed, active power, generator RPM, or bearing
temperatures. By monitoring these parameters, multi-modal approaches can
make more accurate forecasts and identify potential issues such as equipment
failures or maintenance needs.

• Meteorological data: Weather conditions play a significant role in determining
the power output of RES since they are usually directly influenced by them.
For example, information about wind speed in the surrounding area, surface
temperature, or solar radiation can help the model better forecast the power
output of the energy system.

• Energy production data: This includes historical data on the power output
of RESs such as solar panels, WTs, or hydroelectric plants. By including
this data, multi-modal models can identify patterns and trends in energy
production and leverage them to generate future estimates.

• Energy demand data: This data includes energy consumption patterns, such
as hourly, daily, or seasonal fluctuations in energy demand. By including this
data in multi-modal approaches, energy grid operators can better anticipate
future energy needs and balance energy supply and demand more effectively.

• Market data: This includes data on energy prices, regulatory policies, or
other market factors that can impact energy production and consumption.
By considering market data, multi-modal approaches can help energy grid
operators make informed decisions about energy production and distribution.

• Geographic data: This includes data on the location and terrain of RESs,
such as the angle and orientation of solar panels or the elevation of WTs. By
analyzing this data, multi-modal approaches can optimize the placement and
operation of renewable energy systems to maximize energy production.

It would be interesting to explore different multi-modal approaches that include
multiple or even all the sources mentioned above in future work.
All the approaches presented in this thesis have been developed and tested separately
on different RESs. As future work, it is of interest to develop a complete pipeline that
incorporates dimensionality reduction, predictive maintenance, and power forecasting
for RESs to improve the performance and robustness of the predictive models. A
possible pipeline could be the following:

1. Data Preprocessing: This step includes handling missing values, outlier detec-
tion and removal, time series smoothing, transformations, scaling, and data
formatting.

2. Dimensionality Reduction: This step aims at reducing the number of features
or samples in the preprocessed data while preserving the most important
information, thus reducing the computation time and storage requirements.

3. Predictive Maintenance: This involves using preprocessed and reduced data to
train algorithms that predict when and how a system will likely fail. Main-

187

tenance can be scheduled in advance using the models’ predictions, avoiding
unexpected downtime and minimizing maintenance costs.

4. Power Forecasting: This step employs data-driven algorithms to predict the
amount of power a RES will likely generate. Considering anomalous behaviors
in the energy systems identified in the previous step can improve power forecasts
and help the operation of RESs, improve efficiency, and reduce costs.

5. Continuous Improvement: The final step in the pipeline involves monitoring
the models’ performance and making necessary updates to ensure the pipeline
remains effective as data and operating conditions change.

Testing such a pipeline’s robustness and generalization capabilities across different
energy systems is vital to ensure that it can be applied more broadly and is not
limited to a particular system or application. Therefore, some considerations can be
taken into account:

• Collecting data from diverse RESs, such as solar, wind, hydroelectric, or
geothermal, is essential to test the pipeline on various operating conditions,
including different weather patterns, environmental factors, system configura-
tions, and locations.

• It is necessary to preprocess the data consistently across different RESs to
ensure the results are comparable across different applications.

• Predictive maintenance models must be tuned for each energy system to ensure
they perform optimally. Nevertheless, the model’s structure and assumptions
must be similar across different systems of the same type to ensure robustness
and generality.

• The pipeline’s performance on all RESs should be measured using appropriate
metrics consistent across different systems to enable meaningful comparisons.

• The pipeline’s generalization capabilities should be tested by applying it to
data collected from previously unseen energy systems to evaluate its ability to
generalize to new data and identify any potential limitations or biases.

• The pipeline’s robustness should be tested by introducing variations in the
data, such as adding noise or introducing missing values, simulating realistic
scenarios when dealing with sensor networks mounted on energy systems. This
will help to evaluate the pipeline’s ability to handle noisy or incomplete data
and to identify any instabilities in the model.

RESs are becoming important as the world moves towards clean and sustainable
power sources. Data-driven and ML approaches have the potential to optimize these
systems, enhance efficiency, and reduce maintenance costs. However, implementing
these methods faces several challenges due to, in many cases, the reluctance of
energy providers and other players to share data and knowledge. This is usually
caused by concerns about privacy, competitiveness, and the potential misuse of
sensitive information, leading to a lack of data and transparency. Therefore, it is

188 4. Conclusions

essential to encourage collaboration between energy providers, researchers, and other
stakeholders through data-sharing agreements that protect privacy and ensure data
security. Moreover, it is crucial to establish open-data initiatives and public-private
partnerships to facilitate sharing of anonymized or aggregated data when privacy
issues are insurmountable.
The world has experienced two major energy transitions in the past. The first
replaced wood with coal, and, during the second, oil and gas replaced coal as the
main energy source. Today, the world is undergoing a third energy transition with
the main goal to tackle global climate change through decarbonization of the energy
supply and consumption patterns. For most of history, the idea of a broad-scale
energy transition was unthinkable as decisions were made at the local, regional or
individual level, with limited or no coordination. Today, it is not only possible
thanks to global cooperation and agreements between parties, power generation
systems advancements, and IoT and AI technologies but also necessary to prevent
the severe and irreversible consequences of climate change that are threatening life
on the planet as we know it.
I conclude this thesis with the hope that it can become a reference to researchers
that want to contribute to the sustainable energy transition and are approaching
the field of AI in the context of RESs.

189

Glossary

5x2CV 5× 2-fold Cross-Validation. 99

AC Alternating Current. 20, 25

AdaGrad Adaptive Gradient Descend. 72

Adam Adaptive Moment Optimization. 72, 73

AE Autoencoder. 90, 91, 131, 147–149, 151, 156, 160, 161, 164, 183

AI Artificial Intelligence. v, vi, 22–26, 103, 116, 133, 182, 188

ANN Artificial Neural Network. 22, 25, 26, 59, 60, 77, 166

ARIMA Autoregressive Integrated Moving Average. 26

aSi Amorphous Silicon. 133

AUC-ROC Area Under Receiver Operating Characteristics. 96

AWB Automatic Wet Bench. 133, 134, 145, 146

BCE Binary Cross-Entropy. 68, 69

BEM Buildings Energy Management. 18

BRNN Bidirectional Recurrent Neural Network. 23, 79, 80

CAPEX CAPital EXpenditures. 146

CBM Condition-Based Monitoring. 24, 147

CCS Categorical Cross-Entropy. 69

CH4 Methane. 1, 2

CHP Combined Head and Power. 102, 104–108

CM Corrective Maintenance. 130

CMS Control Monitoring System. 9

CNA Complex Network Analysis. 49, 53

190 Glossary

CNN Convolutional Neural Network. 22, 26, 86–88, 147, 148, 156, 160, 164, 169

CO2 Carbon Dioxide. 1, 2

ConvLSTM Convolutional LSTM. 177, 178

COP21 21st United Nations Climate Change Conference of Parties. 3

COP26 26st United Nations Climate Change Conference of Parties. 3

COVID-19 COVID-19. 3, 6, 7, 181

CPPS Combine Predictive Power Score. v, 119, 121–123, 125–129

CPS Cyber-Physical System. 17, 102, 103

CPU Central Processing Unit. 176

CSD Commission on Sustainable Development. 3

CV Cross-Validation. 98

DBSCAN Density-Based Spatial Clustering of Applications with Noise. 35, 36,
49–51

DC Direct Current. 20

DGC Digital Grid Consortium. 20

DL Deep Learning. 22, 44, 59, 70, 73, 91, 165

DM Data Mining. 184

DNN Deep Neural Network. 22, 24, 26, 60, 61, 76, 80

DT Decision Tree. 24, 34, 35, 44–48, 52, 118, 122

DTW Dynamic Time Warping. 104

EC Energy Community. 6

ECMWF European Centre for Medium-Range Weather Forecasts. 166, 167, 179

ELU Exponential Linear Unit. 66, 67

ESS Energy Storage System. 164, 185

EU Europe. 20

EV Eletric Vehicle. 18–20

FC Fully-Connected. 60, 86, 87, 90, 91

FEM Factory Energy Management. 18

Glossary 191

FN False Negative. 158

FNN Feedforward Neural Networks. 77, 78, 80

FP False Positive. 158, 160, 161

FREEDM Future Renewable Electric Energy Delivery. 20

GB Gradient Boosting. 47, 48

GCN Graph Convolutional Network. 23, 90, 131, 148–150, 183

GD Gradient Descent. 70, 71

GEI Global Energy Internet. 20

GHG GreenHouse Gas. v, 1–6, 11, 14, 181

GMI Global Mahalanobis Indicator. 152, 156–158, 160, 162

GNN Graph Neural Network. 88–90

GPU Graphics Processing Units. 22

GRU Gated Recurrent Unit. 82, 83, 147

HAWT Horizontal-Axis Wind Turbine. 7, 9, 11

HEM Home Energy Management. 18

HRES High-RESolution. 166, 168, 169, 171–173, 175–177, 179

I4.0 Industry 4.0. v, 16, 17, 23, 116, 131, 181

IF Isolation Forest. 34, 35

IGR Information Gain Ratio. 98, 115, 116

IIoT Industrial Internet of Things. 16–18, 20

IoE Internet of Energy. v, 18–20, 26, 181, 182

IoT Internet of Things. v, vi, 16, 18, 20, 102–104, 181, 188

IP Internet Protocol. 20

IPCC Intergovernmental Panel on Climate Change. v, 1, 181

IQR InterQuartile Range. 34, 42, 132, 133, 135–138, 140–145

KFCV K-Fold Cross-Validation. 98, 99

KL-Divergence Kullback Leibler Divergence. 69, 70

KNN K-Nearest Neighbors. 25, 44, 145

192 Glossary

KPI Key Performance Indicator. 132, 139, 143–146

LOCF Last Observation Carried Forward. 29, 31

LOOCV Leave-One-Out Cross-Validation. 98, 99

LR Linear Regression. 22, 44, 45

LRI Local Residual Indicator. 152, 156–158, 160, 162

LSTM Long Short-Term Memory. 23, 26, 80–82, 147, 148, 156, 160, 164, 166,
169–172, 177

M2M Machine to Machine. 16

MAE Mean Absolute Error. 68, 69, 97, 121, 122, 125, 127, 128, 155, 156, 174, 175,
177–179

MC Monte Carlo. 132, 133, 135–146

MDAE Median Absolute Error. 174, 179

MDAPE Median Absolute Percentage Error. 156

MES Manufacturing Execution System. 133, 140

MG Microgrid. 164

MHA Multi-Head Attention. 85

MI Mutual Information. 149

ML Machine Learning. v, 22, 24–27, 37, 40, 42–44, 46, 48, 52, 59, 60, 91, 118, 165,
166, 182, 187

MLP Multi-Layer Perceptron. 77, 78, 119, 122, 125, 127

MSE Mean Squared Error. 48, 67–69, 97, 156

MTBF Mean Time Between Failure. 151, 155

MTGCAE Graph Convolutional Autoencoder for Multivariate Time series. 148–
152, 154–162, 164

MTL Multi-Task Learning. 76, 77

NLP Natural Language Processing. 184

NN Neural Network. 24, 25, 42, 44, 60–63, 67, 70, 73–77, 86, 88–90, 92, 93, 96, 118,
121, 147, 165–170, 172–174, 177–179, 185

NOCB Next Observation Carried Backward. 30, 31

NOx Nitrous Oxides. 1, 2

Glossary 193

NWP Numerical Weather Prediction. 165–168, 177, 179, 185

O&M Operation and Maintenance. v, 15, 23–25, 130, 131, 146, 147, 182, 183

PC Principle Component. 139–141

PCA Principal Component Analysis. vi, 53, 54, 131–133, 136–141, 145, 146

PdM Predictive Maintenance. 130–133

PeCVD Plasma Enhanced Chemical Vapor Deposition. 133

PLC Programmable Logic Controller. 17

PPS Predictive Power Score. 119, 121–123, 125–130

PV PhotoVoltaic. 7, 11–15, 24–26, 132, 133, 146

PVD Physical Vapour Deposition. 133

PvM Preventive Maintenance. 130

RE Renewable Energy. vi, 5–7, 11, 18–20, 23, 26, 102, 131, 164, 165, 181, 182, 185

ReLU Rectified Linear Unit. 60, 65, 66, 76, 122

RES Renewable Energy System. v, vi, 5, 102, 164, 181–188

RF Random Forest. 25, 44, 52, 118

RL Reinforcement Learning. 26

RMSE Root Mean Squared Error. 97, 156, 174, 179

RMSProp Root Mean Square Propagation. 72

RNN Recurrent Neural Network. 22, 23, 78–81, 166, 169

RRR Redundancy Reduction Ratio. 97, 115, 116

RxM Prescriptive Maintenance. 131

S2S Sequence-to-Sequence. 23

SBS Sequential Backward Selection. 52, 118

SCADA Supervisory Control And Data Acquisition. vi, 24, 101, 117–119, 123, 124,
129, 147–149, 153–169, 171, 172, 174–177, 179, 184, 185

SDG Sustainable Development Goal. 4, 5

SFS Sequential Forward Selection. 52, 118, 119

SGD Stochastic Gradient Descent. 71, 72

194 Glossary

SO2 Sulphurdioxide. 1

SS Skill Score. 174–176, 179

STC Standard Test Conditions. 13, 14

SVD Singular Value Decomposition. 53, 89, 138, 139

SVM Support Vector Machine. 22, 24–26

SVR Support Vector Regression. 25, 26, 44, 119, 166

TP True Positive. 158, 160

UN United Nations. 3

UNCED United Nations Conference on Environment and Development. 3

UNEP United Nations Environment Programme. 3

UNFCCC United Nations Framework Convention on Climate Change. 3

US United States. 8, 12, 20

USB Universal Serial Bus. 20

WIS Wafer Inspection System. 133

WSSD World Summit on Sustainable Development. 3

WT Wind Turbine. 7–11, 24, 25, 35, 36, 46, 117–119, 123, 124, 128, 129, 131,
146–148, 153–155, 159, 161, 163–169, 174, 178, 179, 183, 184, 186

XGBoost Extreme Gradient Boosting. 48, 52, 118, 174, 176, 177, 179

195

Bibliography

[1] M. Allen, P. Antwi-Agyei, F. Aragon-Durand, M. Babiker, P. Bertoldi, M. Bind,
S. Brown, M. Buckeridge, I. Camilloni, A. Cartwright, et al., Technical sum-
mary: Global warming of 1.5 c. an ipcc special report on the impacts of global
warming of 1.5 c above pre-industrial levels and related global greenhouse gas
emission pathways, in the context of strengthening the global response to the
threat of climate change, sustainable development, and efforts to eradicate
poverty, Intergovernmental Panel on Climate Change (2019).

[2] IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Work-
ing Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, Vol. In Press, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2021. doi:10.1017/9781009157896.

[3] A. A. Marcus, Controversial issues in energy policy, Vol. 2, Sage, 1992.

[4] T. J. Wallington, J. Srinivasan, O. J. Nielsen, E. J. Highwood, Greenhouse
gases and global warming, Environmental and ecological chemistry 1 (2009)
36–63.

[5] G. I. Tunc, S. Türüt-Aşık, E. Akbostancı, Co2 emissions vs. co2 responsibility:
an input–output approach for the turkish economy, Energy Policy 35 (2) (2007)
855–868.

[6] R. Lindsey, Climate change: Atmospheric carbon dioxide, climate.gov (2022).

[7] H. K. Wang, Climate Change and Clean Energy Management: Challenges and
Growth Strategies, Routledge, 2019.

[8] M. Kabeyi, O. Olanrewaju, Sustainable energy transition for renewable and
low carbon grid electricity generation and supply. front, Energy Res 9 (2022)
743114.

[9] S. Fawzy, A. I. Osman, J. Doran, D. W. Rooney, Strategies for mitigation
of climate change: a review, Environmental Chemistry Letters 18 (6) (2020)
2069–2094.

[10] E. Vasseur, United nations conference on the human environment: Stockholm,
5–16 june 1972, Water Research 7 (8) (1973) 1227–1233.

[11] A. 21, United nations conference on environment & development, Rio de
Jeneiro, Brazil (1992).

https://doi.org/10.1017/9781009157896

196 Bibliography

[12] I. Von Frantzius, World summit on sustainable development johannesburg
2002: A critical analysis and assessment of the outcomes, Environmental
Politics 13 (2) (2004) 467–473.

[13] K. Protocol, Kyoto protocol, UNFCCC Website. Available online:
http://unfccc. int/kyoto_protocol/items/2830. php (accessed on 1 January
2011) (1997).

[14] G. Erbach, Doha amendment to the kyoto protocol, EPRS (2015).

[15] P. Agreement, Paris agreement, in: Report of the Conference of the Parties to
the United Nations Framework Convention on Climate Change (21st Session,
2015: Paris). Retrived December, Vol. 4, HeinOnline, 2015, p. 2017.

[16] C. C. COP, United nations climate change conference, COP (2021).

[17] U. Desa, et al., Transforming our world: The 2030 agenda for sustainable
development, Desa (2016).

[18] H. Ritchie, M. Roser, P. Rosado, Co2 and greenhouse gas emissions, Our World
in DataHttps://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
(2020).

[19] S. A. Solarin, M. O. Bello, F. V. Bekun, Sustainable electricity generation: the
possibility of substituting fossil fuels for hydropower and solar energy in italy,
International Journal of Sustainable Development & World Ecology 28 (5)
(2021) 429–439.

[20] IEA, World energy outlook 2019, IEA (2019).
URL https://www.iea.org/reports/world-energy-outlook-2019

[21] IEA, Key world energy statistics 2021, IEA (2021).
URL https://www.iea.org/reports/key-world-energy-statistics-2021

[22] K. Hansen, C. Breyer, H. Lund, Status and perspectives on 100% renewable
energy systems, Energy 175 (2019) 471–480.

[23] P. del Río, L. Janeiro, Overcapacity as a barrier to renewable energy deploy-
ment: the spanish case, Journal of Energy 2016 (2016).

[24] G. Liu, Development of a general sustainability indicator for renewable energy
systems: A review, Renewable and sustainable energy reviews 31 (2014) 611–
621.

[25] L. Jaramillo-Nieves, P. Del Río, Contribution of renewable energy sources to
the sustainable development of islands: An overview of the literature and a
research agenda, Sustainability 2 (3) (2010) 783–811.

[26] F. J. Zarco-Soto, P. J. Zarco-Periñán, J. L. Martínez-Ramos, Centralized
control of distribution networks with high penetration of renewable energies,
Energies 14 (14) (2021) 4283.

https://www.iea.org/reports/world-energy-outlook-2019
https://www.iea.org/reports/world-energy-outlook-2019
https://www.iea.org/reports/key-world-energy-statistics-2021
https://www.iea.org/reports/key-world-energy-statistics-2021

Bibliography 197

[27] IEA, The covid-19 crisis and clean energy progress, IEA (2020).
URL https://www.iea.org/reports/the-covid-19-crisis-and-clean-energy-progress

[28] J. Tollefson, et al., What the war in ukraine means for energy, climate and
food, Nature 604 (7905) (2022) 232–233.

[29] J. Zhong, M. Bollen, S. Rönnberg, Towards a 100% renewable energy electricity
generation system in sweden, Renewable Energy 171 (2021) 812–824.

[30] IEA, Danish energy agreement of 29 june 2018, IEA (2018).
URL https://www.iea.org/policies/12144-danish-energy-agreement-of-29-june-2018-only-ee-dimension

[31] REN21, Renewables 2018 global status report, IEA (2018).
URL https://www.ren21.net/gsr-2018/

[32] B. D. Solomon, K. Krishna, The coming sustainable energy transition: History,
strategies, and outlook, Energy Policy 39 (11) (2011) 7422–7431.

[33] V. Smil, Energy transitions: history, requirements, prospects, ABC-CLIO,
2010.

[34] IEA, Global energy review 2021, IEA (2021).
URL https://www.iea.org/reports/global-energy-review-2021

[35] Enerdata, Share of wind and solar in electricity production, Enerdata (2021).
URL https://www.enerdata.net/publications/
reports-presentations/world-energy-trends.html

[36] J. Cao, Y. Shi, H. Zhang, Wind energy: History, current design principles,
market penetration, environmental impacts, in: 2021 International Conference
on Control Science and Electric Power Systems (CSEPS), IEEE, 2021, pp.
398–405.

[37] M. S. Energy, Leading innovation: Mingyang smart energy launches myse
16.0-242, the world’s largest offshore hybrid drive wind turbine, MingYang
Smart Energy (2018).
URL http://www.myse.com.cn/en/jtxw/info.aspx?itemid=825

[38] R. Wiser, J. Rand, J. Seel, P. Beiter, E. Baker, E. Lantz, P. Gilman, Expert
elicitation survey predicts 37% to 49% declines in wind energy costs by 2050,
Nature Energy 6 (5) (2021) 555–565.

[39] R. Wiser, M. Bolinger, B. Hoen, D. Millstein, J. Rand, G. Barbose, N. Dargh-
outh, W. Gorman, S. Jeong, B. Paulos, Land-based wind market report: 2022
edition, Tech. rep., Lawrence Berkeley National Lab.(LBNL), Berkeley, CA
(United States) (2022).

[40] Y. Tumewu, C. Petrone, M. Sivaselvan, Numerical simulation of the influence
of platform pitch motion on power generation steadiness in floating offshore
wind turbines, International Journal of Environmental Science & Sustainable
Development 1 (2) (2017).

https://www.iea.org/reports/the-covid-19-crisis-and-clean-energy-progress
https://www.iea.org/reports/the-covid-19-crisis-and-clean-energy-progress
https://www.iea.org/policies/12144-danish-energy-agreement-of-29-june-2018-only-ee-dimension
https://www.iea.org/policies/12144-danish-energy-agreement-of-29-june-2018-only-ee-dimension
https://www.ren21.net/gsr-2018/
https://www.ren21.net/gsr-2018/
https://www.iea.org/reports/global-energy-review-2021
https://www.iea.org/reports/global-energy-review-2021
https://www.enerdata.net/publications/reports-presentations/world-energy-trends.html
https://www.enerdata.net/publications/reports-presentations/world-energy-trends.html
https://www.enerdata.net/publications/reports-presentations/world-energy-trends.html
http://www.myse.com.cn/en/jtxw/info.aspx?itemid=825
http://www.myse.com.cn/en/jtxw/info.aspx?itemid=825
http://www.myse.com.cn/en/jtxw/info.aspx?itemid=825

198 Bibliography

[41] M.-L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, A doppler lidar
for measuring winds in the middle atmosphere, Geophysical research letters
16 (11) (1989) 1273–1276.

[42] K. Zipp, Turbine of the month: A turbine with top power curve acciona
aw3000, Windpower Engineering & Development (2012).
URL https://www.windpowerengineering.com/
turbine-of-the-month-a-turbine-with-top-power-curve-acciona-aw3000116/

[43] J. F. Manwell, J. G. McGowan, A. L. Rogers, Wind energy explained: theory,
design and application, John Wiley & Sons, 2010.

[44] M. Becquerel, Mémoire sur les effets électriques produits sous l’influence des
rayons solaires, Comptes rendus hebdomadaires des séances de l’Académie des
sciences 9 (1839) 561–567.

[45] W. Smith, Effect of light on selenium, Nature 7 (1873) 303.

[46] W. G. Adams, R. E. Day, V. the action of light on selenium, Proceedings of
the Royal Society of London 25 (171-178) (1877) 113–117.

[47] C. E. Fritts, On a new form of selenium cell, and some electrical discoveries
made by its use, American Journal of Science 3 (156) (1883) 465–472.

[48] L. M. Fraas, History of solar cell development, in: Low-cost solar electric
power, Springer, 2014, pp. 1–12.

[49] A. Einstein, et al., On the motion of small particles suspended in liquids at
rest required by the molecular-kinetic theory of heat, Annalen der physik
17 (549-560) (1905) 208.

[50] D. C. Brock, Useless no more: Gordon k. teal, germanium, and single-crystal
transistors, Chemical Heritage Newsmagazine (Chemical Heritage Foundation)
24 (1) (2007).

[51] D. M. Chapin, C. S. Fuller, G. L. Pearson, A new silicon p-n junction photocell
for converting solar radiation into electrical power, Journal of applied physics
25 (5) (1954) 676–677.

[52] F. Venn, The oil crisis, Routledge, 2016.

[53] IRENA, Renewable power generation costs in 2021, IRENA (2021).
URL https://irena.org/publications/2022/Jul/
Renewable-Power-Generation-Costs-in-2021

[54] A. Fernandez, How a solar cell works, American Chemical Society Website
(2014).
URL https://www.acs.org/content/acs/en/education/resources/
highschool/chemmatters/past-issues/archive-2013-2014/
how-a-solar-cell-works.html

https://www.windpowerengineering.com/turbine-of-the-month-a-turbine-with-top-power-curve-acciona-aw3000116/
https://www.windpowerengineering.com/turbine-of-the-month-a-turbine-with-top-power-curve-acciona-aw3000116/
https://www.windpowerengineering.com/turbine-of-the-month-a-turbine-with-top-power-curve-acciona-aw3000116/
https://www.windpowerengineering.com/turbine-of-the-month-a-turbine-with-top-power-curve-acciona-aw3000116/
https://irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021
https://irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021
https://irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021
https://www.acs.org/content/acs/en/education/resources/highschool/chemmatters/past-issues/archive-2013-2014/how-a-solar-cell-works.html
https://www.acs.org/content/acs/en/education/resources/highschool/chemmatters/past-issues/archive-2013-2014/how-a-solar-cell-works.html
https://www.acs.org/content/acs/en/education/resources/highschool/chemmatters/past-issues/archive-2013-2014/how-a-solar-cell-works.html
https://www.acs.org/content/acs/en/education/resources/highschool/chemmatters/past-issues/archive-2013-2014/how-a-solar-cell-works.html

Bibliography 199

[55] J. Svarc, Most powerful solar panels 2022, Clean Energy Reviews (2021).
URL https://www.cleanenergyreviews.info/blog/
most-powerful-solar-panels

[56] M. A. Green, High efficiency silicon solar cells, in: Seventh EC Photovoltaic
Solar Energy Conference, Springer, 1987, pp. 681–687.

[57] U. D. of Energy, The history of solar, U.S. Department of Energy (2002).
URL https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf

[58] U. of New South Wales, Milestone in solar cell efficiency achieved: New record
for unfocused sunlight edges closer to theoretic limits, ScienceDaily (2016).
URL www.sciencedaily.com/releases/2016/05/160517121811.htm

[59] J. F. Geisz, R. M. France, K. L. Schulte, M. A. Steiner, A. G. Norman, H. L.
Guthrey, M. R. Young, T. Song, T. Moriarty, Six-junction iii–v solar cells with
47.1% conversion efficiency under 143 suns concentration, Nature energy 5 (4)
(2020) 326–335.

[60] S. Ghazi, K. Ip, The effect of weather conditions on the efficiency of pv panels
in the southeast of uk, Renewable energy 69 (2014) 50–59.

[61] B. Willockx, B. Herteleer, J. Cappelle, Combining photovoltaic modules and
food crops: first agrovoltaic prototype in belgium, Renewable Energy & Power
Quality Journal (RE&PQJ) 18 (2020).

[62] B. Willockx, B. Herteleer, J. Cappelle, Theoretical potential of agrovoltaic
systems in europe: a preliminary study with winter wheat, in: 2020 47th IEEE
Photovoltaic Specialists Conference (PVSC), IEEE, 2020, pp. 0996–1001.

[63] M. Burhan, R. A. Rehman, B. Khan, B.-S. Kim, Iot elements, layered archi-
tectures and security issues: A comprehensive survey, Sensors 18 (9) (2018)
2796.

[64] K. Rose, S. Eldridge, L. Chapin, The internet of things: An overview, The
internet society (ISOC) 80 (2015) 1–50.

[65] L. Da Xu, W. He, S. Li, Internet of things in industries: A survey, IEEE
Transactions on industrial informatics 10 (4) (2014) 2233–2243.

[66] Y. Shahzad, H. Javed, H. Farman, J. Ahmad, B. Jan, M. Zubair, Internet
of energy: Opportunities, applications, architectures and challenges in smart
industries, Computers & Electrical Engineering 86 (2020) 106739.

[67] P. O’brien, The micro foundations of macro invention: the case of the reverend
edmund cartwright, Textile History 28 (2) (1997) 201–233.

[68] R. Batchelor, Henry Ford, mass production, modernism, and design, Vol. 1,
Manchester University Press, 1994.

[69] P. Waurzyniak, Masters of manufacturing: Richard morley, Manufacturing
Engineering 131 (1) (2003) 35–35.

https://www.cleanenergyreviews.info/blog/most-powerful-solar-panels
https://www.cleanenergyreviews.info/blog/most-powerful-solar-panels
https://www.cleanenergyreviews.info/blog/most-powerful-solar-panels
https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf
https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf
www.sciencedaily.com/releases/2016/05/160517121811.htm
www.sciencedaily.com/releases/2016/05/160517121811.htm
www.sciencedaily.com/releases/2016/05/160517121811.htm

200 Bibliography

[70] R. Y. Zhong, X. Xu, E. Klotz, S. T. Newman, Intelligent manufacturing in
the context of industry 4.0: a review, Engineering 3 (5) (2017) 616–630.

[71] H. Sasajima, T. Ishikuma, H. Hayashi, Future iiot in process automation—latest
trends of standardization in industrial automation, iec/tc65, in: Proceedings of
the 54th Annual Conference of the Society of Instrument and Control Engineers
of Japan (SICE), Hangzhou, China, 2015, pp. 28–30.

[72] F. Stefano, F. Benzi, E. Bassi, Iiot based efficiency optimization in logistics
applications, Asian Journal of Basic Science & Research 2 (4) (2020) 59–73.

[73] M. Cakir, M. A. Guvenc, S. Mistikoglu, The experimental application of
popular machine learning algorithms on predictive maintenance and the design
of iiot based condition monitoring system, Computers & Industrial Engineering
151 (2021) 106948.

[74] H. Li, Research on safety monitoring system of workers in dangerous opera-
tion area of port, in: 2017 4th International Conference on Transportation
Information and Safety (ICTIS), IEEE, 2017, pp. 400–408.

[75] B. N. Silva, M. Khan, K. Han, Towards sustainable smart cities: A review
of trends, architectures, components, and open challenges in smart cities,
Sustainable Cities and Society 38 (2018) 697–713.

[76] S. Bhowmick, B. Biswas, M. Biswas, A. Dey, S. Roy, S. K. Sarkar, Appli-
cation of iot-enabled smart agriculture in vertical farming, in: Advances in
Communication, Devices and Networking, Springer, 2019, pp. 521–528.

[77] X. Fang, S. Misra, G. Xue, D. Yang, Smart grid—the new and improved
power grid: A survey, IEEE communications surveys & tutorials 14 (4) (2011)
944–980.

[78] J. Rifkin, The third industrial revolution: how lateral power is transforming
energy, the economy, and the world, Macmillan, 2011.

[79] G. Tulemissova, The impact of the iot and ioe technologies on changes of
knowledge management strategy, in: ECIC2016-Proceedings of the 8th Euro-
pean Conference on Intellectual Capital: ECIC2016, Academic Conferences
and publishing limited, 2016, p. 300.

[80] T. L. Vu, N. T. Le, Y. M. Jang, et al., An overview of internet of energy (ioe)
based building energy management system, in: 2018 International Conference
on Information and Communication Technology Convergence (ICTC), IEEE,
2018, pp. 852–855.

[81] Y. Kafle, K. Mahmud, S. Morsalin, G. Town, Towards an internet of en-
ergy, in: 2016 IEEE International Conference on Power System Technology
(POWERCON), IEEE, 2016, pp. 1–6.

Bibliography 201

[82] Y. Xu, J. Zhang, W. Wang, A. Juneja, S. Bhattacharya, Energy router:
Architectures and functionalities toward energy internet, in: 2011 IEEE In-
ternational Conference on Smart Grid Communications (SmartGridComm),
IEEE, 2011, pp. 31–36.

[83] G. Xu, W. Yu, D. Griffith, N. Golmie, P. Moulema, Toward integrating
distributed energy resources and storage devices in smart grid, IEEE internet
of things journal 4 (1) (2016) 192–204.

[84] Z. Zhang, Y. Zhang, M.-Y. Chow, Distributed energy management under
smart grid plug-and-play operations, in: 2013 IEEE Power & Energy Society
General Meeting, IEEE, 2013, pp. 1–5.

[85] O. Vermesan, L.-C. Blystad, P. Hank, R. Bahr, R. John, A. Moscatelli, Smart,
connected and mobile: Architecting future electric mobility ecosystems, in:
2013 Design, Automation & Test in Europe Conference & Exhibition (DATE),
IEEE, 2013, pp. 1740–1744.

[86] Artemis, Internet of energy for electric mobility, Artemis (2011).
URL http://www.artemis-ioe.eu/index.htm

[87] A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, S. J. Dale, The future
renewable electric energy delivery and management (freedm) system: the
energy internet, Proceedings of the IEEE 99 (1) (2010) 133–148.

[88] H.-J. Belitz, S. Winter, C. Rehtanz, Load shifting of the households in the
e-energy project e-dema, in: 2013 IEEE Grenoble Conference, IEEE, 2013, pp.
1–6.

[89] L. L. Lai, Global energy internet and interconnection, IEEE Smart Grid
Newsletter (2015).

[90] R. Abe, H. Taoka, D. McQuilkin, Digital grid: Communicative electrical grids
of the future, IEEE Transactions on Smart Grid 2 (2) (2011) 399–410.

[91] R. Nishant, M. Kennedy, J. Corbett, Artificial intelligence for sustainability:
Challenges, opportunities, and a research agenda, International Journal of
Information Management 53 (2020) 102104.

[92] P. L. Donti, J. Z. Kolter, Machine learning for sustainable energy systems,
Annual Review of Environment and Resources 46 (2021) 719–747.

[93] K. W. Kow, Y. W. Wong, R. K. Rajkumar, R. K. Rajkumar, A review on
performance of artificial intelligence and conventional method in mitigating
pv grid-tied related power quality events, Renewable and Sustainable Energy
Reviews 56 (2016) 334–346.

[94] C. Cortes, V. Vapnik, Support-vector networks, Machine learning 20 (3) (1995)
273–297.

[95] T. G. Dietterich, Ensemble methods in machine learning, in: International
workshop on multiple classifier systems, Springer, 2000, pp. 1–15.

http://www.artemis-ioe.eu/index.htm
http://www.artemis-ioe.eu/index.htm
EricStefanMiele
Text Box
Time series clustering: A complex network-based approach for feature selection in multi-sensor data

202 Bibliography

[96] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous
activity, The bulletin of mathematical biophysics 5 (4) (1943) 115–133.

[97] P. Werbos, Beyond regression : new fools for prediction and analysis in the
behavioral sciences, PhD thesis, Harvard University (1974).
URL https://ci.nii.ac.jp/naid/10010414900/en/

[98] B. C. Csáji, Approximation with artificial neural networks, MSc Thesis, Eötvös
Loránd University (ELTE), Budapest, Hungary 24 (2001) 48.

[99] K. Fukushima, Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position, Biological
cybernetics 36 (4) (1980) 193–202.

[100] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (11) (1998)
2278–2324.

[101] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep
convolutional neural networks, in: Advances in neural information processing
systems, 2012, pp. 1097–1105.

[102] S. Hochreiter, Untersuchungen zu dynamischen neuronalen netzen, Diploma,
Technische Universität München 91 (1) (1991).

[103] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with neural
networks, in: Advances in neural information processing systems, 2014, pp.
3104–3112.

[104] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation
9 (8) (1997) 1735–1780.

[105] T. Luong, H. Pham, C. D. Manning, Effective approaches to attention-based
neural machine translation, in: Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, 2015, pp. 1412–1421.
URL http://aclweb.org/anthology/D/D15/D15-1166.pdf

[106] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural infor-
mation processing systems 30 (2017).

[107] M. Schuster, K. K. Paliwal, Bidirectional recurrent neural networks, IEEE
Transactions on Signal Processing 45 (11) (1997) 2673–2681.

[108] T. N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convo-
lutional Networks, in: Proceedings of the 5th International Conference on
Learning Representations, ICLR ’17, 2017, p. 1.

[109] L. Cozzi, D. Turk, T. Abergel, J. Bartos, E. Bellevrat, S. Bennett, T. Berly,
S. Bouckaert, J. Dulac, C. F. Alvarez, et al., Digitalization and Energy, OECD,
2017.

https://ci.nii.ac.jp/naid/10010414900/en/
https://ci.nii.ac.jp/naid/10010414900/en/
https://ci.nii.ac.jp/naid/10010414900/en/
http://aclweb.org/anthology/D/D15/D15-1166.pdf
http://aclweb.org/anthology/D/D15/D15-1166.pdf
http://aclweb.org/anthology/D/D15/D15-1166.pdf

Bibliography 203

[110] A. Gilchrist, Industry 4.0: the industrial internet of things, Springer, 2016.

[111] A. Ustundag, E. Cevikcan, Industry 4.0: managing the digital transformation,
Springer, 2017.

[112] R. K. Mobley, An introduction to predictive maintenance, Elsevier, 2002.

[113] E. Lughofer, M. Sayed-Mouchaweh, Predictive maintenance in dynamic sys-
tems: advanced methods, decision support tools and real-world applications,
Springer, 2019.

[114] R. Akerkar, P. Sajja, Knowledge-based systems, Jones & Bartlett Publishers,
2009.

[115] M. Sayed-Mouchaweh, E. Lughofer, Learning in non-stationary environments:
methods and applications, Springer Science & Business Media, 2012.

[116] P. Marti-Puig, A. Blanco-M, J. J. Cárdenas, J. Cusidó, J. Solé-Casals, Effects of
the pre-processing algorithms in fault diagnosis of wind turbines, Environmental
modelling & software 110 (2018) 119–128.

[117] J. Chen, W. Chen, J. Li, P. Sun, A generalized model for wind turbine faulty
condition detection using combination prediction approach and information
entropy., Journal of Environmental Informatics 32 (1) (2018).

[118] Y. Cui, P. Bangalore, L. B. Tjernberg, An anomaly detection approach based
on machine learning and scada data for condition monitoring of wind turbines,
in: 2018 IEEE International Conference on Probabilistic Methods Applied to
Power Systems (PMAPS), IEEE, 2018, pp. 1–6.

[119] A. Blanco-M, K. Gibert, P. Marti-Puig, J. Cusidó, J. Solé-Casals, Identifying
health status of wind turbines by using self organizing maps and interpretation-
oriented post-processing tools, Energies 11 (4) (2018) 723.

[120] K. Leahy, C. Gallagher, K. Bruton, P. O’Donovan, D. T. O’Sullivan, Auto-
matically identifying and predicting unplanned wind turbine stoppages using
scada and alarms system data: Case study and results, in: Journal of Physics:
Conference Series, Vol. 926, IOP Publishing, 2017, p. 012011.

[121] P. Sun, J. Li, C. Wang, Y. Yan, Condition assessment for wind turbines with
doubly fed induction generators based on scada data, Journal of Electrical
Engineering and Technology 12 (2) (2017) 689–700.

[122] J. Maldonado-Correa, S. Martín-Martínez, E. Artigao, E. Gómez-Lázaro, Using
scada data for wind turbine condition monitoring: A systematic literature
review, Energies 13 (12) (2020) 3132.

[123] J. Tautz-Weinert, S. J. Watson, Using scada data for wind turbine condition
monitoring–a review, IET Renewable Power Generation 11 (4) (2017) 382–394.

[124] A. Stetco, F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes,
J. Keane, G. Nenadic, Machine learning methods for wind turbine condition
monitoring: A review, Renewable energy 133 (2019) 620–635.

204 Bibliography

[125] L. B. Bosman, W. D. Leon-Salas, W. Hutzel, E. A. Soto, Pv system predictive
maintenance: Challenges, current approaches, and opportunities, Energies
13 (6) (2020) 1398.

[126] E. Klugmann-Radziemska, Degradation of electrical performance of a crys-
talline photovoltaic module due to dust deposition in northern poland, Renew-
able Energy 78 (2015) 418–426.

[127] A. Bouraiou, M. Hamouda, A. Chaker, A. Neçaibia, M. Mostefaoui, N. Boutas-
seta, A. Ziane, R. Dabou, N. Sahouane, S. Lachtar, Experimental investigation
of observed defects in crystalline silicon pv modules under outdoor hot dry
climatic conditions in algeria, Solar Energy 159 (2018) 475–487.

[128] M. Díez-Mediavilla, M. Dieste-Velasco, M. d. C. Rodríguez-Amigo, T. García-
Calderón, C. Alonso-Tristán, Performance of grid-tied pv facilities based on
real data in spain: Central inverter versus string system, Energy Conversion
and Management 86 (2014) 1128–1133.

[129] R. Platon, J. Martel, N. Woodruff, T. Y. Chau, Online fault detection in pv
systems, IEEE Transactions on Sustainable Energy 6 (4) (2015) 1200–1207.

[130] M. De Benedetti, F. Leonardi, F. Messina, C. Santoro, A. Vasilakos, Anomaly
detection and predictive maintenance for photovoltaic systems, Neurocomput-
ing 310 (2018) 59–68.

[131] X. Wang, P. Guo, X. Huang, A review of wind power forecasting models,
Energy procedia 12 (2011) 770–778.

[132] S. Hanifi, X. Liu, Z. Lin, S. Lotfian, A critical review of wind power forecasting
methods—past, present and future, Energies 13 (15) (2020) 3764.

[133] K. L. Jørgensen, H. R. Shaker, Wind power forecasting using machine learning:
State of the art, trends and challenges, in: 2020 IEEE 8th International
Conference on Smart Energy Grid Engineering (SEGE), IEEE, 2020, pp.
44–50.

[134] D. Rangel-Martinez, K. Nigam, L. A. Ricardez-Sandoval, Machine learning
on sustainable energy: A review and outlook on renewable energy systems,
catalysis, smart grid and energy storage, Chemical Engineering Research and
Design 174 (2021) 414–441.

[135] W. Yaïci, E. Entchev, Performance prediction of a solar thermal energy system
using artificial neural networks, Applied thermal engineering 73 (1) (2014)
1348–1359.

[136] M. W. Ahmad, J. Reynolds, Y. Rezgui, Predictive modelling for solar thermal
energy systems: A comparison of support vector regression, random forest,
extra trees and regression trees, Journal of cleaner production 203 (2018)
810–821.

Bibliography 205

[137] C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte, A. Fouilloy,
Machine learning methods for solar radiation forecasting: A review, Renewable
Energy 105 (2017) 569–582.

[138] K. Amarasinghe, D. L. Marino, M. Manic, Deep neural networks for energy
load forecasting, in: 2017 IEEE 26th international symposium on industrial
electronics (ISIE), IEEE, 2017, pp. 1483–1488.

[139] H. Naganathan, W. O. Chong, X. Chen, Building energy modeling (bem)
using clustering algorithms and semi-supervised machine learning approaches,
Automation in Construction 72 (2016) 187–194.

[140] R. Dobbe, O. Sondermeijer, D. Fridovich-Keil, D. Arnold, D. Callaway, C. Tom-
lin, Toward distributed energy services: Decentralizing optimal power flow with
machine learning, IEEE Transactions on Smart Grid 11 (2) (2019) 1296–1306.

[141] Z. Zhang, D. Zhang, R. C. Qiu, Deep reinforcement learning for power system
applications: An overview, CSEE Journal of Power and Energy Systems 6 (1)
(2019) 213–225.

[142] M. Glavic, (deep) reinforcement learning for electric power system control and
related problems: A short review and perspectives, Annual Reviews in Control
48 (2019) 22–35.

[143] M. Glavic, R. Fonteneau, D. Ernst, Reinforcement learning for electric power
system decision and control: Past considerations and perspectives, IFAC-
PapersOnLine 50 (1) (2017) 6918–6927.

[144] Y. Juan, Y. Dai, Y. Yang, J. Zhang, Accelerating materials discovery using
machine learning, Journal of Materials Science & Technology 79 (2021) 178–
190.

[145] Ç. Odabaşı, R. Yıldırım, Machine learning analysis on stability of perovskite
solar cells, Solar Energy Materials and Solar Cells 205 (2020) 110284.

[146] H. Li, Z. Liu, K. Liu, Z. Zhang, Predictive power of machine learning for
optimizing solar water heater performance: the potential application of high-
throughput screening, International journal of photoenergy 2017 (2017).

[147] J. Han, J. Pei, H. Tong, Data mining: concepts and techniques, Morgan
kaufmann, 2022.

[148] A. R. T. Donders, G. J. Van Der Heijden, T. Stijnen, K. G. Moons, A gentle
introduction to imputation of missing values, Journal of clinical epidemiology
59 (10) (2006) 1087–1091.

[149] J. M. Lachin, Fallacies of last observation carried forward analyses, Clinical
trials 13 (2) (2016) 161–168.

[150] J. M. Engels, P. Diehr, Imputation of missing longitudinal data: a comparison
of methods, Journal of clinical epidemiology 56 (10) (2003) 968–976.

206 Bibliography

[151] M. Lepot, J.-B. Aubin, F. H. Clemens, Interpolation in time series: An
introductive overview of existing methods, their performance criteria and
uncertainty assessment, Water 9 (10) (2017) 796.

[152] F. Pukelsheim, The three sigma rule, The American Statistician 48 (2) (1994)
88–91.

[153] B. Wang, W. Shi, Z. Miao, Confidence analysis of standard deviational ellipse
and its extension into higher dimensional euclidean space, PloS one 10 (3)
(2015) e0118537.

[154] R. Dawson, How significant is a boxplot outlier?, Journal of Statistics Education
19 (2) (2011).

[155] N. A. Bakar, S. Rosbi, Identification of non-equilibrium growth for bitcoin
exchange rate: Mathematical derivation method in islamic financial engineering,
International Journal of Scientific Research and Management (IJSRM) 5 (12)
(2017) 7772–7781.

[156] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 eighth ieee
international conference on data mining, IEEE, 2008, pp. 413–422.

[157] J. Chen, J. Li, W. Chen, Y. Wang, T. Jiang, Anomaly detection for wind
turbines based on the reconstruction of condition parameters using stacked
denoising autoencoders, Renewable Energy 147 (2020) 1469–1480.

[158] R. J. Hyndman, Moving averages. (2011).

[159] R. W. Schafer, What is a savitzky-golay filter?[lecture notes], IEEE Signal
processing magazine 28 (4) (2011) 111–117.

[160] S. Liu, Y. Zhang, X. Du, T. Xu, J. Wu, Short-term power prediction of wind
turbine applying machine learning and digital filter, Applied Sciences 13 (3)
(2023) 1751.

[161] R. J. Hyndman, G. Athanasopoulos, Forecasting: principles and practice,
OTexts, 2018.

[162] I.-K. Yeo, R. A. Johnson, A new family of power transformations to improve
normality or symmetry, Biometrika 87 (4) (2000) 954–959.

[163] A. Bauer, Automated hybrid time series forecasting: Design, benchmarking,
and use cases, Ph.D. thesis, Universität Würzburg (2021).

[164] G. E. Box, D. R. Cox, An analysis of transformations, Journal of the Royal
Statistical Society: Series B (Methodological) 26 (2) (1964) 211–243.

[165] P. Li, Box-cox transformations: an overview, presentation, http://www. stat.
uconn. edu/˜ studentjournal/index_files/pengfi_s05. pdf (2005).

[166] S. Weisberg, Yeo-johnson power transformations, Department of Applied
Statistics, University of Minnesota. Retrieved June 1 (2001) 2003.

Bibliography 207

[167] S. Patro, K. K. Sahu, Normalization: A preprocessing stage, arXiv preprint
arXiv:1503.06462 (2015).

[168] C.-S. J. Chu, Time series segmentation: A sliding window approach, Informa-
tion Sciences 85 (1-3) (1995) 147–173.

[169] S. B. Kotsiantis, I. Zaharakis, P. Pintelas, et al., Supervised machine learning: A
review of classification techniques, Emerging artificial intelligence applications
in computer engineering 160 (1) (2007) 3–24.

[170] D. R. Cox, The regression analysis of binary sequences, Journal of the Royal
Statistical Society: Series B (Methodological) 20 (2) (1958) 215–232.

[171] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip, et al., Top 10 algorithms in data
mining, Knowledge and information systems 14 (1) (2008) 1–37.

[172] T. K. Ho, Random decision forests, in: Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1, IEEE, 1995, pp.
278–282.

[173] N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric
regression, The American Statistician 46 (3) (1992) 175–185.

[174] M. Diskin, Definition and uses of the linear regression model, Water Resources
Research 6 (6) (1970) 1668–1673.

[175] J. Ranstam, J. Cook, Lasso regression, Journal of British Surgery 105 (10)
(2018) 1348–1348.

[176] G. C. McDonald, Ridge regression, Wiley Interdisciplinary Reviews: Compu-
tational Statistics 1 (1) (2009) 93–100.

[177] E. Ostertagová, Modelling using polynomial regression, Procedia Engineering
48 (2012) 500–506.

[178] A. J. Smola, B. Schölkopf, A tutorial on support vector regression, Statistics
and computing 14 (3) (2004) 199–222.

[179] A. C. Todd, M. Optis, N. Bodini, M. J. Fields, J. Perr-Sauer, J. C. Lee,
E. Simley, R. Hammond, An independent analysis of bias sources and variability
in wind plant pre-construction energy yield estimation methods, Wind Energy
25 (10) (2022) 1775–1790.

[180] I. Abdallah, V. Dertimanis, H. Mylonas, K. Tatsis, E. Chatzi, N. Dervili,
K. Worden, E. Maguire, Fault diagnosis of wind turbine structures using
decision tree learning algorithms with big data, in: Safety and Reliability–Safe
Societies in a Changing World, CRC Press, 2018, pp. 3053–3061.

[181] J. H. Friedman, Greedy function approximation: a gradient boosting machine,
Annals of statistics (2001) 1189–1232.

208 Bibliography

[182] A. Terko, E. Žunić, D. Ðonko, A. Dželihodžić, Credit scoring model implemen-
tation in a microfinance context, in: 2019 XXVII International Conference on
Information, Communication and Automation Technologies (ICAT), IEEE,
2019, pp. 1–6.

[183] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, ACM, New York, NY, USA, 2016, pp.
785–794. doi:10.1145/2939672.2939785.
URL http://doi.acm.org/10.1145/2939672.2939785

[184] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie,
X. Muller, G. Desjardins, D. Warde-Farley, et al., Unsupervised and transfer
learning challenge: a deep learning approach, in: Proceedings of ICML Work-
shop on Unsupervised and Transfer Learning, JMLR Workshop and Conference
Proceedings, 2012, pp. 97–110.

[185] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, X. Xu, Dbscan revisited,
revisited: why and how you should (still) use dbscan, ACM Transactions on
Database Systems (TODS) 42 (3) (2017) 1–21.

[186] A. Amini, T. Y. Wah, H. Saboohi, On density-based data streams clustering
algorithms: A survey, Journal of Computer Science and Technology 29 (1)
(2014) 116–141.

[187] M. N. Gaonkar, K. Sawant, Autoepsdbscan: Dbscan with eps automatic
for large dataset, International Journal on Advanced Computer Theory and
Engineering 2 (2) (2013) 11–16.

[188] B. Rahdari, T. Arabghalizi, Event-based user profiling in social media using
data mining approaches, 2017.

[189] J. Wu, Advances in K-means clustering: a data mining thinking, Springer
Science & Business Media, 2012.

[190] S. K. Popat, M. Emmanuel, Review and comparative study of clustering tech-
niques., International journal of computer science and information technologies
5 (2014) 805–812.

[191] A. Fujita, J. Sato, M. Demasi, M. Sogayar, C. Ferreira, S. Miyano, Comparing
pearson, spearman and hoeffding’s d measure for gene expression association
analysis, Journal of bioinformatics and computational biology 7 (2009) 663–84.

[192] F. Iglesias, W. Kastner, Analysis of similarity measures in times series clustering
for the discovery of building energy patterns, Energies 6 (2) (2013) 579–597.

[193] L. Jing, M. Ng, J. Huang, An entropy weighting k-means algorithm for subspace
clustering of high-dimensional sparse data, IEEE Transactions on knowledge
and data engineering 19 (2007) 1026–1041.

http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785

Bibliography 209

[194] X. Huang, Y. Ye, H. Zhang, Extensions of kmeans-type algorithms: A new
clustering framework by integrating intracluster compactness and intercluster
separation, IEEE Transactions on Neural Networks and Learning Systems 25
(2014) 1433–1446.

[195] R. Baragona, A simulation study on clustering time series with metaheuristic
methods, Quaderni di Statistica 3 (01 2001).

[196] M. Ramoni, P. Sebastiani, P. R. Cohen, Multivariate clustering by dynamics, in:
Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence,
AAAI Press, 2000, pp. 633–638.

[197] D. Tran, M. Wagner, Fuzzy c-means clustering-based speaker verification, in:
Proceedings of the AFSS International Conference on Fuzzy Systems, Springer,
2002, pp. 318–324.

[198] K. Bandara, C. Bergmeir, S. Smyl, Forecasting across time series databases
using recurrent neural networks on groups of similar series: A clustering
approach, Expert Systems with Applications 140 (2020) 112896.

[199] C. Shaw, G. King, Using cluster analysis to classify time series, Physica D:
Nonlinear Phenomena 58 (1992) 288–298.

[200] M. Vlachos, J. Lin, E. Keogh, D. Gunopulos, A wavelet-based anytime algo-
rithm for k-means clustering of time series, in: Proceedings of the Workshop
on Clustering High Dimensionality Data and Its Applications, 2003, pp. 23–30.

[201] V. Kavitha, M. Punithavalli, Clustering time series data stream – a literature
survey, International Journal of Computer Science and Information Security 8
(04 2010).

[202] S. Rani, G. Sikka, Recent techniques of clustering of time series data: A survey,
International Journal of Computer Applications 52 (2012) 1–9.

[203] S. Aghabozorgi, A. S. Shirkhorshidi, T. Wah, Time-series clustering - a decade
review, Information Systems 53 (05 2015).

[204] M. Köppen, The curse of dimensionality, in: 5th online world conference on
soft computing in industrial applications (WSC5), Vol. 1, 2000, pp. 4–8.

[205] S. Khalid, T. Khalil, S. Nasreen, A survey of feature selection and feature
extraction techniques in machine learning, in: 2014 science and information
conference, IEEE, 2014, pp. 372–378.

[206] G. Li, C. Wang, D. Zhang, G. Yang, An improved feature selection method
based on random forest algorithm for wind turbine condition monitoring,
Sensors 21 (16) (2021) 5654.

[207] G. Chandrashekar, F. Sahin, A survey on feature selection methods, Computers
& Electrical Engineering 40 (1) (2014) 16–28.

210 Bibliography

[208] X. Peng, K. Cheng, J. Lang, Z. Zhang, T. Cai, S. Duan, Short-term wind
power prediction for wind farm clusters based on sffs feature selection and
blstm deep learning, Energies 14 (7) (2021) 1894.

[209] R. Kohavi, G. H. John, Wrappers for feature subset selection, Artificial intelli-
gence 97 (1-2) (1997) 273–324.

[210] B. Fritzke, Unsupervised clustering with growing cell structures, in: Pro-
ceedings of the IJCNN-91-Seattle International Joint Conference on Neural
Networks, Vol. 2, 1991, pp. 531–536.

[211] B. Clarkson, A. Pentland, Unsupervised clustering of ambulatory audio and
video, in: Proceedings of the 1999 IEEE International Conference on Acoustics,
Speech, and Signal Processing., Vol. 6, IEEE, 1999, pp. 3037–3040.

[212] K. P. F.R.S., Liii. on lines and planes of closest fit to systems of points in space,
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 2 (11) (1901) 559–572. doi:10.1080/14786440109462720.

[213] J. J. Gerbrands, On the relationships between svd, klt and pca, Pattern
recognition 14 (1-6) (1981) 375–381.

[214] M. Hesami, A. M. P. Jones, Application of artificial intelligence models and
optimization algorithms in plant cell and tissue culture, Applied Microbiology
and Biotechnology 104 (22) (2020) 9449–9485.

[215] Z.-K. Gao, M. Small, J. Kurths, Complex network analysis of time series, EPL
(Europhysics Letters) 116 (5) (2017) 50001.

[216] D. Koschützki, F. Schreiber, Centrality analysis methods for biological networks
and their application to gene regulatory networks, Gene regulation and systems
biology 2 (2008) GRSB–S702.

[217] P. Bonacich, Some unique properties of eigenvector centrality, Social networks
29 (4) (2007) 555–564.

[218] L. C. Freeman, Centrality in social networks conceptual clarification, Social
networks 1 (3) (1978) 215–239.

[219] M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses
and interpretations, Neuroimage 52 (3) (2010) 1059–1069.

[220] M. E. Newman, M. Girvan, Finding and evaluating community structure in
networks, Physical review E 69 (2) (2004) 026113.

[221] M. E. Newman, Modularity and community structure in networks, Proceedings
of the national academy of sciences 103 (23) (2006) 8577–8582.

[222] A. Clauset, M. E. Newman, C. Moore, Finding community structure in very
large networks, Physical review E 70 (6) (2004) 066111.

[223] S. Fortunato, Community detection in graphs, Physics reports 486 (3-5) (2010)
75–174.

https://doi.org/10.1080/14786440109462720

Bibliography 211

[224] C. G. Antonopoulos, Dynamic range in the c. elegans brain network, Chaos:
An Interdisciplinary Journal of Nonlinear Science 26 (1) (2016) 013102.

[225] B. W. Kernighan, S. Lin, An Efficient Heuristic Procedure for Partitioning
Graphs, Bell System Technical Journal 49 (2) (1970) 291–307.

[226] E. Barnes, An algorithm for partitioning the nodes of a graph, in: Proceedings
of the 1981 20th IEEE Conference on Decision and Control including the
Symposium on Adaptive Processes, IEEE, 1981, pp. 303–304.

[227] S. P. Lloyd, Least Squares Quantization in PCM, IEEE Transactions on
Information Theory 28 (2) (1982) 129–137.

[228] J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning,
Vol. 1, Springer series in statistics New York, 2001.

[229] M. E. Newman, Fast algorithm for detecting community structure in networks,
Physical review E 69 (6) (2004) 066133.

[230] R. Guimera, M. Sales-Pardo, L. A. N. Amaral, Modularity from fluctuations
in random graphs and complex networks, Physical Review E 70 (2) (2004)
025101.

[231] J. Duch, A. Arenas, Community detection in complex networks using extremal
optimization, Physical review E 72 (2) (2005) 027104.

[232] M. E. Newman, M. Girvan, Finding and evaluating community structure in
networks, Physical review E 69 (2) (2004) 026113.

[233] W. E. Donath, A. J. Hoffman, Lower bounds for the partitioning of graphs,
in: Selected Papers Of Alan J Hoffman: With Commentary, World Scientific,
2003, pp. 437–442.

[234] M. B. Hastings, Community detection as an inference problem, Physical Review
E 74 (3) (2006) 035102.

[235] M. E. Newman, E. A. Leicht, Mixture models and exploratory analysis in
networks, Proceedings of the National Academy of Sciences 104 (23) (2007)
9564–9569.

[236] T. Lozano-Pérez, M. A. Wesley, An algorithm for planning collision-free paths
among polyhedral obstacles, Communications of the ACM 22 (10) (1979)
560–570.

[237] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J. C. Nuño, From time series to
complex networks: The visibility graph, Proceedings of the National Academy
of Sciences 105 (13) (2008) 4972–4975.

[238] Y. Zou, R. Donner, N. Marwan, J. Donges, J. Kurths, Complex network
approaches to nonlinear time series analysis, Physics Reports 787 (11 2018).

[239] B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs:
Exact results for random time series, Physical review E 80 (2009) 046103.

212 Bibliography

[240] L. Lacasa, R. Toral, Description of stochastic and chaotic series using visibility
graphs, Physical review E 82 (3) (2010) 036120.

[241] F. M. Bianchi, L. Livi, C. Alippi, R. Jenssen, Multiplex visibility graphs to
investigate recurrent neural network dynamics, Scientific Reports 7 (1) (2017)
1–13.

[242] F. Bonacina, E. S. Miele, A. Corsini, Time series clustering: A complex
network-based approach for feature selection in multi-sensor data, Modelling
1 (1) (2020) 1–21.

[243] V. Sakkalis, Review of advanced techniques for the estimation of brain con-
nectivity measured with eeg/meg, Computers in biology and medicine 41 (12)
(2011) 1110–1117.

[244] T. M. Fruchterman, E. M. Reingold, Graph drawing by force-directed place-
ment, Software: Practice and experience 21 (11) (1991) 1129–1164.

[245] C. Schmidt, B. Pester, N. Schmid-Hertel, H. Witte, A. Wismüller, L. Leistritz,
A multivariate granger causality concept towards full brain functional connec-
tivity, PloS one 11 (4) (2016) e0153105.

[246] J. M. Zurada, Introduction to artificial neural systems, Vol. 8, West publishing
company St. Paul, 1992.

[247] M. Merenda, C. Porcaro, D. Iero, Edge machine learning for ai-enabled iot
devices: A review, Sensors 20 (9) (2020) 2533.

[248] P. Werbos, Beyond regression : new fools for prediction and analysis in the
behavioral sciences, PhD thesis, Harvard University (1974).
URL https://ci.nii.ac.jp/naid/10010414900/en/

[249] T. Théate, D. Ernst, An application of deep reinforcement learning to algo-
rithmic trading, Expert Systems with Applications 173 (2021) 114632.

[250] S. Kullback, R. A. Leibler, On information and sufficiency, The annals of
mathematical statistics 22 (1) (1951) 79–86.

[251] S. F. Zaman, Automated liver segmentation from mr-images using neural
networks (2019).

[252] S. Ruder, An overview of gradient descent optimization algorithms, arXiv
preprint arXiv:1609.04747 (2016).

[253] A. Lydia, S. Francis, Adagrad—an optimizer for stochastic gradient descent,
Int. J. Inf. Comput. Sci 6 (5) (2019) 566–568.

[254] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[255] H. J. Kelley, Gradient theory of optimal flight paths, Ars Journal 30 (10)
(1960) 947–954.

https://ci.nii.ac.jp/naid/10010414900/en/
https://ci.nii.ac.jp/naid/10010414900/en/
https://ci.nii.ac.jp/naid/10010414900/en/

Bibliography 213

[256] S. Hochreiter, The vanishing gradient problem during learning recurrent neural
nets and problem solutions, International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 6 (02) (1998) 107–116.

[257] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent
neural networks, in: International conference on machine learning, PMLR,
2013, pp. 1310–1318.

[258] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.

[259] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026–1034.

[260] Y. S. Abu-Mostafa, Learning from hints in neural networks, Journal of com-
plexity 6 (2) (1990) 192–198.

[261] S. C. Suddarth, Y. Kergosien, Rule-injection hints as a means of improving
network performance and learning time, in: European Association for Signal
Processing Workshop, Springer, 1990, pp. 120–129.

[262] S. Ruder, An overview of multi-task learning in deep neural networks, arXiv
preprint arXiv:1706.05098 (2017).

[263] H. Mohamed, A. Negm, M. Zahran, O. C. Saavedra, Assessment of artificial
neural network for bathymetry estimation using high resolution satellite im-
agery in shallow lakes: case study el burullus lake, in: International water
technology conference, 2015, pp. 12–14.

[264] S. Rajaram, P. Gupta, B. Andrassy, T. Runkler, Neural architectures for
relation extraction within and across sentence boundaries in natural language
text (2018).

[265] P. J. Werbos, et al., Backpropagation through time: what it does and how to
do it, Proceedings of the IEEE 78 (10) (1990) 1550–1560.

[266] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies (2001).

[267] G. Hoffman, Introduction to lstms with tensorflow (2018).

[268] J. V. Tembhurne, T. Diwan, Sentiment analysis in textual, visual and multi-
modal inputs using recurrent neural networks, Multimedia Tools and Applica-
tions 80 (5) (2021) 6871–6910.

[269] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, Y. Bengio, Learning phrase representations using rnn encoder-
decoder for statistical machine translation, arXiv preprint arXiv:1406.1078
(2014).

[270] M.-T. Luong, H. Pham, C. D. Manning, Effective approaches to attention-based
neural machine translation, arXiv preprint arXiv:1508.04025 (2015).

214 Bibliography

[271] D. Hu, An introductory survey on attention mechanisms in nlp problems,
in: Proceedings of SAI Intelligent Systems Conference, Springer, 2019, pp.
432–448.

[272] Z. Mi, X. Jiang, T. Sun, K. Xu, Gan-generated image detection with self-
attention mechanism against gan generator defect, IEEE Journal of Selected
Topics in Signal Processing 14 (5) (2020) 969–981.

[273] K. O’Shea, R. Nash, An introduction to convolutional neural networks, arXiv
preprint arXiv:1511.08458 (2015).

[274] D. Podareanu, V. Codreanu, T. Sandra Aigner, G. C. van Leeuwen, V. Wein-
berg, Best practice guide-deep learning, Partnership for Advanced Computing
in Europe (PRACE), Tech. Rep 2 (2019).

[275] S. Albelwi, A. Mahmood, A framework for designing the architectures of deep
convolutional neural networks, Entropy 19 (6) (2017) 242.

[276] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[277] M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural
networks, in: International conference on machine learning, PMLR, 2019, pp.
6105–6114.

[278] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks
for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017).

[279] G. J. et. al., ultralytics/yolov5: v6.2 - yolov5 classification models, apple
m1, reproducibility, clearml and deci.ai integrations (August 2022). doi:
10.5281/zenodo.7002879.
URL https://doi.org/10.5281/zenodo.7002879

[280] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object
detection, in: Proceedings of the IEEE international conference on computer
vision, 2017, pp. 2980–2988.

[281] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object
detection with region proposal networks, Advances in neural information
processing systems 28 (2015).

[282] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional
encoder-decoder architecture for image segmentation, IEEE transactions on
pattern analysis and machine intelligence 39 (12) (2017) 2481–2495.

[283] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in: Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2961–2969.

https://doi.org/10.5281/zenodo.7002879
https://doi.org/10.5281/zenodo.7002879
https://doi.org/10.5281/zenodo.7002879
https://doi.org/10.5281/zenodo.7002879
https://doi.org/10.5281/zenodo.7002879

Bibliography 215

[284] B.-J. Singstad, C. Tronstad, Convolutional neural network and rule-based
algorithms for classifying 12-lead ecgs, in: 2020 Computing in Cardiology,
IEEE, 2020, pp. 1–4.

[285] A. Shenfield, M. Howarth, A novel deep learning model for the detection and
identification of rolling element-bearing faults, Sensors 20 (18) (2020) 5112.

[286] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip, A comprehensive
survey on graph neural networks, IEEE transactions on neural networks and
learning systems 32 (1) (2020) 4–24.

[287] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks
on graphs with fast localized spectral filtering, Advances in neural information
processing systems 29 (2016).

[288] P. Baldi, Autoencoders, unsupervised learning, and deep architectures, in:
Proceedings of ICML workshop on unsupervised and transfer learning, JMLR
Workshop and Conference Proceedings, 2012, pp. 37–49.

[289] C. Kiourt, G. Pavlidis, S. Markantonatou, Deep learning approaches in food
recognition, in: Machine Learning Paradigms, Springer, 2020, pp. 83–108.

[290] Y. Zhang, J. D. Lee, M. I. Jordan, l1-regularized neural networks are improp-
erly learnable in polynomial time, in: International Conference on Machine
Learning, PMLR, 2016, pp. 993–1001.

[291] T. Van Laarhoven, L2 regularization versus batch and weight normalization,
arXiv preprint arXiv:1706.05350 (2017).

[292] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, The
Journal of Machine Learning Research 15 (1) (2014) 1929–1958.

[293] Z.-S. Wang, J. Lee, C. G. Song, S.-J. Kim, Efficient chaotic imperialist com-
petitive algorithm with dropout strategy for global optimization, Symmetry
12 (4) (2020) 635.

[294] J. Hong, Y.-H. Kim, H. Nhung-Nguyen, J. Kwon, H. Lee, Deep-learning based
fault events analysis in power systems, Energies 15 (15) (2022) 5539.

[295] M. Grandini, E. Bagli, G. Visani, Metrics for multi-class classification: an
overview, arXiv preprint arXiv:2008.05756 (2020).

[296] H. Chen, D. S. Boning, Machine learning approaches for ic manufacturing
yield enhancement, in: Machine Learning in VLSI Computer-Aided Design,
Springer, 2019, pp. 175–199.

[297] S. Acid, L. M. De Campos, M. Fernández, Minimum redundancy maximum
relevancy versus score-based methods for learning markov boundaries, in:
Proceedings of the 2011 11th International Conference on Intelligent Systems
Design and Applications, IEEE, 2011, pp. 619–623.

216 Bibliography

[298] C. E. Shannon, A mathematical theory of communication, Bell system technical
journal 27 (3) (1948) 379–423.

[299] P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation., Encyclopedia of database
systems 5 (2009) 532–538.

[300] T. Fushiki, Estimation of prediction error by using k-fold cross-validation,
Statistics and Computing 21 (2) (2011) 137–146.

[301] R. Maredia, Analysis of google play store data set and predict the popularity
of an app on google play store (2020).

[302] T.-T. Wong, Performance evaluation of classification algorithms by k-fold and
leave-one-out cross validation, Pattern Recognition 48 (9) (2015) 2839–2846.

[303] T. G. Dietterich, Approximate statistical tests for comparing supervised clas-
sification learning algorithms, Neural computation 10 (7) (1998) 1895–1923.

[304] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor
networks, IEEE Communications magazine 40 (8) (2002) 102–114.

[305] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor
networks, IEEE Communications magazine 40 (8) (2002) 102–114.

[306] A. Daneels, W. Salter, What is SCADA?, Conf. Proc. C 991004 (1999) 339–343.

[307] J. Frolik, M. Abdelrahman, Synthesis of quasi-redundant sensor data: a prob-
abilistic approach, in: Proceedings of the 2000 American Control Conference.
ACC (IEEE Cat. No. 00CH36334), Vol. 4, IEEE, 2000, pp. 2917–2921.

[308] S. Chormunge, S. Jena, Correlation based feature selection with clustering
for high dimensional data, Journal of Electrical Systems and Information
Technology 5 (3) (2018) 542–549.

[309] E. S. Miele, F. Bonacina, A. Corsini, A. Peruch, M. Cannarozzo, D. Baldan,
F. Pennisi, Unsupervised feature selection of multi-sensor scada data in hor-
izontal axis wind turbine condition monitoring, in: Turbo Expo: Power for
Land, Sea, and Air, Vol. 86137, American Society of Mechanical Engineers,
2022, p. V011T38A015.

[310] M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep Learning for IoT
Big Data and Streaming Analytics: A Survey., IEEE Communications Surveys
& Tutorials 20 (2018) 2923–2960.

[311] P. Asghari, A. M. Rahmani, J. H. H. S., Internet of Things applications: A
systematic review., Computer Networks 148 (2019) 241–261.

[312] D. Imkamp, J. Berthold, M. Heizmann, K. Kniel, E. Manske, M. Peterek,
R. Schmitt, J. Seidler, K.-D. Sommer, Challenges and trends in manufacturing
measurement technology-the" industrie 4.0" concept, Journal of Sensors and
Sensor Systems 5 (2) (2016) 325.

Bibliography 217

[313] Y. Lu, Industry 4.0: A survey on technologies, applications and open research
issues, Journal of Industrial Information Integration 6 (2017) 1–10.

[314] B. Hayes-Roth, R. Washington, R. Hewett, M. Hewett, A. Seiver, Intelligent
monitoring and control., in: Proceedings of the IJCAI, Vol. 89, 1989, pp.
243–249.

[315] M. Verleysen, D. François, The curse of dimensionality in data mining and
time series prediction, in: International Work-Conference on Artificial Neural
Networks, Springer, 2005, pp. 758–770.

[316] V. Uraikul, C. W. Chan, P. Tontiwachwuthikul, Artificial intelligence for
monitoring and supervisory control of process systems, Engineering applications
of artificial intelligence 20 (2) (2007) 115–131.

[317] H.-X. Tian, X.-J. Liu, M. Han, An outliers detection method of time series
data for soft sensor modeling, in: Proceedings of the 2016 Chinese Control
and Decision Conference (CCDC), IEEE, 2016, pp. 3918–3922.

[318] J. Kaiser, Dealing with missing values in data, Journal of systems integration
5 (1) (2014) 42–51.

[319] R. Liu, B. Yang, E. Zio, X. Chen, Artificial intelligence for fault diagnosis of
rotating machinery: A review, Mechanical Systems and Signal Processing 108
(2018) 33–47.

[320] J.-R. Ruiz-Sarmiento, J. Monroy, F.-A. Moreno, C. Galindo, J.-M. Bonelo,
J. Gonzalez-Jimenez, A predictive model for the maintenance of industrial
machinery in the context of industry 4.0, Engineering Applications of Artificial
Intelligence 87 (2020) 103289.

[321] F. Ansari, R. Glawar, T. Nemeth, Prima: a prescriptive maintenance model
for cyber-physical production systems, International Journal of Computer
Integrated Manufacturing 32 (4-5) (2019) 482–503.

[322] X. Jin, J. Shao, X. Zhang, W. An, R. Malekian, Modeling of nonlinear system
based on deep learning framework, Nonlinear Dynamics 84 (3) (2016) 1327–
1340.

[323] D. You, X. Wu, L. Shen, Y. He, X. Yuan, Z. Chen, S. Deng, C. Ma, Online
streaming feature selection via conditional independence, Applied Sciences
8 (12) (2018) 2548.

[324] S. K. Pal, P. Mitra, Pattern Recognition Algorithms for Data Mining: Scala-
bility, Knowledge Discovery, and Soft Granular Computing, Chapman & Hall,
Ltd., 2004.

[325] Q. Song, J. Ni, G. Wang, A fast clustering-based feature subset selection
algorithm for high-dimensional data, IEEE transactions on knowledge and
data engineering 25 (1) (2011) 1–14.

218 Bibliography

[326] L. D. Baker, A. K. McCallum, Distributional clustering of words for text
classification, in: Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, 1998, pp.
96–103.

[327] N. Slonim, N. Tishby, The power of word clusters for text classification,
in: Proceedings of the 23rd European Colloquium on Information Retrieval
Research, Vol. 1, 2001, p. 200.

[328] M. Zanin, D. Papo, P. A. Sousa, E. Menasalvas, A. Nicchi, E. Kubik, S. Boc-
caletti, Combining complex networks and data mining: why and how, Physics
Reports 635 (2016) 1–44.

[329] L. Ferreira, L. Zhao, Time series clustering via community detection in net-
works, Information Sciences 326 (08 2015).

[330] X. Zhang, J. Liu, Y. Du, T. Lu, A novel clustering method on time series data,
Expert Systems with Applications 38 (2011) 11891–11900.

[331] D. Koschützki, F. Schreiber, Centrality analysis methods for biological networks
and their application to gene regulatory networks, Gene regulation and systems
biology 2 (2008) GRSB–S702.

[332] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, Journal of statistical mechanics: theory and
experiment 2008 (10) (2008) P10008.

[333] B. Luque, L. Lacasa, Canonical horizontal visibility graphs are uniquely
determined by their degree sequence, The European Physical Journal Special
Topics 226 (05 2016).

[334] A. Corsini, F. Bonacina, S. Feudo, A. Marchegiani, P. Venturini, Internal
combustion engine sensor network analysis using graph modeling, Energy
Procedia 126 (2017) 907–914.

[335] G. Van Rossum, F. L. Drake Jr, Python reference manual, Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[336] T. E. Oliphant, A guide to NumPy, Vol. 1, Trelgol Publishing USA, 2006.

[337] A. Hagberg, P. Swart, D. Chult, Exploring network structure, dynamics,
and function using networkx, in: Proceedings of the 7th Python in Science
Conference, 2008, pp. 11–15.

[338] X. Wen, M. Xie, Performance evaluation of wind turbines based on scada data,
Wind Engineering (2020) 0309524X20968935.

[339] H. Chen, C. Xie, J. Dai, E. Cen, J. Li, Scada data-based working condition
classification for condition assessment of wind turbine main transmission
system, Energies 14 (21) (2021) 7043.

Bibliography 219

[340] J. M. G. Sopeña, V. Pakrashi, B. Ghosh, Can we improve short-term wind
power forecasts using turbine-level data? a case study in ireland, in: 2021
IEEE Madrid PowerTech, IEEE, 2021, pp. 1–6.

[341] X. Jin, Z. Xu, W. Qiao, Condition monitoring of wind turbine generators using
scada data analysis, IEEE Transactions on Sustainable Energy 12 (1) (2020)
202–210.

[342] H. Huang, R. Jia, X. Shi, J. Liang, J. Dang, Feature selection and hyper pa-
rameters optimization for short-term wind power forecast, Applied Intelligence
(2021) 1–19.

[343] H. Zheng, Y. Wu, A xgboost model with weather similarity analysis and
feature engineering for short-term wind power forecasting, Applied Sciences
9 (15) (2019) 3019.

[344] S. Li, P. Wang, L. Goel, Wind power forecasting using neural network ensembles
with feature selection, IEEE Transactions on sustainable energy 6 (4) (2015)
1447–1456.

[345] D. Astolfi, F. Castellani, A. Lombardi, L. Terzi, Multivariate scada data
analysis methods for real-world wind turbine power curve monitoring, Energies
14 (4) (2021) 1105.

[346] L. Qin, Y. Xiong, K. Liu, Weather division-based wind power forecasting
model with feature selection, IET Renewable Power Generation 13 (16) (2019)
3050–3060.

[347] N. Botha, C. M. van der Walt, Forecasting wind speed using support vector
regression and feature selection, in: 2017 Pattern Recognition Association of
South Africa and Robotics and Mechatronics (PRASA-RobMech), IEEE, 2017,
pp. 181–186.

[348] F. Wetschoreck, T. Krabel, S. Krishnamurthy, 8080labs/ppscore: zenodo
release (Oct. 2020). doi:10.5281/zenodo.4091345.
URL https://doi.org/10.5281/zenodo.4091345

[349] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830.

[350] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip, et al., Top 10 algorithms in data
mining, Knowledge and information systems 14 (1) (2008) 1–37.

[351] S. Haykin, Neural networks: a comprehensive foundation, Prentice Hall PTR,
1994.

[352] R. S. Peres, A. D. Rocha, P. Leitao, J. Barata, Idarts–towards intelligent data
analysis and real-time supervision for industry 4.0, Computers in industry 101
(2018) 138–146.

https://doi.org/10.5281/zenodo.4091345
https://doi.org/10.5281/zenodo.4091345
https://doi.org/10.5281/zenodo.4091345
https://doi.org/10.5281/zenodo.4091345

220 Bibliography

[353] E. Sezer, D. Romero, F. Guedea, M. Macchi, C. Emmanouilidis, An industry
4.0-enabled low cost predictive maintenance approach for smes, in: 2018
IEEE International Conference on Engineering, Technology and Innovation
(ICE/ITMC), IEEE, 2018, pp. 1–8.

[354] S. Biswal, G. Sabareesh, Design and development of a wind turbine test rig for
condition monitoring studies, in: 2015 international conference on industrial
instrumentation and control (icic), IEEE, 2015, pp. 891–896.

[355] T. P. Carvalho, F. A. Soares, R. Vita, R. d. P. Francisco, J. P. Basto, S. G.
Alcalá, A systematic literature review of machine learning methods applied
to predictive maintenance, Computers & Industrial Engineering 137 (2019)
106024.

[356] T. Zonta, C. A. Da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade,
G. P. Li, Predictive maintenance in the industry 4.0: A systematic literature
review, Computers & Industrial Engineering 150 (2020) 106889.

[357] A. Jezzini, M. Ayache, L. Elkhansa, B. Makki, M. Zein, Effects of predictive
maintenance (pdm), proactive maintenace (pom) & preventive maintenance
(pm) on minimizing the faults in medical instruments, in: 2013 2nd Inter-
national conference on advances in biomedical engineering, IEEE, 2013, pp.
53–56.

[358] A. Kumar, R. B. Chinnam, F. Tseng, An hmm and polynomial regression
based approach for remaining useful life and health state estimation of cutting
tools, Computers & Industrial Engineering 128 (2019) 1008–1014.

[359] P. Kamat, R. Sugandhi, Anomaly detection for predictive maintenance in
industry 4.0-a survey, in: E3S Web of Conferences, Vol. 170, EDP Sciences,
2020, p. 02007.

[360] S. Wang, K. Wang, Z. Li, A review on data-driven predictive maintenance
approach for hydro turbines/generators, in: 6th International Workshop of
Advanced Manufacturing and Automation, Atlantis Press, 2016, pp. 30–35.

[361] E. Arena, A. Corsini, R. Ferulano, D. A. Iuvara, E. S. Miele, L. Ricciardi Celsi,
N. A. Sulieman, M. Villari, Anomaly detection in photovoltaic production
factories via monte carlo pre-processed principal component analysis, Energies
14 (13) (2021) 3951.

[362] E. S. Miele, F. Bonacina, A. Corsini, Deep anomaly detection in horizontal
axis wind turbines using graph convolutional autoencoders for multivariate
time series, Energy and AI 8 (2022) 100145.

[363] H. Wang, G. Ni, J. Chen, J. Qu, Research on rolling bearing state health
monitoring and life prediction based on pca and internet of things with multi-
sensor, Measurement 157 (2020) 107657.

[364] D. Kimera, F. N. Nangolo, Improving ship yard ballast pumps’ operations:
A pca approach to predictive maintenance, Maritime Transport Research 1
(2020) 100003.

Bibliography 221

[365] X. Chen, B. Zhang, T. Wang, A. Bonni, G. Zhao, Robust principal com-
ponent analysis for accurate outlier sample detection in rna-seq data, BMC
bioinformatics 21 (1) (2020) 1–20.

[366] S. Kim, J. Hur, A probabilistic modeling based on monte carlo simulation of
wind powered ev charging stations for steady-states security analysis, Energies
13 (20) (2020) 5260.

[367] J. E. Yoo, M. Rho, Large-scale survey data analysis with penalized regression:
A monte carlo simulation on missing categorical predictors, Multivariate
Behavioral Research 57 (4) (2022) 642–657.

[368] M. De Benedetti, F. Leonardi, F. Messina, C. Santoro, A. Vasilakos, Anomaly
detection and predictive maintenance for photovoltaic systems, Neurocomput-
ing 310 (2018) 59–68.

[369] N. Bashir, D. Chen, D. Irwin, P. S.-T. Shenoy, A data-driven toolkit for solar
pv performance modeling and forecasting, in: Proceedings of the 2019 IEEE
16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS),
Monterey, CA, USA, 2019, pp. 4–7.

[370] F. Bonacina, A. Corsini, L. Cardillo, F. Lucchetta, Complex network analysis
of photovoltaic plant operations and failure modes, Energies 12 (10) (2019)
1995.

[371] F. Zhou, J. H. Park, Y. Liu, Differential feature based hierarchical pca fault
detection method for dynamic fault, Neurocomputing 202 (2016) 27–35.

[372] Z. Chen, X. Li, C. Yang, T. Peng, C. Yang, H. Karimi, W. Gui, A data-
driven ground fault detection and isolation method for main circuit in railway
electrical traction system, ISA transactions 87 (2019) 264–271.

[373] M.-F. Harkat, A. Kouadri, R. Fezai, M. Mansouri, H. Nounou, M. Nounou,
Machine learning-based reduced kernel pca model for nonlinear chemical
process monitoring, Journal of Control, Automation and Electrical Systems
31 (5) (2020) 1196–1209.

[374] F. Bencheikh, M. Harkat, A. Kouadri, A. Bensmail, New reduced kernel pca
for fault detection and diagnosis in cement rotary kiln, Chemometrics and
Intelligent Laboratory Systems 204 (2020) 104091.

[375] W. Niemeier, D. Tengen, Stochastic properties of confidence ellipsoids af-
ter least squares adjustment, derived from gum analysis and monte carlo
simulations, Mathematics 8 (8) (2020) 1318.

[376] M. L. Zelditch, D. L. Swiderski, H. D. Sheets, Geometric morphometrics for
biologists: a primer, academic press, 2012.

[377] X. Fang, W. Zeng, Y. Zhou, B. Wang, On the total least median of squares
adjustment for the pattern recognition in point clouds, Measurement 160 (2020)
107794.

222 Bibliography

[378] G. Leger, Combining adaptive alternate test and multi-site, in: 2015 Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2015,
pp. 1389–1394.

[379] S. Parashar, A. Swarnkar, K. Niazi, N. Gupta, Optimal integration of electric
vehicles and energy management of grid connected microgrid, in: 2017 IEEE
Transportation Electrification Conference (ITEC-India), IEEE, 2017, pp. 1–5.

[380] T. M. L. Fernando, L. G. E. Marcelo, V. M. H. David, Substation distribution
reliability assessment using network reduction and montecarlo method, a com-
parison, in: 2019 FISE-IEEE/CIGRE Conference-Living the energy Transition
(FISE/CIGRE), IEEE, 2019, pp. 1–7.

[381] X. Kong, X. Tong, Monte-carlo tree search for graph coalition structure gener-
ation, in: 2020 13th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI), IEEE, 2020, pp. 1058–
1063.

[382] P. Saracco, M. Batic, G. Hoff, M. Pia, Uncertainty quantification (uq) in
generic montecarlo simulations, in: 2012 IEEE Nuclear Science Symposium
and Medical Imaging Conference Record (NSS/MIC), IEEE, 2012, pp. 651–656.

[383] H. García-Alfonso, D.-M. Córdova-Esparza, Comparison of uncertainty analysis
of the montecarlo and latin hypercube algorithms in a camera calibration
model, in: 2018 IEEE 2nd Colombian Conference on Robotics and Automation
(CCRA), IEEE, 2018, pp. 1–5.

[384] Y. Chen, R. Sun, J. Borken-Kleefeld, On-road no x and smoke emissions of
diesel light commercial vehicles–combining remote sensing measurements from
across europe, Environmental Science & Technology 54 (19) (2020) 11744–
11752.

[385] R. Heijungs, On the number of monte carlo runs in comparative probabilistic
lca, The International Journal of Life Cycle Assessment 25 (2) (2020) 394–402.

[386] P. Nair, I. Kashyap, Hybrid pre-processing technique for handling imbalanced
data and detecting outliers for knn classifier, in: 2019 International Conference
on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon),
IEEE, 2019, pp. 460–464.

[387] D. Zwillinger, S. Kokoska, CRC standard probability and statistics tables and
formulae, Crc Press, 1999.

[388] H. Ji, Y. Li, Monte carlo methods and their applications in big data analysis,
in: Mathematical Problems in Data Science, Springer, 2015, pp. 125–139.

[389] C. von Brömssen, E. Röös, Why statistical testing and confidence intervals
should not be used in comparative life cycle assessments based on monte carlo
simulations, The International Journal of Life Cycle Assessment 25 (11) (2020)
2101–2105.

Bibliography 223

[390] F. Dongxiao, P. Chuan, Z. Guoxing, Z. Rui, L. Fang, D. Zhenhua, M. Hongliang,
Research on simulation method for reliability prediction of pyrotechnical
system, in: 2020 11th International Conference on Prognostics and System
Health Management (PHM-2020 Jinan), IEEE, 2020, pp. 556–559.

[391] B. Meuleman, J. Billiet, A monte carlo sample size study: How many countries
are needed for accurate multilevel sem?, in: Survey Research Methods, 2009,
pp. 45–58.

[392] S. Fadhel, C. Delpha, D. Diallo, I. Bahri, A. Migan, M. Trabelsi, M. F.
Mimouni, Pv shading fault detection and classification based on iv curve using
principal component analysis: Application to isolated pv system, Solar Energy
179 (2019) 1–10.

[393] V. Aggarwal, V. Gupta, P. Singh, K. Sharma, N. Sharma, Detection of spatial
outlier by using improved z-score test, in: 2019 3rd International Conference
on Trends in Electronics and Informatics (ICOEI), IEEE, 2019, pp. 788–790.

[394] H. Vinutha, B. Poornima, B. Sagar, Detection of outliers using interquartile
range technique from intrusion dataset, in: Information and decision sciences,
Springer, 2018, pp. 511–518.

[395] A. R. T. Donders, G. J. Van Der Heijden, T. Stijnen, K. G. Moons, A gentle
introduction to imputation of missing values, Journal of clinical epidemiology
59 (10) (2006) 1087–1091.

[396] R. Malarvizhi, A. S. Thanamani, K-nearest neighbor in missing data imputa-
tion, International Journal of Engineering Research and Development 5 (1)
(2012) 5–7.

[397] N. M. Noor, M. M. Al Bakri Abdullah, A. S. Yahaya, N. A. Ramli, Comparison
of linear interpolation method and mean method to replace the missing values
in environmental data set, in: Materials Science Forum, Vol. 803, Trans Tech
Publ, 2015, pp. 278–281.

[398] M. Parzinger, L. Hanfstaengl, F. Sigg, U. Spindler, U. Wellisch, M. Wirnsberger,
Residual analysis of predictive modelling data for automated fault detection
in building’s heating, ventilation and air conditioning systems, Sustainability
12 (17) (2020) 6758.

[399] M. Liserre, R. Cardenas, M. Molinas, J. Rodriguez, Overview of multi-mw
wind turbines and wind parks, IEEE Transactions on Industrial Electronics
58 (4) (2011) 1081–1095.

[400] K. T. Fung, R. L. Scheffler, J. Stolpe, Wind energy - a utility perspective,
IEEE Transactions on Power Apparatus and Systems PAS-100 (3) (1981)
1176–1182.

[401] E. Sesto, C. Casale, Exploitation of wind as an energy source to meet the world’s
electricity demand, Journal of Wind Engineering and Industrial Aerodynamics
74 (1998) 375–387.

224 Bibliography

[402] H.-M. Wee, W.-H. Yang, C.-W. Chou, M. V. Padilan, Renewable energy
supply chains, performance, application barriers, and strategies for further
development, Renewable and Sustainable Energy Reviews 16 (8) (2012) 5451–
5465.

[403] Z. Hameed, Y. Hong, Y. Cho, S. Ahn, C. Song, Condition monitoring and
fault detection of wind turbines and related algorithms: A review, Renewable
and Sustainable energy reviews 13 (1) (2009) 1–39.

[404] K. Kim, G. Parthasarathy, O. Uluyol, W. Foslien, S. Sheng, P. Fleming, Use
of scada data for failure detection in wind turbines, in: Energy Sustainability,
Vol. 54686, 2011, pp. 2071–2079.

[405] C. Dao, B. Kazemtabrizi, C. Crabtree, Wind turbine reliability data review and
impacts on levelised cost of energy, Wind Energy 22 (12) (2019) 1848–1871.

[406] A. Zaher, S. McArthur, D. Infield, Y. Patel, Online wind turbine fault detection
through automated scada data analysis, Wind Energy: An International
Journal for Progress and Applications in Wind Power Conversion Technology
12 (6) (2009) 574–593.

[407] A. Lebranchu, S. Charbonnier, C. Bérenguer, F. Prévost, A combined mono-
and multi-turbine approach for fault indicator synthesis and wind turbine
monitoring using scada data, ISA transactions 87 (2019) 272–281.

[408] D. Menezes, M. Mendes, J. A. Almeida, T. Farinha, Wind farm and resource
datasets: A comprehensive survey and overview, Energies 13 (18) (2020) 4702.

[409] M. Ulmer, E. Jarlskog, G. Pizza, J. Manninen, L. Goren Huber, Early fault
detection based on wind turbine scada data using convolutional neural networks,
in: 5th European Conference of the Prognostics and Health Management
Society, Virtual Conference, 27-31 July 2020, Vol. 5, PHM Society, 2020, p. 9.

[410] Y. Cui, P. Bangalore, L. Bertling Tjernberg, A fault detection framework using
recurrent neural networks for condition monitoring of wind turbines, Wind
Energy (2021).

[411] G. Pang, C. Shen, L. Cao, A. V. D. Hengel, Deep learning for anomaly
detection: A review, ACM Computing Surveys (CSUR) 54 (2) (2021) 1–38.

[412] Y. Pang, Q. He, G. Jiang, P. Xie, Spatio-temporal fusion neural network for
multi-class fault diagnosis of wind turbines based on scada data, Renewable
Energy 161 (2020) 510–524.

[413] Z. Kong, B. Tang, L. Deng, W. Liu, Y. Han, Condition monitoring of wind
turbines based on spatio-temporal fusion of scada data by convolutional neural
networks and gated recurrent units, Renewable Energy 146 (2020) 760–768.

[414] L. Xiang, P. Wang, X. Yang, A. Hu, H. Su, Fault detection of wind turbine
based on scada data analysis using cnn and lstm with attention mechanism,
Measurement 175 (2021) 109094.

Bibliography 225

[415] B. Yu, H. Yin, Z. Zhu, Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting, in: Proceedings of the 27th
International Joint Conference on Artificial Intelligence, IJCAI’18, AAAI Press,
2018, pp. 3634–3640.

[416] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, C. Zhang, Connecting the dots:
Multivariate time series forecasting with graph neural networks, in: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2020, pp. 753–763.

[417] N. Renström, P. Bangalore, E. Highcock, System-wide anomaly detection in
wind turbines using deep autoencoders, Renewable Energy 157 (2020) 647–659.

[418] H. Chen, H. Liu, X. Chu, Q. Liu, D. Xue, Anomaly detection and critical scada
parameters identification for wind turbines based on lstm-ae neural network,
Renewable Energy 172 (2021) 829–840.

[419] R. Chalapathy, S. Chawla, Deep learning for anomaly detection: A survey,
arXiv preprint arXiv:1901.03407 (2019).

[420] J. J. Q. Yu, J. Gu, Real-time traffic speed estimation with graph convolutional
generative autoencoder, IEEE Transactions on Intelligent Transportation
Systems 20 (10) (2019) 3940–3951.

[421] Y. Hu, A. Qu, D. Work, Graph convolutional networks for traffic anomaly,
arXiv preprint arXiv:2012.13637 (2020).

[422] X. Yan, T. Ai, M. Yang, X. Tong, Graph convolutional autoencoder model for
the shape coding and cognition of buildings in maps, International Journal of
Geographical Information Science (2020) 1–23.

[423] S. Zhang, H. Tong, J. Xu, R. Maciejewski, Graph convolutional networks: a
comprehensive review, Computational Social Networks 6 (1) (2019) 1–23.

[424] G. Li, M. Muller, A. Thabet, B. Ghanem, Deepgcns: Can gcns go as deep
as cnns?, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 9267–9276.

[425] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip, A comprehensive
survey on graph neural networks, IEEE transactions on neural networks and
learning systems (2020).

[426] EDP, Wind farm 1 - failures, data retrieved from EDP Open
Data, https://opendata.edp.com/explore/dataset/htw-failures-2016/
information/ (2016).

[427] B. C. Ross, Mutual information between discrete and continuous data sets,
PloS one 9 (2) (2014) e87357.

[428] R. Arora, A. Basu, P. Mianjy, A. Mukherjee, Understanding deep neural
networks with rectified linear units, arXiv preprint arXiv:1611.01491 (2016).

https://opendata.edp.com/explore/dataset/htw-failures-2016/information/
https://opendata.edp.com/explore/dataset/htw-failures-2016/information/

226 Bibliography

[429] A. Savitzky, M. J. Golay, Smoothing and differentiation of data by simplified
least squares procedures., Analytical chemistry 36 (8) (1964) 1627–1639.

[430] L. Prechelt, Early stopping-but when?, in: Neural Networks: Tricks of the
trade, Springer, 1998, pp. 55–69.

[431] P. H. Madsen, D. Risø, Introduction to the iec 61400-1 standard, Risø National
Laboratory, Technical University of Denmark (2008).

[432] M. Wilkinson, K. Harman, B. Hendriks, F. Spinato, T. van Delft, G. Garrad,
U. Thomas, Measuring wind turbine reliability-results of the reliawind project,
in: EWEA Conference, 2011, pp. 1–8.

[433] M. Sahnoun, F. Bagui, M. Messaadia, Failure analysis of onshore wind farms
based on experimental data, in: Mediterranean Conference on Information &
Communication Technologies’ 2015, 2015, pp. –.

[434] H. Wang, Z. Lei, X. Zhang, B. Zhou, J. Peng, A review of deep learning for
renewable energy forecasting, Energy Conversion and Management 198 (2019)
111799.

[435] Q. Wang, H. Wu, A. R. Florita, C. B. Martinez-Anido, B.-M. Hodge, The
value of improved wind power forecasting: Grid flexibility quantification, ramp
capability analysis, and impacts of electricity market operation timescales,
Applied Energy 184 (2016) 696–713.

[436] Z. Shen, M. Ritter, Forecasting volatility of wind power production, Applied
energy 176 (2016) 295–308.

[437] L. Jebaraj, C. Venkatesan, I. Soubache, C. C. A. Rajan, Application of
differential evolution algorithm in static and dynamic economic or emission
dispatch problem: A review, Renewable and Sustainable Energy Reviews 77
(2017) 1206–1220.

[438] M. Khalid, R. P. Aguilera, A. V. Savkin, V. G. Agelidis, On maximizing profit
of wind-battery supported power station based on wind power and energy
price forecasting, Applied Energy 211 (2018) 764–773.

[439] S. A. Arefifar, Y. A.-R. I. Mohamed, T. H. El-Fouly, Supply-adequacy-based
optimal construction of microgrids in smart distribution systems, IEEE trans-
actions on smart grid 3 (3) (2012) 1491–1502.

[440] J. Ma, X. Ma, A review of forecasting algorithms and energy management
strategies for microgrids, Systems Science & Control Engineering 6 (1) (2018)
237–248.

[441] K. Baker, G. Hug, X. Li, Energy storage sizing taking into account forecast un-
certainties and receding horizon operation, IEEE Transactions on Sustainable
Energy 8 (1) (2016) 331–340.

Bibliography 227

[442] C. Matke, D. Bienstock, G. Munoz, S. Yang, D. Kleinhans, S. Sager, Robust
optimization of power network operation: storage devices and the role of
forecast errors in renewable energies, in: International Workshop on Complex
Networks and their Applications, Springer, 2016, pp. 809–820.

[443] S. Mazzola, C. Vergara, M. Astolfi, V. Li, I. Perez-Arriaga, E. Macchi, Assessing
the value of forecast-based dispatch in the operation of off-grid rural microgrids,
Renewable Energy 108 (2017) 116–125.

[444] P. Haessig, B. Multon, H. B. Ahmed, S. Lascaud, P. Bondon, Energy storage
sizing for wind power: impact of the autocorrelation of day-ahead forecast
errors, Wind Energy 18 (1) (2015) 43–57.

[445] F. Nieuwenhout, A. Brand, The impact of wind power on day-ahead electric-
ity prices in the netherlands, in: 2011 8th International Conference on the
European Energy Market (EEM), IEEE, 2011, pp. 226–230.

[446] Q. Wang, C. B. Martinez-Anido, H. Wu, A. R. Florita, B.-M. Hodge, Quan-
tifying the economic and grid reliability impacts of improved wind power
forecasting, IEEE Transactions on sustainable energy 7 (4) (2016) 1525–1537.

[447] A. Kaur, L. Nonnenmacher, H. T. Pedro, C. F. Coimbra, Benefits of solar
forecasting for energy imbalance markets, Renewable energy 86 (2016) 819–830.

[448] L. Exizidis, J. Kazempour, P. Pinson, Z. De Grève, F. Vallée, Impact of public
aggregate wind forecasts on electricity market outcomes, IEEE Transactions
on Sustainable Energy 8 (4) (2017) 1394–1405.

[449] D. G. Caglayan, D. S. Ryberg, H. Heinrichs, J. Linßen, D. Stolten, M. Robinius,
The techno-economic potential of offshore wind energy with optimized future
turbine designs in europe, Applied energy 255 (2019) 113794.

[450] R. Belmans, Integration of large-scale renewable energy into bulk power
systems: From planning to operation., Economics of Energy & Environmental
Policy 8 (2) (2019) 201–203.

[451] G. Notton, M.-L. Nivet, C. Voyant, C. Paoli, C. Darras, F. Motte, A. Fouilloy,
Intermittent and stochastic character of renewable energy sources: Conse-
quences, cost of intermittence and benefit of forecasting, Renewable and
sustainable energy reviews 87 (2018) 96–105.

[452] M. U. Yousuf, I. Al-Bahadly, E. Avci, Current perspective on the accuracy
of deterministic wind speed and power forecasting, IEEE Access 7 (2019)
159547–159564.

[453] D. Lahat, T. Adali, C. Jutten, Multimodal data fusion: an overview of methods,
challenges, and prospects, Proceedings of the IEEE 103 (9) (2015) 1449–1477.

[454] L. Boussioux, C. Zeng, T. Guénais, D. Bertsimas, Hurricane forecasting:
A novel multimodal machine learning framework, Weather and Forecasting
(2022).

228 Bibliography

[455] S. Yang, H. Wei, L. Zhang, S. Qin, Daily power generation forecasting method
for a group of small hydropower stations considering the spatial and temporal
distribution of precipitation—south china case study, Energies 14 (15) (2021)
4387.

[456] D. Haputhanthri, D. De Silva, S. Sierla, D. Alahakoon, R. Nawaratne, A. Jen-
nings, V. Vyatkin, Solar irradiance nowcasting for virtual power plants using
multimodal long short-term memory networks, Frontiers in Energy Research
(2021) 469.

[457] P. Du, Ensemble machine learning-based wind forecasting to combine nwp
output with data from weather station, IEEE Transactions on Sustainable
Energy 10 (4) (2018) 2133–2141.

[458] Engie, The la haute borne wind farm, https://opendata-renewables.engie.
com/ (2018).

[459] L. Donadio, J. Fang, F. Porté-Agel, Numerical weather prediction and artificial
neural network coupling for wind energy forecast, Energies 14 (2) (2021) 338.

[460] D. Zheng, M. Shi, Y. Wang, A. T. Eseye, J. Zhang, Day-ahead wind power
forecasting using a two-stage hybrid modeling approach based on scada and me-
teorological information, and evaluating the impact of input-data dependency
on forecasting accuracy, Energies 10 (12) (2017) 1988.

[461] ECMWF, Atmospheric model high resolution 10-day forecast (set i - hres),
https://www.ecmwf.int/en/forecasts/datasets/set-i (2022).

[462] J. Litten, Applying sigma metrics to reduce outliers, Clinics in Laboratory
Medicine 37 (1) (2017) 177–186.

[463] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation
9 (8) (1997) 1735–1780.

[464] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Convolu-
tional lstm network: A machine learning approach for precipitation nowcasting,
Advances in neural information processing systems 28 (2015).

[465] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, ACM, New York, NY, USA, 2016, pp.
785–794. doi:10.1145/2939672.2939785.
URL http://doi.acm.org/10.1145/2939672.2939785

[466] Q.-T. Phan, Y.-K. Wu, Q.-D. Phan, A comparative analysis of xgboost and
temporal convolutional network models for wind power forecasting, in: 2020
International Symposium on Computer, Consumer and Control (IS3C), IEEE,
2020, pp. 416–419.

[467] R. Cai, S. Xie, B. Wang, R. Yang, D. Xu, Y. He, Wind speed forecasting based
on extreme gradient boosting, IEEE Access 8 (2020) 175063–175069.

https://opendata-renewables.engie.com/
https://opendata-renewables.engie.com/
https://www.ecmwf.int/en/forecasts/datasets/set-i
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785

Bibliography 229

[468] Q. T. Phan, Y. K. Wu, Q. D. Phan, A hybrid wind power forecasting model
with xgboost, data preprocessing considering different nwps, Applied Sciences
11 (3) (2021) 1100.

[469] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Convolu-
tional lstm network: A machine learning approach for precipitation nowcasting,
Advances in neural information processing systems 28 (2015).

[470] S. Alessandrini, S. Sperati, P. Pinson, A comparison between the ecmwf
and cosmo ensemble prediction systems applied to short-term wind power
forecasting on real data, Applied energy 107 (2013) 271–280.

[471] B. Kosovic, S. E. Haupt, D. Adriaansen, S. Alessandrini, G. Wiener,
L. Delle Monache, Y. Liu, S. Linden, T. Jensen, W. Cheng, et al., A compre-
hensive wind power forecasting system integrating artificial intelligence and
numerical weather prediction, Energies 13 (6) (2020) 1372.

[472] W. Dai, H. Nishi, V. Vyatkin, V. Huang, Y. Shi, X. Guan, Industrial edge
computing: Enabling embedded intelligence, IEEE Industrial Electronics
Magazine 13 (4) (2019) 48–56.

[473] J. Zhang, B. Chen, Y. Zhao, X. Cheng, F. Hu, Data security and privacy-
preserving in edge computing paradigm: Survey and open issues, IEEE access
6 (2018) 18209–18237.

[474] M. D. de Assuncao, A. da Silva Veith, R. Buyya, Distributed data stream
processing and edge computing: A survey on resource elasticity and future
directions, Journal of Network and Computer Applications 103 (2018) 1–17.

	Introduction
	Sustainable Energy Transition
	Renewable Energy Systems
	From Internet of Things to Internet of Energy
	The Role of Artificial Intelligence

	Methodology
	Data Preprocessing Methods for Time Series
	Handling Missing Values
	Outlier Detection
	Smoothing
	Transformations
	Scaling
	Sliding Windows

	Machine Learning Algorithms
	Supervised Learning
	Unsupervised Learning
	Deep Learning
	Training and Evaluation

	Framework for Energy Applications
	Dimensionality Reduction in Energy System Sensor Networks
	Time Series Clustering: A Complex Network-Based Approach for Feature Selection in Multi-Sensor Data
	Unsupervised Feature Selection of Multi-Sensor SCADA Data in Horizontal Axis Wind Turbine Condition Monitoring

	Predictive Maintenance for Renewable Energy Systems
	Anomaly Detection in Photovoltaic Production Factories via Monte Carlo Pre-Processed Principal Component Analysis
	Deep Anomaly Detection in Horizontal Axis Wind Turbines using Graph Convolutional Autoencoders for Multivariate Time Series

	Power Forecasting for Renewable Energy Systems
	Multi-horizon Wind Power Forecasting Using Multi-Modal Spatio-Temporal Neural Networks

	Conclusions
	Bibliography

