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Abstract

Internet of Things (IoT) is poised to transform the quality of life and provide
new business opportunities with its wide range of applications. However, the
benefits of this emerging paradigm are coupled with serious cyber security
issues. The lack of strong cyber security measures in protecting IoT systems
can result in cyber attacks targeting all the layers of IoT architecture which
includes the IoT devices, the IoT communication protocols and the services
accessing the IoT data. Various IoT malware such as Mirai, BASHLITE
and BrickBot show an already rising IoT device based attacks as well as the
usage of infected IoT devices to launch other cyber attacks. However, as
sustained IoT deployment and functionality are heavily reliant on the use of
effective data communication protocols, the attacks on other layers of IoT
architecture are anticipated to increase. In the IoT landscape, the publish/-
subscribe based Message Queuing Telemetry Transport (MQTT) protocol is
widely popular. Hence, cyber security threats against the MQTT protocol
are projected to rise at par with its increasing use by IoT manufacturers. In
particular, the Internet exposed MQTT brokers are vulnerable to protocol-
based Application Layer Denial of Service (DoS) attacks, which have been
known to cause wide spread service disruptions in legacy systems. In this
thesis, we propose Application Layer based DoS attacks that target the au-
thentication and authorisation mechanism of the the MQTT protocol. In
addition, we also propose an MQTT protocol attack detection framework
based on machine learning. Through extensive experiments, we demonstrate
the impact of authentication and authorisation DoS attacks on three open-
source MQTT brokers. Based on the proposed DoS attack scenarios, an
IoT-MQTT attack dataset was generated to evaluate the effectiveness of
the proposed framework to detect these malicious attacks. The DoS attack
evaluation results obtained indicate that such attacks can overwhelm the
MQTT brokers resources even when legitimate access to it was denied and
resources were restricted. The evaluations also indicate that the proposed
DoS attack scenarios can significantly increase the MQTT message delay,
especially in QoS2 messages causing heavy tail latencies. In addition, the
proposed MQTT features showed high attack detection accuracy compared
to simply using TCP based features to detect MQTT based attacks. It was
also observed that the protocol field size and length based features drasti-
cally reduced the false positive rates and hence, are suitable for detecting
IoT based attacks.

i



Copyright and access
declaration

I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgement any material previously submit-
ted for a degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by another person
except where due reference is made in the text of this thesis;

(iii) contain any defamatory material;

.

Signed:
Dated: 21-01-2020

ii



Acknowledgements

Verily all praise is due to Allah (s.w.t). I praise Him; I seek His help and
forgiveness. Peace and blessings be upon Prophet Muhammad, the last of
Allah’s Messengers and Prophets.

I would like to express my sincere gratitude to my thesis advisors Dr
Ahmed Ibrahim, Dr Zubair Baig and Professor Craig Valli for their guidance,
support and invaluable advice through-out this thesis. I thank you all for
being my guides during this memorable research journey. I acknowledge the
support and facilities provided by Edith Cowan University (ECU), especially
the ECU Security Research Institute (SRI) for providing the opportunity to
conduct this research.

I would like to express my deepest gratitude to my parents, my wife
Samira, children (Amina and Hamza) and all my family members for their
love, prayers, constant support and encouragement. I also thank all my
fellow graduate students and all my friends who made this an enjoyable
experience.

I dedicate this work to my father and mother who showered their love on
me, supported and encouraged me always. To my wife who stood besides
me and supported, encouraged me and was patient with me in this PhD
journey and to my beloved children.

iii



Publications arising from
this research

The following are the publications arising as a result of the research con-
ducted in this thesis.

• Firdous, S. N., Baig, Z., Valli, C., & Ibrahim, A. (2017, June). Mod-
elling and evaluation of malicious attacks against the iot mqtt protocol.
In 2017 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData) (pp. 748-755). IEEE.

• Baig, Z. A., Sanguanpong, S., Firdous, S. N., Nguyen, T. G., & So-In,
C. (2020). Averaged dependence estimators for DoS attack detection
in IoT networks. Future Generation Computer Systems, 102, 198-209.

• Malik, M. I., McAteer, I. N., Hannay, P., Firdous, S. N., & Baig, Z.
(2018). XMPP architecture and security challenges in an IoT ecosys-
tem. In Proceedings of the 16th Australian Information Security Man-
agement Conference (p. 62).

iv



Contents

Abstract i

Copyrights ii

Acknowledgements iii

Publications iv

List of Figures ix

List of Tables xiii

Acronyms xvi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose of this Research . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7
2.1 Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . 8

2.1.1 IoT Enabling Technologies . . . . . . . . . . . . . . . . 10
2.1.2 IoT Communication Models . . . . . . . . . . . . . . . 12

2.2 IoT Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 IoT Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 IoT Threats . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 IoT Threat Impact . . . . . . . . . . . . . . . . . . . 21

2.4 DoS Attack Techniques . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 DoS Attack Classification . . . . . . . . . . . . . . . . 26

v



2.4.2 Flooding DoS Attacks . . . . . . . . . . . . . . . . . . 27
2.4.3 Semantic DoS Attacks . . . . . . . . . . . . . . . . . . 27
2.4.4 Network Layer Attacks . . . . . . . . . . . . . . . . . . 29
2.4.5 Application Layer Attacks . . . . . . . . . . . . . . . . 30

2.5 DoS Attack Detection Techniques . . . . . . . . . . . . . . . . 34
2.5.1 Statistical Detection Techniques . . . . . . . . . . . . 38
2.5.2 Targeted DoS Attack Detection . . . . . . . . . . . . . 38
2.5.3 Soft Computing, Data Mining and Machine Learning

Based Detection . . . . . . . . . . . . . . . . . . . . . 43
2.6 Attacks on Publish/Subscribe Systems . . . . . . . . . . . . . 53
2.7 MQTT Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7.1 Publish/Subscribe Pattern . . . . . . . . . . . . . . . . 54
2.7.2 MQTT Connection Establishment . . . . . . . . . . . 56
2.7.3 MQTT - Message Publish . . . . . . . . . . . . . . . . 60
2.7.4 MQTT - Message Subscribe . . . . . . . . . . . . . . . 64

2.8 MQTT Security . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.8.1 MQTT Attack Detection . . . . . . . . . . . . . . . . 68

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Research Methodology and Design 73
3.1 Research Methodology . . . . . . . . . . . . . . . . . . . . . 73
3.2 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Research Procedure . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.1 Experimental Phase-1 . . . . . . . . . . . . . . . . . . 78
3.3.2 Experimental Phase-2 . . . . . . . . . . . . . . . . . . 80

3.4 Research Variables . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.1 Research Variables for Phase-1 . . . . . . . . . . . . . 83
3.4.2 Research Variables for Phase-2 . . . . . . . . . . . . . 87

3.5 Experimental Procedures . . . . . . . . . . . . . . . . . . . . 90
3.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6.1 DoS Attack Evaluation . . . . . . . . . . . . . . . . . 95
3.6.2 Machine Learning Performance Evaluation . . . . . . 95

3.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 97
3.8 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.9 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vi



4 MQTT Attack Model and Detection Framework 102
4.1 Threat Model for MQTT Based IoT System . . . . . . . . . . 102

4.1.1 Asset Identification . . . . . . . . . . . . . . . . . . . . 105
4.1.2 Threat Agents . . . . . . . . . . . . . . . . . . . . . . 105
4.1.3 Attack Categories, Threats and Impact . . . . . . . . 107

4.2 DoS Attack Model for MQTT/IoT . . . . . . . . . . . . . . . 112
4.2.1 Basic CONNECT Flooding (BF1) . . . . . . . . . . . 113
4.2.2 Delayed CONNECT Flooding (BF2) . . . . . . . . . . 114
4.2.3 CONNECT flooding with WILL payload (BF3) . . . . 117
4.2.4 Invalid Subscription Flooding (IAUTHS) . . . . . . . 117

4.3 MQTT DoS Evaluation Test-bed . . . . . . . . . . . . . . . . 120
4.4 DoS Attack Detection Framework . . . . . . . . . . . . . . . . 122

4.4.1 MQTT Traffic Generation . . . . . . . . . . . . . . . . 122
4.4.2 MQTT Feature Extraction . . . . . . . . . . . . . . . 128
4.4.3 Detecting Framework Classification Techniques . . . . 137

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Results 144
5.1 DoS Impact Assessment . . . . . . . . . . . . . . . . . . . . . 144

5.1.1 Single-CPU deployment . . . . . . . . . . . . . . . . . 145
5.1.2 Six-CPU Deployment . . . . . . . . . . . . . . . . . . 160
5.1.3 Load-Balanced Deployment . . . . . . . . . . . . . . . 163

5.2 Delay and Message Publish Rate Measurements . . . . . . . . 164
5.3 Detection Framework Performance . . . . . . . . . . . . . . . 173

5.3.1 Description of Datasets . . . . . . . . . . . . . . . . . 173
5.3.2 Training, Testing and Feature Groups . . . . . . . . . 176
5.3.3 Detection Results . . . . . . . . . . . . . . . . . . . . . 177

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6 Discussion 192
6.1 Purpose of the Study . . . . . . . . . . . . . . . . . . . . . . . 192
6.2 MQTT DoS Attack Modelling . . . . . . . . . . . . . . . . . . 193
6.3 MQTT DoS Attack Detection . . . . . . . . . . . . . . . . . . 200
6.4 Research Question Outcomes . . . . . . . . . . . . . . . . . . 213

6.4.1 SQ1: Is MQTT protocol Vulnerable to Application
Layer DoS attacks? . . . . . . . . . . . . . . . . . . . . 213

6.4.2 SQ2: Are MQTT protocol based features required to
detect targeted DoS attacks against MQTT-IoT sys-
tems? . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

vii



6.4.3 SQ3: How effective are the developed ML models in
correlating between normal and attack traffic? . . . . 216

6.5 Research Implications . . . . . . . . . . . . . . . . . . . . . . 217
6.5.1 Threat Modelling . . . . . . . . . . . . . . . . . . . . . 217
6.5.2 MQTT DoS Attack Modelling . . . . . . . . . . . . . 217
6.5.3 MQTT Attack Detection . . . . . . . . . . . . . . . . 218

7 Conclusion 220
7.1 How can Application Layer based DoS attacks against the

IoT-MQTT protocol be detected? . . . . . . . . . . . . . . . . 220
7.2 Significant Contributions of this Research . . . . . . . . . . . 221
7.3 Limitations of this Study . . . . . . . . . . . . . . . . . . . . 223
7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

References 225

Appendix A Additional Results 246
A.1 Additional Results for BF1 Attack Impact on Three Brokers . 246

viii



List of Figures

2.1 IoT enabling technologies . . . . . . . . . . . . . . . . . . . . 10
2.2 IoT communication models . . . . . . . . . . . . . . . . . . . 13
2.3 IoT protocol landscape . . . . . . . . . . . . . . . . . . . . . . 15
2.4 IoT attack categories . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 CPS based attack categories . . . . . . . . . . . . . . . . . . . 20
2.6 IoT attack categories by architecture layers . . . . . . . . . . 24
2.7 Typical queueing system . . . . . . . . . . . . . . . . . . . . . 25
2.8 DoS attack modelling . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Flooding DoS attack using infected hosts . . . . . . . . . . . 28
2.10 DoS amplification attack using spoofed source address . . . . 28
2.11 Ping-of-Death attack process . . . . . . . . . . . . . . . . . . 30
2.12 SYN-Flood Attack Process . . . . . . . . . . . . . . . . . . . 31
2.13 HTTP-GET DoS flooding attack . . . . . . . . . . . . . . . . 32
2.14 Slowloris DoS attack technique . . . . . . . . . . . . . . . . . 33
2.15 DoS attack classification . . . . . . . . . . . . . . . . . . . . . 34
2.16 DoS detection classification . . . . . . . . . . . . . . . . . . . 37
2.17 Proposed DoS detection classification . . . . . . . . . . . . . . 41
2.18 Typical ML work-flow used in classification or prediction . . 43
2.19 IP encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.20 Feed Forward ANN . . . . . . . . . . . . . . . . . . . . . . . . 49
2.21 Structure of an ANN neuron . . . . . . . . . . . . . . . . . . 50
2.22 Sample DT structure . . . . . . . . . . . . . . . . . . . . . . . 51
2.23 MQTT protocol architecture . . . . . . . . . . . . . . . . . . 55
2.24 MQTT control packet structure . . . . . . . . . . . . . . . . . 56
2.25 MQTT client connection process . . . . . . . . . . . . . . . . 57
2.26 MQTT client publish process . . . . . . . . . . . . . . . . . . 60
2.27 MQTT topic structure . . . . . . . . . . . . . . . . . . . . . . 61
2.28 MQTT QoS0 publish process . . . . . . . . . . . . . . . . . . 63
2.29 MQTT QoS1 publish process . . . . . . . . . . . . . . . . . . 63

ix



2.30 MQTT QoS2 publish process . . . . . . . . . . . . . . . . . . 64
2.31 MQTT Client subscribe-publish process . . . . . . . . . . . . 65
2.32 MQTT SUBSCRIBE control packet structure with multiple

subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 Research process used in this research . . . . . . . . . . . . . 79
3.2 Two phases utilised in this research . . . . . . . . . . . . . . 79
3.3 MQTT attack modelling and evaluation phase . . . . . . . . 91
3.4 Experimental Phase-2 (RP-2.3,2.4) . . . . . . . . . . . . . . 93
3.5 Experimental Phase-2 (RP-3.2) . . . . . . . . . . . . . . . . 94

4.1 IoT based MQTT Publish/Subscribe architecture showing
components, users having access to various parts of the sys-
tem and the connectivity of various parts . . . . . . . . . . . 104

4.2 MQTT threat model illustrating the various threat agents
and the threats to a MQTT based IoT system . . . . . . . . 112

4.3 Client authentication mechanisms used in MQTT brokers . . 114
4.4 CONNECT flood attack scenario . . . . . . . . . . . . . . . . 114
4.5 Delayed CONNECT flood attack scenario . . . . . . . . . . . 116
4.6 CONNECT Flood with WILL payload . . . . . . . . . . . . . 117
4.7 SUBSCRIBE flooding flood attack scenario . . . . . . . . . . 119
4.8 DoS assessment deployment . . . . . . . . . . . . . . . . . . . 121
4.9 MQTT states used for normal traffic modelling . . . . . . . . 122
4.10 Lab deployment of ESP8266 devices . . . . . . . . . . . . . . 123
4.11 Lab deployment of 30 Raspberry Pi devices - part 1 . . . . . 124
4.12 Lab deployment of 30 Raspberry Pi devices - part 2 . . . . . 124
4.13 CDF of sleep intervals . . . . . . . . . . . . . . . . . . . . . . 126
4.14 Tshark command used to extract specific packet features from

pcap files to extract time-window based features . . . . . . . 128
4.15 Tshark command used to extract specific packet features from

pcap files to extract flow-based features . . . . . . . . . . . . 129
4.16 MQTT Dataset generation test-bed and the associated tools

for feature generation . . . . . . . . . . . . . . . . . . . . . . 130
4.17 Distribution of packet sizes . . . . . . . . . . . . . . . . . . . 132
4.18 Subscribe flooding attack packet . . . . . . . . . . . . . . . . 135
4.19 Detection framework work-flow in detecting MQTT attacks

using flow-based features . . . . . . . . . . . . . . . . . . . . 141

5.1 BF1 attack impact on the Mosquitto CPU utilisation . . . . . 147
5.2 Mosquitto Attack PPS . . . . . . . . . . . . . . . . . . . . . . 147

x



5.3 BF1 attack impact on the VerneMQ CPU utilisation . . . . . 148
5.4 VerneMQ Attack PPS . . . . . . . . . . . . . . . . . . . . . . 149
5.5 BF1 Non-ASCII impact on VerneMQ . . . . . . . . . . . . . . 150
5.6 BF1 attack impact on EMQ CPU utilisation . . . . . . . . . 150
5.7 EMQ Attack PPS . . . . . . . . . . . . . . . . . . . . . . . . 151
5.8 BF2 impact on CPU utilisation . . . . . . . . . . . . . . . . . 152
5.9 BF2 impact on half-open TCP sessions . . . . . . . . . . . . . 153
5.10 BF2 impact on Attack PPS . . . . . . . . . . . . . . . . . . . 153
5.11 BF3 attack impact on bandwidth - Mosquitto . . . . . . . . . 155
5.12 BF3 attack impact on CPU - Mosquitto . . . . . . . . . . . . 155
5.13 BF3 attack impact on bandwidth - VerneMQ . . . . . . . . . 156
5.14 BF3 attack impact on CPU - VerneMQ . . . . . . . . . . . . 156
5.15 BF3 attack impact on bandwidth - EMQ . . . . . . . . . . . 157
5.16 BF3 attack impact on CPU - EMQ . . . . . . . . . . . . . . . 158
5.17 BF3 attack impact on Memory - EMQ . . . . . . . . . . . . . 158
5.18 IAUTHS attack impact on CPU . . . . . . . . . . . . . . . . 159
5.19 Attack impact on Six-CPU Configuration . . . . . . . . . . . 161
5.20 Attack impact on six-node EMQ cluster . . . . . . . . . . . . 164
5.21 Message delay measurement technique . . . . . . . . . . . . . 165
5.22 RTD measurements for - Mosquitto . . . . . . . . . . . . . . . 167
5.23 RTD measurements for - VerneMQ . . . . . . . . . . . . . . . 167
5.24 RTD measurements for - EMQ . . . . . . . . . . . . . . . . . 170
5.25 Publish Rate measurements for - Mosquitto broker . . . . . . 170
5.26 Publish Rate measurements for - VerneMQ broker . . . . . . 171
5.27 Publish Rate measurements for - EMQ broker . . . . . . . . . 172
5.28 Publish Rate measurements for IAUTHS attack . . . . . . . . 172
5.29 Performance comparison of classifiers - TW-Major-DS Time-

window features . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.30 Performance comparison of classifiers - TW-Sub-DS Time-

window features . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.31 Performance comparison of classifiers - FL-Major-DS flow-

based features . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.32 Performance comparison of classifiers - FL-Sub-DS flow-based

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.33 Training loss observed for the MLP classifier . . . . . . . . . 188
5.34 Average training loss observed for the MLP classifier . . . . . 189
5.35 Impact of activation functions on MLP classifier . . . . . . . 189

6.1 CPU Idle percentage of three MQTT brokers during various
attack scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 196

xi



6.2 Memory Utilisation of three brokers during various attack
scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.3 Summary of average delay . . . . . . . . . . . . . . . . . . . . 199
6.4 Summary of Average Publish Rate . . . . . . . . . . . . . . . 200
6.5 Variation in number of CONNECT packets in two second

time window . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.6 Summary of TPR rates in 3-class time-window detection . . . 202
6.7 Summary of TPR rates in TW-Sub-DS time-window detection 203
6.8 Summary of TPR rates in FL-Major-DS flow detection . . . . 204
6.9 Summary of TPR rates in FL-Sub-DS flow detection . . . . . 205
6.10 Boxplot showing the feature distribution of TW-Major-DS

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.11 Boxplot showing the feature distribution of TW-Sub-DS dataset209
6.12 Boxplot showing the feature distribution of FL-Major-DS dataset210
6.13 Boxplot showing the feature distribution of FL-Sub-DS dataset211
6.14 Correlation Plot of proposed time-window based features used

in malicious time-window detection approach . . . . . . . . . 213
6.15 Correlation Plot of proposed flow-based features used in ma-

licious flow detection approach . . . . . . . . . . . . . . . . . 214

xii



List of Tables

2.1 Application Layer IoT protocols used for data exchange . . . 16
2.2 IoT attacks on various IoT communication architecture layers 20
2.3 TCP/IP protocol stack and associated TCP and UDP based

protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 DoS attack strategies adopting protocol-specific legitimate re-

quests for various Application Layer protocols . . . . . . . . . 32
2.5 Protocol or infrastructure specific DoS attacks and defences . 39
2.6 Comparison of public datasets used for anomaly detection . 45
2.7 Direct and derived features used in various layers and proto-

cols of TCP/IP stack . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 MQTT control packets . . . . . . . . . . . . . . . . . . . . . . 57
2.9 CONNECT packet fields . . . . . . . . . . . . . . . . . . . . . 58
2.10 Response codes sent by broker in CONNACK packet . . . . . 60
2.11 MQTT QoS types . . . . . . . . . . . . . . . . . . . . . . . . 62
2.12 Comparison of existing MQTT attack model and attack de-

tection features with that proposed in this thesis . . . . . . . 69
2.13 Comparison of research contributions with existing and pro-

posed study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1 Description of various research paradigms . . . . . . . . . . . 75
3.2 Factorial Design of 3x3 showing the combinations of various

treatment groups of independent variables . . . . . . . . . . . 89
3.3 Treatments applied and parameters observed for various ex-

periments conducted in this research . . . . . . . . . . . . . . 90
3.4 Datasets used in this research to compare models built using

FV groups and classifier algorithms . . . . . . . . . . . . . . 92
3.5 Attack metrics used to measure the DoS Impact . . . . . . . 96
3.6 Confusion matrix for two classes . . . . . . . . . . . . . . . . 97

xiii



3.7 Hardware equipment used in the experimental setup of this
study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.8 Sensors and devices used in the physical setup . . . . . . . . 100
3.9 Software resources used in the experimental and analysis phases

of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 Assets in a typical MQTT based IoT deployment and their
descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Hardware Deployment to Test DoS attack Scenarios . . . . . 120
4.3 Real-world MQTT deployments used in a public transport CI 125
4.4 Sample packet data extracted using Tshark from MQTT traffic134
4.5 Sample dataset containing n flows represented by k features 134
4.6 Proposed MQTT DoS detection features (feature type N: Nu-

meric, B: Binary) . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.7 Time-Window based features . . . . . . . . . . . . . . . . . . 139
4.8 Sample dataset containing n windows represented by k fea-

tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1 IV treatments and observations on DV in DoS impact assess-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Sleep Intervals and the number of attack requests sent in each
step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 CPU utilisation breakup for Six-CPU configuration . . . . . . 161
5.4 Bandwidth, Memory and Process CPU utilisation during var-

ious attack scenarios in the Six-CPU configuration . . . . . . 162
5.5 Bandwidth, Memory and Process CPU utilisation during four

attack scenarios on load-balanced deployment . . . . . . . . . 163
5.6 Attack parameter settings for delay measurements . . . . . . 166
5.7 Comparison 95th Percentile Delays - Mosquitto . . . . . . . . 168
5.8 Comparison 95th Percentile Delays - VerneMQ . . . . . . . . 169
5.9 Comparison 95th Percentile Delays - EMQ . . . . . . . . . . . 171
5.10 Datasets used in this research to compare models built using

FV groups and classifier algorithms . . . . . . . . . . . . . . 175
5.11 Data distribution of various classes in the time-window based

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.12 Data distribution in various classes in the flow-based datasets 176
5.13 Datasets used, treatment applied to IVs and the observations

made for attack detection evaluation . . . . . . . . . . . . . . 178
5.14 Performance comparison of classifiers - TW-Major-DS Time-

window features . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xiv



5.15 Performance comparison of classifiers - TW-Sub-DS Time-
window features . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.16 Confusion matrix with AODE classifier on TW-Sub-DS dataset
with full features . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.17 Confusion matrix with C4.5 classifier on TW-Sub-DS dataset
with full features . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.18 Confusion matrix with MLP classifier on TW-Sub-DS dataset
with full features . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.19 Performance comparison of classifiers - FL-Major-DS flow-
based features . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.20 Performance comparison of classifiers - FL-Sub-DS flow-based
features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.21 Confusion matrix with AODE classifier on FL-Sub-DS dataset
with full features . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.22 Confusion matrix with C4.5 classifier on FL-Sub-DS dataset
with full features . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.23 Confusion matrix with MLP classifier on FL-Sub-DS dataset
with full features . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.24 Confusion matrix with MLP classifier on FL-Sub-DS dataset
with full features after choosing optimal Hyper-parameters . . 188

6.1 Summary of impact on CPU utilisation breakup of three MQTT
brokers during various attack scenarios . . . . . . . . . . . . . 197

A.1 Average CPU idle percentage for BF1 attack on the Mosquitto
Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A.2 Average CPU idle percentage for BF1 attack on the VerneMQ
Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

A.3 Average CPU idle percentage for BF1 attack on the EMQ
Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

xv



Acronyms

IoT : Internet of Things

OASIS : Organisation for the Advancement of Structured Information
Standards

IP : Internet Protocol

IPv4 : Internet Protocol version 4

IPv6 : Internet Protocol version 6

TCP : Transmission Control Protocol

UDP : User Datagram Protocol

MQTT : Message Queuing Telemetry Transport

HTTP : Hypertext Transport Protocol

FTP : File Transfer Protocol

SNMP : Simple Network Management Protocol

ARP : Address Resolution Protocol

ICMP : Internet Control Message Protocol

IGMP : Internet Group Management Protocol

GSM : Global System for Mobile Communications

DNS : Domain Name System

MTU : Maximum Transmission Unit

OS : Operating System

xvi



ML : Machine Learning

AI : Artificial Intelligence

AODE : Average One Dependence Estimator

C4.5 : Decision Tree based Classifier

MLP : Multi-Layer Perceptron

AI : Artificial Intelligence

DoS : Denial of Service

LAN : Local Area Network

CDF : Cumulative Distribution Function

CSV : Comma Separated Values

IEEE : Institute of Electrical and Electronics Engineers

RFID : Radio-frequency identification

RFC : Request for Proposal

LTE :Long-Term Evolution

CPU : Central Processing Unit

SCADA : Supervisory control and data acquisition

DNP3 : Distributed Network Protocol 3

SDN : Software Defined Networks

VPN : Virtual Private Network

xvii



Chapter 1

Introduction

1.1 Background

The evolution of multiple technologies comprising of sensor networks, cloud
computing, wireless communication and low power electronics during the
past decade, has made an Internet of connected devices a possibility. Ap-
proximately 75 billion devices are projected to be connected to the Internet
by the year 2025 (Statista, 2016). Internet of Things (IoT) is changing
the way in which computing devices and information are being used in the
consumer space and the industry to foster the development of a smarter
world. In a consumer environment, IoT devices typically comprise smart
sensors, smart refrigerators, smart TVs, IP cameras, health trackers, smart
home automation systems and others (Miller, 2015; Libelium, 2019). IoT
is also playing a crucial role across the industries that include automotive,
energy, healthcare, manufacturing and retail, to help improve the business
processes by automating the various processes and systems (Gubbi, Buyya,
Marusic, & Palaniswami, 2013; Libelium, 2019). The role of IoT in build-
ing smart future cities is indispensable and is already playing an important
role in transforming the energy, transportation and communications sectors
(Zanella, Bui, Castellani, Vangelista, & Zorzi, 2014). However, this has also
led to the emergence of pathways for criminals to exploit these IoT sys-
tems. Furthermore, the increasing role of IoT devices in various domains
is exposing their vulnerabilities to adversarial cyber threats (Bekara, 2014;
Neshenko, Bou-Harb, Crichigno, Kaddoum, & Ghani, 2019).

Vulnerabilities of an IoT system emerge from its components includ-
ing but not limited to sensor networks, wireless networks and the Internet
(Andrea, Chrysostomou, & Hadjichristofi, 2015). Such vulnerabilities can
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result in a range of cyber security threats from attacks to physical device,
communication protocols and the services that access the IoT device data.

With IoT devices being the basic building block of an IoT system cou-
pled with various device level vulnerabilities have made such devices an
attractive target for adversaries. The most notable reasons for their secu-
rity exploitation being (Heer et al., 2011; Li, Da Xu, & Zhao, 2015; Sadeghi,
Wachsmann, & Waidner, 2015; Neshenko et al., 2019):

• their connectivity to the Internet,

• their capability of being remotely controlled,

• their lack extensive security mechanisms, and

• their ability to generate, exchange and consume potentially sensitive
and safety-critical data.

Furthermore, various challenges exist in implementing security solutions
in the IoT devices, such as resource constraints (limited CPU, Memory,
Storage, Power), vendor competition in time-to-market IoT devices and so-
lutions, lack of standard IoT security best practices, and heterogeneity of
IoT devices and protocols (Heer et al., 2011; Al-Fuqaha, Guizani, Moham-
madi, Aledhari, & Ayyash, 2015; Z. Zhang et al., 2014; Neshenko et al.,
2019).

These cyber security challenges and vulnerabilities in the IoT devices
has resulted in various cyber-attacks that have affected IoT operations in
the recent past. In a research conducted by Flash Point Analysts in collab-
oration with L3 Threat research lab (FPAnalyst, 2016), it was found that
malware targeting IoT devices like BASHLITE were compromising vulnera-
ble IoT devices and using them for launching Distributed Denial of Service
(DDoS) attacks. Some of these bots were reported to be comprising in ex-
cess of one million compromised devices; most of which being IoT devices.
Mirai, a potent IoT device malware, infected millions of IoT devices by
brute-forcing the Telnet ports to gain unauthorised device access (Kolias,
Kambourakis, Stavrou, & Voas, 2017). Similarly, an IoT device-damaging
attack, namely, ‘BrickBot’ attempted to help the adversary gain unautho-
rised access to vulnerable IoT devices and cause permanent damage to the
compromised devices by corrupting the device storage (Olenick, 2017).

Attacks directly targeting the IoT devices can result in device damage,
compromise of control or loss of information stored on them. The direct
impact of such attacks on IoT devices is that, compromised devices can be
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exploited to perpetrate other cyber-attacks such as DDoS attacks (Neshenko
et al., 2019). Reports such as FPAnalyst (2016) and Krebs (2016a), indi-
cate that infected IoT devices are being used for large-scale DDoS attacks
generating around 650 Gbps of traffic. More recent DoS attacks, such as
1.35 Tbps DDoS attack on GitHub (Chadd, 2018), and Mirai botnet based
DoS attack on Dyn DNS services (Mansfield-Devine, 2016), highlight the
increasing issues associated with vulnerable IoT devices.

Many of the attacks discussed above are those that target vulnerable IoT
devices exposed to the Internet. However in most IoT deployments, the IoT
devices might not be directly exposed to the Internet, rather will have the
ability to exchange messages through it (Waher, 2015). In such scenarios,
the IoT protocols, gateways and the middle-ware platforms that facilitate
message exchange will be prone to various cyber-attacks that target IoT
deployments. Hence, the vulnerabilities in an IoT system can also be ex-
ploited through various IoT protocols and various other technologies used
in their deployment. These vulnerabilities are exacerbated with the lack of
built-in security measures in IoT Application Layer Protocols, which limits
the implementation of end-to-end security in order to protect data trans-
ferred though the middle-ware or IoT gateways (Alliance, 2019; Al-Fuqaha
et al., 2015). The dependence on middle-ware or gateways emerges from the
device-to-device (D2D) and device-to-cloud (D2C) communication models
(Meng, Wu, Muvianto, & Gray, 2017) widely adopted in IoT communica-
tions. Such middle-wares or gateways facilitate the inter-IoT device and
device-to-server message exchange required for running the business logic
and analytics.

A myriad of IoT protocols have been proposed to facilitate D2D and
D2C communication. However, according to a recent developer survey re-
ported in (eclipse.org, 2018), MQTT has been rated as the most popular IoT
protocol for applications that range across various domains comprising in-
dustrial automation, smart cities and healthcare. MQTT has been adopted
in various real-world critical applications; a few examples are:

• Deutsche Bahn AG (DB) German Railway network’s use of MQTT for
exchanging real-time information about location, delay, and diagnostic
checks to notify delays, cancellations, or platform changes (eclipse.org,
2018).

• NEXCOMM’s (Wu, 2017) use of the protocol in industry process au-
tomation, analytics and reporting.

• Eurotech’s MQTT based IoT Edge Framework (Eurotech, 2019) which
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is enabling the Industry 4.0 adoption across Europe.

These real-world examples show the growing reliance on the MQTT proto-
col in critical infrastructures and Industry 4.0. In addition, all the leading
cloud solution providers such as Amazon AWS, Microsoft Azure and Google
Cloud provide off-the-shelf MQTT support for IoT deployments. The in-
creased adoption of the MQTT protocol is expected to attract adversaries
to attack MQTT-enabled IoT systems, especially DoS attacks, that are ex-
pected to increase as adversaries gain access to millions of infected IoT de-
vices (Peraković, Perǐsa, & Cvitić, 2015; Chadd, 2018; Metongnon & Sadre,
2018).

Most of the work, as found in the IoT literature, either present the
various DoS attack detection techniques (Kasinathan, Pastrone, Spirito, &
Vinkovits, 2013; Alanazi et al., 2015) or merely refer to the DoS attack
as one of the challenges to the IoT system (Roman, Zhou, & Lopez, 2013;
Borgohain, Kumar, & Sanyal, 2015; Shaker & Zarrabi, 2017). Furthermore,
the MQTT OASIS specification (global consortium that works on develop-
ment and adoption of open standards for security, IoT and various other
domains) (Cohn, Coppen, Banks, & Gupta, 2014) lists DoS attacks as one
of the security threats to the MQTT protocol.

MQTT is a publish/subscribe based Application Layer protocol, where
a central message broker routes the published messages to subscribers based
on their topics of interest. The message broker plays a very important role
in MQTT as it decouples the publishers and subscribers in both space and
time. However, an Internet exposed message broker can provide an attack
surface for the IoT system, as it can become the target of Application Layer
DoS attacks (Firdous, Baig, Valli, & Ibrahim, 2017; Metongnon & Sadre,
2018). Especially, the rise of DoS attacks due to an increase in the number
of comprised IoT devices poses as a major challenge to MQTT brokers,
threatening the industrial or critical IoT applications relying on them.

The first step in protecting an IoT-MQTT system will be to detect such
attacks. The existing detection techniques that focus on Network Layer fea-
tures and metrics will be ineffective as Application Layer DoS attacks may
contain legitimate requests and can therefore remain undetected (Praseed &
Thilagam, 2018; Xiao, Yun, & Zhang, 2010). In addition, Application Layer
DoS attack detection techniques require protocol specific or domain spe-
cific features to detect attacks, which cannot be extended to all Application
Layer protocols. Hence, novel MQTT protocol-based features are essential
to detect MQTT based Application Layer DoS attacks. The major hurdle
in developing effective detection systems for IoT is the lack of real-world
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datasets. Therefore, existing attack detection techniques use either simu-
lated or non-IoT datasets to detect known attacks (Diro & Chilamkurti,
2018; Haddad Pajouh, Javidan, Khayami, Ali, & Choo, 2018; Moustafa,
Turnbull, & Choo, 2019).

These challenges in protecting the IoT systems are the main motivations
behind the choice of research topic for this thesis. The need to identify the
vulnerabilities of IoT-MQTT protocol to the Application Layer DoS attacks
and a machine learning based framework to detect such attacks are the main
focus of this research.

1.2 Purpose of this Research

This research aims to contribute to the body of knowledge with regards to
gaps found in detecting IoT-MQTT based DoS attacks as found in IoT de-
ployments. The literature review presented in Chapter 2, identified the lack
of MQTT based features to detect targeted Application Layer DoS attacks.
The domain and protocol specific features presented by various studies can-
not be extended to the MQTT protocol. Hence, new features that can effec-
tively detect attacks against the MQTT protocol are required. In addition,
DoS detection evaluation datasets such as KDD99 (UCI, 1999), DARPA99
(MIT, 1999), CAIDA DDoS (UCSD, 2007) are either old or lack IoT or
MQTT related traffic and are no longer relevant to validate the techniques
that are built to detect attacks in IoT traffic. Therefore, novel normal and
attack traffic datasets were collected with relevant MQTT protocol specific
attack traffic, so as to model an effective attack detection technique.

The significant contributions of this study are:

• Identifying threats to the IoT-MQTT protocol by presenting an MQTT
threat model.

• Devising and evaluating authentication and authorisation based Ap-
plication Layer DoS attacks against the MQTT protocol.

• Generating and collecting IoT-MQTT based attack dataset based on
realistic IoT deployment.

• Proposing MQTT based time-window and flow-based features to ef-
fectively detect MQTT attacks.

• Evaluating the attack detection framework for its effectiveness in de-
tecting MQTT based attacks.
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1.3 Research Questions

The main research question to be addressed through this research is:

RQ1:“How can Application Layer based DoS attacks against the IoT-
MQTT protocol be detected?”. This can be answered by posing three
sub-question:

– SQ1: Is the MQTT protocol vulnerable to Application Layer
DoS attacks?

– SQ2: Are the MQTT protocol based features required to detect
targeted DoS attacks against MQTT-IoT systems?

– SQ3: How effective are the developed machine learning models
in correlating between normal and attack traffic?

1.4 Thesis Structure

This thesis is organised into seven chapters, which present the background
of this research, the methodology adopted, the attack models, detection
framework, experimental results and discussion of the research conducted.
Chapter 2 provides the background concepts, literature and the identified
gaps relevant to the research undertaken. Subsequently, Chapter 3 examines
the various research methodologies available in the body of literature and
justifies the methodology chosen by the author in conducting this research.
It also provides the research design and the processes followed during the
course of this research.

Chapter 4 presents a detailed description of attack models and the pro-
posed attack detection framework implemented in this research to conduct
the experimental evaluations. This is followed by Chapter 5, which provides
detailed empirical results obtained through the execution of numerous ex-
periments for the collection of empirical evidences to answer the research
questions.

Chapter 6 critically examines the observed empirical results and provides
an in-depth reasoning and answers to the proposed research sub-questions.
Finally, the thesis is concluded (Chapter 7) by presenting the answer to
the major research question, the identified contributions of this research,
limitations of this study and the possible future research directions.

6



Chapter 2

Literature Review

This chapter introduces the key concepts and terms referred to throughout
this thesis. In addition, existing research work on the topic of IoT and
security is reviewed to identify the gaps and the purview under which this
research work is proposed. For the literature review, publications that are
directly related to this research were investigated. Research publications
were considered directly relevant to the study if they were related to the
MQTT protocol, MQTT security and MQTT attack detection techniques.
However, since this work falls under the broader research category of IoT,
publications related to IoT and IoT security were studied and analysed to
establish the background concepts.

The literature review is divided into four categories namely: IoT and
IoT security, DoS attack techniques, DoS attack detection techniques, and
MQTT protocol and security. Section 2.1 discusses the various definitions of
IoT as found in the literature to establish the definition that was adopted in
this research. Furthermore, the enabling technologies of IoT are discussed
with specific emphasis on communication patterns. The issues with IoT se-
curity and the associated IoT protocols are also discussed in Sections 2.2
and 2.3. Section 2.4 reviews the literature related to various DoS attack
models and scenarios against the Application Layer protocols of both legacy
and IoT systems. Section 2.5 reviews the DoS detection techniques relevant
to the proposed research. Finally in sections 2.7 and 2.8 the MQTT proto-
col standard, message formats, message exchange process, and the security
issues and vulnerabilities in MQTT protocol are presented.
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2.1 Internet of Things (IoT)

Approximately 75 billion devices are projected to be connected to the In-
ternet by the year 2025 (Statista, 2016). Various definitions of IoT have
been coined in the literature (Li et al., 2015) however, the exact definition
of IoT is still a topic of debate. Hence, it is required to present the precise
definition of IoT as implied in the context of this research. In this section,
various important definitions used in the literature are first presented and
then the definition adopted for this research is presented.

According to Perera, Zaslavsky, Christen, and Georgakopoulos (2014)
IoT is a part of the evolution of Internet. The Internet evolved from en-
abling communication between computers (Olifer & Olifer, 2005), increas-
ingly connecting more people to World Wide Web. Mobile phones and Social
media networking connected people to the Internet, and currently devices
surrounding us are being connected to the Internet forming the Internet of
Things (Perera et al., 2014). Similarly, Serbanati, Medaglia, and Ceipidor
(2011) identified two stand-out definitions for the term IoT. First, an IoT
network is the extension of the existing Internet to new types of devices.
Second, the IoT paradigm is the vision of connecting physical and digital
worlds in an augmented space to facilitate users (humans or physical de-
vices) to cooperate and satisfy their goals. Furthermore, Rose, Eldridge,
and Chapin (2015) propose IoT to be related to extending the ability to
connect and compute to non-computers, allowing these devices to generate,
exchange and consume data with minimal human intervention.

However, the European research cluster on the Internet of things (IERC)
considers these devices to be smart, self-configurable devices in their defini-
tion of IoT, which is as follows: “A dynamic global network infrastructure
with self-configuring capabilities based on standard and interoperable commu-
nication protocols where physical and virtual ‘things’ have identities, physical
attributes, and virtual personalities and use intelligent interfaces, and are
seamlessly integrated into the information network.” (Vermesan & Friess,
2014, p. 15)

In an effort to coin a reasonably encompassing definition of IoT, which in-
cludes various features of IoT, the IEEE IoT initiative presented by Minerva,
Biru, and Rotondi (2015) collected various definitions of IoT from different
sources and categorised the IoT definition into a small environment scenario
and a large environment scenario. The definition for a small environment
scenario is: “An IoT is a network that connects uniquely identifiable ‘Things’
to the Internet. The ‘Things’ have sensing/actuation and potential pro-
grammability capabilities. Through the exploitation of unique identification
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and sensing, information about the ‘Thing’ can be collected and the state of
the ‘Thing’ can be changed from anywhere, anytime, by anything.” (Minerva
et al., 2015, p. 73)

In addition, the definition for a large environment scenario is: “Internet
of Things envisions a self-configuring, adaptive, complex network that inter-
connects ‘things’ to the Internet through the use of standard communication
protocols. The interconnected things have physical or virtual representation
in the digital world, sensing/actuation capability, a programmability feature
and are uniquely identifiable. The representation contains information in-
cluding the thing’s identity, status, location or any other business, social or
privately relevant information. The things offer services, with or without hu-
man intervention, through the exploitation of unique identification, data cap-
ture and communication, and actuation capability. The service is exploited
through the use of intelligent interfaces and is made available anywhere,
anytime, and for anything taking security into consideration.” (Minerva et
al., 2015, p. 74)

In order to simplify the definitions of IoT, Voas (2016) explained that
there is no single definition that defines the IoT at a foundational level and
states that the fundamentals of IoT are the ability to compute, communicate,
sense and actuate. Similarly, Waher (2015) defined IoT in simple terms as:
“The IoT is what we get when we connect Things, which are not operated
by humans, to Internet” (Waher, 2015, p. 2)

As it is evident from the various definitions presented in this section, a
single definition of IoT does not exist. However, the main characteristics of
IoT can be extracted from these definitions and summarised as follows:

1. Ability to compute and communicate, generate data, consume data.

2. Ability to connect to the Internet.

3. Capability of sensing and actuation.

4. Programmable.

5. Unique identities and physical attributes.

6. Self-configurable.

7. Use intelligent interfaces.

8. Use standard communication protocols.

9. Work independently with or without human interventions.
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10. Can be controlled from anywhere, anytime, and by anything.

From the above definitions, it is clear that IoT has two major parts: Internet
and Things. Internet enables the communication between ‘Things’ and be-
tween humans and ‘Things’ using various communication protocols. On the
other hand, ‘Things’ are uniquely identifiable, independent, programmable
devices having sensors and actuators that can share data about their physi-
cal environment over the Internet with other devices and humans, who can
take actions by controlling ‘Things’ anytime from anywhere.

2.1.1 IoT Enabling Technologies

The development of IoT has been made possible due to emergence and
maturation of multiple Information and Communication Technologies (ICT)
(Atzori, Iera, & Morabito, 2010).

The main technologies that contributed to the growth of IoT can be cat-
egorised into hardware, communication and application layers as highlighted
in the Figure 2.1.

Internet (IPv6), Wi-Fi, 3G/4G, RFID, ZigBee, 
Wireless Sensor Networks, Near Field 

Communication, Bluetooth

Cloud Computing, Location based service, service 
oriented architectures (SoA), Big Data

Embedded systems, smart sensors, actuators, 
RFID tags, wearables, smartphones, Nano 

technology, low power technologies

Web 2.0, semantic web, social networks, 

Figure 2.1: Enabling technologies that propelled the growth of IoT which
range from hardware layer, communication layer, application layer, adopted
from Li et al. (2015) and Al-Fuqaha et al. (2015)

At the Hardware Layer, the evolution of nano technology and low power
technologies paved the way for the emergence of IoT. Furthermore, the
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growth of wireless sensor networks and low energy wireless communications
has extended the capabilities of sensor devices (Li et al., 2015).

Along with the growth of communication technologies, the projection
of billions of IoT devices to be connected to the Internet requires a unique
network addressing scheme to remotely control such devices. The develop-
ment and evolution of IPv6 plays a crucial role in providing such a unique
identification to IoT devices. In addition, the devices that do not support IP
protocol stack can use Uniform Resource Name (URN) identification scheme
and can be accessible using a communication gateway (Gubbi et al., 2013).

At the Application Layer, the emergence of Cloud computing and Big
Data are key technology enablers for IoT (Al-Fuqaha et al., 2015). The
increased amounts of data that will be generated by billions of connected
IoT devices needs to be efficiently processed and stored to take full advan-
tage of this highly connected world. Cloud computing along with Big Data
technologies offers efficient storage and computation capabilities to extract
useful information from unstructured data sources (Al-Fuqaha et al., 2015).

With a wide range of technologies contributing to the growth of IoT, the
IoT ecosystem needs to deal with billions of heterogeneous devices commu-
nicating with each other. In such a heterogeneous environment, interoper-
ability, scalability and security would be the key challenges that needs to
be overcome for a successful IoT deployment. Standardisation efforts are
required to reduce the challenges in interoperability. The lack of standard-
isation is evident from the various IoT architectures adopted based on the
application domain (Al-Qaseemi, Almulhim, Almulhim, & Chaudhry, 2016;
Al-Fuqaha et al., 2015; Ray, 2018; Shaikh, Zeadally, & Exposito, 2017).
However, efforts are being made to propose generic IoT architectures based
on the industry requirements (Al-Fuqaha et al., 2015). The most common
architectures defined for IoT are the three-layer and the five-layer. The
three-layer architecture consists of a Perception Layer, a Network Layer and
an Application Layer. The Perception Layer constitutes the physical devices
where sensing and actuation occurs. Physical devices or sensors sense the
environment and send measurement data to the Network Layer. The Net-
work Layer is responsible in connecting various endpoints and allows data
data exchange between the Perception and Application Layers. Wired or
Wireless network technologies are leveraged in this layer to support the data
exchange between the endpoints. The Application Layer is responsible to
process and store the collected data and provide useful functions to the end
users.

In contrast, the five-layer architecture consists of addition two additional
layers, namely, Access Gateway Layer and Middle-ware Layer (Al-Qaseemi
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et al., 2016). The three layers of three-layer architecture server the same
purpose as discussed earlier. In addition, an Access Gateway Layer is de-
fined which manages communications between IoT devices by translating
between communication protocols usually using a gateway devices. Fur-
thermore, the Middle-War Layer provides additional processing and storage
capabilities to the three-layer architecture enabling flexible communication
between physical sensors and IoT applications (Al-Qaseemi et al., 2016).

The Perception Layer consists of the physical sensors and actuators that
collect and process information. These sensors can collect information like
temperature, location, weight, humidity, acceleration etc. The devices store
the data locally or in the cloud for further processing. The Network Layer
and Middle-ware Layer facilitates device-to-device or device-to-cloud com-
munication (Rose et al., 2015). Finally, the Application Layer and the Busi-
ness Layer allows for a secure and reliable delivery of services to other devices
or to humans.

2.1.2 IoT Communication Models

Many IoT devices use a mix of different communication technologies to con-
nect to other devices and to the Internet. The RFC 7452 defined by the
Internet Architecture Board (IAB) (Tschofenig, Arkko, Thaler, & McPher-
son, 2015) describes the four communication models used by IoT devices as
illustrated in Figure 2.2. These communication models are:

1. Device-to-Device Communication.

2. Device-to-Cloud Communication.

3. Device-to-Gateway Communication.

4. Backend Data Sharing pattern.

Device-to-Device (D2D) Communication:
D2D communication model (also referred to as Machine-to-Machine M2M)

allows two or more devices to communicate and exchange data directly with-
out any intermediary (Rose et al., 2015). Data exchange can occur on any
type of communication network or any protocol. An example of this com-
munication model is between a light bulb and smart switch over a wireless
network like Bluetooth, Z-Wave or Zigbee, a common communication model
used in home automation systems (Rose et al., 2015). Data Distribution Ser-
vice is a D2D communication Application Layer protocol used in IoT (Saidu,
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Figure 2.2: Four communication models used in IoT communications to
exchange IoT data

Usman, & Ogedebe, 2015). As devices are expected to be the main partic-
ipants in an IoT system, D2D will be the most preferred communication
model for IoT (Bello & Zeadally, 2016).

Device-to-Cloud (D2C) Communication:
D2C communication model ( also referred to as Device to Server D2S)

allows the IoT device to directly connect to the application services hosted
in the cloud (Rose et al., 2015). This model also allows the applications
to remotely control the IoT devices. The devices can use traditional IP
networks to connect to the cloud services. An example of this communi-
cation model is a smart thermostat transmitting data to the cloud where
analytics is applied to analyse the energy consumption. The thermostat
can also be accessed via a smartphone and remotely controlled by the users
(Rose et al., 2015). Many IoT Application Layer protocols such as Message
Queueing Telemetry Protocol (MQTT), Extensible Messaging and Presence
Protocol (XMPP), Constrained Application Protocol (CoAP) support this
communication model (Saidu et al., 2015).

Device-to-Gateway (D2G) Communication:
In this model the IoT devices access cloud services through a local net-

work gateway. The network gateway will include application software that
provides security and other functions like data or protocol translations. The
devices will connect to the network gateway using protocols such as Zigbee,
Bluetooth and Z-Wave. An example of this kind of communication model is
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a fitness band connecting to the cloud via a smartphone application (Rose
et al., 2015). Gateway devices also help achieve interoperability between
devices using different protocols or integrate a smart device with a legacy
device (Rose et al., 2015).

Backend Data sharing communication:
This communication model (also referred to as Server-to-Server S2S) al-

lows IoT device data to be shared with authorised third parties (Rose et
al., 2015). Many vendors collaborate with each other to build solutions
or value added services for end users which requires data to be integrated
from multiple devices. In such scenarios, back-end communication needs to
be enabled using protocols such as Hypertext Transport Protocol (HTTP)
RESTful API (Al-Fuqaha et al., 2015) or Advanced Message Queuing Pro-
tocol (AQMP) (Saidu et al., 2015). Web based Application Programming
Interface (API) such as RESTful API allow different applications to inter-
act with each other and exchange messages (Masse, 2011). Backend data
sharing also allows users to move their device data when switching between
different IoT services (Saidu et al., 2015).

The various technologies and communication models used in IoT devices
indicate that numerous heterogeneous devices will interact with each other
or with humans to automate their daily tasks. Many IoT protocols have
emerged to facilitate communication between IoT devices, which are briefly
discussed in the following section.

2.2 IoT Protocols

In order to facilitate various types of communication models in IoT, several
IoT protocols have been developed or existing protocols have been adopted.
Protocols and standards are necessary for message delivery, interoperability
and application development. The different categories of IoT protocols (Al-
Fuqaha et al., 2015) are illustrated in Figure 2.3.

Application delivery protocols are responsible for data exchange in IoT
whereas service discover protocols are required for automatic service and
resource discovery in large-scale IoT deployments. In contrast, the infras-
tructure protocols facilitate the deployment of various IoT topologies such as
star, peer-to-peer and cluster-tree. In a myriad of IoT protocols, the choice
of communication protocol for deploying an IoT system depends on the ap-
plication requirements and the functionality offered by the IoT protocols
(Al-Fuqaha et al., 2015). Table 2.1 briefly describes the various Application
Layer IoT protocols that are used in IoT applications.
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Figure 2.3: IoT protocols stack, categorising protocols based on the usage
in IoT deployments. Adopted from Al-Fuqaha et al. (2015, p. 2353)

The various IoT Application Layer protocols adopt two main messaging
patterns, namely: Request/Response and Publish/Subscribe (Al-Fuqaha et
al., 2015). However, the publish/subscribe messaging pattern has more ad-
vantages than the request/response pattern for resource constrained IoT
devices. Request/response protocols such as HTTP are typically resource
demanding. In addition, the RESTful mode used in CoAP depends on reg-
ular updates or polling (Niruntasukrat et al., 2016) which can prove to be
resource intensive. Universal Plug and Play (UPnP) is a discovery protocol
for IoT devices to discover and connect with other compatible devices. The
new version of UPnP protocol released by the UPnP group (UPnP, 2014)
uses the XMPP protocol, to connect UPnP devices as XMPP clients. The
XMPP protocol has been revised to support both request/response and pub-
lish/subscribe message patterns with greater support for IoT deployments.
However, there exists security challenges with the use of XMPP protocol in
the IoT deployments as highlighted by Malik, McAteer, Hannay, Firdous,
and Baig (2018). MQTT a lightweight publish/subscribe protocol originally
designed to work in unreliable satellite communications, has been adopted
for IoT communication due to its simple messaging format with a small
packet header.

According to a recent developer survey reported in (eclipse.org, 2018),
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Table 2.1: Application Layer IoT protocols used for data exchange

Protocol Description Type/Port
Number

MQTT Message Queue Telemetry Protocol, used for connecting
embedded devices with applications and middle-ware. It
is a publish / subscribe protocol providing one-to-one,
one-to-many and many-to-many message delivery. It is
a lightweight, low bandwidth protocol ideal for resource
constrained devices (Al-Fuqaha et al., 2015).

TCP/1883

XMPP Extensible Messaging and Presence Protocol, defined by
IETF for instant messaging, applicable in IoT environ-
ments due its simplicity and allows XMPP clients to
connect to server using XML streams (Al-Fuqaha et al.,
2015).

TCP/5222

DDS Data Distribution Service is a publish/subscribe proto-
col developed by Object Management Group. (Salman,
2015). DDS uses a broker less architecture to provides
a reliable multicast message delivery service and suit-
able real time in M2M communications (Al-Fuqaha et
al., 2015).

TCP/UDP

AMQP Advanced Message Queuing Protocol primarily designed
for financial sector. In AMQP the broker has two com-
ponents exchange and message queue (Al-Fuqaha et al.,
2015; Salman & Jain, 2015).

TCP/ 5672

CoAP Constrained Application protocol defined by IETF which
provides a lightweight version of REST HTTP to low
power devices. CoAP is a UDP based protocol and
uses messages like GET, PUT, PUSH and DELETE (Al-
Fuqaha et al., 2015; Salman & Jain, 2015).

UDP/ 5683

UPnP Universal plug and play is a widely used protocol for de-
vice interconnections. Since it is a zero configuration net-
working protocol it is used in consumer devices (Ferreira,
Canedo, & de Sousa, 2013).

UDP/1900

HTTP HTTP is one the enabling technologies for IoT, many ap-
plication communication is built upon the HTTP. Many
consumer applications use HTTP management. REST
API used in IoT for exchange of messages with cloud is
built over HTTP protocol (Al-Fuqaha et al., 2015).

TCP/80

MQTT has been rated as the most popular IoT protocol for applications that
range across various domains comprising industrial automation, smart cities
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and healthcare. MQTT has been adopted in real-world critical applications
such: as Deutsche Bahn AG (DB) German Railway networks use of MQTT
for exchanging real-time information about location, delay, and diagnos-
tic checks to notify delays, cancellations, or platform changes (eclipse.org,
2018), NEXCOMMs (Wu, 2017) use of the protocol for industry process
automation, analytics and reporting, Eurotech’s MQTT based IoT Edge
Framework (Eurotech, 2019) that is enabling Industry 4.0. These examples
show the growing reliance on MQTT protocol in critical infrastructures and
Industry 4.0. In addition, all the leading cloud solution providers such as
Amazon AWS, Azure and Google provide off-the-shelf MQTT support for
IoT deployments.

In a ubiquitous and rapidly evolving technology such as IoT, cyber-
security breaches can cause a widespread damage to infrastructure and hu-
mans utilising them. In the following section security issues that challenge
the IoT are explained.

2.3 IoT Security

The emergence of IoT is transforming human lives and is reshaping how busi-
ness function; providing effective and greater services to end users. However,
the rapidly adoption of IoT technology is coupled with serious cyber-security
issues due to various challenges and can attract cyber-attacks. The various
challenges and threats to IoT and the impact of such vulnerabilities are
discussed in this section.

2.3.1 IoT Threats

With the broader use of IoT, there is also a growing concern regarding the
security of ‘Things’ and the IoT systems deployed through them. An IoT
system inherits the vulnerabilities of its component parts including but not
limited to sensor networks, wireless networks and the Internet (Andrea et
al., 2015). Hence security threats to IoT systems can range from physical
device based attacks to attacks on communication protocols and IoT tools.
Threats to IoT also exist due to many challenges in implementing strong
security solutions. Some of the challenges in implementing security solutions
for IoT are listed below (Heer et al., 2011; Al-Fuqaha et al., 2015; Z. Zhang
et al., 2014; Neshenko et al., 2019):

• Resource constraints (CPU, Memory, Storage, Power) of IoT devices
(‘Things’).
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• Vendor competition in quick time to market for devices and solutions.

• Lack of standard IoT security practices.

• Heterogeneous ‘Things’ and IoT protocols, challenge content protec-
tion.

Among the various challenges, resource constraint is one of the key chal-
lenge in building security solutions for IoT (Heer et al., 2011). IoT devices
have tight resource constraints in terms of the CPU and memory, and often
rely on unreliable communication channel, which makes the implementation
of security measures difficult (Heer et al., 2011). These challenges can result
in exposure of various vulnerabilities in IoT devices such as (Neshenko et
al., 2019):

• weak physical device security which can lead to unauthorised access
to the device and the data it contains,

• weak authentication mechanisms, resulting in bruteforce attacks,

• insufficient encryption, resulting in MitM attacks during data trans-
mission,

• poor of lack of patch management leaving vulnerabilities unfixed, and

• poor programming practices and auditing causing in buffer-overflow
attacks, data and device manipulation attacks.

In addition to device level threats, the vulnerabilities of an IoT system
can also arise from the various underlying IoT protocols. Many of the IoT
Application Layer protocols lack built-in security measures and depend on
existing Transport Layer protocol (TCP and UDP) security mechanisms
(Shang, Yu, Droms, & Zhang, 2016; Al-Fuqaha et al., 2015). For example,
TCP based protocols run Transport Layer Security (TLS) encryption and
some UDP based protocols use Datagram TLS (DTLS) for securing the com-
munication channel between devices (Karagiannis, Chatzimisios, Vazquez-
Gallego, & Alonso-Zarate, 2015). However, TLS and DTLS impose high
resource utilisation in resource constrained IoT devices (Shang et al., 2016).
These challenges in heterogeneous IoT architecture layers can make IoT
systems vulnerable to various cyber attacks. According to Jeyanthi (2016),
the attacks on the IoT systems can occur during various system operation
phases, against dynamic architectures and heterogeneous components. Fig-
ure 2.4 summarises the various attacks on each IoT system phase.
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8 � Security and Privacy in Internet of Things (IoTs)

Data Perception 

• Data leakage, data sovereignty,  

• Data breach, data authentication  

Storage  
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Delivery end-to-end 

• Man or  machine 

• Maker or hacker 

• Denial of service, impersonation,  modification of sensitive data

• Routing protocols, flooding 

Figure 1.3: Attacks on phases.

Application layer 

• Revealing sensitive data User authentication

• Data destruction Intellectual property

• Denial of servie Distributed denial of service

• Cross heterogenous 

Transport layer 

• Routing protocol 

•  Address compromise 

Network layer 

• Masquerade Man-in-the-middle

• External attack Link layer attack

• Witch attack HELLO flooding

• Worm hole and sewage pool Selective forwarding

• Boradcast authentication and flooding Access control

Sensing/perception layer 

Figure 1.4: Possible attacks based on architecture.

1.3.1.2 Data sovereignty

Data sovereignty means that information stored in digital form is subject to the
laws of the country. The IoT encompasses all things across the globe and is hence
liable to sovereignty.

Figure 2.4: IoT attacks categorised based on the IoT system phases.
Adopted from Jeyanthi (2016, p. 8)

The attacks on IoT can also be classified based on the various lay-
ers of IoT communication which include: Application Layer, Transport
Layer, Network Layer and Perception Layer (Jeyanthi, 2016). According
to Neshenko et al. (2019) and Hassija et al. (2019), vulnerabilities exist at
all levels of IoT architecture such as device level, network levels and appli-
cation level. Table 2.2 shows the various attacks that can target these IoT
architectures.

Security issues in IoT also arise from its wide applications in industries
to automate, increase productivity and reduce production costs (Panchal,
Khadse, & Mahalle, 2018). Sadeghi et al. (2015) in their work discussed the
security and privacy challenges in Industrial IoT (IIoT). According to the
authors, IIoT are susceptible to multiple cyber-attacks as there are delays
in implementing countermeasures. Figure 2.5 illustrates the attack surface
provided by the IIoT systems.
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Table 2.2: IoT attacks on various IoT communication architecture layers

IoT Layer IoT Attacks

Sensing or Perception
layer

Dictionary attacks, side-
channel attacks, Firmware
attacks, battery draining
attacks, device capture

Network Layer Routing attacks, imperson-
ation attacks, IP spoofing,
data transit attacks

Transport Layer DoS, DDoS, Man-in-Middle,
encryption attacks

Application Layer Access control attacks, Ap-
plication Layer DoS, DDoS,
Code injection attacks, Data
theft

Cyberphysical production system (CPPS)

Energy, matter, … Production process Product

Physical stack

Cyber stack

Humans
Engineers,
operators, …

Machines
Computers,
CPS, cloud, …

Social engineering,
Phishing, …

Runtime-attacks,
reverse engineering,
malware, …

Eavesdropping,
man-in-the-middle,
denial of service, …

Side-channel attacks,
reverse engineering,
invasive attacks, …

Software
OS, applications, …

Networking
Ethernet, WiFi, …

Electronics
CPUs, microcontrollers, actuators, sensors, …

Physics
Mechanics, physical principles, …

Figure 2: Cyberphysical production system (CPPS)
architecture and attack surfaces

otage by powerful adversaries, e.g., nation states. Stuxnet
exploited multiple zero-day vulnerabilities2 and made cen-
trifuges at an Iranian nuclear facility to fail.

Attack Surfaces
Industrial IoT systems provide various attack surfaces. Smart
factories consist of several cyberphysical production systems
(CPPS), which consist of electronics (e.g., processor and
memory) and monitors that control physical processes through
sensors and actuators (cf. Figure 2) [61]. The electron-
ics are driven by software (e.g., embedded operating sys-
tems and applications) and interact with humans and other
CPPS through various network connections (e.g., Ethernet
or WiFi).

Attack surfaces exist on all these abstraction layers (cf.
Figure 2) [12, 37, 74, 65, 33, 73, 2, 71, 30]. Electron-
ics are subject to physical attacks, including invasive hard-
ware attacks, side-channel attacks, and reverse-engineering
attacks [55]. Software can be compromised by malicious
code, such as Trojans, viruses, and runtime attacks. Commu-
nication protocols are subject to protocol attacks, including
man-in-the-middle and denial-of-service attacks [28]. Even
humans operating CPPS are subject to social attacks, such
as phishing and social engineering.

Security Goals and Requirements
The most important objective of industrial production sys-
tems is availability, which should prevent any unnecessary
delay in production that results in loss of productivity and
loss of revenues. This particularly includes protection against
denial-of-service attacks against cyberphysical production
systems.

Another fundamental objectives is preventing any system
failure that may result in physical damage or harm to hu-
mans. To achieve this objective, the integrity of Industrial
IoT systems must be preserved. This includes protection
against sabotage, which may lead to unnoticed loss of prod-
uct quality and increased use of resources. Further, unno-

2Zero-day vulnerabilities are those vulnerabilities which are
unknown before they are exploited, i.e., not security patches
are available to fix them.

ticed and unintended use of counterfeit components, which
may not fulfil the quality requirements of genuine compo-
nents, should be prevented. With the interconnection of
cyberphysical production systems, it must be ensured that
system failures or malicious attacks do not propagate within
smart factories or across company boarders.

One of the objectives of Industrial IoT is to realize smart
products that know their own history and may control their
own production process. Another example includes smart
services, where companies outsource the production of their
designs to smart factories operated by third parties. In both
examples the authenticity and integrity of the smart factory
infrastructure and any information related to the production
process must be ensured to prove to third parties that the
smart factory is trustworthy. Further, e.g., in the case of
warranty claims, it may be necessary to provide evidence of
quality of resource materials and correctness of production
of a product to third parties.

The strong connectivity of IoT-based production systems
and smart products demands for new mechanisms to protect
against industrial espionage and privacy of customers and
employees. Hence, the confidentiality of code, data, and
configuration of production systems as well as blueprints of
products is an important security requirement.

4. SECURING THE INDUSTRIAL IoT
Adapting existing information security concepts to cyber-

physical production systems (CPPS) is not straightforward.
There are many differences between classical IT systems and
CPPS [44, 18, 74, 71]. Integrity and confidentiality are pri-
mary protection goals of classical enterprise IT systems and
hence, protection against cyberattacks is often a tradeoff
between security and availability. For instance, if a cyber-
attack occurs, affected IT systems are typically temporarily
disabled and then restored after the attack. However, this
approach cannot be applied to CPPS, where availability is
a fundamental requirement.

Other differences are due to the strict real-time require-
ments of CPPS, their constrained computational, memory,
and energy resources, and the long lifetime of industrial pro-
duction systems. Other aspects are protection of design and
configuration data (intellectual property) and detection of
counterfeit components (product piracy). Many industrial
areas have legal requirements with regard to logging of pro-
duction steps (provenance and accountability). With the
increasing number of interconnected CPPS and the possibil-
ity to use Big Data techniques to analyze data collected by
CPPS, privacy becomes a fundamental aspect [42, 30]. For
example, Big Data analysis may violate privacy of employees
or leak sensitive customer information to the manufacturer
or service personnel of CPPS equipment.

To counter these security and privacy risks, a holistic cy-
bersecurity concept for Industrial IoT systems is required
that addresses the various security and privacy risks at all
abstraction levels. This includes different aspects, such as
platform security, secure engineering, security management,
identity management, industrial rights management [71]. In
particular security and privacy aspects must be preserved
during the lifetime of smart production systems and smart
products. In the following, we will focus on solutions for pro-
tecting embedded devices which are at core of cyberphysical
production systems.
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Figure 2.5: Categorising attacks on cyber-physical production systems based
on the system architecture, Adopted from Sadeghi et al. (2015)
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Another important cyber security threat factor in IIoT deployments is
the convergence of Operational Technology (OT) and Information Tech-
nology (IT) (Murray, Johnstone, & Valli, 2017). In traditional industry
architectures, OT handles all the hardware and software that controls in-
dustrial automation, whereas IT is associated with networking, data storage
and data processing and analysis. However, with the advent of Industry
4.0, the two domains are increasingly being merged to effectively utilise the
capabilities of IoT in industries (iebmedia, 2019). The IT is susceptible to
attacks such as DoS attacks, authentication attacks, MitM attacks, phish-
ing and application attacks. In contrast, the OT is prone to attacks such as
data manipulation, malware attacks, reverse engineering and various other
physical device attacks (Panchal et al., 2018). The cyber security threats of
OT and IT as individual domains have been well researched, however, the
security impact on industry 4.0 with the merging of IT and OT, warrants
further investigation (Murray et al., 2017; Panchal et al., 2018).

2.3.2 IoT Threat Impact

The cyber-security threats to IoT can exist in the different layers of the IoT
architecture as discussed in previous section. The attacks directly targeting
the IoT devices can result in damage, including device compromise or loss
of information stored on them. Compromised IoT devices can be used to
perpetrate other cyber-attacks such as DDoS attacks (Neshenko et al., 2019).
In addition, adversaries can attack the Network Layer which includes attacks
on IoT protocols, communication gateways, middle-wares or against brokers.
Attacks can also be independently launched against the Application Layer
protocol, to target the various services and applications accessing the data
from the IoT devices.

The recent real-world attacks directly targeting IoT devices show the
impact of device level cyber-attacks. IoT malware targeting IoT devices
have been reported such as Mirai (Kolias et al., 2017) and BASHLITE (also
referred to as Lizkebab, Torlus, gafgyt) (Angrishi, 2017) and ‘BrickBot’
(Olenick, 2017). Its highlighted that some of the bots participating in such
attacks have more than one million devices out of which a large majority
of devices are Digital Video Recorders (DVR) (FPAnalyst, 2016; Krebs,
2016b).

In a survey on automotive attack surfaces, Charlie and Valasek (2014)
identified the main stages of remote attack on vehicles as remote compro-
mise, sending injected messages to cyber-physical components and instruct-
ing the Electronic Control Unit (ECU) to perform unsafe operations. In
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their survey they presented the attack surface, internal network architec-
ture and computer controlled features of various car models. The authors
also exposed the vulnerability of a Jeep Cherokee car by remotely attacking
the vehicle and performing unsafe actions on the car (Charlie & Valasek,
2014).

Such device level attacks have been used to launch other cyber-attacks
as reported by Krebs (2016b) in his blog post about IoT devices being used
as SOCKS proxies to hide the real identity of the attackers. Similarly,
Carna botnet (Botnet, 2013) was successfully deployed to compromise many
vulnerable IoT devices, in order to scan the entire IPv4 address space. Pa et
al. (2015) evaluated the dataset from Japan’s Darkent monitoring systems
and concluded that the number of telnet attacks have increased drastically
in the past couple of years. They deployed honeypots emulating the telnet
service on IoT devices to study the IoT attacks. The experiments carried out
by the authors show that most of the devices attacking their honeypot were
IoT devices such as DVR, IP camera and Wireless routers (Pa et al., 2015).
Reports such as FPAnalyst (2016); Krebs (2016a) have been published about
IoT devices being used for launching large-scale Distributed DoS (DDoS)
attacks. Krebs (2016a) reported that his blog site had fallen victim to a
DDoS attack generating around 650 Gbps of traffic. This attack was mostly
generated using a number of IoT devices like routers, IP cameras and DVR
(Krebs, 2016a).

With access to millions of infected IoT devices, DoS attacks such as
1.35Tbps DDoS attack on GitHub (Chadd, 2018), and Mirai botnet based
DoS attack on Dyn DNS services (Mansfield-Devine, 2016) are being perpe-
trated frequently. Hence, the Internet exposed components of IoT system
will be prone to such DoS attacks. Peraković et al. (2015) conducted an
analysis on the rise of DDoS attacks which indicates that the volume of
DDoS attacks in 2013 rose by 475% and by 615% in 2014 compared to the
attacks recorded in 2012. Especially, the Simple Service Discovery Protocol
(SSDP) based attacks have sharply increased by 20% in 2015 compared to
2014. SSDP protocol is widely used in detecting UPnP enabled devices and
the rise in attacks based on SSDP protocol has been attributed to the con-
current increase in the number of IoT devices. In a whitepaper presented
by Moore (2013), the developer of Metasploit, stated that nearly 81 million
unique IP addresses respond to UPnP discovery requests and out of these,
23 million are vulnerable to remote code execution. Many of the home de-
vices have UPnP enabled and are vulnerable to attacks (Moore, 2013). The
DoS attacks are also evolving and are increasingly being carried out as part
of multi-vector attacks which include an initial DDoS attack followed by
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malware, ransomware or viruses (Chadd, 2018). The DoS attacks are also
projected to generate greater attack volume with the widespread adoption
of IPv6 (Chadd, 2018). Figure 2.6 summarises the various IoT architecture
layers, their role and the various attacks that target each layer.

Similar to IoT, the IIoT is also vulnerable to various attacks. Successful
attacks against Industrial Control Systems (ICS) such as the Slammer worm
(Poulsen, 2003) which attacked the critical monitoring systems of a nuclear
power plant in the United States of America and Stuxnet (Langner, 2011),
which caused the failure of centrifuges in a nuclear plant in Iran, and Triton
malware which targeted industrial safety system (Giles, 2019) shows the
potential impact of cyber threats in the IIoT.

Many of the attacks discussed above are those that target vulnerable IoT
devices exposed to the Internet. However in most IoT deployments, the IoT
devices might not be directly exposed to the Internet but will have the capa-
bilities of exchanging messages through it (Waher, 2015). In such scenarios,
the IoT protocols, gateways and the middle-ware platforms that facilitate
message exchange will be prone to various cyber-attacks that target IoT
deployments. Especially, public or cloud based message brokers or gate-
ways will become the target of various cyber-attacks (Metongnon & Sadre,
2018). These central message brokers can be susceptible to DoS attacks and
pose a serious threat to the numerous IoT devices that exchange messages
through them. Hence it is necessary to identify DoS vulnerabilities of the
IoT systems in order to detect and characterise such attacks, and to help
build secure IoT systems. The following sections discuss the DoS attack
techniques adopted by adversaries and the DoS detection techniques that
are used to detect and prevent such attacks.
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2.4 DoS Attack Techniques

A DoS attack is a type of cyber attack that aims to exhaust the resources
of a target which leads to subsequent denial of resource access to legitimate
users. The most common types of DoS attacks are those that aim to exhaust
the network bandwidth, CPU cycles or memory on the target system to make
services unavailable for legitimate users (Durcekova, Schwartz, & Shahmehri,
2012; Zlomislić, Fertalj, & Sruk, 2017).

The key network parameters that an adversary attempts to exploit in
order to launch a DoS attack can be modelled using the Little’s theorem
(Little & Graves, 2008). According to Little’s theorem, the number of items
in the queuing system L can be written as:

L = λ ∗W (2.1)

where λ is the arrival rate of items and W is the average processing time
of items as highlighted in Figure 2.7.

Queuing System

ServerQueue

λ = Arrival rate

W

residing time in the system

Queue
λ

Drop legitimate 
request

Server

Flooding DoS attack

Queue
λ

Drop legitimate 
request

Server

Complex Packet DoS attack

Figure 2.7: Representation of a typical queueing system characterised by
packet arrival rate, queue length and processing time

Based on the queuing model, the DoS attack’s aim is to increase the
number of items in the system queue in such a manner that impacts the
processing of current clients in the system or the availability of resources
for new clients arriving into the system. Hence, DoS attack can either
increase the arrival rate of packets at the victim machine (flooding attacks)
so that it exceeds the processing capacity of the system (λ > W ) or send
requests that require higher processing time (semantic attacks) in the system
(Khan & Traore, 2005) as shown in Figure 2.8. Thus the DoS attack control
parameters are arrival rate to the system (λ) and complexity of the request.

DoS attacks could be launched from a single attack source or from
multiple-attack sources (Ramanauskaite & Cenys, 2011). Attacks from sin-
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Figure 2.8: DoS Attack methodologies in exploiting the queue size by a)
Flooding (increase arrival rate) and b) Semantic Attacks (increase processing
time)

gle source usually target bugs or vulnerabilities in the target system or use
powerful machines to achieve attack success. In contrast, those attacks that
involve multiple attack sources rely on flooding the target system with re-
quests emerging from distributed attack sources, to overwhelm the victim.
Attacks launched from multiple sources are also referred to as Distributed
DoS (DDoS) (Zlomislić et al., 2017). Since DDoS attacks are a subset of
the DoS attacks, the usage of the term DoS will mean both DoS and DDoS
attacks in the context of this thesis.

2.4.1 DoS Attack Classification

The Internet protocol suite is the most widely used suite of protocols in the
data networks, that defines the data packet schemes, addressing schemes,
packet routing, and transmission and receiving schemes. The Internet pro-
tocol suite is commonly referred to as the TCP/IP protocol stack. Based on
the role of the protocol, the TCP/IP stack groups protocols into four layers
of abstraction as listed in Table 2.3.

DoS in data networks targets various protocols used for end-to-end data
communication between hosts, hence the attacks can be classified based
on the protocol layer they target. Based on the communication protocol
targeted, the DoS attacks can be classified in to Physical Layer attacks,
Network Layer attacks and Application Layer attacks. In addition, the DoS
attacks can also be classified based on the launch methods used in the attack;
flooding or semantic attacks (Bhatia, Behal, & Ahmed, 2018). Since this
work associated with higher layer DoS attacks, Physical Layer attacks are
not discussed in the thesis. The attack launch type and the attack target
protocol are further discussed in the following sections.
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Table 2.3: TCP/IP protocol stack and associated TCP and UDP based
protocols

TCP/IP Layers Role TCP/UDP Protocols

Application Layer Application Data
Access

HTTP, DNS, FTP, SMTP, SIP,
MQTT, XMPP, AMQP, CoAP,
SNMP ..

Transport Layer End-to-End deliv-
ery

TCP, UDP

Network Layer Packet Routing IPv4 / IPv6, RLP, ARP, ICMP,
IGMP

Network Access
Layer

Physical Media
Access

Ethernet, Wi-Fi, GSM, LTE, Z-
WAVE, WirelessHART ..

2.4.2 Flooding DoS Attacks

Flooding DoS attacks involve transmission of higher volumes of communica-
tion requests than what the target system can handle in order to overwhelm
the target’s resources (Bhatia et al., 2018; Adi, Baig, Hingston, & Lam,
2016). To flood the victim machine with requests, the attacker can either
use infected machines that are part of a botnet or use source IP address
spoofing to amplify the malicious requests (also referred to as reflection at-
tacks) sent to the target system. Figure 2.9 and Figure 2.10 illustrate the
two techniques namely, DoS flooding and amplification.

2.4.3 Semantic DoS Attacks

Semantic DoS attacks operate in contrast to flooding attacks, targeting spe-
cific vulnerabilities of the system or utilising stealth attack techniques to
disrupt services to legitimate users (Bhatia et al., 2018). These attacks
require the adversaries to have in depth knowledge of the communication
protocol, the application behaviour and their vulnerabilities being targeted.
Such attacks will be difficult to detect and can be successfully launched from
a system with few resources compared to the target (Bhatia et al., 2018).
The stealth attack techniques exploit application or protocol logic to cause
DoS and avoid detection by sending DoS traffic at a low rate (K. Singh,
Singh, & Kumar, 2017; Adi et al., 2016). The flooding and semantic at-
tacks both target the protocols of TCP/IP suite as further elaborated in the
following sections.
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Figure 2.9: Flooding DoS attack using infected hosts
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Figure 2.10: DoS amplification attack using spoofed source address
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2.4.4 Network Layer Attacks

These attacks target the Transport and Network Layer protocols of the
TCP/IP stack such as ICMP, TCP and UDP. The attacks could target a
specific vulnerability of the protocol or send excessive requests to overwhelm
the target. Examples of such attacks are: ICMP flood, Ping-of-Death, SYN-
Flood, SYN-ACK flood and Teardrop attack.

ICMP Flood Attack In an ICMP Flood attack (also referred to as Smurf
attack) the attacker overwhelms the victim machine by sending significantly
higher volumes of ICMP ECHO Request messages (Lau, Rubin, Smith, &
Trajkovic, 2000). Typically, an ICMP ECHO Request is responded with a
ICMP ECHO Reply. Hence in this type of attack the attacker uses botnets
to flood the victim machine with ICMP ECHO requests, the victim machine
while trying to respond to individual requests with a ICMP ECHO Reply
message, exhausts its resources.

Ping-of-Death Attack A more sophisticated type of ICMP attack is the
Ping-of-Death attack that targets vulnerable OS implementations by send-
ing IP datagrams which are larger than the allowed size of 65,535 bytes
(Kenney, 1996). Figure 2.11 illustrates the Ping-of-Death attack process.
The attack uses a carefully crafted ICMP packet to cause a buffer overflow
at the server, resulting in a server crash or reboot. As IP packets get frag-
mented when packet size is greater than the typical Maximum Transmission
Unit (MTU) of 1500 bytes, a carefully chosen valid offset and a suitable
fragment size can cause a buffer overflow during fragment reassembly at
the target computer. This will result in the victim machine crashing or
rebooting due to the buffer overflow.

SYN-Flood SYN flood attacks target the TCP protocol’s state reten-
tion mechanism (Eddy, 2007) and is a popular method for DoS (Mansfield-
Devine, 2015). The attack exploits the OS’s implementation of the TCP
protocol which restricts the maximum number of simultaneous TCP con-
nections in a SYN-RECEIVED state at the host. The attack tries to flood
the target with multiple TCP SYN segments to exhaust the number of
SYN-RECEIVED connections the target can handle at a given time, and
to prevent subsequent processing of TCP SYN connection requests. With
every SYN segment received, the victim machine allocates state, and all the
state information is stored in a data-structure called Transmission Control
Block (TCB). Memory is allocated to store the TCB which contains the
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Figure 2.11: Ping-of-Death attack process

connection information from the SYN header. However, most OS kernels
maintain limits to the number of TCB data structures that can reside in the
memory at a given time, which are referred to as backlog. When the back-
log limits are reached, the system discards the new SYN packets or replaces
uncompleted sessions. Hence, the SYN-flood attack tries to exhaust the OS
backlog limits by sending numerous SYN packets without completing the
TCP three-way handshake, thereby filling up the backlog limits with half-
open sessions. This causes legitimate connections to be dropped and denied
access to resources, causing DoS. Figure 2.12 illustrates a legitimate TCP
three-way handshake (a) and the malicious TCP handshake (b) to exhaust
the backlog limits of the victim.

2.4.5 Application Layer Attacks

Similar to the attacks on Network and Transport Layer protocols, DoS at-
tacks also target the Application Layer protocols of the TCP/IP protocol
stack. Application Layer protocols are used by the applications to exchange
user data between hosts by utilising the services of lower layer protocols.
Since Application Layer protocols rely on functionality of the lower layer
protocols, the DoS attacks targeting them use legitimate connection request
mimicking the behaviour of legitimate users (K. Singh et al., 2017). Es-
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Figure 2.12: SYN-Flood Attack Process

pecially, Application Layer protocols relying on TCP protocol require the
completion of the three-way handshake which necessitates the use of legit-
imate IP address and active hosts in DoS attacks. Hence, such attacks
can pose challenges to the DoS detection system. Findings reported in the
literature indicate Application Layer attacks are being increasingly perpe-
trated by adversaries (Brenner, 2010; Mantas, Stakhanova, Gonzalez, Jazi,
& Ghorbani, 2015) to maximise the impact of DoS attacks by sending care-
fully crafted, legitimate requests towards the victim. Adversaries use either
flooding or semantic technique to generate such attacks as described earlier.
The most common DoS attacks against Application Layer protocols exploit
vulnerabilities in the initial connection-establishment message exchanges.
Table 2.4 lists the Application Layer protocols targeted, request types and
the attack launching methods employed to cause DoS.

HTTP-Flood HTTP protocol is one the most widely deployed protocol
on the Internet due to the dominant presence of World-Wide-Web (WWW).
Due to its wide usage, HTTP protocol is also one of the most targeted Ap-
plication Layer protocols (Network, 2015). HTTP is a Request/Response
protocol and uses various request and response messages to exchange data
between the clients and server. A HTTP DoS attack floods the webserver
with request messages resulting in exhaustion of resources in responding to
multiple requests. During flooding attacks the arrival rate of new requests
is higher than the response rate of the webserver which quickly fills up the
request queue thereby denying service to legitimate clients. The request
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Table 2.4: DoS attack strategies adopting protocol-specific legitimate re-
quests for various Application Layer protocols

Application Layer
Protocol

Request Type Attach Launch Method

HTTP (K. Singh et
al., 2017; Adi et al.,
2016; Ranjan, Swami-
nathan, Uysal, Nucci, &
Knightly, 2009)

HTTP-GET,
HTTP-POST • Flooding (exponentially increas-

ing attacks, Flash attacks, con-
stant high-rate attacks)

• Low Rate: Periodic (square wave
DoS stream – low average packet
rate (Shan, Wang, & Pu, 2017a))
, Slowloris

SIP (Rafique, Akbar,
& Farooq, 2009; Luo,
Peng, & Leckie, 2008)

SIP-INVITE,
SIP-REGISTER

Flooding

DNS (Ballani & Fran-
cis, 2008)

Name resolution
query

Flooding

SMTP (Bencsath &
Ronai, 2007)

Email flooding Flooding

messages used in HTTP flood attack are: HTTP-GET and HTTP-POST.
In HTTP-GET attack multiple requests for resources such as images or files
are sent to the webserver. In the HTTP-POST attack, multiple form sub-
missions are performed on the website which in turn requires the webserver
to push data to other layer of software architecture.

Attacker
Victim Web-Server

Botnet

HTTP-GET /index.php

Figure 2.13: HTTP-GET DoS flooding attack
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SIP-Flood Session Initiation Protocol (SIP) is a signalling protocol widely
used to establish real time communication between participants, especially
in IP telephony. It can be used for both voice and video communications
which identifies the participants of the call and the methods to reach each
other on the IP network. SIP servers are deployed to authenticate and setup
calls between the participants. Similar to other Application Layer protocols,
SIP uses signalling messages such as INVITE, REGISTER, ACK, BYE and
CANCEL between the clients and server to establish calls. In SIP flooding
attack the adversary can flood the SIP server with numerous INVITE or
REGISTER messages to consume the resources of the server to cause DoS
(Luo et al., 2008; Rafique et al., 2009).

Slowloris Slowloris attack is a semantic attack type which does not flood
the victim with numerous requests instead it tries to exploit the application
logic of webservers (K. Singh et al., 2017). In this attack, the adversary
opens multiple connections with the webserver by sending partial HTTP-
GET requests. A multi-threaded webserver opens a thread for each request
and keeps the threads open until the connection is completed. If the connec-
tion remains idle for a long period the webserver will timeout the connection
and frees the thread allocated to that connection. But in a Slowloris attack
the adversary sends partial HTTP-GET request headers to keep the con-
nection alive and prevents the webserver from timing out the connections.
This results in webserver’s threads locked in partial connections and once
the thread limit is reached it stops responding to new requests causing DoS.

Incomplete HTTP-GET
Incomplete HTTP-GET
Incomplete HTTP-GET

Incomplete HTTP-GET
Attacker Web-Server

Figure 2.14: Slowloris DoS attack technique

The various DoS attack strategies and the data communication protocols
targeted by the adversaries are summarised in Figure 2.15 as four-quadrants
of attack classification.
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Figure 2.15: Four quadrant DoS attack classification by the protocol layer
and dos attack type (flooding vs semantic)

2.5 DoS Attack Detection Techniques

Attack detection is one of the important steps in mitigating the malicious
effects of DoS attacks. DoS attacks that target a specific vulnerability of
the victim machine can be protected by patching the vulnerability (Carl,
Brooks, & Rai, 2006; Bhuyan, Kashyap, Bhattacharyya, & Kalita, 2013).
However, the flooding based and stealthy DoS attacks that exploit the vari-
ous layers of the Internet Protocol suite pose a challenge to attack detection
and countermeasure techniques. The detection techniques will also vary
based on the location of deployment into (Bhuyan et al., 2013):

• Source-end,

• Victim-end, and

• Intermediate deployments.

Source-end deployments usually detect the attacks at the source of the at-
tacks and prevent DoS traffic from traversing further. However, such meth-
ods would be ineffective in a mutli-source DDoS attack as source machines
are distributed and the observed traffic does not deviate much from normal
traffic (Bhuyan et al., 2013). In the victim-end detection scheme, either
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online or offline detection techniques are employed at the target of the at-
tack. In the intermediate detection scheme, intermediate devices through
which the DoS traffic traverses are responsible to detect and rate limit the
malicious traffic. In this work we only focus on the victim end detection
scheme.

Various works have also suggested different classification methods for
DoS attack detection. The earliest classification approaches considered
DoS detection as a reactive mechanism to detect intrusions (Douligeris &
Mitrokotsa, 2004; Mirkovic & Reiher, 2004; Peng, Leckie, & Ramamoha-
narao, 2007) and classified them into:

• Pattern or misuse detection

• Anomaly Detection

However, Carl et al. (2006) classified the detection approaches as statistical
techniques which assess different statistical parameters of network traffic
or monitoring statistical patterns for various traffic parameters (Asosheh &
Ramezani, 2008). Other and more recent works have classified DoS attack
detection techniques into (Bhuyan et al., 2013; Kaur, Kumar, & Bhandari,
2017; Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017; Tama &
Rhee, 2015):

• Signature-based or knowledge-based

• Anomaly-based

– Statistical

– Data Mining

– AI or ML techniques

• Hybrid

In a survey done by Zargar, Joshi, and Tipper (2013), the authors classified
DoS detection techniques based on the protocol level at which DoS attack
operates. The defence methods were classified as network level defence and
application level defence. The application level defences are further classi-
fied into destination based and hybrid techniques. The destination based
techniques detect and prevent attacks at the DoS attack target, typically a
server.

Signature-based detection: use pre-defined signatures of attacks gen-
erated using attack data analysis. These are also referred to as misuse de-
tection, rule-based or knowledge-based detection techniques. The behaviour
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of existing attacks is identified using techniques such as expert systems, sig-
nature formulation, self organising maps, state transition analysis (Bhuyan
et al., 2013). The main drawbacks of signature-based techniques are that:
they are effective only in detecting known attacks; variations or new attacks
can go undetected using such techniques, and therefore frequent learning
and updating of new signatures is required.

Anomaly detection techniques: use various methods to distinguish
between normal and abnormal patterns and behaviours in network traffic.
They are also referred to as outlier or behaviour based detection techniques.
This approach measures or identifies the normal behaviour of a system and
any deviance from the normal or expected behaviour by a predefined thresh-
old is flagged as an anomaly. This allows the anomaly detection method to
detect new and unknown anomalies. However, it also generates a higher
number of false alarms due to the presence of noise or changing network
behaviour (Kaur et al., 2017).

Hybrid techniques: use combinations of signature-based and anomaly-
based detection techniques to improve the overall detection accuracy of in-
dividual schemes.

A comprehensive DoS attack detection taxonomy presented in Kaur et
al. (2017) is shown in Figure 2.16.
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Figure 4. Classification of detection approaches.

the detection process (Gyanchandani, 2012). In the detec-
tion phase, DDoS attacks are detected and legitimate
packets are distinguished from attack packets. Detec-
tion methods recognize DDoS attacks with the directory
of known (or familiar) attack patterns or by identifying
irregularities in standard network behaviour (Douligeris
& Mitrokotsa, 2004). Due to the lack of clear DDoS attack
profile or signature, the detection schemes observe unex-
pected shifts in IP packet traits or traffic volume to catch
these appalling attacks. Attack detection methods erect
a model or profile by observing the regular functioning
of the interface, validate the incoming flux against the
paradigm and discover oddities with the perpetual shifts
in the network. The detection approaches can be imple-
mented locally, to protect a particular victim or remotely,
to expose propagating attacks in the core network. Early
detection and the detection accuracy of DDoS attacks
have become the critical measures for the realization of
a defense system. So, every detection technique should
outline normal traffic intelligently, accurately, and recog-
nize aberrations with high normal packet survival ratio,
low false positive and false negative ratios and it should
be cost effective in terms of resource consumption and
per packet computations.

3. DDoS attacks detection: approaches,
functional classes andmetrics

This section introduces the classification of different
detection approaches and their functional classes. A brief

introduction to different metrics has been depicted in
order to compare the detection methods.

3.1. Approaches

This sub-section begins with the review of existing
approaches to DDoS attack detection. Though a diver-
sity of detection approaches has been proposed in
the research in preceding years, but the security tools
with detection capabilities have several important obsta-
cles that remain to be solved. The choice of detec-
tion approach totally depends on the various factors
such as the type of anomalies, processing data type
and behaviour, working environment of the organiza-
tion, computational cost, and the required security level
(Raut & Singh, 2014). Moreover, the performance of the
detection schemes depends on how well it is oper-
ated and tested on all network protocols. Nowadays,
Soft Computing or Artificial Intelligence-based meth-
ods are applied extensively for the attack detection
(Singh, Hans, Kumar, & Singh, 2015). On the basis of
analysis methods, detection approaches are classified
into Signature-based,Anomaly-based andHybriddetection
(Agarwal & Mittal, 2012; Wu & Yen, 2009) as described
in Figure 4.

3.1.1. Signature-based detection
Signature-based detection is also known asMisuse detec-
tion, Pattern detection, Knowledge-based or Rule-based
detection. This approach captures the required behaviour

Figure 2.16: Taxonomy of DoS detection techniques classified by detection approach. Adopted from Kaur et al.
(2017, p. 304)
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2.5.1 Statistical Detection Techniques

Statistical detection techniques utilise the statistical properties of the normal
and attack traffic to differentiate them and identify DoS attacks. These
methods rely on developing a statistical model of the normal traffic and
any traffic that deviates from the normal model by a threshold limit is
flagged as attack traffic. The types of statistics measures applied are: change
point detection using non-parametric Cumulative Sum (CUSUM) (Blazek,
Kim, Rozovskii, & Tartakovsky, 2001; Wang, Zhang, & Shin, 2002), two-
sample t-test (C. Chen, 2009), Auto-Regressive Integrated Moving Average
(ARIMA) (G. Zhang, Jiang, Wei, & Guan, 2009), residue factor metric
applied on session inter-arrival time (Ranjan, Swaminathan, Uysal, Nucci,
& Knightly, 2008) or moving average (exponential and simple) on inter-
arrival time (Bojović, Bašičević, Ocovaj, & Popović, 2019) or Kullback-
Leibler Divergence (KLD) metric used to differentiate between normal and
DoS attack probability distributions (Bouyeddou, Harrou, Sun, & Kadri,
2018). Other statistical techniques employed are based on Wavelet analysis
(Dainotti, Pescapé, & Ventre, 2006; Lu & Ghorbani, 2009). The statistical
techniques depend on models of normal and attack traffic measured based
on features like inter-arrival time, IP addresses, packet sizes.

2.5.2 Targeted DoS Attack Detection

DoS attacks are becoming increasingly sophisticated and focused, as specific
protocol layers or specific infrastructures are being targeted. As existing DoS
detection techniques focus more on the packet arrival statistics to detect
flooding or slow attacks, such schemes will fail to detect specially crafted
Application Layer or domain specific DoS attacks (M. Singh, Rajan, Shivraj,
& Balamuralidhar, 2015). Some of the challenges in detecting Application
Layer DoS attacks are:

• Application Layer DoS attacks do not just rely only on vulnerability or
gaps in the application or the protocol; but rather can also be launched
using legitimate requests.

• Legitimate IP and Transport Layer parameters are used in Application
Layer attacks, that can bypass lower layer detection mechanisms.

• Existing methods assume characteristics of DoS traffic differs from nor-
mal traffic, but such methods will fail when attack behaviour mimics
the normal user behaviour.
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• Presence of flash events (normal traffic but traffic resembles DoS traffic
due to increased resource access) can cause high false alarms.

• Use of stealth or semantic attacks can increase the detection complex-
ity.

This has resulted in researchers focusing on identifying protocol or in-
frastructure specific DoS vulnerabilities and detection techniques. Specific
DoS attack classification or defence mechanisms proposed in the literature
are listed in the Table 2.5. The current research work indicates that more
and more targeted attacks are occurring and requires domain or application
specific detection methods.

Table 2.5: Protocol or infrastructure specific DoS attacks and defences

Protocol / Infras-
tructure DoS Tar-
gets

Specific Detection Classifications

HTTP HTTP-GET flood DoS attacks (M. Singh et al., 2015;
Praseed & Thilagam, 2018)

SIP SIP DoS attack detection survey (Ehlert, Geneiatakis,
& Magedanz, 2010)

Web-Service Web-service attacks survey (Jensen, Gruschka, &
Herkenhöner, 2009)

Cloud Intrusion detection techniques in cloud (Modi et al.,
2013)

Publish/Subscribe (Wun, Cheung, & Jacobsen, 2007)

Peer to peer networks (Daswani & Garcia-Molina, 2002)

Smart-Grid /SCADA /
DNP3

DNP3 attacks (East, Butts, Papa, & Shenoi, 2009),
SCADA-specific intrusion detection survey (Zhu &
Sastry, 2010), attack detection in Cyber-Physical Sys-
tems(CPS) (Mitchell & Chen, 2014)

SDN survey of DoS attacks in SDN (Yan, Yu, Gong, & Li,
2015)

In order to detect such attacks, many domain or application specific
features have been previously proposed. Some examples of domain specific
features used for DoS attack detection are:

• HTTP browsing order of pages (Yatagai, Isohara, & Sasase, 2007):
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The user behaviour of accessing web pages on a web server is used to
differentiate between human and bot access behaviour.

• HTTP browsing time to information size correlation (Yatagai et al.,
2007): The browsing time per page is used to distinguish between
normal and DoS attack behaviour as the latter scenario would result
in random and fast access to various web pages.

• SIP transaction features (E. Y. Chen, 2006): The call establishment
process features are used to differentiate normal from malicious be-
haviour.

• Web server document popularity (Xie & Yu, 2009): The web server
document popularity is used to distinguish between flash crowds and
HTTP DoS attacks.

Based on the DoS attack classification presented in Figure 2.15 and the dis-
cussion on targeted DoS attack detection, a new DoS attack classification
is presented in Figure 2.17. This classification scheme highlights that de-
tection techniques employ different features based on the layer targeted by
DoS attacks.
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Figure 2.17: Proposed DoS detection techniques classification based on detection target layer and technique used
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As discussed in earlier sections, IoT growth is powered by the complex
amalgamation and advancements of various technologies and hence, are vul-
nerable to a wide range of targeted attacks. This necessitates building de-
tection techniques relevant to IoT as the techniques discussed so far were
designed and deployed to work for legacy networks. As discussed in sections
2.1 and 2.2, the communication paradigms and protocols used in IoT are
different from traditional networks. In addition, Zarpelão, Miani, Kawakani,
and de Alvarenga (2017) highlights that existing detection solutions are in-
adequate for IoT systems due to reasons such as: resource constraints of
IoT devices, multi-hop communication strategies in IoT (use of gateways
for resource constrained devices) and use of new generation protocols. The
authors also highlight the lack of public IoT datasets for detection technique
evaluation. The main challenges with DoS detection in IoT are:

• large number of endpoints,

• new communication paradigms,

• new communication protocols,

• more device generated traffic in IoT applications compared to human
generated traffic in web applications, and

• increased DoS volume due to compromised IoT devices.

The recent trends in anomaly detection techniques indicate that AI based
techniques are increasingly being adopted to detect DoS attack (Bhuyan et
al., 2013; Kaur et al., 2017) due to various advantages such as:

• learning the behaviour of the system automatically,

• handling large volumes of data (in IoT age),

• using multiple features to create models of normal and attack traffic
hence have more tolerance, and

• identifying complex relationships between features to detect novel at-
tacks.

The following section discusses the various components of Machine Learning
techniques and their phases.
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2.5.3 Soft Computing, Data Mining and Machine Learning
Based Detection

The other category of detection techniques employed in DoS attack detec-
tion are based on soft computing concepts such as Machine Learning (ML)
algorithms. Data mining and machine learning are a subset of data science.
Furthermore, machine learning forms a part of soft computing (Chaturvedi,
2008), hence it is reasonable to discuss these techniques together in the con-
text of DoS attack detection techniques. Machine learning based detection
techniques first identify suitable features from captured DoS attack data
and then use unsupervised or supervised methods to classify network traffic
as normal or DoS attack (Bhuyan et al., 2013; Tama & Rhee, 2015).

Machine Learning (ML) is an application of AI which deals with auto-
matic recognition of useful patterns and intelligent decision making based
on provided data (Shalev-Shwartz & Ben-David, 2014). The main goal of
a ML is to learn patterns from the provided data samples and produce a
generalised model in order to predict or classify unknown data instances.
The learning step on sample data instances in ML is referred to as train-
ing phase and evaluation step on unknown data instances is referred to as
testing phase.

Given a dataset X represented by a feature vector (F): [f1 , f2 , ..., fn ],
and an output class label C = [C1, .. , Cl], provides a paired labelled train-
ing samples S = [(xi, yi), i = 1, ...m] where xi represents the input data
instance and yi represents the corresponding expected output class label.
So the task of an ML algorithm is to estimate a function F that best rep-
resents the relationship between input xi and output yi from S without
the loss of generalisation and reducing the learning error between expected
output class yi and the predicted output class ȳi (Dua & Du, 2016). The
developed model’s performance is evaluated by measuring the number of
correctly classified instances and miss-classifications on a testing dataset D.

The typical work-flow of an ML project consists of collections from vari-
ous sources, feature extraction from the raw data, model learning and model
testing as depicted in Figure 2.18.

Raw Data Feature 
Extraction Learn Model Test Model

Figure 2.18: Typical ML work-flow used in classification or prediction

The feature extraction step and the model learning steps sit between the
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raw data and the model testing phases. Hence choosing the right features
and the classifier plays a crucial role in building a most effective model (Hodo
et al., 2017; Zheng & Casari, 2018).

ML techniques have been widely used in cyber-security domain, espe-
cially in anomaly detection applied commonly in Intrusion Detection Sys-
tems (IDS) (Dua & Du, 2016; Hodo et al., 2017). Specifically, ML techniques
have been employed in detecting DoS attacks (Tama & Rhee, 2015; Hodo
et al., 2017). In order to build detection models for DoS attacks, datasets
containing normal and attack traffic are required. Various methods or data
sources have been used to collect the data required for model evaluation.
The following section discusses the various data sources or methods used in
the literature.

Data Sources

Data collection phase is used to collect raw data required to train and build
a detection model. The effectiveness of the developed model will depend
on the quality of data that is used to train the model. In DoS detection
problem, the ML technique can be effective in detecting DoS attacks only
if the training datasets include quality samples of benign and attack traffic.
Some of the important characteristics of a good dataset as per Koroniotis,
Moustafa, Sitnikova, and Turnbull (2019) are: the dataset should contain
realistic traffic, the data should be labelled for supervised learning tech-
niques, the dataset must contains diverse benign and attack scenarios, full
packet captures are preferred so as to generate new features. Praseed and
Thilagam (Praseed & Thilagam, 2018) highlight the limited availability of
datasets containing Application Layer DoS traffic which has led many re-
searchers to generate attack traces using existing DoS attack tools. In ad-
dition, the existing datasets are older than 2007 and are no longer relevant
in the IoT era. Hence there is a dearth of IoT based public datasets to
build effective detection techniques (Koroniotis et al., 2019). Some of the
common methods that have been employed to obtain datasets required for
DoS detection evaluation are (Bojović et al., 2019; Koroniotis et al., 2019;
Hodo et al., 2017; Praseed & Thilagam, 2018):

• Realistic Test-bed: real or virtual endpoints are used which generate
benign traffic and attacks are generated using existing tools or attack
simulations.

• Real network traffic: dataset containing benign and attack traffic
obtained from real production networks. This type of dataset is rare
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as most organisations do not publicly share their network traffic for
privacy and security concerns.

• Public dataset: publicly hosted dataset of benign and attack traffic
or only benign traffic (attack traffic is synthetically injected to the
dataset to evaluate the detection technique).

Table 2.6 lists the various public datasets used in DoS detection evalu-
ation and their applicability in the IoT domain. Specifically these datasets
are not suitable to detect MQTT protocol based attacks due to the lack of
attack traffic related to the protocol.

Table 2.6: Comparison of public datasets used for anomaly detection

Dataset Year of collection IoT Dataset MQTT
Attack
Traces

DARPA99 (MIT, 1999),
KDD99 (UCI, 1999),
CAIDA DDoS (UCSD,
2007)

Prior to 2007 No No

UNSW-NB15
(Moustafa & Slay,
2015), CICIDS2017
(Sharafaldin, Lashkari,
& Ghorbani, 2018)

After 2015 No No

BoT-IoT (Koroniotis et
al., 2019) dataset

2018 Yes No

These limitations with regards to the availability of real production and
public IoT datasets suitable to the DoS detection problem requires that a
realistic test-bed that emulates a real IoT network should used to collect
benign and attack datasets.

Feature Extraction

Features extraction plays an important role in anomaly detection. The fea-
tures used for anomaly detection define the structure of the data, whereas
ML algorithms are used to identify the patterns that exist in the data struc-
ture to differentiate between normal and attack traffic. Hence, the success of
the ML algorithm depends on the most suitable features that can effectively
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differentiate normal from attack traffic (Hodo et al., 2017). For network
anomaly detection, direct or derived features are used to detect abnormal
traffic patterns (Dua & Du, 2016; Hodo et al., 2017). Direct features can be
based on the protocols used at the IP, Network or Application Layers. In
contrast, derived features can be based on network access dynamics (gener-
ally applied to network flows or time-intervals) or based on domain specific
behaviour (Hodo et al., 2017). Figure 2.19 shows various layers of packet
data available for feature extraction in a IP packet.

IP Header Transport 
Layer Data

TCP/UDP 
Header

TCP/UDP 
Header

Application
Layer Data
Application
Layer Data

Application
Layer Header
Application

Layer Header
Application

Layer Payload
Application

Layer Payload

Figure 2.19: IP packet encapsulation that can be utilised to extract features
for ML based detection

For Application Layer attacks detection, the network traffic can also be
analysed at various levels to extract Application Layer information such as
(Rieck, 2009):

• Packet level: The Application Layer data contained in packets can
be easily accessed and can be directly used to extract application data.
However, this requires quick decision making time to categorise pack-
ets as normal or malicious and can be bypassed by simple evasion
techniques like segmentation (Rieck, 2009).

• Request level: The Application Layer data can be extracted by mon-
itoring individual application requests which requires re-assembly of
all the packets that belong to the request thereby solving the problem
exhibited by simple evasion techniques. This allows the analysis of
complete traffic payloads for pattern matching based intrusion detec-
tion (Sperotto et al., 2010).

• Connection level: At this level the full communication session is
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monitored and all the packets that are transferred during the session
are considered for marking a connection session as normal or malicious.
This however, increases the decision time to due to variable length
sessions.

• Time-Windows/Multiple connections: These techniques rely on
change detection to detect intrusions in network traffic modelled as
time-series (Krishnamurthy, Sen, Zhang, & Chen, 2003). They moni-
tor multiple connections or packets contained either in a time-window
or through a connection limit. These techniques can detect anoma-
lies that span multiple connections and spread across various time-
windows. This method might be limited in detecting malicious sessions
from normal sessions as it depends on multiple sessions.

Table 2.7 lists the direct and derived features used in various works
(M. Singh et al., 2015; Praseed & Thilagam, 2018; Hodo et al., 2017), for
anomaly detection. Since HTTP protocol has attracted more attention from
researchers, a wide range of domain specific features have been proposed in
the literature (M. Singh et al., 2015; Praseed & Thilagam, 2018). The direct
and derived features that are based on IP and Transport Layer protocols
can be used across various Application Layer protocols for DoS detection as
these protocols are encapsulated in the IP packet. However, domain specific
features that are based on the internal structure and interactions of applica-
tions are not suitable to detecting attacks in other protocols or domains. For
example, human user access behaviour and webpage popularity is used in
HTTP protocol to detect attacks based on normal and attack traffic distri-
butions, however, these features are not applicable to other applications. As
domain specific or application protocol specific cannot be reused for other
domains or protocols, features suitable to detect adversarial actions against
new applications and protocols need to be identified by in depth analysis of
the domain.

Model

ML employs various mathematical algorithms to find the relationships in
the provided data. ML techniques can be classified into: supervised or un-
supervised learning. Supervised ML techniques use a labelled dataset also
referred to as ground truth to learn the relationship between the input and
output. Hence, a prior knowledge exists about the output values of individ-
ual samples. In contrast, un-supervised learning uses a un-labelled dataset
to identify the natural structure or patterns in the data. In supervised
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Table 2.7: Direct and derived features used in various layers and protocols
of TCP/IP stack

Protocol /
Layer

Types of Features used Derived Features (flow
based, or time-interval
based)

Applicable
to MQTT

IP Packet Size, IP address
(source-destination)

Inter-arrival time, bytes from
source to destination vice
versa, count based features
applied to flow/time-interval,

Yes

TCP TCP Flags, source and desti-
nation ports, segment length

- Yes

UDP UDP Flags, source and desti-
nation ports, segment length

- No

HTTP HTTP protocol flags, re-
sponse codes

User browsing behaviour,
page/resource popularity,
request dynamics, request
workload behaviour, session
inter-arrival time, backend
request statistics

No

DNS DNS Flags Protocol based Request and
responses

No

SIP SIP flags, Protocol based Request dy-
namics

No

ML, the algorithm takes samples of labelled data to build a mathematical
model that formulates the relationship between input and output variables.
The model building phase is also called training. The developed model’s
performance is assessed by data samples that were not previously used for
building the model. The model evaluation phase is also referred to as testing.
A number of ML algorithms exist, but the most popular methods include
(Dua & Du, 2016; Buczak & Guven, 2015; Tama & Rhee, 2015): Artificial
Neural Networks (ANN), Support Vector Machine (SVM), decision trees,
Bayesian networks, Naive Bayes, k-Nearest Neighbour and Hidden Markov
Model (HMM). A few methods are discussed in this section.

ANN: is a ML technique that is inspired from neural networks of bi-
ological brains that takes inputs X and transforms into outputs Y using
non-linear functions over multiple hidden layers of artificial neurons. The
connections between neurons are referred to as edges and each edge consists
of weights W that are tuned during the training phase as shown in Fig-
ure 2.20. The main goal of an ANN model is to minimise the classification
error by tuning the hidden layer weights. Given the ground truth Y and
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are	weight	vectors	for	layer	1	and	layer	2,	respectively.	Layer	1	has	three	neurons,	
and	layer	2	has	two	neurons.

When	ANN	is	used	as	a	supervised	machine-learning	method,	efforts	are	made	
to	determine	a	set	of	weights	to	minimize	the	classification	error.	One	well-known	
method	that	is	common	to	many	learning	paradigms	is	the	least	mean-square	con-
vergence.	The	objective	of	ANN	is	to	minimize	the	errors	between	the	ground	truth	
Y	and	the	expected	output	f(X;	W )	of	ANN	as	E(X )	=	( f(X;	W )	−	Y )2.	The	behavior	
of	an	ANN	depends	on	both	the	weights	and	the	transfer	function	Tf ,	which	are	
specified	for	the	connections	between	neurons.	For	example,	in	Figure	2.1,	the	net	
activation	at	the	jth	neuron	of	layer	1	can	be	presented	as

	
y T x wj f i ji

i

1 1= ⋅
⎛

⎝
⎜

⎞

⎠
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(2.1)

Subsequently,	the	net	activation	at	the	kth	neuron	of	layer	2	can	be	presented	as
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(2.2)

This	transfer	function	typically	falls	into	one	of	three	categories:	linear	(or	ramp),	
threshold,	or	sigmoid.	Using	the	linear	function,	the	output	of	Tf	is	proportional	
to	the	weighted	output.	Using	the	threshold	method,	the	output	of	Tf	depends	on	
whether	the	total	input	is	greater	than	or	less	than	a	specified	threshold	value.	Using	
the	sigmoid	function,	the	output	of	Tf	varies	continuously	but	not	linearly,	as	the	
input	changes.	The	output	of	the	sigmoid	function	bears	a	greater	resemblance	to	
real	neurons	than	do	 linear	or	 threshold	units.	 In	any	application	of	 these	 three	
functions,	we	must	consider	rough	approximations.

Layer 1

Layer 2

Output f (X,W )

W1

W2

{xi}
Inputs X

w1
ji

w2
kj

y1
j

y2
ky1

j–1

y1
j–2 y2

k–1

Figure	2.1	 Example	of	a	two-layer	ANN	framework.
Figure 2.20: A two layer ANN feed-forward network consisting of one input
layer, one hidden layer and an output layer. Adopted from Dua and Du
(2016)

the expected output f(X;W ) or Ŷ , then ANN aims to reduce the error
E(X) = (Ŷ − Y )2. This is achieved by tuning the weights and choosing the
correct activation functions of a neuron. Individual neurons have a summa-
tion function that combines all the inputs and the associated weights and is
further transformed using a transfer function Tf (also referred to as action
function) as shown in Figure 2.21. In certain networks a bias value b is also
introduced to shift the output based on the learning requirement.

Hence, the output of individual ith neuron with input xj and weights
wij is represented as:

yj = Tf (b+
n∑

j=1

xjwij) (2.2)

A wide range of functions are used as the transfer function. The most
common types are step, threshold and sigmoid function (Dua & Du, 2016).
In order to reduce the error E(x), the learning task in an ANN involves
calculating the best values of hidden layer weights and bias to reduce the
error between predicted output and the ground truth. Various algorithms
have been proposed which iteratively calculate the best weights and biases
based on the training samples. The most popular learning algorithm used is
back-propagation algorithm which uses gradient decent based approach to
calculate the minimum of a function.

Decision Trees (DT) Decision trees uses tree-like structure to model

49



wi1

wi2

wi3

win

𝒙𝒋

𝒏

𝒋 𝟏

𝒘𝒊𝒋 

output
input

Transfer Function (T)

x1

x2

x3

xn

x1wi1

x2wi2

x3wi3

xnwin

weights
Bias

Figure 2.21: Structure of an ANN neuron consisting of aggregation function
and a transfer function. Adopted from Dua and Du (2016)

the classification problem with leaves representing the decisions or class and
branches representing the partitions based on the input features as shown
in Figure 2.22. Given a training dataset D = {xiyi}ni=1 containing n points
in a d -dimensional data space R, then yi represents the output class for
the corresponding input point xi. A DT algorithm will recursively partition
the input points xi using axis-parallel hyper-plane to build the decision
tree model that splits the data space R into half-spaces (Zaki, Meira Jr,
& Meira, 2014). In terms of data space, the internal or intermediate nodes
recursively divide the hyper-plane in half-spaces and the leaf nodes represent
the final regions in the data space representing the majority class(Zaki et
al., 2014). The task of the developed model will be to classify the test point
by recursively evaluating the correct half-space it belongs to until the leaf
node is reached in the DT.

A hyper-plane defines the decision boundary or split point as it divides
the space into two sub spaces. DT uses the entropy measure as the split
point criterion that provides the best separation between class labels. Hence
a lower entropy is obtained if all the points in the partition belong to the
same class and higher entropy reported if points in the partition belong
to different class. A dataset containing k class labels where the output
yi = {c1, c2, ....., ck}, then entropy of a partitions is given by:
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SVM	can	find	linear,	nonlinear,	and	complex	classification	boundaries		accurately,	
even	with	a	small	training	sample	size.	SVM	is	extensively	employed	for		multi-type	
data	by	 incorporating	kernel	 functions	 to	map	data	 spaces.	However,	 selecting	
kernel	functions	and	fine-tuning	the	corresponding	parameters	using	SVM	are	
still	 trial-and-error	 procedures.	 SVM	 is	 fast,	 but	 its	 running	 time	 quadruples	
when	a	sample	data	size	doubles.

Unfortunately,	 SVM	 algorithms	 root	 in	 binary	 classification.	 To	 solve	
multi-class	classification	problems,	multiple	binary-class	SVMs	can	be	com-
bined	by	classifying	each	class	and	all	the	other	classes	or	classifying	each	pair	
of	classes.

2.1.1.4 Decision Trees

A	decision	tree	is	a	tree-like	structural	model	that	has	leaves,	which	represent	clas-
sifications	or	decisions,	and	branches,	which	represent	the	conjunctions	of	features	
that	 lead	 to	 those	 classifications.	A	binary	decision	 tree	 is	 shown	 in	Figure	2.3,	
where	C	is	the	root	node	of	the	tree,	Ai	(i	=	1,	2)	are	the	leaves	(terminal	nodes)	of	
the	tree,	and	Bj	(		j	=	1,	2,	3,	4)	are	branches	(decision	point)	of	the	tree.

Tree	classification	of	an	input	vector	is	performed	by	traversing	the	tree	begin-
ning	at	the	root	node,	and	ending	at	the	leaf.	Each	node	of	the	tree	computes	an	
inequality	based	on	 a	 single	 input	 variable.	Each	 leaf	 is	 assigned	 to	 a	particular	
class.	Each	 inequality	 that	 is	 used	 to	 split	 the	 input	 space	 is	 only	based	on	one	
input	variable.	Linear	decision	trees	are	similar	to	binary	decision	trees,	except	that	
the	inequality	computed	at	each	node	takes	on	an	arbitrary	linear	form	that	may	
depend	on	multiple	variables.	With	the	different	selections	of	splitting	criteria,	clas-
sification	and	regression	trees	and	other	tree	models	are	developed.

As	shown	in	Figure	2.3,	a	decision	tree	depends	on	if–then	rules,	but	requires	
no	parameters	and	no	metrics.	This	simple	and	interpretable	structure	allows	deci-
sion	trees	to	solve	multi-type	attribute	problems.	Decision	trees	can	also	manage	
missing	values	or	noise	data.	However,	they	cannot	guarantee	the	optimal	accu-
racy	that	other	machine-learning	methods	can.	Although	decision	trees	are	easy	

B2

No NoYes Yes

Yes No
Root node C

B1

A1 A2

B4B3

Figure	2.3	 Sample	structure	of	a	decision	tree.
Figure 2.22: Sample structure of a DT consisting of leaf nodes and root
node. Adopted from Dua and Du (2016)

H (D) = −
k∑

i=1

P(ci|D) log2 P(ci|D) (2.3)

The split point is selected to partition a set of points D into sub partitions
DY and DN in such a way as to reduce the over all entropy which can be
defined as the information gain given by:

Gain((D), (DY ), (DN )) = H (D)−H (DY,DY) (2.4)

The recursive partitioning techniques used in DT makes the model easy to
interpret. The IF-ELSE type of rules make the decision rules easy to follow
and can handle multi-type attributes.

Bayes Classifier Bayes classifiers are a type of probabilistic classifiers
that use Bayes theorem to predict the output class of a given input. The
main task is to maximise the posterior probability by estimating the joint
probability density function of each class.

Given a dataset D containing n instances xi and yi is the output class
with k labels such that yi = {c1, c2, ....., ck} then according of Bayes rule,
the posterior probability for each class ci is given by:
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P(ci |x) =
P(x|ci) .P(ci)

P(x)
(2.5)

where P(ci) is the prior probability and P (x|ci) represents the conditional
probability of x given the likelihood ci. The probability of observing x from
any class k is given by:

P(x ) =
k∑

j=1

P(x|cj ).P(cj ) (2.6)

Naive Bayes classifier is one of the simple forms of Bayes classifier that
assumes that the attributes are independent. Hence, the Naive Bayes clas-
sifier can be solved by maximum posterior probability map as :

argmax
cj∈C

P(x|cj ).P(cj ) (2.7)

Bayes classifiers are efficient in inference learning tasks. Specifically,
Naive Bayes classifier can be trained quickly as the attribute independence
assumption reduces the complexity high-dimensional data (Zaki et al., 2014).
In addition the technique produces good results even when assumption of
attribute independence is violated (Dua & Du, 2016).

Support Vector Machines (SVM) SVM classifiers try to separate the
data points belonging to classes using a hyperplane that maximises the dis-
tance between the closest data point in either class. The maximum margin
or the hyperplane separation is obtained by solving a quadratic optimisa-
tion problem. SVMs have better generalisation ability and can obtain the
classification boundary quickly and accurately even with a small and high
dimensional training sample. However, SVMs are good in binary classifica-
tion problems and require multiple binary class classifier combinations in a
multi-class classification problem (Dua & Du, 2016).

The ML methods discussed in this section establishes that a right com-
bination of good domain specific features and efficient ML algorithm trained
and tested on real datasets is essential to build a robust attack detection sys-
tem. However, the use of a particular ML algorithm for intrusion detection
requires knowing the frequency of training the models and the availability of
labelled datasets (Buczak & Guven, 2015). This because the intrusion detec-
tion systems require re-training when new intrusions occur and new attack
patterns are discovered. Hence models that support incremental training
are more suitable for intrusion detection. In addition, models that can be
better interpreted are more suitable in building fine grained access policies
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compared to black-box models which are difficult to interpret and extract
policy rules (Buczak & Guven, 2015). Moreover, selecting the most suitable
ML algorithm for the problem at hand is a challenging task and often de-
pendent on the accuracy of the model in detecting complex attack data with
minor variations, time it takes to classify a new instance and the scalability
of the solution in working with large datasets(Buczak & Guven, 2015).

The following sections discuss about existing works done on attacks on
publish/subscribe systems and their detection techniques.

2.6 Attacks on Publish/Subscribe Systems

Most of the attack detection techniques discussed thus far focus on the
HTTP protocol which uses a request/response paradigm. The reasons for
the HTTP protocol receiving a lot of focus from researchers is due its wide
usage on the Internet and HTTP being one of the most targeted protocols
during cyber attacks (M. Singh et al., 2015; Praseed & Thilagam, 2018;
Gupta & Badve, 2017). However, as IoT deployments increase, IoT based
protocols are likely to have a significant presence on the Internet, becoming
new targets for potential cyber attacks (Metongnon & Sadre, 2018). Wun
et al. (2007) presented a taxonomy of DoS attacks on Content-based Pub-
lish/Subscribe Systems (CPSS). According to Wun et al. (2007) both broker
and clients can become targets of DoS attacks, which can be flooding based
or amplification based attacks. The authors also experimentally evaluated
the impact of DoS attacks on the system and identified that Application
Layer DoS attacks in CPSS can be achieved using relatively low volumes
of attack traffic. In another work related to publish/subscribe attacks, the
authors Srivatsa and Liu (2005) proposed a signature based EventGaurd
system to protect publish/subscribe overlay systems from various types of
attacks including DoS attacks. One of the issues with such systems is the
complexity introduced by cryptography techniques and their implementa-
tion in constrained IoT devices. Most recent work in detecting DoS attacks
in publish/subscribe systems presented by Maresca (2017) uses threshold
based detection methods to differentiate between normal and attack traffic.
Simply relying on volume based thresholds and statistical techniques can
increase false positive rates (Praseed & Thilagam, 2018; Kaur et al., 2017),
hence a more robust technique that analyses various parameters of the Ap-
plication Layer protocol are required. In addition, these techniques also do
not identify the various protocol features that can be effectively utilised to
detect DoS attacks and other attacks on publish/subscribe protocols.
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2.7 MQTT Protocol

MQTT (formerly referred to as MQ Telemetry Transport (HiveMQ, 2015))
was developed by Andy Stanford-Clark of IBM and Arlen Nipper of Arcom
in 1999 (Al-Fuqaha et al., 2015; Banks & Gupta, 2014). It was originally
developed for communication between remote devices with unreliable com-
munication links (Locke, 2010; Banks & Gupta, 2014), especially in mon-
itoring oil pipelines via satellite communication. It was standardised by
OASIS (Locke, 2010) in 2013. Even though MQTT was originally designed
for remote site communication, it was adopted for IoT applications due to its
simple model and low bandwidth usage (Niruntasukrat et al., 2016). Some
of the important features of MQTT that makes it suitable for IoT devices
are (Al-Fuqaha et al., 2015; Locke, 2010; Niruntasukrat et al., 2016; Waher,
2016):

1. Simple implementation.

2. One to Many communication model.

3. Consumes very low bandwidth (2kb header).

4. Three levels of QoS (Quality of Service).

5. Client/Server model between clients and the broker.

The following sections will discuss the messaging pattern, client connectivity,
publish subscribe process and quality of services levels adopted in MQTT
protocol.

2.7.1 Publish/Subscribe Pattern

Communication patterns define the mechanism by which messages are ex-
changed between the end-points of a system. Traditional request/response
approach uses a synchronous communication model where the client or peers
request information from a server, which then responds with the requested
information. In contrast, an event-driven communication model uses an
asynchronous communication model to send updates when events occur.
Publish/subscribe is an asynchronous event-driven communication model
that decouples the data producers and consumers to facilitate mass distri-
bution of messages to data consumers. The MQTT protocol depends on
the publish/subscribe communication pattern and uses a broker to facili-
tate message exchange between end-points. There are three main roles in
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the MQTT architecture: publisher, subscriber and the broker as shown in
Figure 2.23.

Publish: 210C

MQTT 

Broker

Publisher Subscriber

Figure 2.23: MQTT protocol architecture

The publishers generate data and publish their data to the message bro-
ker. The role of the message broker is to filter the published messages and
disseminate the data correctly to subscribers (Al-Fuqaha et al., 2015; Locke,
2010). In an IoT scenario, the publishers are various low power sensors pub-
lishing data like temperature, pressure, humidity and subscribers could be
smart devices like home automation controller, smart meter, smartphone,
computer who can take actions based on the environment changes (Salman
& Jain, 2015). The main advantages of the publish/subscribe communica-
tion pattern are (Eugster, Felber, Guerraoui, & Kermarrec, 2003):

• Space decoupling: the publishers and subscribers need not be aware
of each other i.e., publishers do not keep references of the subscribers
(IPaddress, port etc.). In addition, they can be located behind a
firewall with only the MQTT broker publicly available (Waher, 2015),

• Time decoupling: publishers and subscribers need not be running
at the same time

• Synchronisation decoupling: end-point operations are not blocked
when publishing or receiving events.

In addition to decoupling the publishers and subscribers, MQTT also
supports message level service agreements between the sender and receiver
of the messages called the Quality of Service (QoS) level. The QoS agreement
defines the guarantee of message delivery to the clients. MQTT supports
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the following three types of quality of service for message delivery (Banks
& Gupta, 2014):

1. At most once: message delivery uses best efforts of underlying TCP/IP
protocol. Message loss and duplicate messages might occur.

2. At least once: message delivery is assured but might include duplicates

3. Exactly once: message delivery is assured exactly once. Duplicates
and message loss is not acceptable.

The QoS feature in MQTT allows the client to set message delivery agree-
ment according to its network reliability and importance of the message.
These features facilitates scalable deployment architectures necessary for
larger scale IoT deployments.

2.7.2 MQTT Connection Establishment

The MQTT protocol requires clients to first connect to the broker before
they can publish or subscribe messages. The broker is responsible for authen-
tication, authorisation, message filtering and message distribution. Clients
include both publishers and subscribers that utilise MQTT libraries to ex-
change messages with the broker over the network. MQTT protocol defines
a series of CONTROL packets that are used by the clients and broker to
establish and exchange messages. The MQTT control packet consists of
a fixed two byte header, a variable header and a payload in some control
packets as show in Figure 2.24.

Figure 2.24: MQTT control packet structure

The fixed header identifies the control packet type and its related flag
fields. Some of the important control packets are enumerated in Table
2.8. A complete list of the message types are listed in standards definition
(Andrew Banks, 2014).

MQTT protocol runs over the TCP/IP stack and hence requires a com-
plete TCP connection establishment process prior to message exchange as
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Table 2.8: MQTT control packets

Control Packet Description value

CONNECT First packet sent by the client to ini-
tiate a MQTT connection

1

CONNACK Acknowledgement for a CONNECT
packet sent by broker to the client

2

PUBLISH Message sent by the publisher to
publish a message to a Topic

3

SUBSCRIBE Message sent by the subscriber to
subscribe to a Topic

8

DISCONNECT Message sent by the client to discon-
nect the MQTT connection

14

shown in Figure 2.25. Once the TCP session is established, the first control
packet sent by the client is CONNECT packet which is acknowledged by the
broker with a CONNACK packet. A client can only send one CONNECT
packet in a single TCP session and sending multiple CONNECT packets
causes the session to be terminated.

MQTT 
Broker

CONNECT    
(Username, Password)

CONNACK

Establish TCP Session

Client

Figure 2.25: MQTT client connection process

The CONNECT control packet contains essential client information which
is used by the broker to grant access to the client. The fixed header part
of the control packet contains the flag bits and the related field contents
are located in the payload. Table 2.9 lists the flag and payload fields of the
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CONNECT packet.

Table 2.9: CONNECT packet fields

Client Infor-
mation

Description Flag / Payload field

clientID Unique Client Identifier Payload
CleanSession Session state information Flag
Username Username used in client authentication Flag + Payload
Password Password used in client authentication Flag + Payload
lastWill Defines if last WILL message is enabled

for the client in the event of abnormal
network termination

Flag

lastWillTopic Defines the last WILL topic to which
last WILL messages are to be published

Payload

lastWillQoS Last WILL message QoS level Flag
lastWillMessage Last WILL message Payload
lastWillRetain Last WILL message retention state Flag
KeepAlive Defines the maximum time interval in

seconds permitted to elapse between
successive control packets

Payload

clientID A client identifier is used by the broker to distinguish clients
and maintain states for each client. MQTT only permits UTF-8 (unicode
transformation format) encoded strings to be used as client identifier and it
is the first field in the CONNECT packet payload.

CleanSession The clean session flag is used by the client to establish
persistent connection with the broker. If the CleanSession flag is set to 0
the server needs to resume the client connection state from stored sessions
identified by the clientID. If the CleanSession flag is set to 1 then server
discards any previous sessions and a new session is started. The session
information stored by the server includes: client subscriptions and messages
published with higher quality of service.

Username/Password MQTT uses credentials to authenticate and au-
thorise clients. The credentials are sent in plain text if the session is not
encrypted. The use of username and password is indicated using the flag
fields and the actual credentials are added to the payload by clients. The
username and password fields can be 0 to 65,535 bytes long.

58



Last WILL MQTT protocol supports Last WILL and Testament (LWT)
feature which allows a client to set a WILL message to notify other clients
when it disconnects from broker ungracefully. The Last WILL message is set
in the CONNECT control packet by setting the WILL flag and WILL QoS
flag; while the actual WILL message and topic are added to the payload. The
server is required to store the WILL message if it accepts the CONNECT
request. The WILL message is sent by the broker on behalf of the client in
situations such as (Banks & Gupta, 2014):

• I/O error or network failure detected by the server

• no communication detected from the client with in the KeepAlive in-
terval

• connection termination by the client without sending the DISCON-
NECT control packet

• server terminating the connection due to protocol errors

KeepAlive It is a time interval in seconds that specifies the maximum
permitted time interval between two successive control packets. The client
sets the KeepAlive interval based on the application requirement using the
KeepAlive bits. The protocol necessitates that the client ensures that the
time interval between two successive control packets does not exceed the
KeepAlive interval. If there are no control packets to send, the client needs
to send a PINGREQ packet to keep the network connection active. The
server terminates the network connection if no packets are received within
one and half times the KeepAlive interval. The maximum allowed KeepAlive
interval as per the MQTT 3.1.1 specification (Banks & Gupta, 2014) is 18
hours 12 minutes and 15 seconds

Broker Response

The broker responds to the connect request with acknowledgement packet
known as CONNACK. The CONNACK control packet contains the return
code indicating the outcome of the connection attempt and session present
flag which indicates to the client of previously stored sessions. The various
return codes sent by the broker are listed in Table 2.10.
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Table 2.10: Response codes sent by broker in CONNACK packet

Return Code Return Code Response

0 Connection accepted

1 Connection refused, unacceptable protocol version

2 Connection refused, identifier rejected

3 Connection refused, server unavailable

4 Connection refused, bad user name or password

5 Connection refused, not authorised

2.7.3 MQTT - Message Publish

After a successful connection the publishing MQTT clients can publish mes-
sages. The publish/subscribe messaging pattern employs two common forms
of filtering: content-based and topic-based. In content-based filtering, the
subscribers receive only those messages that contain or match the attributes
defined by the subscribers, whereas for topic-based filtering, subscribers re-
ceive only a subset of published messages that match the message topics on
logical channels subscribed by them. The MQTT protocol does topic-based
filtering to route messages to interested subscribers. Hence every message
published by clients must contain topic based on which the broker routes
the messages to interested clients. PUBLISH control packet is either sent
by a client to a broker or broker to a client as illustrated in Figure 2.26.

MQTT 
BrokerPublish 

(Topic, Info, QoS)

Client

Publisher

Client

Client

client

Subscriber

Publish 
(Topic, Info, QoS)

Figure 2.26: MQTT client publish process

The PUBLISH control packet contains a fixed header, variable header
and a payload. The fixed header contains the following flag fields:

• DUP Flag: This flag indicates whether its is the first attempt or a
re-delivery attempt to send the PUBLISH control packet. A value of
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0 indicates that it is the first attempt by a client to send the control
packet. In contrast, a value of 1 indicates client is attempting a re-
delivery of a an earlier try.

• QoS Level: This field indicates the level guarantee required to send
the application messages to the intended recipients. MQTT supports
three levels of QoS: At most once (0), At least once (1) and Exactly
once (2) delivery of messages.

• RETAIN: This flag field is used to indicate whether server should
store the message and its associated QoS to be delivered to future
subscribers of the topic.

The variable header field of the PUBLISH control packet consists of the
following fields:

• Topic Name: As MQTT protocol uses topic based message filtering,
publish messages must contain the topic name based on which mes-
sages are forwarded to intended recipients. The topic name in the
PUBLISH packet cannot contain wildcard characters and must be a
UTF-8 encoded string. The topic name consists of one or more topic
levels separated by forward slash as shown in Figure 2.27.

home / room1 / sensor1 / temperature

topic level

topic level separator

home / room1 / + / temperature

Single-level wildcard

home / room1 / #

Multi-level wildcard

Figure 2.27: MQTT topic structure with topic levels separated by topic
separator

• Packet Identifier: This field is used to identify packets when QoS1 or
QoS2 is used to publish messages.

The MQTT PUBLISH packet payload contains the actual application
message and can be used to send different types of data. A publish packet
can contain zero length payload or a length that fits into a maximum packet
size of 256 MB.
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In MQTT, both the client and server can act as a sender or receiver
of the publish request. The broker uses the topic name set in the publish
packet to filter the subscribed clients in order to forward the messages. The
two directions in which the message publishing occurs is:

• Messages published from a publishing client to the broker

• Messages published from broker to a subscribing client

Once the publish packet is received, the acknowledgement of the request
depends on the QoS level set. The publishing client defines the QoS with
which it publishes a message to a broker and a subscribing client defines
the QoS (sQoS) with which it can receive a message from a broker. MQTT
protocol supports three levels of QoS are described in 2.11.

Table 2.11: MQTT QoS types

QoS Level Message Guar-
antee

Behaviour

QoS0 At most once Messages sent to all subscribers once, no
retries and no acknowledgement from re-
ceivers

QoS1 At least once Messages sent to all subscribers at least
once and is acknowledged by receivers

QoS2 Exactly once Messages sent to all subscribers exactly
once, no duplicates, extra acknowledge-
ment messages to avoid duplicate mes-
sages and guaranteed message delivery

Based on the level of QoS various control packets are used in message
exchange and are discussed in detail in the following sections.

QoS0 - At most once delivery In this QoS level the reliability of mes-
sage delivery is only up to the level of underlying TCP/IP capabilities. It
is also known as “Fire and Forget” scheme where the receiver does not ac-
knowledge the receipt of PUBLISH packet and the sender does not store
the message and attempt to retry message delivery. The publish process is
illustrated in Figure 2.28. The receiver either receives the message once or
doesn’t receive at all.
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Client SubscriberBroker

sQoS: Subscribed QoS

Figure 2.28: MQTT QoS0 publish process

QoS1 - At least once delivery In this QoS level the protocol ensures
the messages are delivered at least once at the receiver. This is achieved by
using a packet identifier and storing the message until the sender receives
a PUBACK acknowledgement from the receiver. The sender deletes the
message and releases the packet identifier once it receives a PUBACK packet
for the QoS1 packet. The receiver can receive the message multiple times.

Client Subscriber

Store 
Message

Store Message

Delete Message
Delete 
Message

Broker

Figure 2.29: MQTT QoS1 publish process

QoS2-Exactly once delivery The highest QoS provided in MQTT pro-
tocol ensures an exactly once delivery of the message to the receiver. To
ensure an exactly once delivery of messages, a two-step acknowledgement
process is utilised by the receiver and sender. The client stores the mes-
sage and sends the publish packet with a unique packet identifier which is
acknowledged by the receiver with a PUBREC (Publish Received). The
sender then discards the PUBLISH message and sends a PUBREL (Publish
Release) packet. Once the PUBREL message is received the receiver now
discards the message along with its state and sends a PUBCOMP (Publish
Complete) message to sender. Upon receiving PUBCOMP the sender safely
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discards the message and releases the packet identifier to be reused. The
acknowledgement process is illustrated in Figure 2.30.

Client Subscriber

Store 
Message Store Message

Delete Message

Delete 
Message

Broker

Figure 2.30: MQTT QoS2 publish process

2.7.4 MQTT - Message Subscribe

Message subscription feature allows the MQTT clients to indicate their in-
terest in receiving messages published to topics. The indication of interest in
a topic is achieved by sending a SUBSCRIBE control packet by a client to a
broker. The broker then sends a PUBLISH packets to the subscribed clients
to deliver the application messages published to the subscribed topics. A
SUBSCRIBE control packet contains packet identifier, one or more topic
filters and a QoS level with which the client intends to receive messages.
Figure 2.31 shows the subscribe process in MQTT.

MQTT allows clients to subscribe to multiple topics and this is achieved
by either using wildcard characters in subscription to topics or by adding
multiple topic and QoS pairs in the SUBSCRIBE control packet. The two
wildcard characters supported in the topic subscriptions are:

• Single-Level ”+”: this wildcard is used to subscribe to a single level
topic hierarchy and is used between topic delimiters. An example of a
single-level wildcards is as follows:

– home/room1/+/temperature - this would match all the fol-
lowing topics:
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MQTT 
Broker

PUBLISH (Topic, QoS, Info )

Subscriber

SUBSCRIBE (Topic, QoS)

PUBLISH (Topic, QoS, info )

SUBACK (Topic, QoS)

Publisher

Figure 2.31: MQTT Client subscribe-publish process

1. home/room1/sensor1/temperature

2. home/room1/sensor2/temperature

3. home/room1/sensor3/temperature

• Multi-Level ”#”: this wildcard is used to subscribe to a all levels of
the topic hierarchy and hence it must occur at the end of the topic
string. An example of a multi-level wildcard is as follows:

– home/room1/# - this would match all the following topics:

1. home/room1/sensor1/temperature

2. home/room1/sensor2/humidity

3. home/room1/bulb/state

The second method to subscribe to multiple topics is by adding multiple
topic and QoS pairs to the SUBSCRIBE control packet payload as shown
in Figure 2.32.

Fixed Header Variable
Header

Payload

Topic 
Name

Topic 
NameQoS QoS

Figure 2.32: MQTT SUBSCRIBE control packet structure with multiple
subscriptions

The subscription request is acknowledged by the broker by sending a
SUBACK control packet to the client. The SUBACK packet contains the
return code for each topic/QoS pair contained in the SUBSCRIBE control
packet.
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2.8 MQTT Security

MQTT standards specifies a list of threats that needs to be considered by so-
lution providers. Some of the threats mentioned by MQTT Oasis standards
(Banks & Gupta, 2014) are:

• Devices can be compromised,

• Unauthorised access of data in clients and servers,

• Attacks targeting the protocol behaviour,

• DoS attacks, and

• MitM attacks trying to intercept, alter or reroute communication and
inject spoofed control packets.

According to Collina, Corazza, and Vanelli-Coralli (2012), security was not
given important consideration when designing the MQTT protocol. Even
though MQTT supports authentication it sends credentials in plain text and
lacks dynamic ACLs updates to block malicious publishers and subscribers
(Collina et al., 2012). In order to tackle these security issues the OASIS
standard suggests the following security measures that can be employed by
developers when building MQTT based applications:

1. Use of Secure MQTT (TLS version of MQTT),

2. Authentication of users and devices,

3. Client Authorisation,

4. Control packet and application data integrity check, and

5. Control packet and application data privacy check.

Even tough encrypted version of MQTT has been defined by the OA-
SIS standard, the use of encryption in constrained IoT devices is a chal-
lenge (HiveMQ, 2015; M. Singh et al., 2015). Some of the additional secu-
rity mechanisms that have been proposed to secure communication between
clients and broker are (HiveMQ, 2015; M. Singh et al., 2015; Banks & Gupta,
2014): use of VPN to encrypt the sessions between client and server, use
of client certificates for authentication, payload encryption, firewall config-
uration only to allow traffic on port 1883 (MQTT) and 8883 (MQTT-SSL),
Load Balancer to distribute load to multiple MQTT brokers, use of DMZ to
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prevent hackers from getting access to other enterprise systems, throttling
MQTT clients and setting limits to MQTT message size. Even though ap-
plying such countermeasures is beneficial in reducing the impact of cyber
attacks, the IoT devices using MQTT protocol to communicate and send
control messages will be at risk due to the vulnerabilities that exist in the
protocol. Hence it is necessary to study and understand the MQTT protocol
behaviour and attack patterns targeting such application protocols. Most
of the works related to MQTT protocol available in the literature focus on :

• Performance evaluation (Scalagent, 2015; Lee, Kim, k. Hong, & Ju,
2013; Thangavel, Ma, Valera, Tan, & Tan, 2014; Luzuriaga et al.,
2015; Yokotani & Sasaki, 2016; Gündoğan et al., 2018; Fehrenbach,
2017),

• Proposing security enhancements to the existing protocol (M. Singh et
al., 2015; Mektoubi, Hassani, Belhadaoui, Rifi, & Zakari, 2016; Shin,
Kobara, Chuang, & Huang, 2016),

• Formal modelling (Houimli, Kahloul, & Benaoun, 2017; Aziz, 2016),
and

• Security evaluation (Perrone, Vecchio, Pecori, & Giaffreda, 2017; Fir-
dous et al., 2017; Andy, Rahardjo, & Hanindhito, 2017).

The security enhancement measures proposed in (M. Singh et al., 2015;
Mektoubi et al., 2016; Shin et al., 2016), comprise of securing the data
communication by using encryption techniques for constrained devices. In
contrast, our work focuses on building an MQTT attack detection framework
which can be used to develop an Intrusion Detection System (IDS) to detect
attacks.

The various performance evaluation methods proposed in (Scalagent,
2015; Lee et al., 2013; Thangavel et al., 2014; Luzuriaga et al., 2015;
Yokotani & Sasaki, 2016; Gündoğan et al., 2018; Fehrenbach, 2017) do
not evaluate the broker performance during the DoS attacks. This aim of
our work is to model DoS attacks scenarios that target the authentication
and authorisation techniques of MQTT protocol and identify their impact
on various MQTT brokers and deployment scenarios.

Other works on MQTT protocol attempts to present a formal model
and security analysis of the protocol. Aziz (2016), presented a formal model
of MQTT protocol based on message passing process algebra. The author
analysed the various message QoS levels against the standards and identified
that the QoS-2 message model was prone to errors. Perrone et al. (2017)
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presented a security analysis of the MQTT protocol and described the var-
ious security requirements for IoT deployments. In another work, Andy et
al. (2017) presented some attack scenarios as well as a security analysis of
the MQTT protocol. In their work, the authors highlighted the security
issues of the MQTT protocol and discussed attack scenarios against brokers
with open authentication. Feasibility of such attacks is questionable as most
MQTT broker deployments in industrial environment disable open authen-
tication feature as it poses security risk of unauthorised access. In order to
understand the security issues in the MQTT protocol a threat model and
the impact of SYN-Flood DoS attack on message brokers was presented in
(Firdous et al., 2017).

Santiago Hernández Ramos and Lacuesta (2018) proposed a fuzzing ap-
proach to test vulnerabilities of an MQTT based application. The proposed
approach tested the behaviour of the MQTT based application when fuzzed
data was inserted between clients and the broker. The authors used a proxy
fuzzing technique along with a non-normative packet variable header data
template to asses the behaviour of both broker and clients when presented
with unexpected data. Failures were detected in certain versions of the bro-
ker software and in client applications. A similar MQTT fuzzer tool known
as F-secure MQTT-FUZZ was developed by (Vähä-Sipilä, 2015) which uses
sniffed raw MQTT control packet payload to launch fuzzed MQTT packets
against the broker.

2.8.1 MQTT Attack Detection

The main requirements for building a ML based MQTT attack detection
system is the availability of normal and attack traffic datasets of the pro-
tocol and identifying features that can distinguish between the two traffic
classes. A work that attempts to identify IoT based attacks using MQTT
transaction based features was proposed by Moustafa et al. (2019). However,
these features are based on the TCP protocol analysis, which do not pro-
vide sufficient information on the MQTT protocol parameters. Hence these
features will not be effective in differentiating between the types of MQTT
attacks evaluated in our work. In addition, the main drawback of (Moustafa
et al., 2019) is that the performance of their attack detection scheme was
not presented for MQTT attacks. The primary reason behind this was that
no real MQTT attack datasets existed to evaluate the detection technique.
This necessitates that new datasets be generated which contain the normal
and attack MQTT traffic and new features be defined based on protocol
analysis to effectively detect attacks against protocol based applications.
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Table 2.12: Comparison of existing MQTT attack model and attack detec-
tion features with that proposed in this thesis

Existing Proposed

Attack Modelling

Attack Technique

Control Packet Flooding X X
Application Layer Control Packets

MQTT-CONNECT Flooding – X
Malformed MQTT Packet Flooding – X
MQTT-WILL Payload Flooding – X
MQTT-SUBSCRIBE Flooding – X

Features for Attack Detection

Statistical Features

Flow, size, duration, volume X X
Network-Layer Features

IP (Source, Destination) X X
TCP Ports X X
TCP Flags X –

Application-Layer Features

MQTT packet Length X X
MQTT Field length (clientID, username, pass-

word, Topic, Last WILL Payload length)
– X

MQTT Flags (KeepAlive, CleanSession) – X
Control Packet Volume (CONNECT, PUBLISH,

SUBSCRIBE, DISCONNECT, PING)
– X

MQTT QoS Fields – X

2.9 Summary

IoT is a new paradigm of the technology world and is proving to be a game
changer in improving the lives of people. However, every technology has its
pros and cons which are critical factors to its survival and growth. The pro-
liferation of smart devices in everyday lives of people has attracted attention
from adversaries. Due to this reason there is an urgent need to identify the
adversaries and their behaviour to build protection tools to safeguard the
IoT. As adoption rate for MQTT protocol in building IoT based applica-
tions increases, the attacks targeting the IoT Application Layer protocol are
predicted to increase. Hence such targeted attacks need to be detected and
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solutions need to be built to prevent such attacks, especially DoS attacks.
In this chapter the various enabling technologies of IoT were presented

along with the IoT security threats. A detailed discussion on MQTT pro-
tocol and its security were presented to identify potential threats from ad-
versaries, specially related to DoS attacks. This discussion was followed by
classifying the various DoS attack techniques that have been identified in
the literature which indicate that sophisticated and targeted Application
Layer DoS attacks are on the rise. Such attacks can cause serious impact
to the sensitive applications relying on the MQTT protocol and hence, its
vulnerabilities need to be identified and detection systems need to be de-
veloped. The various DoS detection techniques that have been discussed
in the literature indicate that ML techniques are being extensively used for
their wide range of benefits over statistical and signature based detection
techniques. However, ML techniques rely on features that can be effective
in classifying normal and attack traffic. The domain and protocol specific
features presented in the literature cannot be extended to other protocols
and domains. Hence, new features that can effectively detect attacks in pro-
tocols such as MQTT are required. In addition, DoS detection evaluation
datasets are either old or lack IoT or MQTT related traffic and are no longer
relevant to validate the techniques that are built to detect attacks in IoT
traffic. So, new normal and attack traffic datasets need to be collected with
relevant MQTT protocol specific attack traffic to model effective attack de-
tection techniques. Table 2.13 summarises the literature with regards to the
proposed work in this research.
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Table 2.13: Comparison of research contributions with existing and proposed study

Research
Contribu-
tion

Existing and Proposed Studies

Threat mod-
elling

IoT: (Atamli & Martin,
2014)

IoT-MQTT: This
work

Application
Layer DoS
attack mod-
elling

HTTP: (K. Singh et
al., 2017), (Adi et al.,
2016), (Ranjan et al.,
2009), Shan, Wang, and
Pu (2017b)

SIP: (Rafique et al.,
2009), (Luo et al., 2008)

SMTP: (Bencsath
& Ronai, 2007)

DNS: (Ballani &
Francis, 2008)

MQTT: This
work

IoT attack
dataset

IoT-Botnet:
(Koroniotis et al.,
2019)

UNSW-NB15:
(Moustafa & Slay,
2015)

MQTT IoT
Dataset: This
work

MQTT Secu-
rity

Performance evalua-
tion: (Scalagent, 2015),
(Lee et al., 2013),
(Thangavel et al.,
2014), (Luzuriaga et
al., 2015), (Yokotani
& Sasaki, 2016),
(Gündoğan et al.,
2018), (Fehrenbach,
2017)

Proposing security
enhancements to the
existing protocol:
(M. Singh et al., 2015),
(Mektoubi et al., 2016),
(Shin et al., 2016)

Formal mod-
elling: (Houimli
et al., 2017; Aziz,
2016)

Security evalu-
ation: (Perrone
et al., 2017),
(Firdous et
al., 2017),
(Andy et al.,
2017), (Santiago
Hernández Ramos
& Lacuesta, 2018)

DoS attacks on
publish\subscribe
(Wun et al., 2007)

MQTT
DoS At-
tacks: This
work

MQTT
attack detec-
tion features

MQTT Transaction fea-
tures: Moustafa et al.
(2019)

MQTT features and
attack detection This
work
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Hence, this research is focused on the following gaps that were not ad-
dressed thus far in the literature:

1. Identifying MQTT protocol vulnerabilities and designing DoS attack
scenarios (Section 4.2)

2. Evaluate the DoS attack impact (Section 5.1)

3. Build realistic IoT test-bed to generate IoT traffic (Section 4.4)

4. Collect normal traffic and MQTT DoS scenarios to collect attack traffic
(Section 4.4.1)

5. Extract novel MQTT features (Section 4.4.2)

6. Evaluate ML classifiers using proposed features for their attack detec-
tion performance (Section 5.3)

In the following chapter, the research methodology is presented along
with the steps followed in this research and variables identified to evaluate
and test the proposed scheme. Chapter 4 discusses the MQTT threat model,
MQTT DoS attack methodology, IoT experimental test-bed and MQTT
attack detection framework. Chapter 5 discuses the results obtained for
DoS attack impact measurements and evaluations of MQTT attack detection
framework. Chapter 6 presents the discussion of the results and Chapter 7
presents the conclusion and future work.
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Chapter 3

Research Methodology and
Design

This chapter describes the research approach, research design and research
methods used in this work to answer the proposed research question. Fur-
thermore, the research variables, experimental procedures, data analysis
methods, threats to validity and the instruments used in this work are also
elaborated.

3.1 Research Methodology

According to Creswell and Creswell (2017), identifying the philosophical
ideas held by the researcher is the first step in the research process. He
states that philosophical ideas influence the research practice and provides
the context as to why a specific research approach was chosen. Creswell uses
the term “worldview” to define the philosophical views or beliefs held by the
researcher that controls the action or approach in conducting the research
(Creswell & Creswell, 2017). The term paradigm is also used in the research
domain to describe the worldviews held by the researcher (Mackenzie &
Knipe, 2006). Paradigms define the beliefs that the researcher espouses and
how such beliefs shape the research methods used to collect and interpret the
data (Guba & Lincoln, 1985). According to Guba and Lincoln (1985), the
basic set of beliefs, assumptions and values regarding a particular paradigm
can be described using the positions held by the researcher with regards
to ontology, epistemology, methodology and axiology about the knowledge
being researched.

Ontology is concerned with the assumptions that one has regarding the
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nature of existence or reality. The underlying beliefs held by the researcher
can be answered by posing the questions such as: What is the nature of
reality? or When do we consider something to be real? Epistemology focuses
on the nature of knowledge, how it can be collected and how it can be
communicated (Kivunja & Kuyini, 2017). It can be answered by posing
questions such as: what is the relationship between researcher and what is
being researched? Methodology broadly refers to the logical process followed
in conducting a research to answer the research problem. Axiology refers to
the values that the researcher brings to the research project and identifies
the stance that needs to be adopted by the researcher regarding fairness,
moral issues, ethical issues and rights of the participants. In the literature a
large number of paradigms have been proposed, however they can be broadly
classified into positivism, Interpretivism / Constructivism and Pragmatism
(Creswell & Creswell, 2017; Williamson, 2018; Kivunja & Kuyini, 2017).

Creswell and Creswell (2017), states that the paradigm or the worldview
chosen by the researcher influences the research approach adopted in con-
ducting the research. The three research approaches defined by Creswell and
Creswell (2017) are: quantitative, qualitative and mixed methods. A quan-
titative research approach tries to validate objective theories by identifying
the relationships between variables. These variables can be measured and
quantified, and can be further analysed using statistical techniques. During
the quantitative research process, the researcher usually tries to deductively
verify generalised theory by breaking it down into specific hypothesis which
can be tested in an unbiased setting. This is also referred to as top-down ap-
proach (Creswell & Clark, 2017). In contrast, the qualitative research aims
to explore and subjectively explain the social problems by collecting data on
human experiences with their surroundings. Such a research approach tends
to use an inductive logic (bottom-up) to observe specific patterns to pro-
duce generalisations. The mixed method approach uses both quantitative
and qualitative methods to refine and produce a complete or deeper un-
derstanding of a research problem compared to that achieved by any single
approach.

Based on the research approach and the paradigm used by the researcher,
the research methods also vary (Williamson, 2018). Table 3.1 provides a
comparison of various paradigms used in conducting research. This research
assumes a post-positivist quantitative approach where results are probabilis-
tic since real world datasets for detecting MQTT attack do not exist and
the conclusions made in this research are based only on the data produced
and collected in a controlled environment. The results might vary in various
circumstances which cannot be completely replicated.
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Table 3.1: Description of various research paradigms in terms of ontology, epistemology, axiology, methodology,
and mode of inquiry. Adopted from Creswell and Creswell (2017), Creswell and Clark (2017), Williamson (2018)
and Kivunja and Kuyini (2017)

Paradigms Positivist Post-Positivist Interpretivist / Con-
structivist

Pragmatic

Ontology Single reality exists that can
be discovered

Single reality exists but can-
not be easily discovered

Multiple realities exist and
varies with the experiences of
people

Socially dependent multiple
realities arising out of mul-
tiple actions, situations and
consequences

Epistemology Knowledge can be observed
and experienced. It can
be derived using repeatable
methods. Researcher is in-
dependent of the knowledge
being researched

Knowledge cannot com-
pletely be based on assess-
ments, rather its based-on
probable human conclu-
sions from incomplete
information. The probable
knowledge can be challenged
with further investigations

Knowledge can be subjec-
tively deduced or interpreted
based on the research par-
ticipant’s interactions with
the surrounding world. Re-
searcher is dependent on the
knowledge being researched.

Uses both positivist and in-
terpretivist approach to the
nature of knowledge and re-
lationship between the re-
searcher and the knowledge
being researched.

Axiology Value-free, researcher uses
an unbiased stance and
hence objective

Bias is unavoidable, but it is
undesired, hence corrective
measures need to be taken to
prevent it.

Value-bound, researcher
cannot be separated from
what is being researched and
influence each other, hence
subjective

Values influence the inter-
pretation of results. Uses
both objective and subjec-
tive approach

Methodology Quantitative Quantitative as well as Qual-
itative

Qualitative Mixed Methods

Mode Of in-
quiry

• Close-ended questions
• Experiments
• Quasi-Experiments
• Tests
• Questionnaires

• Quasi-Experiments
• Questionnaires

• Open-Ended Ques-
tions
• Interviews
• Observations
• Ethnographic case

studies
• Surveys
• Document Reviews

• Both quantitative and
qualitative tools are
used
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3.2 Research Design

The positivist paradigm provides various methods to conduct the research
and gather data to answer the research problem. The most common methods
of the positivist paradigm are (Kivunja & Kuyini, 2017):

• Experimental

– True-Experimental

– Quasi-Experimental

– Natural-Experiment

• Non-Experimental

– Correlational

– Casual-Comparative

– Randomised control trials

– Survey research

Experimental research examines the influence a specific variation has
on the outcome. In other words the researcher changes the conditions or
values of a particular variable referred to as independent variable (IV) in
order to examine the impact on an observed variable known as dependent
variable (DV). In addition, the researcher applies the variation only on a
specific group and withholds it from another group of participants. These
are referred to as experimental group and control group respectively. Ex-
periments can be of two types based on the assignment of participants to
groups (Cohen, Manion, & Morrison, 2007): true experiments and quasi-
experiments. In true experiments the participants are randomly assigned to
experimental and control groups, however in quasi-experiments the partici-
pants are not randomly assigned to a specific group due to the independent
variable being an inherent characteristic of the participants. Experiments
can also be classified based on the control settings used in collecting the
data, into laboratory and field experiments. Laboratory experiments are
also true experiments where the data is collected in a laboratory conditions.
In contrast, field experiments are quasi-experiments where natural settings
are used to collect the data and the researcher has limited or no control
on the settings (Asgari & Nunes, 2011). Non-experimental research such as
surveys try to quantitatively measure the trends, attitudes and opinions of
the participants which represent only a sample of larger population.
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A quantitative research approach with a post-positivist paradigm was
chosen for this research as statistical analysis is required to establish the
cause and effect relationship between the treatments applied and the ob-
served outcomes. In this work, an experimental research design was selected
to identify the relationship between research variables through controlled
laboratory experiments. This is because firstly, to determine the impact of
DoS attack effect on the MQTT protocol, an experimental setup is required
on which various DoS attacks can be evaluated by carefully controlling the
variables. Secondly, a constrained environment is most suitable to evaluate
the effectiveness of the proposed MQTT feature vector in detecting attacks.
The factors that limit the DoS impact assessments to be conducted in a field
environment are the legal policies that prohibit launching DoS attacks in live
networks and also unexpected consequences that could be damaging to live
systems. In addition, to the best of researcher’s knowledge, no publicly avail-
able data sources of MQTT attack traffic exists. Hence, the limitation of
this study lies in its inability to completely identify the relationship between
real world variables as highlighted by Galliers (1991).

The experiments were conducted in a controlled laboratory settings how-
ever, random assignment was not used to allocate participants to the ex-
perimental and control groups, hence making this experimental research a
quasi-experimental study. This design is further demonstrated in the DoS
attack impact analysis where the broker software was not randomly selected
for the analysis. Similarly, when evaluating the attack detection effective-
ness the datasets were not randomly chosen for classification and feature
vector generation, rather procedures were applied to all the samples. Some
of the common design types of quasi experimental research designs are;
Pretest-Posttest non-equivalent control group design, and interrupted time
series design or regression-discontinuity designs (Williamson, 2018). In the
Pretest-Posttest non-equivalent control group design the researcher consid-
ers the participants to be non-equivalent, hence cannot be randomly assigned
to treatments. In addition, a pretest baseline and a posttest comparison is
performed before and after applying the treatment. In the interrupted time
series design, a series of observations or measurements are conducted be-
fore and after the treatment over an extended period of time. This method
tries to eliminate the maturation and testing factors that pose a threat to
the internal validity. Regression-discontinuity designs aim to estimate the
mean effect of treatment in non-random participants by selecting subjects
in experimental and control group based on threshold score.

After examining the various quasi-experimental designs, a pretest-posttest
non-equivalent control group design was selected for this study. The observa-
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tions were conducted after the treatment was applied, comparing the results
within and between groups. No pretests were conducted and only posttest
results were measured because a no-load condition of the broker was consid-
ered and DoS impact was measured only after applying the DoS attack. In
conclusion, the philosophical assumptions held by the researcher to conduct
this research can be summarised into:

• Paradigm: Post-positivist

• Methodology: Quantitative

• Mode of Enquiry: Experimental Research

– Sub-category: Quasi-Experimental with pretest-posttest non-equivalent
control group

3.3 Research Procedure

In this section the procedures adopted in conducting this research are elab-
orated. The research process consists of five stages which includes problem
exploration (RP-1), experimental design (RP-2), conducting experiments
(RP-3), observations (RP-4), and analysis (RP-5) as shown in Figure 3.1.
Due to the unavailability of MQTT attack datasets, a two phase approach
in experiment design and conducting experiments was chosen. Phase-1 of
the experimental stage focuses on designing and evaluating the DoS attack
scenarios on the MQTT protocol. In Phase-2, the MQTT DoS attack sce-
narios were used for dataset generation. In addition, Phase-2 also involved
feature extraction and evaluation for testing MQTT attack detection ac-
curacy. The main steps of experiment design and conducting experiment
stages with respect to Phase-1 and Phase-2 are represented in Figure 3.2.
Finally the observations from of both phases were collected and an analysis
was conducted.

3.3.1 Experimental Phase-1

The experimental Phase-1 was utilised to answer SQ1 which necessitated
the identification of the MQTT protocol vulnerabilities and the modelling
of DoS attacks to exploit them. This step was also essential to generate
the MQTT datasets as no public datasets were available to evaluate the
proposed attack detection method. The important steps of Phase-1 are the
following:
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RP-1: Problem Exploration

RP- 2: Experiment Design

RP- 4: Observations

RP- 5: Analysis

RP- 3: Conduct Experiments

Figure 3.1: Research process used in this research

RP-2.2: Design MQTT DoS Attack 
Scenarios

RP-2.1: Identify MQTT DoS 
Vulnerabilities

RP2: Experiment Design

RP3.2: Evaluate the classifiers attack 
detection performance

RP-2.4: Generate MQTT traffic feature 
vector

RP3: Conduct Experiment

RP-2.3: Data Generation and Pre-
Processing

RP-3.1: Evaluate the DoS attack 
impact

Phase1

Phase2

Figure 3.2: Two phases utilised in this research

RP-2.1: Identifying DoS Vulnerabilities The first step in modelling
attacks on the MQTT protocol was to identify the vulnerabilities of the
protocol. This involved referring to the protocol standard documents and
available literature on MQTT vulnerabilities (discussed in Chapter 2) and
presenting a MQTT threat model (discussed in Chapter 4).
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RP-2.2: Designing MQTT DoS Attack Scenarios Based on the vul-
nerabilities of the MQTT protocol and DoS attack models of other Ap-
plication Layer protocols available in the literature, DoS attack scenarios
for the MQTT protocol were proposed. The DoS attack scenarios were
categorised into authentication and authorisation based attacks. The au-
thentication based attacks targeted the authentication vulnerabilities of the
MQTT protocol whereas authorisation attacks targeted the weakness in the
authorisation mechanism in the protocol. The four DoS attack scenarios
proposed in this study are further discussed in Chapter 4.

RP-3.1: Evaluate DoS Attack Impact In order to evaluate the im-
pact of the attack scenarios designed in the previous step, an experimental
testbed using a virtual environment was setup. To avoid any bias on the
DoS attack observations, three different open-source MQTT brokers were
used. In addition, the deployment scenarios of three brokers were varied
to assess the performance of DoS attacks under various server configura-
tions. The choice of MQTT brokers was restricted to open-source software
as acquiring and testing commercial software was out of the scope for this
research. Another factor in the choice of broker software was based on its
wide usage and the scalability features. All the experiments were repeated
three times to ensure the validity of the observations and its repeatability.
The evaluation results are presented in Chapter 5.

3.3.2 Experimental Phase-2

In order to answer SQ2 and SQ3, a physical IoT testbed was setup to gener-
ate normal and attack MQTT data, which was then used to perform attack
detection. The main steps in the experimental Phase-2 were as follows:

RP2.3: Data Generation and Pre-Processing A physical IoT testbed
was setup with IoT sensors and an open-source MQTT broker. IoT testbed
configuration settings were based on real-world implementations to produce
realistic MQTT data. Normal traffic was captured under routine operations
of the IoT devices. The attack scenarios evaluated in Phase-1 were used
to generate MQTT attacks on the broker. The normal and attack traffic
were both captured in the form of raw packet captures using packet capture
tools. A packet capture tool was configured to store packets in a fixed size
files to avoid memory issues during the data pre-processing step. The data
pre-processing step also involved extracting the relevant packet information
from the raw packet capture files into a Comma Separated Values (CSV)
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format. Further details on the IoT testbed design, components used and the
tools used to store and process packet captures are discussed in Chapter 4.

RP2.4: MQTT FV Generation With ever increasing transmission
speeds and with exponential growth of devices connected to the Internet,
inspecting each and every packet payload for anomaly detection is challeng-
ing. This leads to Network Intrusion Detection System (NIDS) research into
detecting attacks at higher aggregation levels such as flow based (Sperotto et
al., 2010) and time-window based detection. Hence in this work flow based
and time-window based packet aggregation levels were considered.

The time-window based detection technique models packet arrival as a
time-series (Garcia-Teodoro, Diaz-Verdejo, Maciá-Fernández, & Vázquez,
2009) and aggregates packets into multiple time windows. Statistical aggre-
gate features that capture the stochastic behaviour of network activity over
fixed length time-windows are considered, to distinguish between normal and
anomalous time windows. Since certain anomalies can span multiple time-
windows, an overlapping sliding window approach was used in this work.
The MQTT based time-window statistical features proposed in this work
are based on metrics such as number of specific control packet requests per
window, average MQTT field sizes in the observed window and arrival rate
of packets and unique flows per window. A two-second time-window was
considered in this work as DoS attack traffic delivers a very large volume
of packets, which could be challenging to iterate with higher window sizes.
The process of time-window based feature extraction is further elaborated
in Section 4.4.2

As for the MQTT flow based detection technique, a statistical flow fea-
ture vector was extracted by grouping the packets that belong to a network
flow. A network flow is identified by five-tuples, namely, source and destina-
tion IP address, source and destination port numbers and protocol. All the
packets that match with the five-tuples are considered to be part of the same
flow. Since certain flows can be long, the flow duration was limited to length
of the captured file. Various statistical features based on the flow were gen-
erated and stored in CSV format. The datasets were further labelled and
merged before the evaluation of machine learning algorithms.

For both time-window and flow-based detection, major and sub-class la-
belling was used. In major class labelling, the DoS attack scenarios presented
in this work were labelled with a single label as MQTT-DOS. Whereas in
sub-class labelling, the four DoS attack scenarios were labelled as a separate
class. This was done to identify the effectiveness of the proposed features in
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detecting attacks that had higher level of similarity. Since real world attacks
use stealthy means by resembling normal traffic to avoid detection, attack
detection techniques should be capable in differentiating between stealth
attack and normal traffic. The MQTT traffic feature vector generation is
further explained in Chapter 4.

RP3.2: Evaluate classifier attack detection performance The last
step in experimental Phase-2 was the evaluation of various Machine Learning
(ML) algorithms. In this step three fundamentally different ML algorithms
were applied to labelled MQTT datasets. The evaluation of algorithms was
conducted by building models using different feature groups and by mea-
suring the model performance in accurately detecting the attacks. In order
to prevent over-fitting and misleading classifier performance results, a 10-
fold cross-validation and class balancing methods were applied. A 10-fold
cross-validation method was employed in evaluating the datasets to create
several groups of training and testing records with each instance occurring in
both training and testing dataset at-least once. The class balancing prevents
misleading classifier accuracy if records are dominated by a single class pro-
ducing high detection accuracy. In addition, two MQTT attacks available
in the literature were introduced in the dataset to evaluate the performance
of the classifier models in detecting attacks, which were not presented in
this research. This was also done to avoid any model bias in detecting only
attacks presented in this research. The results of MQTT attack detection
evaluation is presented in Chapter 5.

3.4 Research Variables

In a quantitative research setting, the researcher manipulates or applies
treatment on a set of variables and measures the outcome of another set of
variables to observe the cause and effect relationship. The set of variables
that receive the research treatment or manipulation are referred to as in-
dependent variables and set of variables that are measured for the outcome
of the manipulation or influence are referred to as dependent variables. In
addition, research involves control and confounding variables that have a
potential influence on the dependent variables (Creswell & Creswell, 2017).
As discussed in the previous section, two experimental phases were tested
in this work which necessitated separate research variables for each phase.
The following sections present the various research variables used in the two
phases.
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3.4.1 Research Variables for Phase-1

Independent Variables

Various categories of DoS attacks were designed to identify the impact of
specific vulnerabilities in the MQTT protocol. Based on the vulnerabilities
in authentication and authorisation of MQTT protocol, four attack scenarios
were designed. The independent variables used in research Phase-1 were the
DoS attack types proposed in this research:

1. IV1 - Basic CONNECT flooding attack (BF1): The treatment applied
to IV1 was the sleep-interval and the attack threads that controlled
the number of attack packets sent to the victim machine.

• Sleep-Interval (seconds): The interval between two subsequent
control packets sent to the victim machine. As discussed in Sec-
tion 2.4, arrival rate (λ) of packets is one of the parameters used
to control the DoS attacks. Hence the sleep-interval controls the
inter-arrival time between the requests sent to the victim ma-
chine. Lower the sleep-interval, higher the arrival rate. The low-
est value this variable can take is zero seconds.

• Attack-Threads: The number of attack program threads used
to launch the attacks. To asses the impact of multiple attack
sources, a multi-threaded approach was adopted. The impact of
increasing the number of attack threads on the number of at-
tack packets delivered and CPU utilisation, was measured. The
attack threads were only incremented in steps of one due to the
limitation in using large number of program threads as this would
increase the resource contention among threads, thus reducing the
effectiveness of the DoS attack.

2. IV2- Delayed CONNECT Flooding attack (BF2): As discussed in Sec-
tion 2.7.2, MQTT is a TCP based protocol and requires to establish
a TCP session before sending a CONNECT request. Similarly one
of the parameters used to control DoS attacks is the complexity of
requests to increases its processing time, as discussed in Section 2.4.
Hence, to assess the impact of delaying the CONNECT request and
increasing the time spent by the request in the system, the treatment
applied to IV2 was the delay between TCP session establishment and
the CONNECT request.
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• Delay (seconds): The time delay introduced between the estab-
lishment of the TCP session and sending of the CONNECT re-
quest.

3. IV3 - CONNECT flooding attack with WILL payload (BF3): As dis-
cussed in Section 2.4, one of the aims of DoS attacks is to exhaust
the bandwidth resources of the victim machine. Hence, to assess the
impact of sending larger CONNECT requests using a WILL payload
on the victim bandwidth, the treatment applied to IV3 was the pay-
load size used in the WILL message and the number of attack threads.
This was done to measure the impact on bandwidth utilisation on the
victim machine.

• Payload-Size(bytes): The WILL payload size used in the CON-
NECT control packet.

• Attack-Threads: The number of attack program threads used to
launch the attacks

4. IV4: Invalid Subscription Flooding (IAUTHS). As discussed in Section
2.7.4, MQTT supports multiple subscription topic filters in a single
MQTT session. In order to assess the impact on MQTT authorisation
mechanism, the treatment applied to IV4 was the number of subscrip-
tion control packets with invalid authorisation sent to the broker after
the MQTT session is established.

• Number of Subscriptions Loops: Number of subscriptions loops
used to send control packets in a single session.

The treatments applied to the IVs and the method of launching various DoS
attack scenarios is further elaborated in Chapter 4.

Dependent Variables

The dependent variables measure the impact or influence of the treatment
applied to the independent variables. The dependent variables that were
observed or measured during the experimental phase were as follows:

• DV1 - Broker Performance:

1. CPU Utilisation (idle % - percentage of time the CPU was idle
during the attack. A lower idle percentage indicates higher CPU
utilisation and vice versa)
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2. Memory (Percentage of Random Access Memory(RAM) consumed
during the attack)

3. Bandwidth Utilisation

• DV2 - Messaging Performances: In order to measure the impact of
DoS attack scenarios the attack parameters were kept constant and
an MQTT message traffic of 500 messages per second was introduced
on a single CPU configuration. The traffic load was introduced to
measure more realistic delays in the presence of multiple devices ex-
changing through the broker. Subsequently the impact of DoS attacks
on messages exchanged through three MQTT brokers were observed.

1. Message Delay (Message delay measured in milliseconds between
the sender and the receiver). The average, 50th percentile, 75th

percentile and 95th percentile delays were measured for each QoS
level under normal and attack scenarios.

2. Message Publish Rate (Number of published messages received
by the subscriber per second)

Control Variables

Control variables are those that have a direct influence on the dependent
variable and are controlled to measure its true impact. In this study the vali-
dation of the DoS attack impact was done by evaluating the performances of
various broker software during the attack. Furthermore, the evaluations were
also conducted on two single server configurations and on a load-balanced
broker cluster setup. Hence the control variables used in this study are as
follows:

• CV1 - Software: Message brokers are one of the most critical com-
ponents of the MQTT environment as they are used to decouple the
publishers and subscribers. In order to ensure the validity of the DoS
attack, experiments were evaluated on three broker software namely:

1. Mosquitto

2. VerneMQ

3. EMQ

The broker software were individually deployed on three separate servers
running the same Operating System (OS), MQTT protocol version and
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OS settings replicated across the brokers. No updates to either the bro-
ker software, OS or default application configuration were performed
during the entire course of experimental phase.

• CV2 - Type of Deployment: The number of Central Processing Units
(CPUs) available to the MQTT broker software during the DoS attack
evaluation were controlled and fixed to:

1. Single-CPU

2. Six-CPU

The single-CPU configuration was selected to ensure a fair compar-
ison of various broker performance was obtained during DoS attack,
as MQTT brokers differed in terms of their utilisation of CPU cores
for application processing. The six-node deployment was utilised to
asses the impact of DoS attack on brokers with higher computing re-
sources. In addition to the two CPU configurations, a load-balanced
scalable deployment of a six-node EMQ cluster was evaluated for DoS
attack performance. Only EMQ broker software was tested in this
deployment type as it supported both load-balancing and cluster con-
figurations by default. All the other hardware and software parameters
of the broker servers were not altered during the experimental phase.

• CV3 - Attack tool, libraries : Once the correct setting for the attack
tool were identified before the experimental phase, no further changes
were made to the attack tool.

• CV4 - QoS levels: The message delay of each of three QoS levels
supported by MQTT was measured independently for observing the
impact on DV2.

Confounding Variables

Confounding variables are those that the researcher does not intend to mea-
sure but influence the relationship between the independent and dependent
variables.

• Broker application design: Since this study was focused on studying
the impact of MQTT protocol vulnerabilities, open-source broker soft-
ware implementing the protocol were acquired. Even though, the bro-
ker software were based on the same MQTT version, but they differed
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in terms of the application configurations used, connection handling
mechanisms and system resource utilisation design. Hence, the design
and internal settings of the broker application were outside the control
of the researcher.

3.4.2 Research Variables for Phase-2

Independent Variables

Independent variables used in the research Phase-2 were as follows:

• IV5 - Classifier Algorithm: Three fundamentally different classifier
algorithms were chosen to assess the attack detection performance of
the proposed MQTT features. The classifiers used in this study were:

1. AODE (Average One Dependence Estimator based on Navie Bayes)

2. C4.5 (Decision Tree based algorithm)

3. MLP (Multi-layer Perceptron based on Artificial Neural Networks
(ANN))

Two different class labelling were used in the evaluation of the three
classifier performances. The class labelling used was:

1. Major-Class (Normal, MQTT-DOS, MQTT-FUZZ, TCP-DOS)

2. Sub-Class (Normal, MQTT-DOS-BF1, MQTT-DOS-BF2, MQTT-
DOS-BF3, MQTT-DOS-IAUTHS, MQTT-FUZZ, TCP-DOS)

The class labelling schemes were used in this research to identify the
detection performance of the proposed features. The major class rep-
resented all major the attack types used in this research to generate the
datasets and were considered as a single class (MQTT-DOS). Two ad-
ditional attack types (MQTT-FUZZ, TCP-DOS) from literature were
introduced to evaluate the performance of attack detection.

• IV6 - Feature Vector Type (FV): As discussed in Section 2.8.1, TCP
based features and MQTT features based on TCP protocol analysis
have been used to detect Application Layer attacks on IoT. Hence to
compare the proposed MQTT features in this research with existing
studies as well as to identify the features contributing to the detec-
tion performance, various feature groups were assessed. In addition,
time-window and flow-based aggregation levels were used to create two
separate datasets. The feature groups used to build the FV were:
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1. FULL features (FULL-FV)

2. TCP-based Features (TCP-FV)

3. Count-based flow features (COUNT-FV)

4. Packet and field length/size based Features (SIZE-FV)

The treatment applied to different independent variables was measured and
analysed using the dependent variable.

Dependent Variables

• DV3 - Classifier Performance: The influence of choosing various classi-
fiers and the FV groups was measured using the detection performance
of the classifier. The various metrics used in experimental Phase-2 to
measure the classifier performance are listed below and further elabo-
rated in Section 3.6.2.

1. Accuracy

2. Error

3. True positive Rate (TPR)

4. False Positive Rate (FPR)

5. Training Time

To compare the performances of models developed after training, true
positive rates of individual classes were used instead of the accuracy. The
true positive rates of individual classes show the performance of the built
model in accurately detecting the attack class and misclassification can be
identified.

Control / Confounding Variables

• CV5 - Computing Platform (Software and Hardware): The hardware
and software of the computing platform used to perform the experi-
ments for Phase-2 were not altered and no updates were carried out
during the experimental phase.

• CV6 - Classifier algorithm implementations: the algorithm implemen-
tations or the parameters were not modified while comparing the per-
formance of various classifiers and FV.

88



• CV7 - MQTT Dataset: Since the values of various MQTT fields had
a direct impact on the classifier performance, random values match-
ing the normal traffic characteristics were chosen for the MQTT field
values to reduce bias in classifier detection performance.

In experiments with more than one independent variable, the interac-
tions of various combinations of independent variables with the dependent
variables need to be observed, which allows to strengthen the relationship be-
tween the two variables (Asgari & Nunes, 2011). This is achieved by using a
factorial design to generate all the possible combinations of independent vari-
ables for experimentation. Since all the treatment group were subjected to
the variations in the independent variables, a quasi-experimental approach
was used to conduct the experiments.

Table 3.2: Factorial Design of 3x3 showing the combinations of various
treatment groups of independent variables

Feature Vector (IV6)

FULL-
FV(FV1)

TCP-
FV(FV2)

COUNT-
FV(FV4)

SIZE-
FV(FV4)

Classifier (IV5)

AODE (C1) FV1-C1 FV2-C1 FV3-C1 FV4-C1

C4.5 (C2) FV1-C1 FV2-C2 FV3-C2 FV4-C2

MLP (C3) FV1-C3 FV2-C3 FV3-C3 FV4-C3
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3.5 Experimental Procedures

The various experiments conducted to collect empirical observations to an-
swer SQ1, SQ2 and SQ3 are presented in Table 3.3.

Table 3.3: Treatments applied and parameters observed for various experi-
ments conducted in this research

Experiment Treatments Applied Parameters Observed Research
Question
Answered

CONNECT Flood Sleep interval, Attack
Threads

CPU idle, Packets per second SQ1

Delayed CONNECT
Flood

CONNECT Delay Packets per second, CPU idle,
Half-open sessions

SQ1

CONNECT Flood with
WILL message

WILL Message Payload Size,
Attack Threads

Bandwidth utilisation, CPU
Idle

SQ1

Invalid Subscription
Flood

Subscription Loops CPU idle SQ1

Attack Detection Accu-
racy (Classifier)

Classifier Algorithms Classifier Performance (Accu-
racy, TPR,FPR)

SQ2 and
SQ3

Attack Detection Accu-
racy (Feature-fv)

Feature Vectors groups Classifier Performance (Accu-
racy, TPR,FPR)

SQ2 and
SQ3

The main steps carried out in conducting experiments of Phase1 are
highlighted in Figure 3.3. The steps included identifying the existing DoS
attack models, identifying the protocol vulnerabilities, designing the attack
scenarios, experimental evaluation testbed and evaluation and analysis of
the observed results. Artefacts such as attack scenario parameters, DoS
attack system performance records, messaging performance and analysis of
the DoS attacks were captured during the experimental procedure.
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Figure 3.3: MQTT attack modelling and evaluation phase
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In Phase-2 the MQTT attack detection was evaluated by first generating
the datasets and then building various ML models based on feature groups
and classifier algorithms as shown in Figure 3.4 and Figure 3.5. Both figures
are part of the same flow chart and connect each other through the connector
’A’. The research procedures that were used in this step included: deploy-
ing a real IoT testbed, capturing benign traffic during normal operations,
capturing the attack network traffic, pre-processing raw packet capture files
to generate packet information in CSV format, statistical time-window and
flow feature extraction, dataset labelling and integrating labelled instances
of normal and various MQTT attack scenarios. Several artefacts were gen-
erated in this step which consisted of raw packet capture files, packet infor-
mation in CSV format, FV records, and labelled datasets. The four datasets
generated using aggregation levels and class labels are presented in Table
3.4.

Table 3.4: Datasets used in this research to compare models built using FV
groups and classifier algorithms

Aggregation Level Class Labels Dataset Name

Time-window Major Class TW-Major-DS

Time-window Sub Class TW-Sub-DS

Flow-Based Major Class FL-Major-DS

Flow-Based Sub Class FL-Sub-DS

Subsequently, experiments were conducted to evaluate the attack detec-
tion performance of classifiers on the labelled datasets. The various steps
included: balancing the classes in the dataset, forming feature groups for
classifier evaluation, classifier evaluation using 10-fold cross-validation step,
and analysis of the obtained results. The artefacts collected during this step
were: classifier performance metrics and visualisations.
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Figure 3.4: Experimental Phase-2 (RP-2.3,2.4)
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Figure 3.5: Experimental Phase-2 (RP-3.2)
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3.6 Data Analysis

The data analysis was carried out to assess the impact of DoS attacks and to
evaluate the performance of classifiers selected in the detection framework.
The metrics used in this study are discussed in this section.

3.6.1 DoS Attack Evaluation

As DoS attacks intended to exhaust the victim’s resources, their impact can
be measured using metrics such as CPU time, CPU utilisation of MQTT
process, bandwidth, memory and the number of packets per second. The
CPU time was measured using mpstat Linux command line tool, which
provides a break-up of CPU time usage by various system tasks. A custom
BASH script was used to measure memory and bandwidth utilisation at
every one second interval. Table 3.5 lists the break-up CPU time measured
by mpstat and the custom BASH script.

3.6.2 Machine Learning Performance Evaluation

The ML algorithms used in the detection framework were evaluated to assess
their attack detection performance. The most common ML performance
metrics used are : accuracy, error rate, True Positive Rate (TPR), False
Positive Rate (FPR) (Dua & Du, 2016; Zaki et al., 2014). Accuracy and
error rate of the classifier can be defined as the probabilities of correct and
incorrect classifications respectively (Zaki et al., 2014). For a given testing
data D consisting of n records in a d dimensional space with k class labels,
the true output class of an input xi ∈ D is yi and the output class predicted
by the classifier is ȳi. Then the general accuracy of the classifier can be
represented as:

Accuracy =
1

n

n∑
i=1

I(yi = ȳi) (3.1)

where I = 1 if yi == ȳi and I = 0 if yi 6= ȳi. and the error rate can be
expressed as:

Error Rate = 1−Accuracy (3.2)

Hence accuracy indicates the number of correct output class classifica-
tions and error rate represents the number of misclassification over the entire
testing dataset. A more accurate representation of the classifier performance
is achieved by identifying the class specific true and false classifications. This
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Table 3.5: Attack metrics used to measure the DoS Impact

Parameter Description

%usr Percentage time spent by CPU executing applica-
tion related tasks

%sys Percentage time spent by CPU executing kernel
level tasks

%iowait Percentage time spent by CPU executing disk I/O
requests

%soft Percentage time spent by CPU servicing software
interrupts

%idle Percentage time spent by CPU not executing any
tasks and no pending I/O requests. A high idle%
indicates the CPU is least utilised and a low idle %
indicates high CPU utilisation.

Process CPU
(pCPU)

Measured using BASH script fetching the CPU util-
isation associated with broker process ID using top
Linux command

Bandwidth Total bandwidth consumed during the attack
(kbytes)

Memory Percentage Memory consumed during the attack

Number half-
open TCP ses-
sions

Average Number of TCP sessions in ESTAB-
LISHED state recorded during the attack. Only
used to measure the impact of delay CONNECT
flood attack

can be represented in a k×k contingency table also known as confusion ma-
trix. A confusion matrix for two-class classification is represented in Table
3.6

True Positives (TP) are the number of correctly detected anomalous in-
stances in the dataset. True Negatives (TN) are the number of correctly
detected legitimate instances. False Positives (FP) are the number of nor-
mal records classified as anomalous while the False Negatives (FN) are the
number of anomalous instances classified as legitimate.
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Table 3.6: Confusion matrix for two classes

True Class

Predicted Class Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Based on the confusion matrix, the Accuracy can also be represented as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

The accuracy metric is highly sensitive to the dataset changes and do
not provide useful performance measures of the classifier when the dataset
has imbalanced classes (Dua & Du, 2016). Metrics such as precision, recall
F-score and receiver operating characteristics (ROC) have been adopted to
highlight the classification performance with imbalanced classes. The class
specific performance can be obtained by TPR and FPR. TPR measures the
percentage of instances correctly classified as anomalous and also referred
to as sensitivity which can be calculated by:

TPR =
TP

TP + FN
(3.4)

FPR is the percentage of instances incorrectly classified as anomalous and
is calculated by:

FPR =
FP

FP + TN
(3.5)

As both TPR and FPR are insensitive to class sizes or distributions (Zaki et
al., 2014), these metrics are used in this study to compare the performance
of the classifiers. In addition, the results of classifier’s performance with
individual datasets presented in this study are weighted average of all classes
which take into account the number instances in each class. The TPR rates
of the individual classes is also adopted in this study to discuss the classifier’s
performance of the datasets used.

3.7 Threats to Validity

In experimental research, threats to validity can raise questions about the
correctness of the results and their generalisability to other scenarios and
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circumstances (Campbell & Stanley, 2015). Two types of threats to validity
exist: internal validity and external validity. Experimental research should
identify the potential threats to validity and take measures to avoid or min-
imise their effects (Creswell & Creswell, 2017). Internal validity relates to
the methods, procedures, treatments and analysis of the study. In contrast,
external validity refers to incorrect inferences made from the results to gener-
alise their applicability on other settings or situations (Creswell & Creswell,
2017). This can occur due to uniqueness of the experimental settings and
selected data sample. In order to prevent the internal and external threats
to validity several measures were employed in this study such as:

• Broker Software: More than one type of broker software having dif-
ferent designs was used to evaluate the DoS attack impact, to increase
the generalisability of the results.

• DoS treatments: These were based on the vulnerabilities of the
MQTT protocol instead of the target broker software used in evalua-
tion, hence these can be reproduced on other broker software.

• Repetition: The DoS evaluation experiments were repeated three
times with gaps between each repetition to allow the broker to restore
to its normal conditions. Repeating the experiments independently
several times with similar outcome serves as an evidence that the re-
sults can be reproduced (Vaux, Fidler, & Cumming, 2012). Although
there are no standard number of repetitions and may vary based on
the field of study (Vaux et al., 2012), a three time repetition is adopted
in this study to verify that the reported results are not random.

• External MQTT attack tools: Attack tools used in other works
which significantly differ from the proposed attack scenarios were also
used to generate the attack datasets. This was done to prevent the
bias of model’s performance in detecting only attacks studied in this
work.

• Cross-Validation: To prevent classifier over-fitting, cross validation
was performed using the k-fold method which validates the classifier
performance by creating k equal sized datasets (resulting in k models)
with each instance used at-least once for testing. The final perfor-
mance result is the average performance of k models from k equal
datasets. In this study a 10-fold cross validation was used.
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Table 3.7: Hardware equipment used in the experimental setup of this study

Name Specification Role

Virtualisation
host

Processor: Intel Core i7-5820K
CPU capacity: 6 Core, 12 Threads,
3.30GHz
Memory: 64GB RAM

Hosts the broker software virtual ma-
chines, conduct machine learning experi-
ments

DoS Attack
Machine

Processor: AMD FX(tm)-8120
CPU capacity: 8-Core, 8 Threads, 3.1
GHz
Memory: 16GB
OS: Ubuntu server 18.04

Generates the DoS attacks

Raspberry
Pi3

Processor: ARMv7 Processor rev 4 (v7l),
CPU capacity: 4 Core, 1 Thread, 1.2 GHz
Memory: 1GB
OS: Raspbian GNU/Linux 9, Ubuntu
16.04.2 LTS

For deployment of IoT testbed with hard-
ware sensors

ESP8266-
WemosD1
Mini

MCU: Tensilica Xtensa lx106
Capacity: 160 MHz
Flash: 16M bytes
Firmware: custom

For deployment of IoT testbed with hard-
ware sensors

WiFi Router
2

Model: NetComm Wireless, NF10WV
Wi-Fi spec: IEEE 802.11n, 2.4GHz WiFi
Ports: 4 x RJ45 10/100Mbps LAN ports

For connecting Raspberry Pi devices to
the IoT testbed

WiFi Router
1

Model Name: TP-LINK ARCHER C7,
WiFi spec: 802.11ac/Dual Band
Ports: 4 x 1 Gbps LAN

For connecting Raspberry Pi devices to
the IoT testbed

3.8 Instrumentation

The resources used in this study to conduct the experiments are presented
in this section. Various hardware and software tools were employed during
the experimental phase and the data analysis phase. The hardware com-
ponents used for the evaluating the DoS experiments, IoT testbed and ML
evaluations are listed in the Table 3.7.

In addition physical sensors were connected to the Raspberry Pi and
ESP8266 in the IoT testbed. Table 3.8 lists the various sensors and devices
used to build IoT devices.

A number of software resources were used for the IoT testbed deploy-
ment, broker software, MQTT attack generation, performance measure-
ments, data processing and machine learning analysis. Table 3.9 lists the
various software resources used in this work.
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Table 3.8: Sensors and devices used in the physical setup

Name Model Quantity

Temperature Sensor DS18B20 7

PIR Motion Sensor PIR - HC-SR501 5

RobotDyn - Real Time Clock DS1307 1

Optical Fingerprint Reader Mega2560 2

RobotDyn - USB to TTL UART CH340G 10

Adafruit MCP3008 8-Channel 10-
Bit ADC

MCP3008 5

Adafruit CCS811 Air Quality Sen-
sor

CCS811 2

MQ-2 Smoke Sensor MH-MQ-2 5

Table 3.9: Software resources used in the experimental and analysis phases
of this study

Name Version Role

Oracle Virtual Box 5.2.22 Virtualisation software for deployment of MQTT broker vir-
tual machines

Eclipse Mosquitto 1.4.12 Single-threaded MQTT broker for evaluating the DoS attack
impact

VerneMQ 1.6.2 Multi-threaded and scalable MQTT broker built using Er-
lang OTP used to evaluate DoS attack impact

EMQ 3.0 Multi-threaded and scalable MQTT broker built using Er-
lang OTP used to evaluate DoS attack impact

HA-Proxy 1.8.8 Software load-balancer to deploy six-node EMQ cluster to
evaluate DoS attacks

Python 3 3.6.5 Interpreted, high-level programming language to develop at-
tack scenarios, feature-extraction and classifier tuning.

Weka 3.8.3 Java based ML workbench used for attack detection evalu-
ations

Tshark 3.0 Network protocol analyser tool used for raw data processing

sysstat (mpstat) 11.6.1 system CPU statistics collection tool used to measure the
DoS impact

F-secure/ Mqtt Fuzz N.A Protocol fuzzer tool to generate fuzzed MQTT packets

Hping3 3.0 TCP/IP packet assembler used to generate SYN Flood DoS
attack
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3.9 Ethics

The research conducted in this study was completely based upon machines
and no humans or animal subjects were involved. At all stages of this
study only computers were used and configured to conduct experiments and
collect the necessary data. In addition, to comply with the PhD candidature
procedures of Edith Cowan University an Ethics declaration was submitted
to the Ethics committee and approval was obtained.

3.10 Summary

In this chapter, the research methodology adopted in conducting a system-
atic research was presented. A quantitative methodology was chosen with a
post-positivist worldview. An quasi-experimental approach was adopted to
gather data to answer the research questions posed in this work.

The experiments were conducted in two phases with separate set of re-
search variables identified for each phase. The independent, dependent,
control and confounding variables identified for designing the experiments
were elaborated in this Chapter. The first phase of the experiments were
focused on evaluating the impact of various MQTT attacks scenarios defined
using the protocol vulnerabilities. Based on the attack scenarios and other
attack tools, MQTT attack datasets were generated to evaluate detection
performance of the proposed attack detection framework.

In addition, a detailed explanation of the research procedures utilised
in this study were presented in this chapter. Flowcharts explaining the
individual steps and workflow adopted in this research study were illus-
trated. The data analysis tools and methods deployed to analyse the ob-
servations recorded during the experiments were discussed. Finally, the
measures adopted to minimise the impact of internal and external threats
to validity of the obtained results were presented along with the equipment
and resources utilised in conducting the research.
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Chapter 4

MQTT Attack Model and
Detection Framework

This chapter explains in detail the MQTT DoS attack model and the attack
detection framework. First, threats to the MQTT protocol are hypothesised
and enumerated using the MQTT threat model. Among the various cyber
security threats, DoS attack is further elaborated and the attack model
followed to generate the DoS traffic is explained. Secondly, the MQTT
attack detection framework for DoS attack detection is presented, which
comprises of the steps to generate normal and attack traffic, data collection,
features extraction from MQTT traffic, classifiers and the feature selection
techniques deployed in this work.

4.1 Threat Model for MQTT Based IoT System

Identifying the potential threats to the IoT protocols and the possible mit-
igation steps is an important factor in building a secure IoT system. The
process of identifying, ascertaining and analysing potential threats and mit-
igation steps is achieved by developing a threat model. Threat modelling
helps in enumerating the attack vectors that arise due to vulnerabilities,
and to identify the threat agents who perpetrate attacks. Threat modelling
methods like Microsoft’s Security Development Life-Cycle (SDL) (Howard
& Lipner, 2006), and the Open Web Application Security Project (OWASP)
(OWASP, 2018), Process for Attack Simulation and Threat Modelling (PASTA),
Operationally Critical Threat, Asset and Vulnerability Evaluation (OC-
TAVE) and TRIKE (Saitta, Larcom, & Eddington, 2005) have been pro-
posed in literature.
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The SDL modelling technique focuses on identifying the assets, applica-
tion uses cases and subsequently identifies the threats. The most common
models of SDL technique are STRIDE and DREAD, with the later being
more applicable for ranking the threats based on their risks. STRIDE fo-
cuses on identifying technical details of threats to the system by analysing
the assets, threat actors and vulnerabilities of the system which result in a
lightweight threat modelling process. In addition to the modelling methods,
the categories of risk and their ordering are presented in methods such as Mi-
crosoft’s STRIDE and DREAD models (Hussain, Kamal, Ahmad, Rasool, &
Iqbal, 2014). The STRIDE model comprises of six categories namely: Spoof-
ing, Tampering, Repudiation, Information Disclosure, Denial of Service and
Elevation of Privileges. The DREAD model presents five categories of risk
namely: Damage, Reproducibility, Exploitability, Affect Users, and Discov-
erability. In contrast, the PASTA model is a seven-layer model for extensive
modelling which translates the business objectives to identifying the impact
or risks of threats. The many layers of modelling required by this approach
is suitable for large systems with complex interactions (Potteiger, Martins,
& Koutsoukos, 2016). Similarly OCTAVE is a complex threat modelling
approach which requires several levels of modelling and is suitable in iden-
tifying organisation level threats (Klingel, Khondoker, Marx, & Bayarou,
2014). Since the aim of this work is to identify the threats to a generic
MQTT based IoT system without assuming specific business requirements,
we adopt the STRIDE model to identify the assets, threat actors and the
possible threats to the IoT-MQTT system.

One of the contributions of this work is to present a MQTT threat model
which includes identifying components of the system, access points and
threat agents which exploit the vulnerabilities of the system. Subsequently
the threats to the system are enumerated by hypothesising the breaches of
security goals of an IoT system such as confidentiality, integrity, and avail-
ability. Finally a mitigation plan is presented with possible countermeasures
for the threats. In order to enumerate threats to an MQTT based IoT sys-
tem, the STRIDE model was adopted. The six threat classes for to describe
threats to MQTT protocol are:

• Spoofing: is an attempt to gain unauthorised access to the system
using false or fake identity.

• Tampering: is unauthorised modification of any part of the system or
data in the system.

• Repudiation: is the ability of users to deny their actions due to failure
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Figure 4.1: IoT based MQTT Publish/Subscribe architecture showing com-
ponents, users having access to various parts of the system and the connec-
tivity of various parts

to track or log activities

• Information Disclosure: exposing sensitive information to unintended
users

• Denial of Service: is making the system or application unavailable to
legitimate users.

• Elevation of Privileges: happens when users with limited access tricks
the system to gain administrative rights to access privileged resources.

Figure 4.1 shows a typical MQTT based IoT system which consists of
IoT clients, an MQTT broker and non IoT endpoints, which comprise smart-
phone, personal computer (PC) or server. IoT devices could be deployed in
smart homes, remote sites, and public places in the case of smart cities,
industries, vehicles, etc. Due to the ubiquitous applications of IoT, various
types of users can have access and control of these devices. The data pub-
lishers can be located in the same LAN as the MQTT broker or located in
remote locations with Internet access, hence the publishers can connect to
a broker with in the LAN or over the Internet. Subscribers to the published
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data can vary from Analytics platforms to smart-phone Applications, Per-
sonal computers, databases to application servers; and can be located in the
same LAN or on the Internet. To perform threat modelling, we first identify
the assets of a typical MQTT based IoT system followed by identification of
threat agents and finally enumerating the threats to the system. Atamli and
Martin (2014) presented a threat model for security and privacy risks in IoT,
which categorised the threat sources as malicious users, bad manufacturers,
and external adversary. In addition, the threats to IoT system were clas-
sified into device tampering, information disclosure, privacy breach, DoS,
spoofing, elevation of privileges, signal injection and side-channel attacks.
However, the article does not cover the application protocol specific threats.
In another article published by Security Compass (SecurityCompass, 2016),
the author described the threat model for publish/subscribe communication,
but the threats in MQTT protocol are not specified. In this work, we cover
the gap in knowledge by presenting the threat model of IoT based MQTT
system, which is divided into asset identification, threat agents, attack cat-
egories, threats and a study of its impact.

4.1.1 Asset Identification

Assets in an MQTT based IoT system are defined as components that need
to be protected from adversaries. The assets range from physical devices to
data exchanged in an IoT-MQTT system. Table 4.1 lists the various assets
available in a typical MQTT based IoT deployment.

4.1.2 Threat Agents

Identifying the potential adversaries of a system is an essential part of threat
modelling. Hence the threat agent or a threat actor can be defined as the
potential adversary who can harm the system by exploiting its vulnerabili-
ties. In MQTT based IoT system, threats agents can be either internal or
external agents. Internal agents are those that have authorised access to the
components of the system unlike external agents who do not have authorised
access. The threat agents of an IoT system (Atamli & Martin, 2014) are
reliant on the protocol deployed on it. The threat agents presented in this
work are:

• Malicious internal user,

• Bad manufacturer,
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Table 4.1: Assets in a typical MQTT based IoT deployment and their de-
scriptions

S/N Asset Description

Publisher

1 Physical IoT devices All the physical sensor devices deployed to measure
and observe the surroundings using sensors

2 IoT credentials Credentials of the IoT devices to access the firmware
or Operating System (OS)

3 MQTT Client-side ap-
plications

MQTT client software used to connect to broker and
publish data

4 MQTT client creden-
tials

MQTT credentials used by the client software to au-
thenticate and authorise the publishing client

5 IoT Data Data collected by IoT devices

6 Communication De-
vices

Communication equipment used by IoT devices such
as wired and wireless devices

Broker

1 Broker Server MQTT broker used to route authenticate, authorise
and route IoT messages to subscribed clients

2 Broker Credentials Credentials to access broker software and OS

3 All Client (publisher
and subscriber) creden-
tials

All the Credentials stored in broker or authentication
servers used by broker to authenticate clients

4 All Client authorisa-
tions rules

All the authorisation rules stored in server to authorise
publishing and subscribing clients to access MQTT
topics

5 All Client data Data exchanged between publishers and subscribers
via the broker

Subscriber

1 Subscriber Devices
(Smart-phone, PCs
etc.)

End point devices subscribed to MQTT topics and re-
ceiving updates when new data sent by the publishing
clients

2 MQTT Subscriber ap-
plication

Application software used by subscribing clients to
connect and exchange messages with the brokers

3 Subscriber credentials Credentials used by subscribing clients to connect to
brokers

4 Publisher Data Data sent to subscribers from the data publishers

5 Subscriber Communica-
tion devices

Wired and wireless communication devices used by
subscribing clients to connect to the broker

• External attackers, and

• Curious user.

Malicious internal user: This is a user owning the device or having
legal access to the device with malicious intentions. This could also be an
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internal employees of an IoT application provider who might be involved in
the deployment and operations of the devices. This kind of user tries to
manipulate the IoT device software to launch attacks or retrieves sensitive
information such as MQTT credentials or certificates. A malicious internal
user having access to the MQTT broker services can also launch attacks on
other IoT devices.

Bad manufacturer: This is a manufacturer who deliberately puts back-
doors in the IoT device software to gain information about the users or for
remote access to the device. This also includes adversaries embedding ma-
licious code in MQTT client software as well as the MQTT message broker
software to collect sensitive user information.

External attackers: These are cyber criminals, script kiddies or expert
hackers trying to gain unauthorised access to the devices. These attackers
can steal sensitive information, bring down services or hold devices for ran-
som, for financial or political gains.

Curious user: This is a researcher or a curious user who finds gaps in
the technology and pursues further to test vulnerabilities. These could be
either an internal or an external user.

Threat agents can have various levels of access to an IoT system such
as having physical access to devices, access to the information of the system
or access to the communication channels between the devices. The internal
users with more privileged access pose a greater risk to the IoT system
compared to the external users with limited access. For example, a system
administrator managing the MQTT based IoT application will have access
to the broker and data exchanged between devices, whereas an owner of the
IoT device can have physical access to the device.

4.1.3 Attack Categories, Threats and Impact

Attack categorisation is an important step in understanding the underlying
threats to the MQTT IoT system. Understanding different threats to the
system and its impact will help in prioritising the mitigation steps according
to the threat level. As mentioned earlier, the Microsoft’s STRIDE model was
adopted to categorise the threats to the MQTT based IoT system into six
classes namely: Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service and Elevation of Privileges.
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Identity Spoofing

The IoT clients and other endpoints need to use client identifiers while con-
necting to the MQTT broker. Additional security measures such as user-
name, password or client certificates are used to authenticate the users.
However, the client information such as client identifiers, username, pass-
word and client certificates can be harvested or credentials can be guessed
to impersonate a legitimate MQTT client. Malicious clients gaining access
to the MQTT service using spoofed identities can publish unauthorised mes-
sages and also subscribe to unauthorised messages. This can cause leakage
of confidential information, and sending unauthorised control commands to
IoT devices, which can harm the infrastructure or people using these de-
vices. In addition, illegitimate brokers can spoof the identities of legitimate
brokers and intercept messages between publishers and subscribers.

Attack scenario 1: Internal malicious user or curious user owning an
IoT device or malicious internal employee, obtains MQTT client information
such as client identifier, credentials or certificates and connects to the broker
using his PC/Laptop, impersonating the IoT device. This user then pub-
lishes malicious messages or subscribes to unauthorised topics. For example,
a malicious user or curious user purchases a baby monitoring device which
comes with access to the vendor’s MQTT cloud deployment to remotely
monitor and control the device using the vendor‘s MQTT client software.
The malicious user can use firmware extraction techniques to access the
MQTT information stored on the baby monitor and use this information to
connect to the brokers and perform unauthorised publish and subscriptions.

Attack Scenario 2: External attacker gains access to client information
by either attacking the IoT device by physical security breach, side channel
attacks or brutefore attacks to fetch the client information. The attacker
then uses the fetched information to impersonate the MQTT client and
performs unauthorised activities.

Attack Scenario 3: External attacker or internal malicious user spoofs
the DNS service and redirects the IoT devices to an illegitimate broker,
which then captures all the messages exchanged between the clients. The
MQTT clients using Fully Qualified Domain Names (FQDN) of the brokers
will send DNS queries to obtains the IP address of the broker to connect.
Modifying the DNS response with illegitimate broker IP address will result in
clients connecting to unauthorised brokers and exchanging messages through
it.
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Tampering Data

Altering MQTT messages can occur when published messages are altered
and delivered to subscribers putting the message integrity at risk. Since
many IoT devices take decisions based on updates from the surrounding
environment, the message integrity is crucial. Modified messages can cause
IoT devices to take wrong decisions which can adversely impact the end
users. Tampering data also includes modifying or deleting client data, ses-
sion information and logs stored in the broker.

Attack Scenario 1: Internal malicious user hijacks the communication
channel to modify the usage data being sent by smart meter to the utility
company. The malicious user can intercept messages exchanged between
smart meters and the utility company using Man in the Middle attacks
(MitM) and modify the meter readings sent to the utility company.

Attack Scenario 2: External attacker modifying data stored in MQTT
brokers. An external attacker can compromise vulnerable broker servers and
modify the data stored to cause disruption of service.

Repudiation

Repudiation attacks can occur in MQTT systems when messages sent through
the broker or actions performed on it can be denied by the threat agent. This
attack type can use data tampering attacks or exploit the vulnerabilities
of system configured with weak logging. In the MQTT protocol, multiple
clients can share the credentials with unique client identifiers. This can be
exploited to cause repudiation attacks unless unique parameters of clients
are logged in the system for identification purposes.

Attack Scenario 1: Internal malicious user logs into the MQTT broker
and disables activity logging and deletes user activities and performs illegal
activity.

Attack Scenario 2: External malicious user impersonates a legitimate
device or uses a compromised device to launch other attacks in the sys-
tem, which will make it challenging to associate the attack to the external
malicious user.

Information Disclosure

Unauthorised access of data stored in the IoT devices or MQTT broker and
revealing to unauthorised end users causes information disclosure. MQTT
brokers contain client credentials, client authorisation details, messages with
QoS2 and messages with retain flag set to true. It is necessary to protect this
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information from disclosure to unauthorised entities. With many MQTT
client software available on the World Wide Web and Google Play, MQTT
clients with embedded malicious code can capture messages being exchanged
between client and broker and disclose to adversaries.

Attack Scenario 1: Internal malicious user accesses the broker and
reveals confidential information such as MQTT connection credentials, bro-
ker configurations, information from different topics, sensitive information
exchanged between endpoints.

Attack Scenario 2: External attackers compromises an insecure MQTT
broker and accesses information stored in the broker and releases to the pub-
lic. A broker server, which exposes other ports such as SSH or Telnet, can
be vulnerable to compromise and attackers can reveal sensitive MQTT in-
formation from the compromised broker servers.

Denial of Service (DoS)

One of the important role of a broker server is to route messages between
publishers and subscribers. Disrupting broker services can cause DoS in
an IoT environments that exchanges messages via the message broker. Ex-
hausting broker resources can result in messages being delayed or dropped
or denied access for legitimate client. For example, MQTT supports a max-
imum payload size of 256 MB, and IoT client resources can be exhausted if
messages with larger payload are sent to them. An attacker can exploit this
and cause DOS on both client and broker. Furthermore, MQTT is a TCP
based protocol hence, brokers will be vulnerable to TCP based DoS attacks
targeting bandwidth or system resources. In addition to TCP attacks, the
adversaries can also exploit the QoS levels provided by the MQTT protocol
to cause DoS. The messages published with QoS2 require more broker re-
sources compared to the QoS1 and QoS0 messages, as listed in Table 2.11.
The broker also retains messages sent with QoS1 and QoS2 until messages
are delivered to the subscribed clients. Adversaries can send large number
of messages with QoS2 and exhaust the broker resources resulting in DoS.

Attack Scenario 1: External attacker/disgruntled internal user craft-
ing TCP based (e.g. SYN Flooding) DDoS attack to exhaust broker re-
sources. Since TCP sessions require acknowledgements, sending multiple
SYN messages will create multiple half-opened TCP sessions which can ex-
haust message broker resources.

Attack Scenario 2: External attacker/disgruntled internal user flood-
ing the MQTT broker with CONNECT packets. The CONNECT packet
is used by MQTT client to initiate an MQTT session with the broker and
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contains client ID and other optional parameters. When the broker server
receives a CONNECT packet, it verifies the client identifier and other op-
tional parameters to either allow or deny connection to the client. Malicious
users can send multiple CONNECT packets with different client identifiers
to exhaust server resources.

Attack Scenario 3: External attacker/disgruntled internal user send-
ing packets with a larger payload to exhaust the broker and subscriber re-
sources in order to deny service to clients. Malicious users can also use higher
levels of QoS with larger payload messages and consume broker resources,
as the broker is required to store the messages until they are delivered to all
the subscribed clients for QoS1 and QoS2.

Elevation of Privileges

Gaining access to restricted privileges to execute restricted commands is
defined as elevation of privileges. In an MQTT environment elevation of
privileges occurs with unauthorised publishing and unauthorised subscrip-
tion. MQTT permits wildcard subscription which allows clients to receive
messages from all the topics that match the wildcard. An unauthorised user
can gain access to wildcard topics or to “#” which gives the attacker access
to all the messages sent by clients.

Attack Scenario 1: External attacker/internal malicious user/curious
user subscribing to restricted topics to eavesdrop on messages exchanged
between endpoints. Malicious user connects to broker and then subscribes
to wild card topics or “#” topic and receives all the messages exchanged
between clients.

Attack Scenario 2: External attacker/internal malicious user publish-
ing privileged messages. In MQTT operations, the clients can be configured
to listen to messages and take action based on the message content. As these
devices can be remotely controlled, a malicious user can send messages with
commands such as “OFF” to disable some IoT devices or send commands
such as “FORMAT”, “RESTORE FACTORY SETTINGS” to damage the
IoT devices.

The various threats to MQTT protocol are summarised in the Figure
4.2, which illustrates the threat model and the threats to a MQTT based
IoT system. Among the various threats discussed in the threat model, DoS
attack has been elaborated in this work as DoS attacks are a common and
very harmful threats to Application Layer protocols as discussed in Section
2.4.5. Such targeted DoS attacks come as both flooding or semantic attacks
as shown in Figure 2.15 and needs to be modelled to cause maximum impact.
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Figure 4.2: MQTT threat model illustrating the various threat agents and
the threats to a MQTT based IoT system

As no prior work exists on modelling and enumerating the various MQTT
protocol DoS attacks, this work aims to model and analyse the impact of
MQTT based DoS attacks on broker performance and message delay. The
following section discusses the MQTT DoS attack model and the various
attack scenarios designed to cause DoS .

4.2 DoS Attack Model for MQTT/IoT

Based on the DoS attack options the MQTT protocol can be targeted with
flooding attacks that send excessive packets to the broker or send complex
packets that either stay longer in the system or utilise more CPU cycles to
process. As presented in Table 2.8, MQTT supports various control pack-
ets for message exchange and control packet flooding is a common technique
used in Application Layer DoS as discussed in Section 2.4.5. The CONNECT
packet is used for MQTT session establishment and PUBLISH/SUBSCRIBE
control packets are used for publishing and subscribing messages. In most
industry deployed MQTT system, the clients must first connect to the sys-
tem. Authenticated clients are then authorised to either send or receive
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messages on selected topics. Hence the key mechanisms that allow clients
to access MQTT system are authentication and authorisation. Access levels
available for MQTT client are as below:

• Valid Credentials to connect to MQTT broker

• Valid Authorisation to Publish/Subscribe to topics

Assuming that the attackers have either no or limited access to the MQTT
broker various attack scenarios can be designed for the MQTT protocol.
Firstly with invalid credentials, the attacker can only vary the parameters
of the CONNECT packet. Secondly, after a successful connection using
valid credentials but without valid authorisation to publish and subscribe
to topics, the attacker can vary PUBLISH or SUBSCRIBE control packet
parameters. Based on the access levels and authorisation levels four attack
scenarios are defined:

• Basic CONNECT Flooding (BF1),

• Delayed CONNECT Flooding (BF2),

• CONNECT flooding with WILL payload (BF3), and

• Invalid Subscription Flooding (IAUTHS).

These attack scenarios are discussed in detail in the following sections.

4.2.1 Basic CONNECT Flooding (BF1)

The attacker only sends a large volume of CONNECT requests to the target
server to overwhelm the server with processing of requests. Based on the
complexity of the authentication mechanism, broker resources can be over-
loaded at various degrees. Some of the common authentication mechanisms
are shown in Figure 4.3:

In this case the external DB and Authentication server based client
authentication deployments will have higher attack impact of CONNECT
flooding. With the connect flooding attack, multiple CONNECT requests
are sent to the broker by opening multiple TCP sessions, as shown in Figure
4.4. This will require the broker to process individual requests and acknowl-
edge these with a CONNACK packet. The attack works by increasing the
new connection request arrival rate (λ) at a faster rate than the average
processing rate (W ) of the broker, thus exhausting the CPU capacity.
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MQTT Broker
CONNECT + PUB/SUB

(CleanSession=True/False)

Store Session Information
All subscriptions
All unconfirmed QoS1 and QoS2 messages
All QoS1 and QoS2 messages missed when offline

Client

MQTT Broker
CONNECT (credentials)

Client

Local authentication file

External DB Server

External Authentication 
Server

Authentication

Figure 4.3: Client authentication mechanisms used in MQTT broker, a more
complex authentication mechanism will have higher impact with authenti-
cation flooding attacks
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Figure 4.4: Basic CONNECT flooding scenario showing the attack processes
of sending multiple connection requests

Algorithm 1 describes steps involved in generating the attack packets
for this scenario. The MQTT parameters such as client identifier, username
and password are randomly assigned. The attack machine first establishes
the TCP session and sends the CONNECT packet. The rate at which the
connect packets are sent is controlled by Sleep Interval parameter. A multi-
threaded function then spawns multiple threads to maximise the attack rate.

4.2.2 Delayed CONNECT Flooding (BF2)

The aim of the attack scenario is to increase the time spent by the attack
request in the broker processing queue, so as to exhaust the queue. This is
achieved by exploiting the TCP time-out setting used in IoT deployments.
The time-out of an established TCP session depends on the application
and generally in IoT deployments higher time-out settings are required as
most of these devices operate through unreliable network links. Attacker
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1: Inputs:
Number of Threads(nT), BrokerIP (B), Port(P)

2: procedure Attack(B,P )
while True do
ClientID ← random() ;
Username← random() ;
Password← random() ;
TCP Connection← Establish() ;
Send CONNECT Packet ;
Sleep← Sleep Interval
end

3: end procedure
4: procedure Multi-Thread()

for i← 1, nT do
Spawn Attack() Threads;
end

5: end procedure
Algorithm 1: Basic CONNECT flood generation algorithm

can abuse these settings to send delayed CONNECT packets after TCP
connection establishment. This will result in a large number of half-open
TCP sessions at the broker, as it is waiting for the CONNECT request to
complete. It also causes the broker to process these connection requests with
invalid credentials, thus leading to an increase in CPU utilisation. This is
a semantic attack scenario as it abuses the application sensitivity to delays
and setting lower TCP time-outs can have negative impacts on IoT devices,
which can result in frequent session time-outs and reduced battery life for
battery powered devices. Figure 4.5 shows the delayed CONNECT packet
flooding attack.

Algorithm 2 describes the delayed CONNECT flood generation steps
for generating the attack packets. Similar to basic CONNECT flood, the
client identifier, username and password are initiated to random values. A
delay is introduced between the establishment of the TCP connection and
the sending of the CONNECT request. The MQTT Paho client library was
modified to introduce delay in sending the CONNECT request. A multi-
threaded function was introduced to launch multiple connection requests to
the broker.
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Figure 4.5: Delayed CONNECT flooding scenario attack which introduces
a delay between the TCP connection establishment and sending the CON-
NECT control packet

1: Inputs:
Number of Threads(nT), BrokerIP (B), Port(P),
Delay(D)

2: procedure Attack(B,P,D)
while True do
ClientID ← random() ;
Username← random() ;
Password← random() ;
TCP − Connection← Establish() ;
Sleep← D ;
Send CONNECT Packet
end

3: end procedure
4: procedure Multi-Thread()

for i← 1, nT do
Spawn Attack() Threads;
end

5: end procedure
Algorithm 2: Delayed CONNECT flood generation algorithm
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4.2.3 CONNECT flooding with WILL payload (BF3)

The CONNECT packet size is increased by the attacker through piggy-
backing a WILL Payload on a CONNECT packet. As discussed in Section
2.7.2, a WILL payload can be added to the CONNECT control message
and this feature can be exploited by sending a large sized WILL payload in
the CONNECT control packet. This can lead to consumption of both the
bandwidth resources at the victim server as well as CPU resources in pro-
cessing connections with invalid credentials, preventing it from processing
new connections. Figure 4.6 shows the attack technique against the broker
server. The difference between this attack scenario and CONNECT flood-
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Figure 4.6: CONNECT flooding with WILL payload attack scenario showing
the piggybacking of WILL payload with the CONNECT packet

ing scenarios is that, this attack carries a larger payload which can induce
fragmentation of packets as well as slow down the number of control packets
sent to the broker. Algorithm 3, describes the steps undertaken in gener-
ating CONNECT flood attack packets with WILL message. Similar to the
basic CONNECT flood, the variables are initialised to random values and
the WILL payload, WILL Topic and WILL QoS are added to the payload.
A multi-threaded function allows the control of number of attack requests
sent to the broker.

4.2.4 Invalid Subscription Flooding (IAUTHS)

With valid credentials but no authorisation to access various topics, an at-
tacker can flood the broker with invalid subscriptions or publish requests to
the subscriber. As discussed in Section 2.7.4, the client can send multiple
SUBSCRIBE requests in the same message and this can misused by adver-
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1: Inputs:
Number of Threads(nT), BrokerIP (B), Port(P),
WILL payload(W)

2: procedure Attack(B,P,W )
while True do
ClientID ← random() ;
Username← random() ;
Password← random() ;
TCP Connection← Establish() ;
WILL Topic← random() ;
WILL QoS ← random(0, 2) ;
WILL Msg ←W ;
Send CONNECT Packet ;

end
3: end procedure
4: procedure Multi-Thread()

for i← 1, nT do
Spawn Attack() Threads;
end

5: end procedure
Algorithm 3: CONNECT + WILL Payload flood generation algorithm

saries to send multiple invalid subscriptions. This will result in consumption
of broker CPU resources in verifying the authorisation levels of individual
request.

In SUBSCRIBE flooding, valid credentials are used to establish MQTT
session with the broker and subsequently multiple subscription requests are
sent to the broker as shown in the Algorithm 4. The multi-threading function
is used to increase the attack connections sent to the broker.
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Figure 4.7: SUBSCRIBE Flooding flood attack scenario illustrating the
process of launching the attack

1: Inputs:
Number of Threads(nT), BrokerIP (B), Port(P),
Number of Subscriptions (S)

2: procedure Attack(B,P, S)
while True do
ClientID ← random() ;
Username← correct Username ;
Password← correct Password ;
TCP − Connection← Establish() ;
Send CONNECT Packet ;
for j ← 1, S do

SUBSCRIBE − Topics← random() ;
Send SUBCRIBE ;

end

end
3: end procedure
4: procedure Multi-Thread()

for i← 1, nT do
Spawn Attack() Threads;
end

5: end procedure
Algorithm 4: SUBSCRIBE flood generation algorithm
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4.3 MQTT DoS Evaluation Test-bed

The four DoS attack scenarios were evaluated on the MQTT protocol version
3.1, deployed through three open-source broker software tools, on standalone
and load-balanced server configurations as described in Table 4.2.

Table 4.2: Hardware Deployment to Test DoS attack Scenarios

Deployment Type Number of CPUs Per Server RAM

Standalone Server 1 CPU 8GB

Standalone Server 6 CPU 8GB

Load-Balanced with 6-
Node Server cluster

2 CPU/Node and 1 CPU for
HAProxy

4GB RAM/Node

The standalone and load-balanced MQTT broker servers were hosted
as virtual machines on a Windows 10 machine (64GB RAM, Intel Core
i7-5820K, 6 physical CPUs, 12vCPU, 3.30GHz) using Oracle Virtual Box
(Oracle, 2018). In the load-balanced setup, HA-Proxy (HAproxy, 2018)
software load-balancer deployed on a Ubuntu Server 18.04 virtual machine
was deployed to balance traffic across the six-node cluster in a Round-Robin
scheme.

The three open-source MQTT broker implementations deployed in this
study were namely: Eclipse Mosquitto (1.4.12) (Mosquitto, 2017), VerneMQ
(1.6.2) (VerneMQ, 2018) and EMQ (3.0) (EMQ, 2018). Mosquitto is a light-
weight, portable and single-threaded MQTT broker. In contrast, VerneMQ
and EMQ brokers are multi-threaded and scalable MQTT brokers designed
using Erlang/Open Telecom Platform (OTP) to achieve high scalability.
These brokers were deployed on single-CPU and six-CPU configurations
running the Ubuntu Server 17.10. However, only the EMQ broker was de-
ployed for the load-balanced setup owing to ease of configuration. A separate
physical machine running Ubuntu server 18.04, connected to the broker net-
work using a router, was configured to launch the DoS attacks as shown in
Figure 4.8.

DoS attack traffic was generated using a custom built MQTT attack
tool based on the Ecliplse-Paho library (Eclipse, 2018). Each attack was
based on specific MQTT protocol settings as discussed in Section 4.2. The
CONNECT flooding attacks were configured with a random length character
comprising a ClientID, username and password, to emulate a real client. The
BF3 attack was launched with varied sizes of payloads containing random
characters including non-ASCII characters.
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Figure 4.8: MQTT broker deployment (standalone and load-balanced) on
virtual machines to assess the four DoS Attacks scenarios

Since these MQTT attacks were generated from a single attack source, a
multi-threaded approach was adopted in the attack tool to maximise the im-
pact on a victim machine’s available resources. The impact of increasing the
number of attack threads on Single-CPU victim machine was measured us-
ing the number of packets per second received as well as the CPU utilisation
on the victim machine. For BF1 and BF3 attack scenarios, the experimental
evaluation consisted for five iterations with single thread increments in each
iteration. The reason for incrementing the threads only by one, was that
the attack machine had limited resources and resource contention among
threads increases with the spawning of new threads. However, for delayed
CONNECT flooding attack (BF2), 250 threads were launched with vari-
ous delay intervals for both single, six and LB deployments to evaluate the
broker performance. The IAUTHS attack impact on the victim machine’s
performance was measured by using various subscribe loop settings and a
single attack thread. In contrast, the impact on Six-CPU and LB setup for
the attack scenarios BF1, BF3 and IAUTHS flooding attacks were evaluated
using three attack threads, which will be further discussed in Chapter 5.

The broker messaging performances were evaluated using a constant at-
tack and load settings as no-load conditions do not reflect real-world delay
scenarios. The attack and load settings along with the delay measurement
method are further elaborated in Section 5.2. The following section discuses
the normal and attack traffic generation methods used in this study.
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4.4 DoS Attack Detection Framework

In this section, a DoS attack detection framework is proposed. The frame-
work comprises the following components; MQTT traffic generator, feature
extraction engine and a machine learning-based DoS attack traffic classi-
fier. The MQTT traffic generation step involves generating both normal
and attack traffic.

4.4.1 MQTT Traffic Generation

An IoT-MQTT network typically comprises a set of IoT sensors that observe
environmental phenomena and constantly communicate with each other or
with monitoring or control devices through a centralised message broker.
The normal traffic was modelled by identifying the normal states of the
MOTT protocol, as depicted in Figure 4.9. For example, a publisher only
connects to a broker for publishing the sensing data when it is available. In
contrast, a subscriber is always connected to the broker to receive updates
related to the subscribed topics. A normal publish event will consist of a

TCP MQTT -
CONNECT

MQTT-
Publish /  
Subscribe

start

Closed

recv: DISCONNECT

Invalid 
Authentication 
Malformed 
Packet
Protocol Errors

Valid Authentication 

recv: CONNECT (WILL QoS:0,1,2)

recv: PUBLISH (QoS:0,1,2)
recv: SUBSCRIBE (QoS:0,1,2)

recv: PING

Establish TCP Session

Terminate TCP Session loop

Valid Authorisation

Figure 4.9: MQTT states used for normal traffic modelling

CONNECT request, authentication and PUBLISH request, authorisation
and DISCONNECT request. The time interval between successive publish
requests is application dependent. Similarly, in a normal subscribe request,
the subscriber first establishes a connection by sending a CONNECT re-
quest and in order to subscribe to topics it sends a SUBSCRIBE request to
various topics. Once subscription is granted, the subscriber stays connected
to the broker to receive future updates to the topics. The subscriber sends
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PING control packets to keep the connection alive when no other control
packets are available to be sent to the broker. The proposed traffic gener-
ation component of the detection framework includes two physical servers,
30 Raspberry Pi devices and four ESP8266 micro-controller. One of the
servers hosted VerneMQ MQTT broker and the second served as the attack
machine. 30 Raspberry Pi devices and four WEMOS ESP8266 devices were
connected to two wireless routers; equally distributed. Twenty PIs and four
ESP8266s each interfaced with a physical sensors were configured to publish
sensor data periodically. Figure 4.10 to Figure 4.12 show the physical de-
ployment of various devices connected to the test-bed which were deployed
for data generation. The test-bed included various sensors such as: PIR
motion sensor, CCS811-Air Quality Sensor, DS130 RTC clock, DS18B20
temperature sensor and MH-MQ Gas sensor. The remaining 14 Raspberry
Pis were configured to periodically send MQTT messages to the broker.

Figure 4.10: Lab deployment of ESP8266 devices

Real-life IoT test-beds were studied to set a realistic publish intervals as
described in Table 4.3, to emulate an actual IoT network.
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Figure 4.11: Lab deployment of 30 Raspberry Pi devices - part 1

Figure 4.12: Lab deployment of 30 Raspberry Pi devices - part 2
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Table 4.3: Real-world MQTT deployments used in a public transport CI

Organisation MQTT-IOT
use

Information Trans-
mitted

MQTT Tools Used Sensors Message send-
ing/receiving
rate

Deutsche
Bahn AG
(DB), Ger-
many’s
DB Rail-
way System
(eclipse.org,
2018)

Long Distance
Trains

Real-time information
about location, delay,
and diagnostic checks

IBM Message Sight run-
ning at control centre,
Eclipse-PAHO client li-
brary for sending mes-
sages

600 trains with
gateways

Sending location
data every 10 sec-
onds, 3000 messages
per day per vehicle

Dynamic Text
Displays

Scheduled updates: de-
lays, cancellations, or
platform changes

Custom Eclipse-Paho
Library

Low-power 6500
edge LED devices

Receiving 25 mes-
sage per second

Escalators and
Elevators

State information,
working condition,
power consumption

Ecliplse-Paho MQTT li-
brary

3000 edge devices Send 10 messages
per second

InterCity Ex-
press trains

Various vehicle informa-
tion

Mosquitto broker for in-
ter train communica-
tion and train to control
centre communication

Deployed on 256
trains

3000 messages per
day per vehicle

NEXCOM
(Wu, 2017)

Industry
process au-
tomation,
analytics and
reporting

Telemetry information,
device updates

Azure IoT Hub Messages sent every
30 seconds
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These studies indicate that the MQTT brokers will have to handle high
volume traffic emerging from a large number of sensors. The impact of DoS
attacks on such infrastructures can have a detrimental effect on IoT systems.
Utilising the study on real deployments the sensors were configured to send
updates to the broker with a varying periodicity. Figure 4.13 shows the
cumulative distribution plot (CDF) of sleep intervals of various sensors of
the test-bed recorded in a one-hour duration, which shows that most devices
had a sleep interval between 4-8 seconds. The reason to keep the sleep
intervals below ten seconds was to achieve a realistic message publish rate,
in alignment with the standard practice (Sivanathan et al., 2018).

Figure 4.13: CDF plot showing the sleep-interval of IoT devices (Raspberry
PIs and ESP8266) used in the test-bed observed in one-hour duration

In addition to publish intervals, sensors were also configured with varying
length LAST WILL messages, where a LAST WILL message is transmitted
to update the subscribed clients if the publishing client disconnects abruptly.
The broker was configured with 1000 username/password combinations to
authenticate the clients, and 1000 MQTT Access Control list (ACL) to au-
thorise devices to publish/subscribe to various topics. This was done to add
realistic loads on the broker CPU during authentication and authorisation.
Anonymous login was disabled to allow only authenticated access to pub-
lish and subscribe topics. Algorithm 5 lists the steps implemented on IoT
devices to send sensor updates through the MQTT protocol. The algorithm
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implements the various normal MQTT states as shown in Figure 4.9, which
includes initiating a TCP connections, setting valid credentials, sending a
valid CONNECT and PUBLISH request and finally disconnecting. The
physical sensor devices were interfaced to Raspberry Pi using the General
Purpose Input Output (GPIO) pins. Once the variables are initialised the
client code reads the data updated by the sensor and publishes data to a
preconfigured topic. The Sleep T ime defines when to pause execution of
the client code in order to introduce periodicity.

1: Inputs:
Sensor-Digital Output,Broker IP, Port,Sleep Time

2: Outputs:
Sensor-Updates sent in MQTT messages

Initialisations : ;
Pins← GPIO Pins ;
B ← Broker IP ;
P ← Port ;
U ← Username ;
Pass← Password ;
WILL Msg ←Msg String ;
WILL Topic← Topic ;
Topic← topic string + sensorID ;
while True do
Data← Read Data(Pins) ;
CONNECT (B,P,U, Pass,WILL Msg,WILL Topic) ;
PUBLISH(Topic,Data) ;
Disconnect() ;
time.sleep(Sleep T ime) ;

end

Algorithm 5: Algorithm for sending sensor data using MQTT protocol

Attack traffic was generated from a separate physical server connected
to the network based on the various attack scenarios described previously.
MQTT traffic was captured on the victim machine using the TCPDUMP
tool (TCPDUMP, 2019) in pcap format, separately for normal and indi-
vidual attacks to ease the labelling process for supervised classification.
The TCPDUMP tool was configured to save the captured packets in 30MB
chunks so as to reduce the processing load associated with feature extrac-
tion. Tshark tool (Wireshark, 2019) was deployed to extract specific packet
parameters of the TCP and MQTT protocols and other packet parameters.
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For generating time-window features, only incoming packets received by the
broker were considered as time-window based detection (further elaborated
in next section) is utilised to detect change in traffic patterns and the DoS
attack emphasis is on the target machine as illustrated in Figure 4.14. In
contrast, the features used to detect abnormal flows (further elaborated in
next section) was based on bi-directional exchange of messages between the
client and the broker. The Tshark command used for extracting flow pa-
rameters from pcap files is shown in Figure 4.15.

for /r %i in (*.pcap) 
 do 
    tshark -r %~nxi 
  -T fields 
      -e frame.time_epoch 
      -e ip.src -e frame.len 
      -e tcp.stream 
                    -e tcp.analysis.initial_rtt 
                    -e tcp.time_delta 
      -e tcp.len 
      -e mqtt.msgtype 
      -e mqtt.len 
      -e mqtt.conflag.cleansess 
      -e mqtt.kalive 
      -e mqtt.clientid_len 
      -e mqtt.username_len 
      -e mqtt.passwd_len 
      -e mqtt.qos 
      -e mqtt.retain 
      -e mqtt.topic_len 
         -e mqtt.sub.qos 
      -e mqtt.willtopic_len 
      -e mqtt.willmsg_len  
      -e mqtt.conflag.qos 
  -E header=y 

          -E separator=, 
                -E quote=d 
  -E occurrence=a >  %~ni.csv

Figure 4.14: Tshark command used to extract specific packet features from
pcap files to extract time-window based features

The various components of the MQTT traffic generator test-bed de-
ployed in this study are illustrated in Figure 4.16.

4.4.2 MQTT Feature Extraction

Feature extraction is the most important component in the attack detection
phases. As discussed in Section 2.5.2, targeted attacks require application
or domain specific features to accurately detect them. In this section, the
various features extracted from the MQTT protocol are discussed in detail.
Feature extraction involves mapping (φ) of application payloads (input space
(X) ) to a real number vector space RN with dimensions N as highlighted
in Equation 4.1.
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for /r %i in (*.pcap) 
 do 
    tshark -r %~nxi 
  -Y "(ip.dst==192.168.20.16 && tcp.dstport==1883)"
  -T fields 
      -e frame.time_epoch 
      -e ip.src -e frame.len 
      -e tcp.stream 
                    -e tcp.analysis.initial_rtt 
                    -e tcp.time_delta 
      -e tcp.len 
      -e mqtt.msgtype 
      -e mqtt.len 
      -e mqtt.conflag.cleansess 
      -e mqtt.kalive 
      -e mqtt.clientid_len 
      -e mqtt.username_len 
      -e mqtt.passwd_len 
      -e mqtt.qos 
      -e mqtt.retain 
      -e mqtt.topic_len 
         -e mqtt.sub.qos 
      -e mqtt.willtopic_len 
      -e mqtt.willmsg_len  
      -e mqtt.conflag.qos 
  -E header=y 

          -E separator=, 
                -E quote=d 
  -E occurrence=a >  %~ni.csv

Figure 4.15: Tshark command used to extract specific packet features from
pcap files to extract flow-based features

X 7→ φ(X) = (φ1(X), φ2(X), ..., φN (X)) with 1 ≤ N ≤ ∞ (4.1)

As discussed in Section 2.5.3, for Application Layer DoS attack detection,
features extracted at packet level and request level can have low detection
capability since such DoS attacks use legitimate connection requests. How-
ever, monitoring a DoS attack using flow level and window based features
can provide better detection capabilities, as DoS traffic can be distinguished
from normal traffic by analysing multiple states in a connection or traffic
characteristics over a period of time.

In this work, the MQTT protocol fields were extracted using Tshark tool.
These fields were mapped to a vector space of MQTT statistical features ag-
gregated at flow level and time-window. A custom-built feature generator
module based on the PANDAS data analysis library (Pandas, 2018), was
deployed to aggregate data based on flow-based and time-window based sta-
tistical data. Flow-based aggregation was achieved by using packet features
observed in a network flow defined by five-tuple: Source IP, Destination IP,
Protocol, Source Port and Destination Port. The time-window based aggre-
gation was based on packet features observed in the specified time-window.
The two feature groups are further explained in the following sections.
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Figure 4.16: MQTT Dataset generation test-bed and the associated tools
for feature generation

Flow-Based Features

In a packet switching network, network flow is defined by five-tuples listed
earlier. No two active network flows will share the same five-tuple values,
however packets belonging to the same flow will share the same five-tuple
values. Flows provide information related to the interactions between the
source and destination such as numbers of packets and bytes exchanged and
can be useful in detecting attacks (Sperotto et al., 2010). To aggregate net-
work traffic at flow-level all packets that belong to a flow are identified and
aggregate features are extracted. In MQTT traffic, a flow can consist of
TCP handshakes followed by the exchange of control packets. In this work,
individual MQTT sessions are identified and aggregate features were ex-
tracted. The resulting dataset dataset consisted of flow instances identified
by the feature vector fv = [f1, f2, f3, , , fn], where each feature vector repre-
sented a MQTT session parameter. Specifically, these aggregate/statistical
flow features were calculated based on the patterns of MQTT sessions, such
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as count, size and field lengths.
The intuition behind using count based features is to detect changes in

states of normal and attack traffic. For example, a normal MQTT traffic
will contain a single CONNECT request, a PUBLISH request and a single
DISCONNECT request as shown in Figure 4.9. An abnormal request might
have multiple control packet requests in a single session as demonstrated
in Section 4.2. To increase the detection capabilities of count based fea-
tures, parameters such as flow duration, total number of packets in flow and
inter-arrival time between packets in a flow were added, which can help de-
tect abnormal sessions such as slow attacks with long flows, fragmentation
attacks and deliberate delay of packets in a flow. By counting the num-
ber of control packets in a session, normal and abnormal sessions can be
distinguished.

However, not all flows with multiple PUBLISH or SUBSCRIBE pack-
ets are malicious, as the protocol permits sending multiple PUBLISH and
SUBSCRIBE packets in the same MQTT session. In order to distinguish
between legitimate and abnormal connections, we explore size based features
as MQTT packets contain several case-sensitive custom fields which are con-
figured to predefined values. Furthermore, IoT devices are programmed to
send specific messages which do not change frequently, unlike human users
who have random behaviour in exchanging messages or accessing content.
This would result in a distribution of MQTT packet and field sizes from
the same IoT device to have a distinguishing distribution compared to other
IoT devices in the network. Figure 4.17a shows the distribution of TCP,
CONNECT and PUBLISH packets sizes in MQTT sessions observed from
four IoT devices of the test-bed. The PUBLISH control packet distribu-
tion for each device shows clear dissimilarity between devices sending those
messages. In addition, Figure 4.17b shows distributions of clientID length
which can effectively help distinguish between clients. Using the assumption
that attacks launched by external adversary will be unable to replicate the
exact field lengths and MQTT payloads, aggregating the packet sizes and
field lengths for individual flows can therefore be effectively leveraged to
distinguish normal from attack traffic.

In addition, adversaries with limited access to MQTT network and using
bruteforce techniques are likely to use random values or values obtained from
other deployments for various protocol fields. Hence, size based features can
provide useful distinction between normal and abnormal user behaviour.

Algorithm 6 shows the steps followed in generating a feature vector from
various CSV files extracted from pcap files. The algorithm loops over the
captured file to extract all the flows K in the file and number of packets in
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Figure 4.17: (a) Density plot showing the distribution of TCP, CONNECT
and PUBLISH packet sizes (bytes) in an MQTT flow observed on four IoT
devices used in test-bed (b) Boxplot of client identifier lengths (bytes) ob-
served on four IoT devices used in test-bed
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each flow M . The counts and average of count-based and size-based features
are calculated using the formulas 4.2 and 4.3. The process is repeated for
all the flows and all the CSV files; finally returning a flow-based dataset
represented using the feature vector.

1: Inputs:
CSV containing individual packet records extracted from
pcap file using Tshark

2: Outputs:
feature vector,fcounts, fsize
while ALL CSV files are read do
while ALL packets in CSV are read do

flowid← tcp.stream, udp.stream ;
K ← total number of flows ;
M ← total number of packets in flow ;

end
for i← 1,K do

for j ← 1,M do
if feature[i][j] == feature[i][j+1] then

fcount = fcount + 1 ;
ftotal = ftotal + fvalue ;

end

end
fcounts[i] = fcount ;
fsize[i] = ftotal/fcount ;

end
fcounts ← merge(fcounts[i]) ;
fsize ← merge(fsize[i]) ;

end
Return← fcounts, fsize ;

Algorithm 6: Algorithm for generating flow-based feature vector

The count based features were calculated using the Formula 4.2.

fcount =
M∑
n=1

fn (4.2)

The size and field length were based on average bytes of the features, as
calculated through the Formula 4.3.
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fsize =
1

M

M∑
n=1

fn (4.3)

Where, M is the total number of packets in the flow per captured pcap file.
An example of the count features is presented using a sample packet data
extracted using Tshark presented in Table 4.4.

Table 4.4: Sample packet data extracted using Tshark from MQTT traffic

frame.time epoch ip.src ip.dst ip.proto frame.len tcp.stream tcp.srcport tcp.dstport mqtt.msgtype

1554601023.4332 192.168.20.19 192.168.20.16 6 74 250 35505 1883
1554601023.4332 192.168.20.16 192.168.20.19 6 74 250 1883 35505
1554601023.4340 192.168.20.19 192.168.20.16 6 66 250 35505 1883 1
1554601023.4350 192.168.20.19 192.168.20.16 6 101 250 35505 1883
1554601023.4350 192.168.20.16 192.168.20.19 6 66 250 1883 35505 3
1554601023.4361 192.168.20.19 192.168.20.16 6 131 250 35505 1883
1554601023.4361 192.168.20.16 192.168.20.19 6 66 250 1883 35505 2
1554601023.4371 192.168.20.16 192.168.20.19 6 70 250 1883 35505
1554601023.4376 192.168.20.19 192.168.20.16 6 66 250 35505 1883 14
1554601025.4395 192.168.20.19 192.168.20.16 6 68 250 35505 1883
1554601025.4399 192.168.20.19 192.168.20.16 6 66 250 35505 1883

The flow duration of the flow 250 is calculated as frame.time epoch =
1,554,601,025.4399 (seconds elapsed since the epoch), frame.time epoch =
1,554,601,023.4332 and flow duration= 2.0067 seconds. Similarly number of packets
in the flow 250 are 11. The control packets are counted based on the
mqtt.msgtype field, which indicates the type of control packet.

The average frame length of flow 250 can be calculated as avg frame len
= 74+74+66+101+66+131+66+70+66+68+66/11 = 77.09 and, avgmqtt len
= 33+63+2/11 = 8.902. A sample of resultant dataset is presented in Table
4.5.

Table 4.5: Sample dataset containing n flows represented by k features

feature 1 feature 2 .... feature k

flow 1 value(1,1) value(1,2) ... value(1,k)

flow 2 value(2,1) value(2,2) ... value(2,k)

flow 3 value(3,1) value(3,2) ... value(3,k)

.. .. .. .. ..

flow n value(n,1) value(n,2) ... value(n,k)

The count based features were based on the MQTT session such as counts
of number of packets, number of control packets and number of QoS packets
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that belonged to the same flow. Packet size and field length features were
based on the captured IP packets and the various MQTT field lengths, as
illustrated in Table 4.6. Only packet meta-data was utilised to generate
the features, instead of deep inspection of the payload. Hence, this feature
extraction method can also be utilised on flows with encrypted MQTT pay-
loads. One of the challenges in extracting data for subscription flooding
attacks was that MQTT allows multiple subscription topics as well as mul-
tiple subscription payloads to be piggybacked in the same MQTT packet, as
shown in Figure 4.18. In order to measure the accurate number of subscrip-
tion requests per flow, the feature generation module counts the individual
subscription requests and the number of topics in the request as separate
request.

Figure 4.18: Subscribe flooding attack packet displayed in Wireshark show-
ing multiple SUBSCRIBE requests in the same packet

Time-Window Based Features

In addition to the flow-based features, sliding window based features were
also analysed for MQTT attack detection. A network traffic can be modelled
as a time series and can be used to detect anomalies that cause variation
in the time-series parameters. Sliding windows method that was used to
analyse network traffic has advantages over fixed landmark points, to extract
statistical network summaries (Golab, DeHaan, Demaine, Lopez-Ortiz, &
Munro, 2003). Commonly used measures to define the sliding window size
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Table 4.6: Proposed MQTT DoS detection features (feature type N: Nu-
meric, B: Binary)

S.No Feature Description Type

MQTT Session Statistical Features

1 flow duration Duration of Flow N

2 pkt in flow No. of Packets in a Flow N

3 Connect Command No. of CONNECT packets in Flow N

4 Publish Message No. of PUBLISH packets in the Flow N

5 Subscribe Request No. of SUBSCRIBE packets in the Flow N

6 Disconnect Req No. of DISCONNECT packets in the Flow N

7 Ping Request No. of PING packets in the Flow N

8 Subs Qos0 No. of SUBSCRIBE packets with QoS 0 in the Flow N

9 Subs Qos1 No. of SUBSCRIBE packets with QoS 1 in the Flow N

10 Subs Qos2 No. of SUBSCRIBE packets with QoS 2 in the Flow N

11 Pub Qos0 No. of PUBLISH packets with QoS 0 in the Flow N

12 Pub Qos1 No. of PUBLISH packets with QoS 1 in the Flow N

13 Pubs Qos2 No. of PUBLISH packets with QoS 2 in the Flow N

14 Will Qos0 No. of WILL messages with QoS 0 in the Flow N

15 Will Qos1 No. of WILL messages with QoS 1 in the Flow N

16 Will Qos2 No. of WILL messages with QoS 2 in the Flow N

17 tcp.time delta Time between packets in the flow N

MQTT Packet and Field Length Features

18 frame.len Avg. Frame Length in the Flow N

19 tcp.len Avg. TCP length in the Flow N

20 mqtt.clientid len ClientID length in the Flow N

21 mqtt.username len username length in the Flow N

22 mqtt.passwd len password length in the Flow N

23 mqtt.willtopic len WILL Topic length in the Flow N

24 mqtt.willmsg len WILL Message length in the Flow N

25 mqtt.len Avg. MQTT packet length N

26 mqtt.topic len Avg MQTT Topic Length N

27 mqtt.kalive MQTT Keep Alive interval N

28 mqtt.conflag.cleansess CleanSession Flag Set/Unset B
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are count-based and time-based (Golab et al., 2003), where count-based
windows observe the last N packets; and time-based windows observe all
the packets arrived in the last t time units. The number of packets in a
time-based window vary based on the arrival of packets in the time interval.
Hence, statistical features based on it allows detecting anomalies that cause
variations in the observed time series (Linda, Vollmer, & Manic, 2009).
For an efficient detection of anomalies in the time series, a sliding window
approach with a time-based window was adopted to extract features from
the network traffic, similar to what is proposed in (Linda et al., 2009). Both
count based and size based features were extracted from network traffic time-
series. The count based features were calculated by frequencies of features
observed in all the packets in the window. Size based features are based on
average value of the feature observed in the window, and is calculated as:

fsize =
1

M

n=M∑
n=1

Vi (4.4)

where M is number of packets in the window and V is the value of the
feature in the packet.

Only packets flowing in one direction in MQTT traffic flow are considered
because the DoS attack emphasis is on flooding the broker with excessive
traffic and depleting the server resources. In the dataset preparation step
the PANDAS rolling function was used to calculate the statistics of various
features in the window. The features that were extracted are presented in
Table 4.7. The sliding-window algorithm loops over the captured file to
extract all the overlapping windows K in the file and the number of packets
in each time-window M . The counts and average of count-based and size-
based features are calculated and the process is repeated for all the time
windows in all the CSV files; finally returning a time window-based dataset
represented based on the feature vector. Algorithm 7 describes the steps
followed in generating a time-window based datasets. A sample of resultant
dataset is presented in Table 4.8.

4.4.3 Detecting Framework Classification Techniques

The attack detection module of the framework is a machine learning (ML)
based detection system. Statistical flow features and time-window based
features extracted from MQTT network traffic serve as input to the clas-
sification system and help differentiate normal from attack traffic, as well
as inter-attack classification. The task of differentiating between the var-
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1: Inputs:
CSV containing individual packet records extracted from
pcap file using Tshark

2: Outputs:
feature vector,fcounts, fsize
while ALL CSV files are read do
while ALL packets in CSV are read do

time← frame.time epoch ;
w ← time− window(w) ;
K ← total number of overlapping windows ;
M ← total number of packets in time− window ;

end
for i← 1,K do

for j ← 1,M do
if feature[i][j] == feature[i][j+1] then

fcount = fcount + 1 ;
ftotal = ftotal + fvalue ;

end

end
fcounts[i] = fcount ;
fsize[i] = ftotal/fcount ;

end
fcounts ← merge(fcounts[i]) ;
fsize ← merge(fsize[i]) ;

end
Return← fcounts, fsize ;

Algorithm 7: Algorithm for generating time-window-based feature vec-
tor
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Table 4.7: Time-Window based features

S.No Feature Description

MQTT Count Based Features

1 Pktcount Number of packets in 2s window

2 pkt delta Avg Inter-arrival Time window

3 Unique SRC Number of unique source Ips in window

4 Unique streams Number of unique flows in windows

5 CleanSessionSet Number of packets with clean session set in window

6 CleanSessionNSet Number of packets with clean session unset in window

7 RetainSet Number of packets with Retain flag set in window

8 RetainNSet Number of packets with Retain flag unset in window

9 Connect Command Number of Connect Control packets in window

10 Publish Message Number of Publish Control packets in window

11 Subscribe Request Number of Subscribe Control packets in window

12 Disconnect Req Number of Disconnect Control packets in window

13 Ping Request Number of Ping Control packets in window

14 Subs qos0 Number of QoS0 Subscriptions in window

15 Subs qos1 Number of QoS1 Subscriptions in window

16 Subs qos2 Number of QoS2 Subscriptions in window

17 Pub qos0 Number of QoS0 Publish messages in window

18 Pub qos1 Number of QoS1 Publish messages in window

19 Pub qos2 Number of QoS2 Publish messages in window

20 will qos0 Number of QoS0 WILL messages in window

21 will qos1 Number of QoS1 WILL messages in window

22 will qos2 Number of QoS2 WILL messages in window

MQTT Size Based Features

23 AVG FrameLen Avg Frame length in window

24 AVG tcpdelta Avg tcpdelta in a flow per window

25 AVG tcpseglen Avg tcp segment length in window

26 AVG msglen Avg MQTT message length in window

27 AVG keepalive Avg keepalive interval in window

28 AVG Clientidlen Avg Clientid length in window

29 AVG Usrnamelen Avg User name length in window

30 AVG PasswordLen Avg password length in window

31 AVG WillTopicLen Avg WILL topic length in window

32 AVG WillMsgLen Avg WILL message length in window

33 AVG TopicLen Avg topic length in window

ious flooding attacks will enable effective counter measures to be applied
to thwart such attacks. The use of legitimate requests in Application layer
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Table 4.8: Sample dataset containing n windows represented by k features

feature 1 feature 2 .... feature k

window 1 value(1,1) value(1,2) ... value(1,k)

window 2 value(2,1) value(2,2) ... value(2,k)

window 3 value(3,1) value(3,2) ... value(3,k)

.. .. .. .. ..

window n value(n,1) value(n,2) ... value(n,k)

DoS attacks can pose a significant challenge to the detection framework
in differentiating between normal and attack network flows. Furthermore,
broken sessions due to loss of network connectivity can potentially increase
the challenge to detect attacks. Hence, the ML algorithms selected in the
framework should be sensitive to small variations in feature vector values,
to accurately classify network traffic. For example, a normal flow can have
the following communication sequence in the IoT-MQTT message exchange:
TCP handshake + Connect + Publish/Subscribe + Disconnect, whereas, an
attack communication sequence can be: TCP handshake + Connect or TCP
handshake + Connect + multiple Publish/Subscribe + Disconnect.

In this study, three fundamentally different machine learning approaches
namely, average one-dependence estimator (AODE), C4.5 decision trees and
artificial neural network (ANN) were integrated into the detection frame-
work. The AODE classifier is based on the Naive Bayes algorithm, which
adopts a probabilistic approach in estimating the distribution of network
traffic classes. This allows the AODE classifier to converge quickly and re-
quires fewer training samples. C4.5 decision tree (DT) classifier recursively
divides the feature space to learn the decision boundary that separates the
classes. One of the advantages of the DT classifiers is that they detect fea-
ture interactions effectively and the model is easy to interpret. MLP belongs
to the ANN family of classifiers that try to imitate the biological brain by
creating a network of neurons grouped into input, hidden and output layers.
The MLP classifier uses a deterministic model to iteratively learn the explicit
decision boundary by adjusting the weights of the neural network based on
the training samples. Even though MLP classifiers are memory and CPU-
intensive, they are effective on large datasets with complex structures. The
selected classification algorithms were adopted in detecting MQTT based
DoS attacks because of the following reasons:
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• They are capable in detecting small variations expected in Application
layer DoS attacks by using effective techniques in learning the decision
boundaries between classes,

• They can identify complex interactions between the MQTT features
to detect anomalies,

• As the IoT network is expected to scale rapidly producing large vol-
umes of data, the selected classifiers can also be scaled up to handle
large datasets.

The steps followed in the detection framework to classify MQTT traffic are
illustrated in the Figure 4.19 and the three classifiers adopted in MQTT
attack detection are discussed below:

IoT Network Traffic

Statistical Flow features 

Count-based features
Mean Packet size and control

packet field lengths

SrcIP DstIP Proto SrcPrt DstPrt

SrcIP DstIP Proto SrcPrt DstPrt

SrcIP DstIP Proto SrcPrt DstPrt

Packets grouped by flows 
identified by 5-tuple

Feature Vector f

Duration, packet count, 
control packet count

SrcIP DstIP Proto SrcPrt DstPrt

MQTT payload, ClientID, 
Topic, etc.

Detection/Classification AODE C4.5 MLP

Normal
Attack-

type
Output

Figure 4.19: Detection framework work-flow in detecting MQTT attacks
using flow-based features

AODE Classifier (Webb, Boughton, & Wang, 2005): The AODE clas-
sifier is a variant of the Näıve Bayes classifier that estimates the probability
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of the class of each output variable Y given a set of input features x1,...xn.
It is based on a simple Näıve Bayes classifier which relies on the assumption
of independence of attributes. Assuming that all attributes are independent
given the class, then Näıve Bayes can be defined as:

arg max
c∈C

P (C)

n∏
i=1

P (ai|C) (4.5)

Where C is class label and a is the attribute. In this scenario, the com-
putation cost is reduced, however the performance of Näıve bayes decreases
if the dependency between the attributes is high (Koc & Carswell, 2015).
To counter this effect the AODE classification technique uses a weaker inde-
pendence assumption to achieve a higher accuracy rate compared to Näıve
bayes. AODE classifiers are simple to implement and provide high accuracy
in classifying cyber-attacks specifically DoS attacks as highlighted by (Baig
et al., 2020) .

Decision Trees (DT): The decision tree-based algorithms build train-
ing datasets into the tree structures, applying the information entropy prin-
ciple. Each branch of the tree represents an association between the feature
vector and the class label. C4.5 is one of widely used DT method which
recursively partitions the training dataset by choosing the most effective
features to differentiate between the classes. In the first step, C4.5 identifies
the best feature that can divide the data instances. In further steps, child
nodes are created to divide the instances into subclasses. The attributes
selected in each division point in the tree is based on the largest information
gain using the best attribute. Entropy is used as measure of information
gain (Hssina, Merbouha, Ezzikouri, & Erritali, 2014), calculated as follows:

H(X) = −
n∑
i=i

pilog2(pi) (4.6)

Multi-Layer Perceptron (MLP): MLP is a type of feed-forward ar-
tificial neural network (ANN) that comprises multiple nodes known as arti-
ficial neurons, emulating the biological neurons of brain. The nodes in the
MLP are grouped as input layers representing the input features, hidden
layer and an output layer. In MLP the nodes of a given layer use activation
functions to control the node’s output, as well as to serve as an input for the
next node. The nodes in MLP are connected by weights which are tuned
by using back-propagation algorithms, that adjust the weights to reduce the
error between outputs and expected results where, the error is calculated as
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follows (Dua & Du, 2016):

ei(n) = ti(n)− yi(n) (4.7)

Where ti(n) is the expected output and yi(n) produced output value of
the instance n and output node i.

4.5 Summary

In this chapter the MQTT Attack model and detection model were pre-
sented. The various threats to MQTT protocol with an emphasis to DoS
attacks were described. The MQTT protocol features that can be exploited
to cause DoS attack scenario were subsequently discussed. The test-bed used
to evaluate the DoS attack scenarios along with the tools employed in this
study were elaborated. Finally the DoS attack detection framework used in
this study was presented with steps explaining the traffic generation, feature
extraction, ML algorithms used in the framework. The following chapters
will present the results and discussion of results for the experiments con-
ducted.
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Chapter 5

Results

This research conducted an analysis of the impact of Application Layer
DoS attacks on MQTT protocol based IoT deployments and the effective-
ness of MQTT based statistical features in detecting such attacks. As per
the research procedure described in Section 3.3, this chapter will present
the results for the research processes RP-3.1 and RP-3.2. The results will
provide quantitative measures of the dependent variables (DV) observed due
to the application of treatment on the various independent variables (IV)
as described in Section 3.4. The results are divided into DoS impact assess-
ment and detection framework performance. The DoS impact assessment is
further divided into system performance and delay measurements.

5.1 DoS Impact Assessment

In order to show the impact of the proposed MQTT based Application Layer
DoS attack scenarios presented in Section 4.2, the DoS impact on Single-
CPU, Six-CPU, and Load Balanced (LB) deployment with three different
brokers has been presented. The DoS impact on the broker system perfor-
mance has been presented first followed by the impact on message delay
and publish rate. The impact on the system performance was measured
with no-load conditions to highlight the impact on the broker CPU, mem-
ory and bandwidth utilisation. The message delay was measured with 1,000
clients publishing at an average rate of 500 messages per second together.
Subsequently the delay due to DoS attacks was measured for the three QoS
supported by the MQTT protocol. The following section presents the broker
system performance measured with Single-CPU, Six-CPU and LB configu-
rations. Table 5.1 lists the various IV treatments and the observations on
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the DV presented in this section.

Table 5.1: IV treatments and observations on DV in DoS impact assessment

DoS
Sce-
nario

Treatment Deployment
scenarios/
configurations

Broker Observations

BF1
(IV1)

Sleep-Interval,
Attack Threads Single-CPU,

Six-CPU,

LB

Mosquitto,

VerneMQ, EMQ

CPU idle (%), Pack-
ets per Second (PPS)
(DV1)

BF2
(IV2)

CONNECT
Delay

CPU idle (%), PPS,
Half-Open TCP ses-
sions (DV1)

BF3
(IV3)

WILL Payload
Size, Attack
Thread

Bandwidth Utilisation
(MB/s), CPU Idle (%)
(DV1)

IAUTHS
(IV4)

Subscription
Loop

CPU Idle (%) (DV1)

5.1.1 Single-CPU deployment

The Single-CPU deployment configuration was utilised to compare the per-
formance of the three brokers with a single CPU core as described in Section
4.3.

Impact of Basic CONNECT Flooding (BF1) Attack

The basic CONNECT flooding attack (IV1) attempts to send CONNECT
control packets with invalid credentials at a rapid rate to consume broker
resources in authenticating individual requests. A separate attack machine
was deployed to launch the attack and the impact was measured on the
three brokers.

The treatment applied to IV1 was the manipulation of sleep-interval
time and the number of attack threads. The experiment consisted of five
iterations. In each iteration, the number of attack threads were kept fixed
and the sleep-interval was decreased gradually from 0.5 to 0 seconds after
sending a pre-determined number of attack requests with each sleep-interval
as described in Table 5.2. Higher number of attack packets were sent with
lower sleep-intervals to achieve a similar measurement durations otherwise a
higher sleep-interval would take longer to complete compared to lower sleep-
interval setting. Five independent iterations were performed by increment-
ing the attack threads by one. The attack threads were only incremented in
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steps of one due to the limitation in using large number of program threads
as this would increase the resource contention among threads, thus reducing
the effectiveness of the DoS attack. It was also observed that the attack
packets generated by the DoS attack initially increased with the increase of
threads, but reduced after reaching three attack threads. Hence only five
increments of attack threads were tested in this research. The impact of
applying the two treatments to IV1 was measured in terms of CPU idle
percentage (DV1), which indicates the CPU utilisation of the broker server
due to the DoS attack. A lower CPU idle percentage indicates a high CPU
utilisation and a high CPU idle percentage indicates a low CPU utilisation.
The impact was individually measured on each of the three MQTT brokers.
The attack volume measured in terms of the number of attacks packets per
second (PPS) received by the broker was also measured to provide a sup-
porting evidence to explain the behaviour of DoS attack on the broker CPU
utilisation.

Table 5.2: Sleep Intervals and the number of attack requests sent in each
step

Sleep-Interval (seconds) Number of attack requests sent

0.5 100
0.1 1000
0.01 5000
0.005 10000

0 200000

Figure 5.1 shows the impact of reducing the sleep-interval (increasing
the arrival rate) and increasing the number of attack threads on the CPU
utilisation of the Mosquitto broker. The results indicate that, reducing the
sleep-interval and increasing the attack threads caused an increase in the
CPU utilisation. Especially with the sleep-intervals of 0.01 and 0.005 sec-
onds, increasing the attack threads caused a higher CPU utilisation, which
is indicated by the wide separation in the CPU idle percentage. With the
sleep-interval of zero seconds and single attack thread, the CPU utilisation
fluctuated when compared to using higher attack threads as indicated by
the peaks with sleep-interval of zero in Figure 5.1.

The CPU utilisation results can be further explained by the attack vol-
ume measured during the experiment. Figure 5.2 shows the average number
of attack packets and the maximum number of attack packets that were re-
ceived by the Mosquitto broker during the BF1 attack. The broker received
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Figure 5.1: Impact of BF1 attack on Mosquitto Broker CPU utilisation while
reducing sleep-interval and increasing the number of threads

(a) (b)

Figure 5.2: Attack packets received by the Mosquitto broker with increas-
ing attack threads and decreasing sleep intervals (seconds) for BF1 attack
category. Sub-Figure (a) shows the average attack packets received and
Sub-Figure (b) shows the maximum attack packets received

higher average packets per second (PPS) during the attack when sleep-
intervals were reduced and the number of attack threads were increased,
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thus resulting in a higher CPU utilisation. With the sleep-interval of zero,
the three attack threads produced an average 7,500 PPS which was the high-
est among the five thread settings. However, with a single attack thread and
a zero sleep-interval, the Mosquitto broker received a lower average attack
PPS, but contained a higher maximum attack PPS (9,700 PPS) compared
to other attack thread settings resulting in a higher CPU (>90%) utilisation
with fluctuations which were observed in Figure 5.1. In contrast, the other
thread settings with the sleep-interval of zero generated similar average and
maximum PPS resulting in similar CPU utilisation performance during the
BF1 attack.

Figure 5.3: Impact of BF1 attack on VerneMQ Broker CPU utilisation while
reducing sleep-interval and increasing the number of threads

The overall impact on VerneMQ broker had similarities to impact ob-
served on the Mosquitto broker, as reducing the sleep-interval and increasing
the attack threads caused higher CPU utilisation. However, with single and
two thread settings the impact was negligible as shown by the drop in the
CPU idle percentage in Figure 5.3. With three, four and five attack threads,
the impact on VerneMQ broker CPU utilisation was higher than with single
and two attack threads. Specifically, with the sleep-intervals of 0.01 and
0.005 seconds when compared to using single and two attack threads. In
addition, with a zero second sleep-interval and three, four and five attack
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threads, the CPU idle percentage reached zero (100% CPU utilisation) after
an initial fluctuation of CPU utilisation.

(a) (b)

Figure 5.4: Attack packets received by the VerneMQ broker with increas-
ing attack threads and decreasing sleep intervals (seconds) for BF1 attack
category. Sub-Figure (a) shows the average attack packets received and the
Sub-Figure (b) shows the maximum attack packets received

The VerneMQ broker received higher average attack packets with the
increase of attack threads until three threads and reduces with four and
five attack threads as shown in Figure 5.4. Similarly, the maximum attack
packets received by the broker also increased with the increase of attack
threads until four threads. The maximum packets reduced for the five attack
threads.

This indicates that the CPU utilisation of the VerneMQ broker was
affected more by the increase of the number of attack threads compared
to the increase of the number of attack packets received by the broker, as
high CPU utilisation was observed with the five attack threads compared to
all the other attack thread settings, even though it produced lower attack
volume compared to other thread settings.

In addition to the CPU exhaustion on VerneMQ broker due to CON-
NECT packet flooding, the use of non-ASCII characters in client identifier
to generate a malformed MQTT CONNECT packets for BF1 attack cat-
egory, caused considerable increase in the broker memory, especially with
four and five threads as shown in Figure 5.5. This attack has the potential
to cause memory exhaustion on the broker.

Compared to all the brokers, EMQ broker’s CPU utilisation recorded the
maximum impact during BF1 attack as the CPU idle percentage reached
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Figure 5.5: Impact of BF1 attack using malformed (non-ASCII characters
in client identifier) packets on memory utilisation of the VerneMQ broker
with the increase of attack threads

Figure 5.6: CPU Idle percentage during the BF1 attack with various sleep
intervals and number of threads on the EMQ broker
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zero percentage with every choice of attack thread and a sleep-interval lower
than 0.01 seconds as shown in Figure 5.6.

The EMQ broker also received lower average attack PPS when compared
all the other brokers as none of the thread settings achieved more than 1,000
average PPS. However the broker received a maximum of more than 4000
attack PPS with zero sleep-interval and with all the attack thread settings
as shown in Figure 5.7.

(a) (b)

Figure 5.7: Attack packets received by EMQ broker with increasing attack
threads and decreasing sleep intervals (seconds). Sub-Figure (a) shows the
average attack packets received and the Sub-Figure (b) shows the maximum
attack packets received

Impact of Delayed CONNECT Flooding (BF2) Attack

The delayed CONNECT flood (IV2) attack aims to consume available TCP
connections by opening multiple TCP sessions and delaying the CONNECT
control packet. In addition, the CPU resources are consumed by sending a
CONNECT request with invalid credentials. The treatment applied to IV2
was CONNECT delay (seconds), which causes the execution of the attack
thread to be paused for the specified period. The MQTT PAHO client li-
brary was modified to introduce delays in sending the CONNECT request.
Four iterations were performed with delays set to 0.01, 0.1, 0.5 and 1 seconds
respectively. As described in Algorithm 2, multiple threads are launched,
with each thread configured to delay the sending of the CONNECT request.
Since the focus of the attack was to observe the impact of launching multiple
connections requests with delayed CONNECT on the broker CPU utilisa-
tion and the half-open TCP sessions, a maximum of 250 attack were only
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Figure 5.8: Average CPU Idle percentage of three brokers with various delay
settings used in BF2 attack using 250 attack threads

launched. The maximum attack threads were fixed to 250 as the attack was
launched from a single attack machine with limited resources in launching
multiple threads. The delay settings that resulted in the highest (maximum
250) half-open TCP sessions was assessed in this experiment. The impact
of applying the CONNECT delay treatment on the IV2 was measured in
terms of the CPU utilisation and the number of available TCP sessions.
The CPU utilisation and the half-open sessions (number of established TCP
connections) on the broker was recorded for a five minute period during the
attack and the average CPU utilisation and the average half-open sessions
for the chosen delay setting is reported in this section.

The measurement of CPU utilisation during the attack, showed that a
smaller delay caused a higher CPU utilisation in all three brokers indicat-
ing CPU exhaustion especially in VerneMQ and EMQ brokers as shown
in Figure 5.8. However, a higher delay had less impact on Mosquitto and
VerneMQ brokers when compared to EMQ broker which had zero CPU idle
percentage for all the delay settings.

Even though the impact on CPU utilisation was less with a higher de-
lay, the number of half-open TCP sessions increased considerably with the
increase in delay, as shown in Figure 5.9. With 250 attack threads, all the
three brokers recorded higher half-open TCP sessions for a one second CON-
NECT delay, compared to the sattack launched using 0.01 second delay.
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Figure 5.9: Average number of half-open MQTT sessions per second ob-
served on the three brokers with various delay settings used in BF2 attack
using 250 attack threads

Figure 5.10: Average number of attack packets received by three brokers
with various delay settings used in the BF2 attack using 250 attack threads

In addition, the average attack PPS received by the brokers also explains
the reason for low CPU utilisation with higher CONNECT delay. Figure
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5.10 shows the average number of attack PPS received by the three brokers
for five minute period with the various delay settings. As the delay is in-
creased, the Mosquitto and VerneMQ brokers received fewer attack packets
compared to the EMQ broker, which showed marginal variation with the
increase in delay.

These results also indicate that choosing a smaller delay makes the BF2
attack behaviour identical to BF1 attack and by increasing the delay a more
stealthier attack can be launched for exhausting the TCP resources. In
addition, the TCP connection limits on individual broker can be affected
using fewer attack packets resulting DoS for new connections.

Impact of CONNECT and WILL Message Flooding (BF3) Attack

The BF3 attack is a modified version of basic flooding attack BF1, with
a piggybacked WILL message. The attack attempts to consume CPU and
bandwidth resources of the broker by adding a payload to the CONNECT
packet. The treatments applied to BF3 attack (IV3) was the manipulation
of WILL payload size and the number of attack threads. The experiment
consisted of five iterations. In each iteration, the number of attack threads
were fixed and the payload size was increased gradually from 50 to 43,000
bytes. Five independent iterations were performed by incrementing the at-
tack threads by one. The impact of applying the two treatments to BF3
attack was measured in terms of bandwidth utilisation (MB/s) and CPU
idle percentage (CPU utilisation - DV1).

Figure 5.11 shows the impact of increasing the number of threads and
WILL payload size on the attack bandwidth measured on the Mosquitto
broker. The results indicate that varying the number of threads did not
impact the amount of bandwidth consumed on the broker. However, BF3
attack launched using a single thread had greater impact on CPU utilisa-
tion when compared to two and more threads as shown in Figure 5.12. In
addition, the CPU utilisation was higher with lower payload size compared
to the higher payload size.

Similar to Mosquitto broker, varying the number of threads did not
impact the amount of bandwidth utilised during the attack on the VerneMQ
broker as shown in Figure 5.13. The bandwidth utilisation increased with
the increase of the payload size but only slightly increased with the increase
of attack threads. However, the CPU idle percentage dropped close to zero
percentage with four and five attack threads indicating CPU exhaustion, as
shown in Figure 5.14.

The EMQ broker recorded lower bandwidth consumption with maxi-
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Figure 5.11: Impact of number of increasing attack threads and WILL mes-
sage payload size on Mosquitto Broker bandwidth utilisation during the BF3
attack

Figure 5.12: Impact of number of increasing attack threads and WILL mes-
sage payload size on Mosquitto Broker CPU idle percentage during the BF3
attack
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Figure 5.13: Impact of number of increasing attack threads and WILL mes-
sage payload size on VerneMQ Broker bandwidth utilisation during the BF3
attack

Figure 5.14: Impact of number of increasing attack threads and WILL mes-
sage payload size on VerneMQ Broker CPU idle percentage during the BF3
attack
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mum average bandwidth utilisation observed as low as 0.35 MB per second
as shown in Figure 5.15. However, the CPU utilisation of EMQ broker was
reduced to zero percentage for all the payload sizes among the different num-
ber of attack threads, as shown in Figure 5.16 indicating CPU exhaustion.

Figure 5.15: Impact of number of increasing attack threads and WILL mes-
sage payload size on the EMQ Broker bandwidth utilisation during the BF3
attack

In addition to CPU and bandwidth utilisation due to the CONNECT
flood attacks using a WILL message, the 43,000 bytes WILL payload con-
tained malformed characters, which impacted the memory utilisation of the
EMQ broker. Figure 5.17 shows the memory utilisation of EMQ broker with
increasing number of attack threads for a 43,000 byte WILL payload. With
the three, four and five attack threads the broker MQTT service crashed
indicating a vulnerability in EMQ brokers to malformed packets.
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Figure 5.16: Impact of number of increasing attack threads and WILL mes-
sage payload size on EMQ Broker CPU idle percentage during the BF3
attack

Figure 5.17: Impact of BF3 attack on average Memory utilisation of EMQ
broker with increasing attack threads
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Impact of Subscribe Flooding (IAUTHS) Attack

The subscription flooding attack (IV4) aims to consume CPU resources of
the target broker server by sending multiple subscription requests in a single
MQTT sessions. The treatment applied to IV4 was the number of subscrip-
tion requests sent after establishing the MQTT session.

The impact of this attack was measured in terms of the CPU utilisa-
tion. The number of subscription requests were varied between 10 and 250
requests per session and the impact on CPU was measured independently.
Figure 5.18 shows the impact of increasing the number of subscriptions on
the three brokers. The results indicate that the CPU idle percentage of
the Mosquitto broker dropped below five percentage with the increase of
number of subscription requests, specifically with 50 and above subscription
requests. However, on VerneMQ and EMQ brokers, the CPU idle percent-
age was zero for all the values of subscriptions per session, indicating a CPU
exhaustion.

Figure 5.18: Impact of number of subscriptions in a single MQTT session
on the CPU utilisation (Idle Percentage) on three MQTT brokers

In order to measure the impact of DoS attacks on the brokers configured
with higher CPU resources and high-availability settings, a Six-CPU settings
and a load-balanced configuration was evaluated; which is discussed in the
following sections.
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5.1.2 Six-CPU Deployment

The Six-CPU deployment was evaluated on the three brokers configured with
six CPU cores to increase the number of CPU cores available for process-
ing MQTT requests. The parameters of various DoS attack scenarios such
as number of attack threads, sleep-interval, CONNECT delay and number
of subscriptions in a single session identified using Single-CPU setting was
used in the evaluation of the impact on the Six-CPU setting. The Six-CPU
deployment experimental results show that increasing the number of CPUs
available to process the MQTT requests reduced the impact of DoS attacks
on the Mosquitto and the VerneMQ brokers for CONNECT flooding sce-
narios (BF1 to BF3), but the EMQ broker’s CPU utilisation was impacted
and idle percentage reduced below 60% for all the attack scenarios. How-
ever, all the brokers showed lower CPU idle percentage for the IAUTHS
attack indicating significant effects of IAUTHS attacks on the MQTT bro-
kers. The Six-CPU utilisation for all the three brokers is shown in Figure
5.19. Since the Mosquitto broker is a single-threaded application and only
uses a single CPU, the actual utilisation is shown in terms of a single CPU.
The Mosquitto broker showed an average idle percentage of 20%, as it is
a single threaded application and does not use multi-core CPUs effectively.
The results also show that VerneMQ had lower CPU idle percentage only for
IAUTHS attack. In contrast, the EMQ broker had less than 20% CPU idle
time for the two attack categories. Table 5.4 presents the values of various
attack metrics measured to highlight the attack impact on DV1 with the
treatments applied to IV1 to IV4.
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Figure 5.19: Comparison of CPU Idle Percentage measured during various
attack scenarios with Six-CPU configuration

Table 5.3: Comparison of CPU utilisation breakup measured for various
attack scenarios with Six-CPU configuration

Attack Type Broker Type %usr %sys %iowait %soft %idle

BF1

VerneMQ 52.22 22.43 0.01 7.22 18.09

EMQ 14.68 10.24 17.36 4.22 53.50

Mosquitto 1.69 4.04 0.02 12.07 82.19

BF2

VerneMQ 43.61 19.51 0.01 7.12 29.73

EMQ 15.92 11.27 16.55 3.00 53.26

Mosquitto 2.31 5.05 0.01 10.25 82.39

BF3

VerneMQ 7.95 3.24 13.29 1.54 73.98

EMQ 72.28 7.70 13.50 1.31 5.20

Mosquitto 1.79 3.96 0.01 9.63 84.61

IAUTHS

VerneMQ 71.31 4.21 0.00 8.68 15.76

EMQ 70.45 3.50 0.00 3.37 22.68

Mosquitto 18.34 2.86 0.01 1.68 77.11
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Table 5.4: Bandwidth, Memory and Process CPU utilisation during various
attack scenarios in the Six-CPU configuration

Attack Type Broker Bandwidth
(kbytes/s)

Memory% pCPU(%) Packets/Sec

BF1

VerneMQ 481.51 0.09 402.88 6738.09

EMQ 141.78 0.16 92.65 2019.92

Mosquitto 542.82 0.03 64.52 7854.89

BF2

VerneMQ 341.44 0.17 406.80 4788.19

EMQ 92.96 0.16 58.36 1338.36

Mosquitto 455.97 0.03 60.36 6554.38

BF3

VerneMQ 18473.87 0.06 83.22 14552.83

EMQ 4539.02 0.98 546.18 3691.76

Mosquitto 18761.25 0.03 42.64 16394.63

IAUTHS

VerneMQ 1421.28 0.09 454.39 4938.29

EMQ 758.95 0.06 432.44 1400.99

Mosquitto 721.61 0.04 99.06 1701.62
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5.1.3 Load-Balanced Deployment

The load-balanced deployment was tested with a six-node EMQ cluster con-
figured with HA-Proxy software load-balancer. The experimental results
are presented in Table 5.5, which shows the CPU, memory and bandwidth
consumed (DV1) during the four attack categories. Figure 5.20 shows the
break-down of CPU utilisation with the application of four IVs. The results
indicate that BF3 and IAUTHS attacks had the higher impact on the six-
node cluster compared to BF1 and BF2 flood attacks, as all the nodes in
cluster had less than 5% CPU idle time during BF3 attack and less than
25% during IAUTHS attack.

Table 5.5: Bandwidth, Memory and Process CPU utilisation during four
attack scenarios on load-balanced deployment

Node Bandwidth
Kbytes/s

Memory
(%)

pCPU(%) Packets/sec
received

BF1

1 91.70 0.07 27.69 762.97

2 158.05 0.10 30.31 1323.96

3 169.15 0.11 29.88 1413.89

4 112.93 0.07 31.17 947.62

5 83.42 0.08 26.42 700.59

6 132.93 0.08 29.82 1106.18

BF2

1 83.82 0.08 31.22 688.70

2 151.70 0.09 39.38 1297.76

3 163.63 0.09 41.41 1405.91

4 109.75 0.07 31.45 918.08

5 76.88 0.08 25.90 629.67

6 130.21 0.07 36.60 1102.24

BF3

1 1292.21 0.35 149.58 1098.50

2 1138.16 0.24 168.21 1289.79

3 1185.69 0.19 169.12 1357.84

4 1289.77 0.19 166.43 1243.17

5 1328.40 0.34 157.62 1111.30

6 1253.56 0.19 169.31 1265.88

IAUTHS

1 103.29 0.09 74.23 686.77

2 120.86 0.07 99.43 836.05

3 157.89 0.09 146.92 1155.22

4 135.60 0.08 122.30 967.00

5 124.33 0.08 110.75 870.86

6 133.42 0.08 112.02 942.05
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Figure 5.20: Comparison of CPU idle percentage variation measured for the
four attack scenarios on load-balanced deployment

Various attack scenarios when launched against the three brokers indi-
cated that all the authentication and authorisation attacks resulted in high
CPU utilisation, which can have a negative impact on the messages being
exchanged through them. The impact of authentication attacks can be con-
siderably reduced with the increase of processing capabilities, however, the
impact of authorisation attacks was not reduced. In order to measure the
impact on the messages exchanged through the broker, the delay and mes-
sage publish rates were measured during various attack scenarios, which are
further discussed in the following section.

5.2 Delay and Message Publish Rate Measurements

The primary aim of publish/subscribe systems is to ensure delivery of mes-
sages published by clients to subscribers with acceptable service delays. Ex-
cessive delays can be detrimental to systems exchanging messages via the
MQTT brokers. In addition to broker system performance, the message
exchange performance (DV2) were also measured during the DoS attack
scenarios (IV1 to IV4). The impact of individual DoS attack scenario on
DV2 was measured in terms of message delay (milliseconds) with the three
QoS levels and the average publish rate. Three Raspberry Pi client devices
were configured to send and receive messages through the victim broker and
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the message delay for normal and individual attack scenarios was measured
respectively. The delay was measured as the time taken to receive a pub-
lished message with three different QoS settings. Let Tp be the time at
which the message is published to a topic A by the client, to which it also
subscribes. The client receives the message for topic A at time Tq. The
Round Trip Delay (RTD) for the message is then calculated as:

Round Trip Delay (RTD) = Tq − Tp (5.1)

Client Broker

Tp

Tq

Delay = Tq - Tp

Figure 5.21: MQTT message delay calculation procedure with a single client
publishing and subscribing to the same topic

The delay measurement was observed on the same client which published
the message to avoid the problems occurring with synchronising clocks be-
tween separate clients as discussed in Ferrari et al. (2018). However, the
delay measurement was repeated on three separate clients and an average
delay was calculated to compare the impact of various attack scenarios. In
order to get a realistic delay measurements, 1,000 client connections, pub-
lishing a message every two seconds with QoS1 was introduced. This pro-
vided an average publish rate of 500 messages per second and a subscriber
client was used to measure the message publish rates during the various
attack scenarios. The reason for choosing QoS1 for the load was because
QoS1 provides reliable message delivery when compared to QoS0 and less
overhead as compared to QoS2. The normal delay prior to introducing the
load was also measured to compare the impact of increasing load on de-
lay performance. The number of threads used to launch the attack on the
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three brokers were fixed to one for BF1, BF3 and IAUTHS attacks and 250
threads for BF2 attack, as listed in the Table 5.6.

Table 5.6: Attack parameter settings for delay measurements

DoS Scenario Fixed Treat-
ment

Broker Load Settings QoS Levels Observations

BF1 (IV1) Sleep Interval =
0, Attack Threads
= 1

Mosquitto,

VerneMQ,

EMQ

QoS =1 ,

500 Messages

per second

QoS0,

QoS1,

QoS2

Message Delay (ms),

Publish Rate

(Messages Published

per second)

(DV2)

BF2 (IV2) CONNECT De-
lay = 0.5, Attack
Threads = 250

BF3 (IV3) WILL message
payload size =
43,000 bytes,
Attack threads =
1

IAUTHS (IV4) Subscription
loops = 50, At-
tack threads =
1

Figure 5.22 shows the impact of DoS scenarios on MQTT message delay
for the Mosquitto broker. The results indicate that the average message
delay did not vary drastically for all the scenarios when compared to the
normal delay. However the 75th and 95th percentile values presented in
Table 5.7 reveal that the multiple messages experienced a higher delay than
the average noted delay. Especially the QoS2 messages experienced a higher
delay when compared to other QoS levels.

The impact of DoS attack on average message delay measured using
VerneMQ broker was marginal compared to the normal delay as shown in
Figure 5.23. However, the 75th and 95th percentile delay presented in Ta-
ble 5.8 shows that a higher delay was experienced by more than 25% and
5% percentage of messages. Especially, QoS2 messages experienced higher
95th percentile delay for BF1, BF3 and IAUTHS DoS scenarios.

The EMQ broker experienced a higher delay impact when compared
to Mosquitto and VerneMQ broker. Especially, the QoS2 messages with
IAUTHS attack, resulted in a average delay of above 400 milliseconds as
compared to 68 milliseconds during normal operations, which is highlighted
in Figure 5.24. Analysing the 75th and 95th percentile delays presented in
Table 5.9 indicates that more than 25% and 5% percent of messages suffered
a higher delays with QoS2 messages with IAUTHS attack resulting in a 2,300
millisecond delay.

The delay analysis results indicate that DoS attack scenarios had marginal
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Figure 5.22: Message delay measured on Raspberry Pi clients while exchang-
ing MQTT messages through the Mosquitto broker during various attack
scenarios and on three QoS levels

Figure 5.23: Message delay measured on Raspberry Pi clients exchanging
MQTT messages through the VerneMQ broker during various attack sce-
narios and on three QoS levels

impact on the average delay recorded for all the three brokers, however the
75th and 95th percentile delays show that DoS attacks caused a considerable
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Table 5.7: Comparison of average, 50th, 75th and 95th percentile RTD (ms)
for various attack scenarios for three supported QoS levels on Mosquitto
broker

Avg Delay(ms) 50th-%-ile 75-%-ile 95-%-ile

Normal with Load

QoS0 11.67 8.83 11.38 25.33

QoS1 63.40 58.40 63.16 79.40

QoS2 120.77 114.46 122.51 148.89

BF1

QoS0 17.75 13.69 20.66 42.49

QoS1 70.13 65.23 69.92 103.32

QoS2 137.15 126.94 140.45 190.33

BF2

QoS0 19.21 16.35 22.18 44.23

QoS1 68.21 59.98 70.03 91.51

QoS2 130.43 122.00 133.96 183.31

BF3

QoS0 11.53 9.02 11.26 21.68

QoS1 67.71 61.13 68.32 96.10

QoS2 131.86 120.52 132.96 182.54

IAUTHS

QoS0 40.74 35.44 57.16 98.57

QoS1 76.53 70.36 81.83 117.32

QoS2 163.84 154.90 184.22 240.19

performance degradation for QoS2 messages which could be detrimental to
the timely delivery of critical messages. In addition to the RTD of MQTT
messages, the average publish rate with the introduced load was also anal-
ysed to verify the impact of the DoS attacks. The message publish rate was
measured by using a subscriber client which was subscribed to receive the
messages sent by the 1,000 client threads deployed to introduce load; receiv-
ing an average of 500 messages per second. The message publish rate for
each attack scenario was measured while obtaining the delay measurements
for individual QoS levels, and an average publish rate was obtained. Since
the average publish rates are calculated for the period of measurement, a
reduction of publish rate below the normal average indicates either a loss of
published messages or heavily delayed messages.

Figure 5.25 shows the message publish rate achieved by the Mosquitto
broker during the various attack scenarios. The results show that the
Mosquitto broker’s publish rate reduced by 50% for BF1, BF3 and IAUTHS
attacks indicating successful DoS.

The impact on the VerneMQ broker is highlighted in Figure 5.26. The
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Table 5.8: Comparison of average, 50th, 75th and 95th percentile RTD (ms)
for various attack scenarios for three supported QoS levels on VerneMQ
broker

Avg Delay(ms) 50-%-ile 75-%-ile 95-%-ile

Normal with Load

QoS0 13.01 9.81 13.43 29.12

QoS1 15.28 10.77 16.43 37.50

QoS2 59.29 60.28 67.56 90.44

BF1

QoS0 24.80 11.44 28.77 89.26

QoS1 31.69 13.23 36.28 128.84

QoS2 69.27 61.22 77.27 153.17

BF2

QoS0 27.30 17.43 27.80 92.26

QoS1 29.30 20.13 30.55 63.19

QoS2 37.73 26.94 44.88 86.90

BF3

QoS0 27.09 14.59 29.47 101.07

QoS1 34.01 15.25 43.39 122.41

QoS2 70.40 62.48 79.45 147.32

IAUTHS

QoS0 102.95 66.08 157.74 328.56

QoS1 132.89 80.15 204.03 380.78

QoS2 109.23 70.11 151.26 334.18

results show that the message publish rate was relatively stable compared to
the Mosquitto broker, however, a publish rate drop was observed in BF2 and
IAUTHS attacks. The message publish rate for BF1 and BF3 was marginally
higher than the normal average. This indicates a possible retransmissions
of QoS1 messages configured for the two publishing clients.

The EMQ broker had a stable publish rate for BF1, BF2 and BF3 at-
tacks compared to the other two brokers, however, the publish rates reduced
drastically for IAUTHS attack as shown in Figure 5.27.

Combining the publish rate results with the message delay results high-
light that the VerneMQ and EMQ broker had less impact on the publish
rates with the three attack scenarios while the message delay increased when
compared to the Mosquitto broker. This indicates a best effort performance
of the EMQ broker to deliver the messages even with a higher delay com-
pared to a degraded performance of the Mosquitto broker which yielded a
lower delay albeit incurring a higher publish rate drop.

The results also indicate that the IAUTHS attack had the maximum
impact on all the three brokers with degraded performances on the message

169



Figure 5.24: Message delay (ms) of measured on Raspberry Pi clients ex-
changing MQTT messages through the EMQ broker during various attack
scenarios and on three QoS levels

Figure 5.25: MQTT message publish rate observed through the Mosquitto
broker during various attack scenarios

delay and message publish rates. The choice of number of subscription loops
also was analysed, which is shown in Figure 5.28. Results indicate that the
performance of VerneMQ and EMQ brokers degraded with the increase of
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Table 5.9: Comparison of average, 50th, 75th and 95th percentile RTD (ms)
for various attack scenarios for three supported QoS levels on EMQ broker

Avg Delay(ms) 50-%-ile 75-%-ile 95-%-ile

Normal with Load

QoS0 19.34 12.90 22.24 57.98

QoS1 18.45 12.72 20.50 45.00

QoS2 68.33 64.92 75.33 112.90

BF1

QoS0 43.83 18.01 36.48 205.01

QoS1 40.31 19.05 41.57 166.59

QoS2 90.04 70.61 91.50 259.36

BF2

QoS0 32.40 17.49 32.49 124.51

QoS1 38.49 18.49 32.63 165.58

QoS2 96.27 73.17 99.71 287.37

BF3

QoS0 41.17 15.43 34.85 198.80

QoS1 32.99 15.43 29.37 150.13

QoS2 93.93 71.44 95.36 269.80

IAUTHS

QoS0 248.76 125.53 367.62 886.10

QoS1 189.84 54.86 223.17 867.02

QoS2 414.31 130.51 393.08 2390.35

Figure 5.26: MQTT message publish rate observed through the VerneMQ
broker during various attack scenarios
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Figure 5.27: MQTT message publish rate observed through the EMQ broker
during various attack scenarios

number of subscriptions sent per session when compared to the Mosquitto
broker, which yielded a lower publish rate with 50 subscriptions per session.

Figure 5.28: MQTT message publish rate observed through the three brokers
during various subscribe flooding loops in subscription flooding attack
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In this section the impact of DoS attacks (IV1 to IV4) on the system
performance (DV1) of the three MQTT brokers was presented along with
the impact on message exchange performance (DV2). The results indicate
that the proposed MQTT based authentication and authorisation DoS at-
tack scenarios caused degradation of performance, delay and caused publish
rate drops. These results also indicate that such DoS attacks are poten-
tial threats to the MQTT brokers and communication messages facilitated
by them; consequently detecting and protecting MQTT systems from such
malicious attacks are essential. Hence, in the next section we present the
attack detection results of the MQTT attack detection framework discussed
in Section 4.4.

5.3 Detection Framework Performance

The DoS attack detection framework proposed in this research was evaluated
by applying the treatment to two IVs (classifier algorithm-IV5 and feature-
vector-IV6) and measuring the impact on DV3 (classifier performance). The
treatments applied to IV5 were the three classifier algorithms evaluated in
this research namely: AODE, C4.5 and MLP classifiers. The treatments
applied to IV6 were: FULL features, TCP based features, Count based fea-
tures and Size based features. The impact of the treatments applied to
IV5 and IV6 were measured in terms of the classifier accuracy, error, true
positive rate (TPR) and false positive rate (FPR). Furthermore, the num-
ber of labelled classes were varied to test the effectiveness of the proposed
features in classifying them. The following section discusses the datasets
used to evaluate the detection framework. The performance of classifiers
with time-window and flow-based MQTT features have been discussed in
Sections 5.3.3 and 5.3.3 respectively.

5.3.1 Description of Datasets

Normal and attack packets were captured separately and pre-processed to
generate the dataset for training and testing the detection framework. The
feature vectors for time-window based and flow-based aggregation were gen-
erated separately and the corresponding classifier models were evaluated
independently.MQTT attacks presented in this research and two attacks ex-
ternal to this research were included to test the effectiveness of the detection
framework.

Three different MQTT attacks: MQTT-DoS (based on the attack sce-
narios described in this work ), MQTT-FUZZER (using a MQTT Fuzzing
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tool (Vähä-Sipilä, 2015)) and TCP-DOS (using hping3 SYN-Flood tool
(Sanfilippo, 2006)) were generated against the broker. The MQTT fuzzing
attack was launched using an MQTT fuzzing tool which was configured to
send fuzzed packets sniffed from the deployed IoT network. The attack
traffic was subsequently captured for dataset generation. Based on the ag-
gregation level and the attack classes used, four datasets were generated as
presented in Table 3.4.

The time-window datasets were generated with only two types of MQTT
attacks namely: MQTT-DoS and MQTT-FUZZER. Since TCP-DoS attack
generates a large amount of attack traffic in a short period of time, this at-
tack was only included in the flow based dataset and excluded from the time-
window dataset. Based on the attack types used, two datasets were gener-
ated for time-window aggregation, namely, TW-Major-DS and TW-Sub-DS.
The TW-Major-DS consisted of normal traffic as well as MQTT-DoS attacks
and MQTT-Fuzz attacks. In contrast, the TW-Sub-DS dataset consisted of
sub-classes of MQTT-DoS attacks, demonstrated in this work. This was
done to compare the detection performance of the detection framework in
differentiating between various classes of MQTT-DoS attacks. The flow
based detection analysis was performed by including all the three MQTT
attacks to generate attack traffic. The flow-based dataset was subsequently
generated from MQTT flow features as discussed in Chapter 4. This resulted
two datasets FL-Major-DS and FL-Sub-DS dataset, which were evaluated
for the flow based MQTT features. The class labels used in the four datasets
are listed in Table 5.10.

The total number of flows collected during the normal and attack in-
stances were 1,042,500 for both time-window and flow-based datasets. The
number of time-window records generated from captured network packets
was 58,600 and the number of flows records were 1,012,052. The distri-
bution of instances based on the classes of attack are presented in tables
5.11 and 5.12. The flow dataset was further balanced using re-sampling
to balance the classes. Re-sampling technique was applied to balance the
classes to avoid bias in classifier accuracy. The data was under-sampled to
produce random sub-samples of the original dataset with following setting
in Weka: biasToUniformClass=1.0, noReplacement=True, sampleSizePer-
cent=40.0. The biasToUniformClass attribute ensures that re-sampled data
contains uniform class distribution. The noReplacement attribute ensures
that the re-sampled data does not contain duplicate copies of instances for
a class that contains fewer instances. The sampleSizePercent attribute was
used to produce a re-sampled dataset that contains approximately 40% of
the original dataset which was selected based on the percentage difference
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Table 5.10: Datasets used in this research to compare models built using
FV groups and classifier algorithms

Aggregation Level Class Labels Dataset Name

Time-window Normal, MQTT-DOS,
MQTT-FUZZ

TW-Major-DS

Time-window Normal, MQTT-DOS-BF1,
MQTT-DOS-BF2, MQTT-
DOS-BF3, MQTT-DOS-
IAUTHS, MQTT-FUZZ

TW-Sub-DS

Flow-Based Normal, MQTT-DOS,
MQTT-FUZZ, TCP-DOS

FL-Major-DS

Flow-Based Normal, MQTT-DOS-BF1,
MQTT-DOS-BF2, MQTT-
DOS-BF3, MQTT-DOS-
IAUTHS, MQTT-FUZZ,
TCP-DOS

FL-Sub-DS

between largest and the smallest classes in the original dataset.

Table 5.11: Data distribution of various classes in the time-window based
datasets

Dataset Name Classes Number of Instances

TW-Major-DS

Normal 46,464

MQTT-DoS 11,181

MQTT-FUZZ 955

TW-Sub-DS

Normal 46,464

MQTT-DOS-BF1 2,756

MQTT-DOS-BF2 2,865

MQTT-DOS-BF3 3,508

MQTT-DOS-IAUTHS 2,052

MQTT-FUZZ 955
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Table 5.12: Data distribution in various classes in the flow-based datasets

Dataset Name Classes Number of Instances

Unbalanced Balanced

FL-Major-DS

Normal 71,217 63,376

MQTT-DoS 623,246 63,376

MQTT-FUZZ 49,916 49,916

TCP-DOS 267,673 63,376

FL-Sub-DS

Normal 73,982 59,571

MQTT-DOS-BF1 240,349 59,571

MQTT-DOS-BF2 90,550 59,571

MQTT-DOS-BF3 277,454 59,571

MQTT-DOS-IAUTHS 42,576 42,576

MQTT-FUZZ 49,916 49,916

TCP-DOS 267,673 59,571

5.3.2 Training, Testing and Feature Groups

Several experiments were conducted to measure the performance of AODE,
DT and MLP classifiers used in the detection framework. A 10-fold cross-
validation method was enforced, which trained and tested the machine learn-
ing models on complementary subsets of training data, to prevent bias
and over-fitting issues. The Weka ML workbench uses a stratified cross-
validation approach which ensures the data selected in each fold is a fair
representation of the entire dataset in terms of the proportions of various
classes. In each fold, 90% of data is used as training data and 10% as test-
ing data which provides a fair estimate of the performance of the developed
model on unseen data. This processes is repeated 10 times, estimating the
individual models performance on new set of test data and the average ac-
curacy of 10 folds is reported. In addition, a separate test data was not used
as the network traffic was captured in a controlled IoT testbed deployed for
this work and may not contain varied instances of normal and attack traffic
like a real network traffic data.

Default Weka settings were used for cross-validating the three ML classi-
fiers on the four datasets used in this work. In order to show the effectiveness
of the proposed MQTT features compared to only using Transport Layer
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features for attack detection, two sets of feature groups were evaluated,
namely, FULL-FV and TCP-FV. The FULL feature vector included both
TCP based and the proposed MQTT based features, whereas the TCP-FV
consisted of only TCP based features. Transport Layer features such as
IP addresses, port numbers were not included as the attacks were launched
from a single attack source and only traffic directed to MQTT port 1883
was captured for attack detection.

In addition to the analysis of TCP based and full features, the effective-
ness of count based (COUNT-FV) and size based features was compared
(SIZE-FV). This was performed to identify the most prominent group of
features that contributed the detection performance. Furthermore, compar-
ing the various combinations of features provides better insights into the
features that provide better classification accuracy. The count based fea-
tures included features that captured the frequency of occurrence of the
attribute in the dataset. Whereas the size based features included features
that measured the average length or size of various MQTT fields.

Traditional statistical feature selection methods were not applied as
many MQTT features are dependent on each other and can produce high
correlations, causing it to be eliminated by the feature selection techniques.
However, some of the dependent features are binary in nature and are either
enabled or disabled which can indicate different behaviour of the connection
request. For example, every CONNECT request must have the cleanS-
essionFlag set or unset and could indicate a persistent or non-persistent
connection having different connection behaviours. Similarly, the PUBLISH
and SUBSCRIBE requests contain fields that indicate the QoS levels set for
the request and causes different message exchange behaviour between the
broker and the client. Some of these features could introduce redundant
information but would be essential in distinguishing different connection re-
quests in the MQTT protocol. Due to these reasons the groups of features
that contributed more to the model performance were analysed instead. The
datasets used, the two treatments applied to IV5 (classifiers) and IV6 (fea-
ture groups), and the observations performed in attack detection evaluation
are listed in Table 5.13.

5.3.3 Detection Results

The evaluation results of the classifiers used in the MQTT attack detection
framework have been presented in terms of the accuracy (%), error (%),
TPR and FPR, and time to build the model (DV3). The following sections
present the performance of time-window and flow-based features to classify
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Table 5.13: Datasets used, treatment applied to IVs and the observations
made for attack detection evaluation

Dataset Name Classifer (IV5) Feature-Vector (IV6) Observations

TW-Major-DS
AODE,
C4.5,
MLP

FULL-FV,
TCP-FV,

COUNT-FV,
SIZE-FV

Accuracy,
Error,
TPR,
FPR

TW-Sub-DS
FL-Major-DS
FL-Sub-DS

normal and attack instances in the datasets.

Time-Window Detection

The time-window detection results of the three classifiers utilising various
combination of feature vectors on TW-Major-DS dataset are illustrated in
Figure 5.29. The results indicate that all the three classifiers had higher
classification accuracy with full, count and size based features when com-
pared to only using TCP based features. The performance of classifiers
reduced with the use of only TCP based features (TCP-FV: AODE yielded
98% and MLP yielded 97% accuracy) and improved with the addition of
MQTT based features (FULL-FV: all classifiers yielded greater than 99.5%
accuracy), highlighting the importance of the features proposed in this work.

Table 5.14 lists the various performance metrics measured for the three
classifiers of the detection framework on the TW-Major-DS dataset. The
results indicate that AODE classifier had the best performance among all the
classifiers especially with full feature set (greater than 99%). The AODE
classifier also required the least training time (1.49 seconds) compared to
C4.5 (4.6 seconds) and MLP (259 seconds) classifiers.

Similar to the performance with TW-Major-DS, the classifiers performed
better with full (all classifiers yielded greater than 99% accuracy) and size
based features (AODE:99.7%, C4.5 99.7% and MLP 98.18%) in the TW-
Sub-DS dataset as shown in Figure 5.30. The performance of classifiers
decreased (AODE 98%, C4.5 98%) compared to all the other combinations
when TCP based based features were used for classification, especially the
MLP classifier only yielded a mere 94% accuracy.

Table 5.15 lists the performance of various classifiers and feature groups
with the TW-Sub-DS datasets which included the sub-classes of MQTT-
DoS attacks. The results indicate that the proposed features provided good
detection accuracy (greater than 99%) when the full feature set was utilised
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Figure 5.29: Performance comparison of classifiers with various combina-
tions of time-window feature vector (FV) chosen for classification on the
TW-Major-DS dataset

Table 5.14: Performance comparison of three classifiers using the time-
window features used in the MQTT attack detection framework applied
on TW-Major-DS datasets

ACC% Error% TPR FPR Training Time
(seconds)

FULL Features

AODE 99.80 0.20 1.00 0.01 1.49

C4.5 99.79 0.21 1.00 0.01 4.64

MLP 99.65 0.35 1.00 0.01 259.01

TCP Features

AODE 98.68 1.32 0.99 0.02 0.30

C4.5 99.05 0.95 0.99 0.02 1.06

MLP 97.45 2.55 0.98 0.06 40.15

COUNT Features

AODE 99.48 0.52 1.00 0.01 0.58

C4.5 99.74 0.26 1.00 0.01 1.92

MLP 99.59 0.41 1.00 0.01 139.46

SIZE Features

AODE 99.79 0.21 1.00 0.01 0.58

C4.5 99.74 0.26 1.00 0.01 1.39

MLP 98.18 1.82 0.98 0.05 63.17
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Figure 5.30: Performance comparison of classifiers with various combina-
tions of time-window feature vector (FV) chosen for classification on the on
TW-Sub-DS dataset

when compared to TCP based features. These results also indicate that the
proposed features could effectively differentiate between the various MQTT-
DoS attack classes when all the features were utilised for classification.

Tables 5.16, 5.17 and 5.18 show the confusion matrices of the three classi-
fiers on the TW-Sub-DS dataset with full feature (FULL-FV) set. The con-
fusion matrices indicate that BF2 attack was the most misclassified attack
by all the three classifiers especially, MLP had the most misclassifications
among all the classifiers for most of the classes.

The time-window based detection results indicate that the proposed
MQTT based time window features are suitable to detect MQTT based
attacks presented in this work.

Flow-Based Detection

Figure 5.31 shows that all three classifiers achieved a high classification ac-
curacy (AODE:99.9%, C4.5: 99.9% and MLP:99.1%) in detecting the attack
traffic in FL-Major-DS. The results also show that using the TCP (TCP-
FV) and COUNT (COUNT-FV) based features reduced the classification
accuracy and increased the false positive rate of all the classifiers compared
to full (FULL-FV) and size (SIZE-FV) features, thus indicating that full
MQTT based features provided high detection accuracy for detecting mali-
cious flows.
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Table 5.15: Performance comparison of three classifiers using the time-
window features used in the MQTT attack detection framework applied
on TW-Sub-DS datasets

ACC% Error% TPR FPR Training Time
(seconds)

FULL Features

AODE 99.75 0.23 1.00 0.01 1.52

C4.5 99.73 0.27 1.00 0.01 4.25

MLP 99.11 0.89 0.99 0.01 331.44

TCP Features

AODE 98.16 1.84 0.98 0.02 0.32

C4.5 98.45 1.55 0.98 0.02 1.04

MLP 94.07 5.93 0.94 0.06 62.42

COUNT Features

AODE 98.54 1.46 0.99 0.01 0.68

C4.5 99.21 0.79 0.99 0.01 2.87

MLP 97.63 2.37 0.98 0.01 178.33

SIZE Features

AODE 99.80 0.20 1.00 0.01 0.52

C4.5 99.73 0.27 1.00 0.01 1.54

MLP 97.43 2.57 0.97 0.04 90.50

Table 5.16: Confusion matrix with AODE classifier on TW-Sub-DS dataset
with full features

Actual Predicted

Normal BF1 BF2 BF3 IAUTHS FUZZ

Normal 46,423 6 26 8 0 1
BF1 16 2730 10 0 0 0
BF2 43 0 3,462 3 0 0
BF3 15 1 3 2,846 0 0
IAUTHS 4 0 0 0 2,048 0
FUZZ 10 1 0 0 0 944

However, the accuracy of MLP classifier reduced (75%) with the FL-
Sub-DS datasets as shown in Figure 5.32 compared to AODE (99.8%) and
C4.5 (99.8%) classifiers.

The performance metrics of the three classifiers on the FL-Major-DS
and FL-Sub-DS datasets respectively, have been presented in tables 5.19
and 5.20. The results indicate that the detection accuracy of the classifiers
increased when packet size and field length based features were considered,
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Table 5.17: Confusion matrix with C4.5 classifier on TW-Sub-DS dataset
with full features

Actual Predicted

Normal BF1 BF2 BF3 IAUTHS FUZZ

Normal 46,434 2 19 2 3 4
BF1 16 2,731 9 0 0 0
BF2 58 2 3,446 2 0 0
BF3 16 0 3 2,846 0 0
IAUTHS 2 0 2 0 2,047 1
FUZZ 8 0 2 0 0 945

Table 5.18: Confusion matrix with MLP classifier on TW-Sub-DS dataset
with full features

Actual Predicted

Normal BF1 BF2 BF3 IAUTHS FUZZ

Normal 46,457 5 0 2 0 0
BF1 17 2,620 42 74 0 3
BF2 145 11 3,241 111 0 0
BF3 32 48 15 2,770 0 0
IAUTHS 4 0 0 0 2,048 0
FUZZ 14 1 0 2 2 936

when compared to only utilising count-based features (all classifiers had less
than 87% accuracy). This indicates that size based features had better ca-
pability in separating the normal flows from malicious flows. The AODE
classifier yielded the lowest training time (10 seconds for FULL-FV) and
MLP classifier yielded the highest training (1598 seconds for FULL-FV)
times among the selected classifiers. These results indicate that the pro-
posed MQTT features provided good separation between normal and attack
records, resulting in high detection rates and low false positives. However,
the MLP classifier only achieved a classification accuracy of 75% for the FL-
Sub-DS dataset, when all the features were used. Hence, the MLP classifier
was further evaluated with modification to various optimisation parameters
to identify the most optimal settings to increase its detection performance.
The optimisation parameters considered in this study for improving MLP
classifier were: activation and solver functions.

Tables 5.21, 5.22 and 5.23 show the confusion matrices of the three clas-
sifiers with FL-Sub-DS dataset. The confusion matrices indicate that AODE
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Figure 5.31: Performance comparison of classifiers with various combination
of flow-based features on FL-Major-DS dataset

Figure 5.32: Performance comparison of classifiers with various combination
of flow-based features on FL-Sub-DS dataset

and C4.5 classified few instances of normal connections as IAUTHS or vice
versa. In addition, the MLP classifier misclassified many instances of BF1,
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Table 5.19: Performance comparison of three classifiers using the flow-based
features used in the MQTT attack detection framework applied on four class
datasets

ACC% Error% TPR FPR Training Time
(seconds)

FULL Features

AODE 99.97 0.03 1.00 0.00 5.70

C4.5 99.95 0.05 1.00 0.00 21.72

MLP 99.16 0.84 0.99 0.00 858.35

TCP Features

AODE 99.67 0.33 1.00 0.00 1.78

C4.5 99.60 0.40 1.00 0.00 5.09

MLP 68.06 31.94 0.68 0.11 135.55

COUNT Features

AODE 98.45 1.55 0.99 0.01 2.72

C4.5 98.46 1.54 0.99 0.01 17.57

MLP 93.25 6.75 0.93 0.02 417.32

SIZE Features

AODE 99.93 0.07 1.00 0.00 2.53

C4.5 99.92 0.08 1.00 0.00 8.36

MLP 98.78 1.22 0.99 0.00 263.59

BF2 and BF3, which resulted in a lower overall detection accuracy. In order
to improve the MLP classifier performance, the hyper-parameters used by
Weka were further investigated and it was identified that the Weka software
does not allow modifying the activation functions and the solver-functions.
Hence an external ML workbench was utilised to identify the optimal hyper-
parameters that could improve the classifier performance as discussed in the
following section.
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Table 5.20: Performance comparison of three classifiers using the flow-based
features used in the MQTT attack detection framework applied on seven
class datasets

ACC% Error% TPR FPR Training Time
(seconds)

FULL Features

AODE 99.85 0.15 1.00 0.00 10.95

C4.5 99.83 0.17 1.00 0.00 37.26

MLP 75.07 24.93 0.75 0.04 1598.56

TCP Features

AODE 98.47 1.53 0.99 0.00 3.09

C4.5 98.47 1.53 0.99 0.00 7.14

MLP 72.62 27.38 0.73 0.05 414.18

COUNT Features

AODE 87.29 12.71 0.87 0.02 4.68

C4.5 84.67 15.33 0.85 0.03 26.99

MLP 64.38 35.62 0.64 0.06 952.42

SIZE Features

AODE 99.83 0.17 1.00 0.00 4.53

C4.5 99.83 0.17 1.00 0.00 9.80

MLP 80.89 19.11 0.81 0.03 641.41

Table 5.21: Confusion matrix with AODE classifier on FL-Sub-DS dataset
with full features

Normal BF1 BF2 BF3 IAUTHS FUZZ TCP DOS

Normal 59,039 0 0 2 518 10 2

BF1 1 59,567 2 1 0 0 0
BF2 4 0 59,567 0 0 0 0
BF3 0 1 2 59,567 0 0 1
IAUTHS 6 1 0 0 42,567 0 2
FUZZ 6 8 2 0 1 49,898 1
TCP DOS 14 0 0 0 2 0 59,555
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Table 5.22: Confusion matrix with C4.5 classifier on FL-Sub-DS dataset
with full features

Actual Predicted

Normal BF1 BF2 BF3 IAUTHS FUZZ TCP DOS

Normal 59,283 0 2 1 264 17 4
BF1 0 59,568 2 1 0 0 0
BF2 4 3 59,563 1 0 0 0
BF3 1 0 0 59,570 0 0 0
IAUTHS 285 1 0 0 42,287 0 3
FUZZ 25 12 1 5 0 49,873 0
TCP DOS 16 0 0 0 0 1 59,554

Table 5.23: Confusion matrix with MLP classifier on FL-Sub-DS dataset
with full features

Actual Predicted

Normal BF1 BF2 BF3 IAUTHS FUZZ TCP DOS

Normal 57,490 61 52 4 0 1,939 25
BF1 1 46,001 12,287 1,279 0 3 0
BF2 67 43,858 12,769 2,327 0 550 0
BF3 2,756 6,554 19,879 26,602 0 3,780 0
IAUTHS 65 0 1 1 41,888 620 1
FUZZ 491 196 415 52 13 48,746 3
TCP DOS 6 0 0 0 0 34 59,531
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MLP Optimisation

Due to the poor performances recorded by the MLP classifier for flow-based
features, the MLP classifier parameters were further analysed and tuned
to improve the classifier accuracy. In an ANN, an activation function of
a neuron maps the input signal to an output signal. Choosing the correct
activation function supports the MLP classifier in generating more accurate
and complex non-linear mappings between the inputs and outputs, hence
improving the classifier accuracy (Karlik & Olgac, 2011). The solver func-
tions refer to algorithms that try to estimate the optimal weights for the
hidden and output layers in order to reduce the training errors. These are
classified into first and second order methods and vary in computation com-
plexity when they are minimising or maximising the loss function. Since
Weka does not have options to vary the activation and solver functions,
the MLP optimisation parameters were tested using Python scikit-learn ML
platform (Pedregosa et al., 2011). On this platform, the performance was
evaluated with three activation functions: Relu, logistic-sigmoid and tanh.
In addition, two solver algorithms: Stochastic Gradient Descent (SGD) and
limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) were com-
pared for their optimisation performance in tuning the ANN weights for the
FL-Sub-DS dataset. The SGD algorithm uses learning-rate and momentum
to optimise the model by iteratively estimating the training loss using sam-
ples from the training dataset. The optimal momentum and learning-rate
were identified by iteratively varying the two variables and the settings, se-
lecting the least training loss for evaluating the activation functions. Figure
5.33 and Figure 5.34 show the observed training loss of the MLP classifier for
various values of momentum and learning rates, respectively. These results
show that a momentum of 0.9 and a learning-rate of 0.001 yielded the least
training loss.

Furthermore, Figure 5.35 shows the performance of MLP classifier in-
dicating a higher detection accuracy with the relu activation function and
applied for both SGD and L-BFGS optimisation algorithms.

Table 5.24 shows the confusion matrix for MLP classifier with optimal
hyper-parameters and using Relu activation function. The results indicate
that a major performance improvement was achieved especially in BF1, BF2
and BF3 attack classification. However, some of the BF3 attack instances
were classified as normal.
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Figure 5.33: Training loss observed for the MLP classifier for various values
of momentum and numbers of iterations on FL-Sub-DS dataset

Table 5.24: Confusion matrix with MLP classifier on FL-Sub-DS dataset
with full features after choosing optimal Hyper-parameters

Actual Predicted

Normal BF1 BF2 BF3 IAUTHS FUZZ TCP-DOS

Normal 59,510 0 1 59 0 1 0
BF1 0 59,561 2 7 0 1 0
BF2 1 1 58,697 287 82 493 10
BF3 5,921 1 211 53,293 44 101 0
IAUTHS 0 3 526 5 41,959 80 3
FUZZ 130 30 532 67 34 49,121 2
TCP-DOS 0 0 23 3 3 7 59,535
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Figure 5.34: Average training loss for the MLP classifier calculated for vari-
ous values of learning rate with a maximum of 500 iterations on FL-Sub-DS
dataset

Figure 5.35: Performance evaluation of the activation function and MLP
optimisation solver functions on FL-Sub-DS dataset
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5.4 Summary

This chapter presented all the empirical observations of the impact of DoS
attack scenarios on three MQTT brokers and the performance of the intel-
ligent detection framework in detecting MQTT based DoS attacks. Several
experiments were carried out to gather evidences which helped answer the
questions posed in Chapter 1. The results were grouped into:

• Impact of four DoS attack scenarios on MQTT broker system perfor-
mance

• Impact of four DoS attack scenarios on MQTT message delay and
message publish rate

• DoS detection performance using Time-Window based features

• DoS detection performance using Flow based features

All the relevant findings were presented in this chapter and additional results
are appended to the Appendix Additional Results. The system performance
measurements were collected by controlling the parameters such as inter-
arrival time of MQTT requests, WILL message payload size, CONNECT-
Delay, number of subscription requests in a single session and number of
threads used to launch the attacks. The impact of the attack scenarios
was measured through CPU idle percentage representing the CPU utilisa-
tion, attack packets per second received, half-open sessions, and bandwidth
utilisation.

Subsequently, the impact on MQTT message delay was measured by
fixing the attack parameters. The delay was measured under normal no
load conditions, with load condition (500 messages/second) and also for
individual attack scenarios. The measurements were collected for the three
QoS levels supported by MQTT. In addition to message delay, the impact on
message publish rate was also measured with QoS1 messages, which share
certain features with both QoS0 and QoS2 levels.

After the DoS attacks were evaluated, a detection framework was devel-
oped. Two network traffic aggregation levels were considered in this work
namely: time-window aggregation and flow-level aggregation. A realistic
IoT test-bed deployed using MQTT protocol was setup to collect normal
and attack traffic and all the attack scenarios developed in previous phases
were practically used to launch attacks on MQTT broker. Based on the
aggregation levels, two different MQTT features sets were generated, which
were further used to generate time-window based and flow-based datasets.
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In order to test the proposed features, MQTT fuzzing and TCP-SYN flood
attack were introduced into the dataset. However, TCP-SYN flood attack
was only added to the flow aggregated dataset as this particular attack pro-
duced large variations in distributions of time-window aggregation making
it a easy candidate for detection, but individual distinguishing individual
TCP-SYN flows from other relevant flows will still be challenging.

For each aggregation level, two evaluation datasets were generated namely:
major attack class dataset and attack sub-class dataset. Using the evalu-
ation datasets, the classification accuracy of the classifiers chosen in the
detection framework were assessed.
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Chapter 6

Discussion

This chapter identifies the relationship between the proposed research ques-
tions posed in Chapter 1 with the empirical results presented in Chapter 5.
This chapter also discusses the method used in conducting the experiments
and also provides reasoning for the obtained results.

6.1 Purpose of the Study

The principal research question and its sub-questions posed in this work
were:

• RQ1: How can Application Layer DoS attacks against the IoT-MQTT
protocol be detected.

X SQ1: Is the MQTT protocol vulnerable to Application Layer DoS
attacks?

X SQ2: Are the MQTT protocol based features required to detect
targeted DoS attacks against MQTT-IoT system

X SQ3: How effective are the developed ML models in correlating
between normal and attack traffic

In order to answer these questions the following research steps were con-
ducted:

• Threat modelling was performed on IoT-MQTT based system and the
emphasis of DoS attack was presented (Section 4.1),

• The MQTT DoS attack model was proposed by identifying four at-
tack methods which target the authentication and authorisation mech-
anisms of the MQTT protocol (Section 4.2),
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• An MQTT DoS attack analysis test-bed (Section 4.3) was deployed to
asses the impact of proposed DoS attacks on system resources, message
delay and publish rates (Section 5.1),

• A realistic physical IoT-MQTT test-bed was deployed to generate nor-
mal and attack traffic (Section 4.4.1),

• A detection framework with three different ML algorithms was devel-
oped which extracted novel features from MQTT traffic. This resulted
in two types of datasets based on two packet aggregation levels (time-
window and flow-based) (Section 4.4),

• The effectiveness of proposed MQTT features were evaluated by com-
paring the classification accuracy of ML models with different subset
of feature groups (Section 5.3), and

• The effectiveness of ML models were evaluated using labelled datasets
containing major and sub-class of attacks (Section 5.3).

The MQTT DoS attack evaluations and DoS detection were performed in
two different experimental phases as presented in Chapter 3. Splitting
the design and experimental evaluation phases into two phases allowed ex-
periments to be conducted independently. Experimental Phase-1 (RP2.1,
RP2.2 and RP 3.1) was completed through rigorous evaluation and itera-
tions allowing improvements to be made to the DoS attack scenarios. The
DoS attack model of Phase1 was incorporated to generate MQTT attack
datasets required for conducting the experiments in Phase-2 (RP2.3, RP2.4
and RP3.2). The following sections will present the inferences derived from
the various empirical evidences obtained in Phase-1 and Phase-2.

6.2 MQTT DoS Attack Modelling

MQTT protocol is a publish/subscribe protocol and uses a broker to facil-
itate message exchange between publishers and subscribers. Since message
brokers are pivotal to message exchange, they can become target to various
cyber-attacks. The STIRDE threat model presented in Section 4.1 identi-
fied the DoS attack as a potential threat to IoT-MQTT system. In order to
further verify the vulnerability of MQTT protocol to Application Layer DoS
attacks, MQTT DoS attack modelling was performed to identify the DoS
vulnerabilities. Based on the Little’s queueing theorem (Eq. 2.1) two types
of attacks can be modelled: flooding and semantic attacks. The flooding
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attacks aim to increase the rate of arrival of connections into the system
in order to consume the system queue and deny access to new legitimate
connections. In contrast, semantic attacks aim to increase time spent by a
connection in the system which will eventually fill the system queue denying
access to new connections. Hence the two main variables that can be varied
are the arrival rate (controlled using inter-arrival time) or the complexity of
the request.

Various MQTT parameters were assessed for their DoS vulnerability
however, only the basic CONNECT and SUBSCRIBE requests were con-
sidered as most commercial MQTT brokers enforce authentication and au-
thorisation of users before allowing publishers and subscribers to exchange
messages. Hence, the Application Layer DoS attacks were modelled to tar-
get the authentication and authorisation mechanisms of the MQTT protocol.
Based on the arrival rate and complexity of the request, four novel MQTT
DoS attack scenarios were proposed as discussed in Section 4.2.

Further experiments were conducted using the MQTT DoS analysis test-
bed consisting of three MQTT brokers deployed using virtual machines. The
impact of increasing the request arrivals rate and and time spent by attack
requests in the system were evaluated. Various methods were analysed to
launch the flooding attacks and maximise the attack packets sent to the
MQTT broker. Methods such as multi-processing and multi-threading were
considered for launching the DoS attacks. However, the multi-threaded ap-
proach to launch DoS attack was chosen as it has various advantages com-
pared to multi-processing system. The most important factor being that it
occupies less memory and allows fast task switching compared to switching
between multiple processes. Experiments were conducted to asses the num-
ber of attack threads that generated maximum attack packets which could
result in higher CPU utilisation on the victim host as presented in Section
5.1.1. In addition to attack threads, the sleep-interval between requests was
controlled to measure its impact on packet rate and CPU utilisation on vic-
tim host. The parameters of CONNECT request such as the WILL payload
size (Section 5.1.1) and delay between the TCP session establishment and
the first CONNECT request (Section 5.1.1) were controlled to assess their
respective impact on the broker performance.

For the authorisation attacks, subscription flooding was chosen as the
MQTT protocol allows multi topic subscription in a single request and in a
single session. The PUBLISH request was not considered for DoS attacks
as the MQTT protocol does not allow multi topic publishing. In order to
asses the impact of sending multiple SUBSCRIPTION requests with invalid
authorisations, a number of subscription requests in a single session were
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controlled using a subscription loop (Section 5.1.1). The various treatments
and the observation on IVs and DVs respectively in measuring the DoS
attack impact are presented in Table 5.1.

The results of varying the attack threads and sleep intervals presented
in Section 5.1.1 show that Mosquitto and VerneMQ brokers received higher
average packets per second with the increase of number of attack threads.
This was especially observed when using three attack threads for BF1 and
BF2, along with a connect delay of 0.1 seconds, payload size of 43Kb and
50 or more subscribe loops. However, the VerneMQ broker received lower
average packet per second with four and five threads. The behaviour ob-
served on the VerneMQ broker can be explained by the number of TCP
sessions in CLOSE WAIT state. CLOSE WAIT state indicates the termi-
nation of TCP connection by the remote host. With single, two and three
threads, the number of TCP sessions in CLOSE WAIT state recorded on the
broker spiked irregularly whereas with four and five threads, there were a
constant number of connections in CLOSE WAIT state. This indicates that
with four and five threads the attack machine’s connection limit exhausted
rapidly and fewer new attack requests were sent resulting in lower average
PPS on the broker.

Comparing the three MQTT brokers, the EMQ broker received less pack-
ets with all choices of attack threads. Further investigating the EMQ bro-
ker shows that, EMQ broker moves the terminated TCP connections to
CLOSE WAIT state and the attacker host’s TCP connections move to a
FIN WAIT2 and finally to TIME WAIT state. This TCP state behaviour
does not affect the number of new connections the broker can accept as the
TCP session on the broker are configured to reuse port addresses. However,
the attacker machine might have fewer available ports as outbound ports
cannot reuse port addresses waiting in TIME WAIT state to launch new
connections, rapidly reducing the overall attack packets sent to the broker.

The various attack scenarios tested with the MQTT broker configura-
tions show that flooding based DoS attacks had major impact on the CPU
utilisation, memory and bandwidth consumption on the broker. The exper-
imental results show that all the attack scenarios were successful in causing
high CPU utilisation on the MQTT brokers. Figure 6.1 shows summary of
CPU impact and the percentage of time the CPU was idle reduced below
25% for all attack scenarios with the following attack settings: three attack
threads for BF1, mBF1 (malformed) and BF2, 0.1 connect delay for BF3
and single attack thread with 200 subscription loops for IAUTHS attack.
The VerneMQ and EMQ brokers had the maximum impact as the CPU idle
percentage reached zero for more than one attack scenario. However, the
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idle percentage for Mosquitto broker was close to 20% and reached zero%
for IAUTHS attack. The results also show that invalid subscription flooding
attack caused the maximum impact on the CPU utilisation as all the brokers
had CPU idle % below five percentage.

Figure 6.1: CPU Idle percentage of three MQTT brokers during various
attack scenarios

The CPU utilisation breakup in Table 6.1 shows that the during the
various attack scenarios the EMQ broker spent more time in IOWait and
application related processing. Especially, the EMQ broker CPU was in
IOWait state with basic CONNECT flood (BF1) and CONNECT with
WILL message flooding (BF3). Similarly VerneMQ broker CPU was in
IOWait state for malformed CONNECT flood attack. High IOWait state
also indicates that the CPU is available for other tasks unless it is waiting
for an asynchronous I/O operation which blocks the execution of other op-
erations. Compared to the other brokers, the Mosquitto broker spent more
time in kernel functions and software interrupts. This shows that various
MQTT brokers employ different techniques to handle connection requests
as mentioned in Karagiannis et al. (2015).

A summary of memory utilisations of the three brokers during attack
scenarios shown in Figure 6.2 indicates that VerneMQ and EMQ brokers
are vulnerable to malformed packets when non-ASCII characters are added
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Table 6.1: Summary of impact on CPU utilisation breakup of three MQTT
brokers during various attack scenarios

Attack Type Broker %usr %sys %iowait %soft %idle

BF1 Mosquitto 7.08 28.42 0.02 41.77 22.69

VerneMQ 31.95 26.69 0.00 30.25 11.08

EMQ 20.92 10.12 61.78 7.16 0.00

mBF1 (malformed clientid) Mosquitto 6.84 26.79 0.01 42.66 23.69

VerneMQ 36.03 13.56 31.86 18.55 0.00

EMQ 36.39 7.78 44.10 11.73 0.00

BF2 Mosquitto 7.17 30.88 0.01 39.19 22.75

VerneMQ 32.79 30.04 0.00 31.13 6.03

EMQ 21.27 11.81 59.74 7.17 0.00

BF3 Mosquitto 4.63 20.75 0.01 57.75 16.86

VerneMQ 27.41 24.88 0.01 44.81 2.90

EMQ 92.78 4.05 2.21 0.95 0.00

Mosquitto 84.00 0.50 0.00 15.50 0.00

IAUTHS VerneMQ 82.47 1.33 0.00 16.21 0.00

EMQ 90.67 0.40 0.00 8.93 0.00

to the MQTT fields. Both the brokers suffered high memory utilisation with
the use of non-ASCII characters in the MQTT fields. This can be potentially
exploited to cause memory exhaustion attacks to completely crash the bro-
ker. The EMQ broker had high memory utilisation during the CONNECT
flooding attack with WILL payload (BF3).

Furthermore, the effect of using multi-core CPU and a load-balanced
setup was analysed and presented in sections 5.1.2 and 5.1.3. The results
indicate that increasing the number of CPU cores available for processing the
attack requests reduced the impact of BF1, BF2 and BF3 attack scenarios.
However, IAUTHS attack had similar impact on six CPU configuration as
the single CPU configuration. Similarly, the load-balanced setup for EMQ
broker reduced the overall impact of attacks but certain nodes of the cluster
had higher impact compared to others. It is also important to note that the
attack launched on Six-CPU configuration had the same hardware settings
as Single-CPU attacks, hence using a higher configuration attack machine
or using a distributed attack sources can have larger impact on the brokers.

In addition to system performance assessment with various attack sce-
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Figure 6.2: Memory Utilisation of three brokers during various attack sce-
narios

narios, the impact on the MQTT message delay and publish rate was per-
formed in Section 5.2. Figure 6.3 shows the summary of percentage increase
in average delay measurements obtained using the three MQTT brokers and
the three QoS levels compared to the normal with load settings. The de-
lay results indicate that the IAUTHS DoS attack scenario caused highest
percentage increase in delay compared to all the scenarios. In BF3 attack
scenario, a lower delay was observed in VerneMQ broker for QoS2. The
reason for this could be that server can either delay the acknowledgements
for each packet or reduce the number of acknowledgements, which could
reduce time taken by QoS2 messages to complete compared to normal oper-
ations where server acknowledges all the packets. The average delay increase
shows the delay for BF1, BF2 and BF3 attack scenarios did not drastically
increase compared to normal delay however, the 95th percentile delay shows
a higher increase in all the attack scenarios especially in QoS2 messages.
The increase in delay for QoS2 messages can be detrimental to the critical
applications as QoS2 messages are essential for exchanging critical data in
which the protocol guarantees once delivery.

The message publish rates observed during the attack scenarios was mea-
sured and a summary of percentage drop of QoS1 messages with respect to
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normal rate is shown in Figure 6.4. The results indicate that the Mosquitto
broker suffered publish rate drop for three attack scenarios and IAUTHS
was successful on all the brokers causing drop in publish rates. In addition,
VerneMQ broker showed a marginal increase in publish rate which could
be due to duplicate QoS1 messages which is permitted in the MQTT pro-
tocol. The EMQ broker had more stable message publish rates for three
CONNECT flooding attacks and lower rate for IAUTHS attack. This in-
dicates that even though EMQ broker CPU utilisation was in the IOWait
state during the attack, there was enough CPU time available for process-
ing the MQTT messages. However, this came at the cost of higher message
delay. Overall, VerneMQ broker had superior performance compared to all
the three brokers in terms of system resource utilisation and its impact on
message delay and publish rates.

Figure 6.3: Summary of percentage increase of average MQTT message
delay (ms) compared to normal delay observed on three Raspberry Pi clients
using three brokers while exchanging QoS0, QoS1 and QoS2 messages

The attack scenarios and the results obtained in this work were based
on a single attack source and with only MQTT traffic on the test network.
Hence, the real attack scenarios with real load conditions and launched
from multiple attack sources can have higher impact on the broker. This
would require a true experimental research design compared to the quasi-
experimental research design chosen in this thesis.
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Figure 6.4: Summary of percentage drop of message publish rates observed
on Raspberry Pi client measuring the message publish rate of QoS1 messages
published by 1000 concurrent connections publishing at 500 message per
second though three MQTT brokers

6.3 MQTT DoS Attack Detection

The MQTT attack modelling phase validated the vulnerability of the MQTT
protocol to Application Layer DoS attacks, targeting authentication and au-
thorisation mechanism. The experimental results indicate that MQTT DoS
attacks can be launched by flooding the broker with control packets to cause
CPU and memory exhaustion, which can adversely impact the message de-
lay and publish rates, especially the critical messages sent with the highest
quality of service. Hence, detecting MQTT DoS attacks is essential to pro-
tect the IoT-MQTT systems from its adverse impacts. The phase-2 of this
work focused on detecting MQTT based DoS attacks by developing a de-
tection framework. Novel MQTT based features were identified and their
effectiveness in detecting DoS attacks was verified and presented in Section
5.3. Based on the network packet aggregation levels presented in Section
2.5.3, two detection approaches were analysed: Time-Window based de-
tection and Flow-based detection. Time-Window based detection aims to
detect anomalous time-windows which correspond to DoS attacks. Since
DoS attacks cause changes to network traffic distributions, a Time-Window
based detection allows developing attack mitigation techniques based on the
attack traffic distributions to protect the MQTT brokers. However, stealth
or semantic attacks can be configured to avoid causing major network traf-
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Figure 6.5: Variation in number of CONNECT packets in two second time
window

fic distributions, thereby bypassing anomaly detection systems. As shown
in Figure 6.5, each attack produces different volume of CONNECT request
in a short time window, which could be challenging to detect using fixed
thresholds.

In addition to detecting malicious time-windows, it would be beneficial to
differentiate between normal and malicious flows in order to effectively ter-
minate malicious flows before they cause any impact on the broker. Further-
more, as network devices already store flow related information for packet
processing, using a flow based detection will result in less overhead compared
to aggregating at other levels.

Hence, a flow-based MQTT attack detection using MQTT flow based
features was proposed in addition to time-window based detection. The em-
pirical results of time-window based detection were presented in Section 5.3.3
and the flow-based detection results were presented in Section 5.3.3. The
detection framework was evaluated using two labelled datasets for each ag-
gregation level (TW-Major-DS, TW-Sub-DS, FW-Major-DS and FW-Sub-
DS). In order to assess the capabilities of the proposed features, the per-
formance of ML models built using four feature vector groups (FULL-FV,
TCP-FV, COUNT-FV and Size-FV) were compared. The feature vector
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groups selected for evaluation in this study were chosen to highlight the de-
tection capability of existing features proposed in the literature (TCP-FV)
in isolation versus using the existing features along with the MQTT proto-
col features proposed in this work (FULL-FV). In addition, the proposed
features were also divided into COUNT based features (COUNT-FV) and
SIZE based features (SIZE-FV) to show the significance of the two classes
of proposed features in detecting the attacks presented in this work. Figure
6.6 and Figure 6.7 show the summary of detection performance of chosen
feature vector groups and the ML classifiers selected for classification in
time-window dataset.

Figure 6.6: TPR of individual classes for ML models and feature vector
groups chosen for TW-Major-DS time-window based detection

For the time-window datasets, the results indicate that using the full fea-
ture (FULL-FV) set (TCP + MQTT features) provided higher true positive
rates (TPR) compared to only using the TCP based features. The results
also indicate that MLP classifier had lower accuracy in detecting attacks
compared to AODE and C4.5 classifiers. In TW-Major-DS, the MQTT
Fuzzing attack class showed lower TPR rates with all the classifiers com-
pared normal and MQTT DoS class. However in TW-Sub-DS, the BF1, BF2

202



Figure 6.7: TPR of individual classes for ML models and feature vector
groups chosen for TW-Sub-DS time-window based detection

and BF3 attacks showed lower TPR rates compared to other classes. The
reason for this could be that BF1, BF2 and BF3 attacks have similar attack
characteristics as well as have similarities with normal traffic which resulted
in mis-classifications. The size based features provided higher separation
between the attack classes for AODE and C4.5 classifiers. The superior de-
tection accuracy with full feature set indicates that the proposed feature set
had better detection accuracy compared to only using TCP based features
proposed in existing literature.

A similar performance was observed with flow-based features as shown
in figures 6.8 and 6.9 which illustrate the summary of detection performance
of chosen feature flow groups and ML classifiers in flow-based dataset. The
results show that the classifiers performed better in detecting attack classes
in FW-Major-DS compared to attack classes in FW-Sub-DS dataset. How-
ever, the TPR rates for individual classes indicate that just using TCP based
features reduced the classifier accuracy, especially the MLP classifier.

This indicates that the performance of all the three classifier techniques
was affected with the introduction of sub-attack classes. Specifically, the
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Figure 6.8: TPR of individual classes for ML models and feature vector
groups chosen for FL-Major-DS flow based detection

MLP classifier’s performance with full features (FULL-FV) degraded dras-
tically and required hyper-parameter tuning to identify optimal setting for
performance improvement. In contrast, the AODE and C4.5 classifier tech-
niques recorded superior attack type detection performance with full features
without requiring addition tuning.

The performance of the three classifier techniques was also affected with
the use of TCP (TCP-FV), Count (COUNT-FV) and Size (SIZE-FV) based
features vector groups individually. Among the TCP, Count and Size based
feature vector groups, the detection accuracy reduced considerably using the
TCP and Count based features. On the contrary, the Size based features
showed better detection in correctly classifying attack classes with AODE
and C4.5 classifiers. This means that Size based features provided better
separation between flow instances compared to TCP and Count features
groups. These results also highlight the challenges in detecting malicious
flows using TCP connection settings or the count based thresholds which
do not vary much between flows. Hence, the MQTT protocol features that
capture the distribution of protocol fields are essential for effective malicious
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Figure 6.9: TPR of individual classes for ML models and feature vector
groups chosen for FL-Major-DS flow based detection

flow detection.
The results obtained with full flow based features indicate that the full

features provided a superior information gain to select split points between
classes for C4.5 technique and provided a superior posterior probability
threshold for AODE classifier technique to separate between classes. For
the MLP classifier, tuning the hyper-parameters was required to improve
the classifier performance. The parameters tuned for MLP classifier were
learning rate, momentum and activation function. The results presented in
Section 5.3.3 show that using a Relu activation function and a learning rate
of 0.001 increased the classifier performance significantly. The poor results
obtained with Sigmoid activation function can be attributed to the short
range of values available to the derivative, resulting in information loss. In
contrast, Relu activation function has higher range with output equal to the
input for input values greater than zero.

Further analysis of various proposed features was conducted to iden-
tify features with greater contribution in classifying instances into multiple
classes. The empirical results of MQTT attack detection to detect anoma-
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lous time-windows and flows indicate that the proposed MQTT features
increased the detection performance compared to using TCP features in iso-
lation. The reason for this is that proposed features were capable of separat-
ing the normal and anomalous data points in the both time-window and flow
datasets. Figure 6.10 shows the distribution of various time-window based
features assessed in classifying anomalous time-windows in TW-Major-DS
dataset into various attack categories. The distribution of MQTT features in
Figure 6.10c, Figure 6.10d and Figure 6.10f demonstrate clear dissimilarity
between the classes.
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(a) Frame Length (b) TCP Segment Length

(c) MQTT Packet Length (d) MQTT Connect Requests

(e) Inter-arrival Time (f) MQTT DISCONNECT Requests

Figure 6.10: Boxplots showing the distribution of normal and attack classes
for various features in TW-Major-DS dataset, (a) Frame Length (b) TCP
Segment Length (c) MQTT Packet Length (d) MQTT CONNECT requests
per window (e) Packet Inter-arrival Time (f) Disconnect Request per win-
dow. Both count based and size based features were required to accurately
detect anomalous time windows 207



Figure 6.11 shows the distribution of various sub-classes for various pro-
posed features assessed in identifying malicious time-windows. The distribu-
tions shows an overlaps between MQTT DoS attack classes and features such
as average message length (Figure 6.11c), packet inter arrival time (Figure
6.11e) and MQTT WILL message length (Figure 6.11f) provide clear sep-
aration between the attack classes. The BF3 attack class shows a drop in
average will message length as smaller WILL payload was configured for
easier management of captured packets and feature extraction.

In time-window detection the combination of both size based and count
based features showed good detection accuracy as both sets of features were
required to differentiate between normal and attack instances. However in
detecting malicious flows in flow-based dataset, size based features showed
greater dissimilarity between normal and attack classes as highlighted by the
distribution of classes for various features in FL-Major-DS dataset shown
in boxplot presented in Figure 6.12. Specifically, MQTT message length
(6.12c) and MQTT WILL message length (6.12f) provided greater separa-
tion between classes. Size based features such as Frame length, TCP seg-
ment length, MQTT packet length and WILL message length showed better
dissimilarity between classes compared to count features such as TCP flow
duration and SUBSCRIBE packet count.

With sub-class detection, the size based features showed clear separa-
tion between normal, invalid SUBSCRIBE flooding, MQTT fuzzing attack
and TCP DoS attacks as highlighted in the distributions of classes for var-
ious features in FL-Sub-DS flow dataset shown in Figure 6.13. However,
for distinguishing between three CONNECT flooding attacks, features such
as flow-duration (Figure 6.13d) and WILL message (Figure 6.13f) were re-
quired as they provided clear dissimilarity between the MQTT DoS classes.
This is because the attacks BF1 and BF2 use the same property of CON-
NECT flooding and only difference between them is the delayed sending of
the CONNECT packet which is captured using the flow duration feature.
Similarly, the difference between the BF3 and other CONNECT flooding is
the use of WILL message which captures the separation between the MQTT
DoS classes.

In addition to the distribution analysis of various features in separating
normal and attack traffic, the correlations between all the features utilised
for classification were also analysed. Features with high correlation provide
redundant information and thus do not contribute towards anomaly detec-
tion. In contrast, features with low correlation score provide non-redundant
information thereby contributing to the detection. The correlation plot of
time-window based features shown in Figure 6.14 shows that the selected fea-
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(a) Frame Length (b) Unique TCP Flows

(c) MQTT Packet Length (d) MQTT PUBLISH Requests

(e) Inter-arrival Time (f) MQTT CONNECT Requests

Figure 6.11: Boxplots showing the distribution of normal and attack classes
for various features in TW-Sub-DS dataset, (a) Frame Length (b) num-
ber of unique flows in window (c) Avg. MQTT Packet Length (d) MQTT
PUBLISH requests per window (e) Packet Inter-arrival Time (f) MQTT
CONNECT requests per window. Both count based and size based features
were required to accurately detect anomalous time windows
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(a) Frame Length (b) TCP Segment Length

(c) MQTT Packet Length (d) TCP Flow duration

(e) MQTT SUBSCRIBE Requests (f) WILL Message Length

Figure 6.12: Boxplots showing the distribution of normal and attack classes
for various features in FL-Major-DS dataset, (a) Avg. Frame Length (b)
Avg. TCP Segment Length (c) Avg. MQTT Packet Length (d) TCP Flow
duration (e) SUBSCRIBE packet count (f) Avg. WIll Message Length. Size
based features showed better separation between classes compared to count
based features.
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(a) Frame Length (b) TCP Segment Length

(c) MQTT Packet Length (d) TCP Flow Duration

(e) Packets Per Flow (f) WILL Message Length

Figure 6.13: Boxplots showing the distribution of normal and attack classes
for various features in FL-Sub-DS dataset, (a) Avg. Frame Length (b)
Avg. TCP Segment Length (c) Avg. MQTT Packet Length (d) TCP Flow
duration (e) Packets per flow (f) Avg. WIll Message Length. Size based
features showed better separation between classes compared to count based
features.
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tures had weak relationships as most correlation scores was between −0.4
and 0.4. This shows the suitability of the selected features in detecting
MQTT based attacks. A few features showed strong correlation such as
cleanSessionSet and Connect Command as CONNECT request either has
the clean session flag enabled or disabled. In the selected dataset, most
CONNECT sessions had cleanSession set, but this might differ in real set-
tings and can be applied to detect attacks that exploit the session persistence
functionality of the MQTT protocol. Compared to time-window features
the flow based features had low correlation scores as shown in the correla-
tion plot for flow based features in Figure 6.15. This highlights that most
features had correlation score between −0.4 and 0.4 indicating weak asso-
ciations between each other making them suitable for detecting malicious
flows.

The distribution of normal and attack classes and correlations between
various features show that overall the proposed features showed clear dis-
tinction between normal and attack instances, providing high true positive
rates and low false positive rates. Hence these features are suitable to detect
MQTT based DoS attacks. One of the key findings of this work is that the
packet size and MQTT field length distributions provide high differentiation
between normal and attack traffic when compared to count-based statistical
features. The reason for this is that the MQTT protocol has various control
packets with many custom fields to exchange small and pre-configured mes-
sages between individual devices, and deviations from the normal size/length
distributions can effectively differentiate anomalies. Hence, packet size dis-
tribution and various packet header field lengths are suitable for anomaly
detection in IoT traffic. In addition, most IoT devices are pre-configured
to send specific content such as temperature, pressure, humidity or binary
values along with specific message identification fields and are not randomly
chosen by the device during IoT operations, hence these parameters can
effectively characterise IoT traffic. In this work, various size/length based
features such as MQTT payload size, topic length, WILL payload, WILL
message length were considered in the detection framework, to differentiate
between normal and attack traffic.
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Figure 6.14: Correlation Plot of proposed time-window based features used
in malicious time-window detection approach

6.4 Research Question Outcomes

6.4.1 SQ1: Is MQTT protocol Vulnerable to Application
Layer DoS attacks?

In order to answer this question, the MQTT protocol specifications were
assessed to identify potential DoS attack scenarios. The authentication and
authorisation based DoS attacks targeting the MQTT broker based on con-
trol packet flooding was evaluated. The impact of DoS attack on MQTT
broker system performance and overall impact on message delay and publish
rate was assessed. Possible DoS scenarios using MQTT CONNECT (authen-
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Figure 6.15: Correlation Plot of proposed flow-based features used in mali-
cious flow detection approach

tication attacks) and SUBSCRIBE control packets (authorisation attacks)
was modelled and was presented in Section 4.2. A DoS evaluation testbed
was setup and four DoS attack scenarios which attack the authentication
and authorisation mechanism of the MQTT protocol. In order to validate
the impact of DoS attacks the evaluation was assessed on three different
brokers. In Section 5.1, it was identified that authentication and authori-
sation attacks had a considerable impact on CPU, memory and bandwidth
utilisation. In addition, certain MQTT brokers were identified to be vulner-
able to non-ASCII characters added in MQTT fields. It was also identified
that authorisation based attacks had higher impact than the authentication
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attacks.
Furthermore, the impact of DoS attacks on delay and publish rate was

evaluated and presented in Section 5.2. It was identified that DoS attacks
considerably increased the average message delay with QoS0 having the
highest percentage increase in delay compared to QoS1 and QoS2. However,
95th percentile results showed that DoS attacks caused a heavy-tail latencies
in MQTT messages especially in QoS2 with delays increasing more that
2000 milliseconds in EMQ broker using SUBSCRIBE flooding attack. The
publish rates measured during the DoS attack scenarios indicate that MQTT
brokers suffered degraded publish rates indicating either message loss or
heavily delayed messages.

The DoS attack impact evaluation show that the Application Layer DoS
attack scenarios using MQTT control packets can be modelled using limited
access privileges to the MQTT broker which can cause considerable impact
on MQTT broker performance. These attacks can have adverse impact on
messages exchanged through the brokers especially critical QoS2 messages.
Such delays in critical messages can be detrimental to delay sensitive critical
applications which require near real-time message delivery (Sun & Wang,
2012).

These empirical results establish that both flooding and semantic DoS
attacks can be launched against the MQTT protocol to cause significant
impact on broker performances and messages exchanged through them. Es-
pecially, the authentication and authorisation mechanisms of the protocol
can be exploited to cause DoS attacks. Such attacks can also be detrimental
to IoT devices operating in resource-constrained conditions as these message
delays or failures can result in high resource consumption and battery usage.

6.4.2 SQ2: Are MQTT protocol based features required to
detect targeted DoS attacks against MQTT-IoT sys-
tems?

Statistical and ML approaches have previously been employed in detecting
DoS attacks as discussed in Section 2.5. However, targeted DoS attacks
involving Application Layer protocols or application domains requires iden-
tifying new features based on protocol or domain to detect them as elab-
orated in Section 2.5.2. Hence to answer this question, both normal and
attack MQTT traffic datasets were generated to derive features based on
it. A physical MQTT based IoT system was deployed using physical IoT
devices based on configurations adopted from real-world deployments. The
normal states of MQTT protocol were studied and replicated in the phys-
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ical IoT testbed to generate the normal MQTT traffic. Based on the DoS
attack models identified in the previous phase, DoS attack traffic was gen-
erated. Furthermore, the analysis of both normal and attack traffic was
conducted to identify the MQTT traffic features suitable for DoS attack
detection. Time-window based and flow level aggregations were analysed to
generate respective features sets which can detect anomalous time-windows
and network flows. The proposed feature sets consisted of both generic
TCP based features and MQTT protocol features which can effectively an-
swer the sub-question (SQ2). Distinct ML algorithms were evaluated and
model performances based on TCP and MQTT features were compared.

Findings presented in Section 5.3 show that combining MQTT based
features with TCP features increased the detection accuracy of algorithms
compared to only using TCP features. Hence MQTT based features are
required for detecting targeted MQTT Application Layer DoS attacks. In
addition to comparing the performance of MQTT and TCP features, the
performance of COUNT based and size based features was evaluated. The
COUNT based features measured the frequency of occurrence of MQTT
control packets or specific parameters of the protocol. In contrast the SIZE
based features captured the distributions of frame, segment, MQTT packet
and field sizes. The comparison results presented in Section 6.3 indicated
that size based features improved the detection accuracy of the models.

6.4.3 SQ3: How effective are the developed ML models in
correlating between normal and attack traffic?

To answer this question, three fundamentally different ML classifiers were
deployed along with major and sub-class labelled datasets to evaluate the
effectiveness of the models in detecting normal and MQTT based attacks. A
10-fold cross-validation approach was selected to split the training and test
dataset to prevent over-fitting of the model where all the instances are chosen
in a test set at-least once. In addition, MQTT protocol based FUZZING
attacks which differ from DoS attacks were added to evaluate the detection
performance of the models built using proposed MQTT features. Since the
testbed only consisted of single attack source, all TCP based features based
on source and destination IP addressed were not used to prevent detection
bias.

The findings in Section 5.3 highlight that the three classifiers had greater
than 99% detection accuracy in classifying between normal and attack time-
window classes in major (TW-Major-DS) and sub-class (TW-Sub-DS) la-
belled time-window based dataset. The AODE (based on Naive Bayes),
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C4.5 (based on Decision Trees), MLP (based on ANN) classifier had similar
detection performance. The models performed extremely well in detecting
MQTT FUZZ attacks as shown in figures 6.6 and 6.7 indicating that a high
TPR was achieved in detecting FUZZ attacks which also makes the proposed
features suitable in detecting non-DoS attacks.

Similarly, in the flow feature based dataset the AODE and C4.5 classi-
fiers showed superior detection accuracy of greater than 99% in detecting
malicious flows belonging to both major (FW-Major-DS) and sub (FW-Sub-
DS) attack classes. This also indicates that the models performed well even
when the complexity of detection task was increased with sub-class detection
without tuning any classifier parameters. However, MLP classifier required
hyper-parameter tuning to increase the detection performance. The MLP
classifier had high false positives in detecting delayed CONNECT flooding
attack which had similarities with normal traffic. All the models performed
well in detecting MQTT FUZZ attacks achieving greater than 98% TPR as
shown in Figure 6.8 and 6.9.

6.5 Research Implications

6.5.1 Threat Modelling

The threat model presented for the MQTT based IoT system contributes
to the threat models presented for IoT systems such as Atamli and Martin
(2014). The threat models for IoT systems capture only the generic threats
to an IoT system but do not capture all the threats to the MQTT based
system. The reason for this is that the components employed by the protocol
introduces new threats to the IoT system. Hence this research focused on
identifying IoT-MQTT system specific threats using the STRIDE threat
model.

6.5.2 MQTT DoS Attack Modelling

The DoS attack models presented in this work identify DoS vulnerabilities
of the MQTT protocol. The significant findings of this work on DoS vulner-
abilities in MQTT protocol are as follows:

• MQTT brokers are vulnerable to Application Layer DoS attacks as
both flooding based and semantic attacks can be modelled against the
MQTT protocol.
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• Various MQTT fields can be exploited to send non-ASCII characters
or malformed packets and broker vulnerabilities to such attacks were
identified which resulted in CPU and memory exhaustion.

• Delay sensitivities of IoT clients operating in unreliable network con-
nections can be exploited to launch stealth attacks which were high-
lighted using a delayed CONNECT attack.

• Adversaries with basic authentication access can cause an adverse im-
pact to MQTT system even without, sufficient authorisations. This
was demonstrated using the SUBSCRIBE flooding attack with invalid
subscription requests.

• Rate limiting approaches will fail if the MQTT DoS attacks are launched
from distributed attack sources as lower attack rates per source can
be successfully adopted as demonstrated in this work with a multi-
threaded attack launching approach.

The findings of this work indicate that stringent validations of MQTT
brokers must be done prior deployment in industrial IoT systems, especially
in CIs. In addition, having valid credentials or open authentication set-
tings as in the case of public MQTT brokers that allow anonymous logins
to connect to brokers, can be exploited by adversaries to cause a significant
impact using DoS attacks. Therefore, it is undesirable to have simple au-
thentication or no authentication in MQTT deployments. Similarly, robust
authentication and authorisation techniques need to be enforced in critical
production deployment scenarios such as CIs. The attack modelling showed
that MQTT based DoS attack can have a significant impact on MQTT mes-
sage delays, especially on tail latencies. This can have a significant impact
in CIs which are sensitive to message delays and such DoS attacks can have
a cascading impact on the services dependent on them.

6.5.3 MQTT Attack Detection

Many attack detection techniques have been proposed in the literature as
discussed in Section 2.5. However, as identified in Section 2.5.2 attacks
that target Application Layer protocols and domain specific attacks require
identifying protocol or domain specific features for effective detection of
attacks because Application Layer DoS attacks utilise legitimate connections
and are capable of bypassing lower layer attack detection techniques. Hence
in this work features specific to the MQTT protocol were identified that can
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detect attacks against the MQTT based IoT system. This work specifically,
contributes to an IoT attack detection scheme proposed by Moustafa et
al. (2019) in which MQTT transaction based features were proposed. In
addition, the work presented by Moustafa et al. (2019) did not contain any
real MQTT attack traffic and the proposed features were based only on
the analysis of TCP payloads. Hence, the results showing the effectiveness
of the proposed features in detecting MQTT attacks were not presented.
In contrast, the work presented in this thesis identifies the various MQTT
protocol based features suitable for MQTT based attack detection and their
effectiveness were analysed using the MQTT datasets collected on realistic
IoT-MQTT testbed. Hence, a significant contribution of this work was to
generate MQTT attack datasets which contain DoS attacks proposed in this
work as well as MQTT Fuzzing attacks proposed by Vähä-Sipilä (2015).

ML techniques have been effectively utilised in anomaly detection in the
existing literature as discussed in Section 2.5. Based on this approach a
detection framework which consists of a feature extraction module config-
ured with statistical MQTT protocol based features and a detection module
consisting of three fundamentally different machine learning algorithms was
proposed. Two levels of feature aggregation: time-window and flow-based
were used to evaluate the effectiveness of the proposed features in detecting
anomalous time-windows and flows which contain attacks.

The proposed features showed significant detection results in distinguish-
ing normal and attack instances compared to only using features based on
TCP layer. Specifically features that were based on packet lengths and
MQTT field lengths drastically improved the accuracy of detection. Such
features can be further extended to detecting IoT specific attacks as IoT de-
vices are configured to exchange predefined messages which have a distinct
length distributions.
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Chapter 7

Conclusion

This chapter presents the conclusions of this research work; which was
focused on detecting the Application Layer DoS attacks against the IoT-
MQTT protocol. To answer the primary research question, conclusions are
drawn from the discussion of various findings presented in Chapter 6. The
main contributions of this research to the body of knowledge are then pre-
sented. The chapter also presents the limitation of this research and provides
future research directions.

7.1 How can Application Layer based DoS attacks
against the IoT-MQTT protocol be detected?

In order to answer the primary research question, three sub-questions were
posed and the answers to SQ1, SQ2 and SQ3 were presented in Section
6.4. The answer to SQ1 was presented in Section 4.1 by presenting an
MQTT based threat model, which highlights that the protocol is susceptible
to Application Layer DoS attacks. It was identified in Section 4.2, that
Application Layer DoS attacks can be designed to target authentication and
authorisation mechanism of the protocol, to effect the attack. The empirical
results of the four DoS scenarios presented in Section 5.1 show that such an
Application Layer DoS can have a significant impact on the broker system
resources.

It was also identified that certain types of MQTT broker software can
be vulnerable to malformed packets, to causing DoS. In addition, the delay
and publish rate evaluations presented in Section 5.2 indicate that such
DoS attacks can significantly impact the quality and delivery of messages
exchanged through MQTT brokers, also introducing a heavy-tailed delay
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especially in QoS2 messages. Such delays and publish rate drops can impact
critical IoT messages exchanged through these brokers.

Even tough the impact of such DoS attacks can be reduced by increas-
ing the processing capabilities of MQTT brokers, such attacks ought to be
detected in a timely manner to prevent their harmful impact on critical
MQTT-based IoT systems. This took us to pose question SQ2 and SQ3;
to investigate the potential capabilities of MQTT protocol-based features in
detecting the DoS attacks presented in Section 4.2.

The investigation was carried out by first designing an MQTT attack
detection framework to capture normal and malicious MQTT traffic gener-
ated using the attack scenarios evaluated as part of SQ1. Furthermore, the
detection framework comprised of statistical MQTT features, which were
based on the two packet aggregation levels namely: time-window and flow
levels. The effectiveness of the detection framework was evaluated using
three fundamentally different machine learning algorithms, namely, AODE
based on Näıve Bayes, C4.5 based on Decision Tress and MLP based on Arti-
ficial Neural Network. In order to compare the detection performance of the
proposed features, classifier models built using four feature vector groups,
namely, FULL-FV, TCP-FV, COUNT-FV and SIZE-FV were compared.

In order to reduce the bias exposed by these models in detecting attacks
presented in this work, two new attack scenarios were introduced. The eval-
uations performed using 10-fold cross-validation and presented in Section 5.3
indicate that, AODE classifier had the most superior performance among
the three classifiers evaluated. In addition, classifier models that used the
FULL-FV feature set which included TCP-based, Count-based and Size-
based features showed promising detection results. These results highlight
that by simply relying on TCP based features and counter or frequency
based features can result in DoS attacks remaining undetected in an IoT
based detection system. Size based features that capture the distributions
of the MQTT packets as well as various MQTT protocol fields provide an
effective separation between normal and attack traffic. In conclusion, the
empirical evidences collected in this research strongly suggest that the pro-
posed MQTT based features can be used effectively to detect Application
Layer DoS attacks against the IoT-MQTT protocol.

7.2 Significant Contributions of this Research

The significant contributions of this research are:

1. Identification of threats to the IoT-MQTT protocol through
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the design of an MQTT threat model: this research comprehen-
sively identified the various MQTT threats that can lead to potential
cyber-security attacks against the IoT systems deployed, as presented
in (Firdous et al., 2017),

2. Devised and implemented four Application Layer DoS at-
tacks against MQTT protocol: this research presented four novel
MQTT based DoS attack scenarios that can potentially cause DoS in
IoT systems deployed upon this protocol. Such DoS attacks can signif-
icantly affect the broker system resources leading to degraded message
exchange performance especially for critical QoS2 messages,

3. Vulnerabilities identified for three open-source MQTT bro-
kers: the investigations conducted in this thesis for DoS attack evalu-
ations identified potential vulnerabilities in three open-source MQTT
brokers. Both VerneMQ and EMQ brokers were vulnerable to non-
ASCII characters in packet fields and Mosquitto broker suffered severe
publish message loss with flooding attacks,

4. Generated and collected IoT-MQTT based attack data: the
normal MQTT protocol states were used to generate normal traffic
and the DoS attack scenarios presented in this research were used to
generate MQTT attack packets resulting in MQTT datasets containing
normal and attack traffic,

5. Identified MQTT based time-window and flow-based features
to effectively detect MQTT attacks: the research presented MQTT
features for attack detection based on two aggregation levels namely:
time-window and flow level. These features can be used to effectively
detect MQTT based attacks.

6. Size based features for effective attack detection in IoT were
identified: findings included that a superior IoT based detection sys-
tem would require size based features as they yielded greater sepa-
ration between normal and attack traffic distributions. This is be-
cause IoT devices are pre-configured to send specific type of messages
with predictable size (pre-defined field length, message etc.) and dif-
fer greatly from human initiated traffic which could contain random
size messages. Hence potential IoT detection systems can leverage
this unique IoT feature in distinguishing between normal and attack
traffic.
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7.3 Limitations of this Study

Although the DoS scenarios and the detection mechanism presented in this
research showed promising results, there are various limitation of this re-
search which need to be highlighted.

One of the drawbacks of the four DoS attack scenarios and its evalu-
ation presented in sections 4.3 and 5.1 is that the proposed DoS attacks
were evaluated in a laboratory environment with brokers deployed on vir-
tual machines. However, real networks would vary greatly from a laboratory
environment in terms of control settings, background traffic, heterogeneity
of IoT devices, and computing resources available for brokers, which could
not be fully replicated in this study.

Another drawback of this research was that the DoS attacks were launched
from a single attack machine based on a multi-threaded attack generator ar-
chitecture, whereas real world DoS attacks are distributed in nature, involv-
ing a number of compromised devices. Hence the full potential of MQTT
based DoS attacks could not be measured with a single attack source.

With regards to the MQTT based DoS attack detection, the dataset was
generated for an IoT test-bed with limited number of IoT devices configured
with single message exchange model and no background traffic. This also po-
tentially explains the reasons for the models achieving high accuracy rates
as the variations in normal and attack traffic were based only on limited
number of IoT devices and a single attack source. However, in real world
scenarios, thousands of heterogeneous IoT devices would operate along with
other communication traffic, which could not be replicated in this research.
Hence the models were evaluated only using test-bed generated traffic. With
lack of real world IoT-MQTT attack datasets, and other studies that contain
similar platforms, a direct comparison of results could not be made and all
the findings reported in this thesis were based on the DoS simulations and
detection results obtained through the test-bed evaluations. In addition,
since the attack detection method relied on the packet and field size distri-
butions between normal and attack traffic, the proposed features may fail
if replay attacks are launched with previously captured legitimate network
packets.

Furthermore, there were software based limitations such as the attack
scenarios were evaluated only on open-source brokers and not on commercial
brokers. Hence, the impact on commercial production deployments was
not fully ascertained. Similarly, a third-party MQTT client library was
used to develop the DoS attack scripts, which contained several client side
validation measures that prevented maximising the impact of a DoS attack.
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The variations in MQTT broker software design also impacted the number
of attack packets that could be generated which resulted in variation on
attack packets received by the brokers.

The limitation mentioned above regarding lack of similarity to real-world
implementation or environments were ultimately intended as referred to the
research design, i.e. laboratory experimentation. Furthermore, they were
also unavoidable for practical reasons. However, the researcher is hopeful
that further research will be able to overcome these limitations.

7.4 Future Work

The impact of DoS attacks on MQTT brokers were evaluated in this study,
however, the impact on IoT devices in terms of battery usage due to re-
transmissions, message delays and message loss is of interest. This research
can be extended in identifying improvements to MQTT protocol in terms
of authentication and authorisation mechanisms. More complex attack sce-
narios need to be studied for MQTT protocol to identify vulnerabilities and
for generating attack datasets, in order to improve detection techniques.
The DoS attack evaluation techniques can also be extended to other IoT
Application Protocols in order to evaluate their vulnerabilities.

It was identified that the size based features provided better detection
accuracy in attack detection. This can be extended in general to other IoT
protocols to detect IoT based attacks. The effectiveness of the proposed
features in detecting non-DoS attacks such as fuzzing attacks, data injection
attacks, and other malicious attacks needs to be further evaluated. Dataset
generation can also be greatly improved by introducing various IoT traffic
models, including diverse MQTT attacks and through using a more realistic
IoT test-bed. More focus should be given to IIoT threats and their detection
system design, as IoT usage in the Industry increases.
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Appendix A

Additional Results

A.1 Additional Results for BF1 Attack Impact on
Three Brokers

Table A.1: Average CPU idle percentage for BF1 attack on the Mosquitto
Broker

Sleep In-
terval
(seconds)

Single
Thread

Two
threads

Three
threads

Four
threads

Five
threads

0.1 99.58 99.36 99.20 99.02 98.37
0.5 98.96 98.02 96.99 95.94 94.80
0.01 88.09 80.86 75.88 67.17 58.54
0.005 62.02 56.81 50.66 43.69 38.96
0 18.25 19.84 20.58 20.58 21.48
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Table A.2: Average CPU idle percentage for BF1 attack on the VerneMQ
Broker

Sleep-
Interval
(seconds)

Single
Thread

Two
Threads

Three
Threads

Four
Threads

Five
Threads

0.1 99.65 97.64 97.21 97.29 96.82
0.5 99.24 94.66 92.32 92.33 89.92
0.01 96.91 73.99 63.34 58.76 43.01
0.005 95.81 61.05 42.08 25.64 13.79
0 82.74 69.61 18.75 5.11 0.73

Table A.3: Average CPU idle percentage for BF1 attack on the EMQ Broker

Sleep-
Interval
(seconds)

Single
Thread

Two
Threads

Three
Threads

Four
Threads

Five
Threads

0.1 97.63 93.09 92.50 89.73 88.16
0.5 87.26 68.77 59.00 37.42 33.57
0.01 1.90 1.20 1.52 0.59 0.54
0.005 0.00 0.00 0.00 0.00 0.00
0 0.00 0.00 0.00 0.00 0.00
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