747 research outputs found

    A Logic Programming Approach to Knowledge-State Planning: Semantics and Complexity

    Full text link
    We propose a new declarative planning language, called K, which is based on principles and methods of logic programming. In this language, transitions between states of knowledge can be described, rather than transitions between completely described states of the world, which makes the language well-suited for planning under incomplete knowledge. Furthermore, it enables the use of default principles in the planning process by supporting negation as failure. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, which shows that the language is very flexible. As we demonstrate on particular examples, the use of knowledge states may allow for a natural and compact problem representation. We then provide a thorough analysis of the computational complexity of K, and consider different planning problems, including standard planning and secure planning (also known as conformant planning) problems. We show that these problems have different complexities under various restrictions, ranging from NP to NEXPTIME in the propositional case. Our results form the theoretical basis for the DLV^K system, which implements the language K on top of the DLV logic programming system.Comment: 48 pages, appeared as a Technical Report at KBS of the Vienna University of Technology, see http://www.kr.tuwien.ac.at/research/reports

    The Design of the Fifth Answer Set Programming Competition

    Full text link
    Answer Set Programming (ASP) is a well-established paradigm of declarative programming that has been developed in the field of logic programming and nonmonotonic reasoning. Advances in ASP solving technology are customarily assessed in competition events, as it happens for other closely-related problem-solving technologies like SAT/SMT, QBF, Planning and Scheduling. ASP Competitions are (usually) biennial events; however, the Fifth ASP Competition departs from tradition, in order to join the FLoC Olympic Games at the Vienna Summer of Logic 2014, which is expected to be the largest event in the history of logic. This edition of the ASP Competition series is jointly organized by the University of Calabria (Italy), the Aalto University (Finland), and the University of Genova (Italy), and is affiliated with the 30th International Conference on Logic Programming (ICLP 2014). It features a completely re-designed setup, with novelties involving the design of tracks, the scoring schema, and the adherence to a fixed modeling language in order to push the adoption of the ASP-Core-2 standard. Benchmark domains are taken from past editions, and best system packages submitted in 2013 are compared with new versions and solvers. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 10 page

    Reformulation in planning

    Get PDF
    Reformulation of a problem is intended to make the problem more amenable to efficient solution. This is equally true in the special case of reformulating a planning problem. This paper considers various ways in which reformulation can be exploited in planning

    Integration Schemas for Constraint Answer Set Programming: a Case Study

    Get PDF
    Recently, researchers in answer set programming and constraint programming spent significant efforts in the development of hybrid languages and solving algorithms combining the strengths of these traditionally separate fields. These efforts resulted in a new research area: constraint answer set programming (CASP). CASP languages and systems proved to be largely successful at providing efficient solutions to problems involving hybrid reasoning tasks, such as scheduling problems with elements of planning. Yet, the development of CASP systems is difficult, requiring non-trivial expertise in multiple areas. This suggests a need for a study identifying general development principles of hybrid systems. Once these principles and their implications are well understood, the development of hybrid languages and systems may become a wellestablished and well-understood routine process. As a step in this direction, in this paper we conduct a case study aimed at evaluating various integration schemas of CASP methods

    Progress in AI Planning Research and Applications

    Get PDF
    Planning has made significant progress since its inception in the 1970s, in terms both of the efficiency and sophistication of its algorithms and representations and its potential for application to real problems. In this paper we sketch the foundations of planning as a sub-field of Artificial Intelligence and the history of its development over the past three decades. Then some of the recent achievements within the field are discussed and provided some experimental data demonstrating the progress that has been made in the application of general planners to realistic and complex problems. The paper concludes by identifying some of the open issues that remain as important challenges for future research in planning

    Optimization Modulo Theories with Linear Rational Costs

    Full text link
    In the contexts of automated reasoning (AR) and formal verification (FV), important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, little work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any previous work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In the work described in this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of linear rational cost functions, combining SMT with standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver. Due to the absence of competitors in the AR, FV and SMT domains, we have experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.Comment: Submitted on january 2014 to ACM Transactions on Computational Logic, currently under revision. arXiv admin note: text overlap with arXiv:1202.140

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization
    • ā€¦
    corecore