
Bounded Model Checking and Inductive Verification

of Hybrid Discrete-continuous Systems

Bernd Becker1, Markus Behle2, Fritz Eisenbrand2, Martin Fränzle3

Marc Herbstritt1, Christian Herde4, Joerg Hoffmann1, Daniel Kröning5

Bernhard Nebel1, Ilia Polian1, Ralf Wimmer1

1Institut für Informatik, Albert-Ludwigs-Universität Freiburg
2Max-Planck-Institut für Informatik Saarbrücken

3Informatics and Mathematical Modelling Dept., DTU, Kgs. Lyngby, Denmark
4Department für Informatik, Carl v. Ossietzky Universität Oldenburg

5School of Computer Science, Carnegie Mellon University, Pittsburgh, USA

Abstract

We present a concept to significantly advance the state of the art for bounded
model checking (BMC) and inductive verification (IV) of hybrid discrete-continuous
systems. Our approach combines the expertise of partners coming from different
domains, like hybrid systems modeling and digital circuit verification, bounded plan-
ning and heuristic search, combinatorial optimization and integer programming. Af-
ter sketching the overall verification flow we present first results indicating that the
combination and tight integration of different verification engines is a first step to
pave the way to fully automated BMC and IV of medium to large-scale networks of
hybrid automata.

Keywords: Hybrid System verification, Bounded model checking, Inductive verifica-
tion, Verification engines

1 Introduction

Many embedded systems operate within or even comprise coupled networks of both dis-
crete and continuous components. The behavior of such hybrid discrete-continuous sys-
tems cannot be fully understood without explicitly modeling the interaction of discrete
and continuous dynamics. Tools for building such models and for simulating their dy-
namics are commercially available, e.g. Simulink with the Stateflow extension [1, 2] or
Statemate magnum with the VisSim extension [3]. Simulation is, however, inherently
incomplete and has to be complemented by verification, which amounts to showing that
the coupled dynamics of the embedded system and its environment is well-behaved, e.g.
that it may never reach an undesirable state or that it will converge to a desirable state,
regardless of the actual disturbance. Unfortunately, theories and tool support for verify-
ing hybrid systems are not yet mature. Recent industrial trials, e.g. performed by Ford
in the context of the Mobies initiative1, indicate that current verification tools fall short
with respect to both the dimensionality of the continuous state spaces and the size of the
discrete state spaces they can handle.

1Mobies phase 1 tool evaluation report, Mobies project, July 2002
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13701383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On the other hand, during the last ten years, formal verification of digital systems
has evolved from an academic subject to an approach accepted by the industry, with
dozens of commercial tools now available and used by major companies. Among the most
successful methods in formal verification of discrete systems are Bounded Model Checking
(BMC) and Inductive Verification (IV) [11, 19, 10, 12, 26, 30]. In general, BMC, i.e.,
checking properties on finite unravellings of the transition relation, and IV, i.e., verifying
invariance of properties under finite composition of the transition relation, provide only
approximate analyzes of the systems considered. On the other hand, both verification
methods using BDD based as well as resolution based propositional satisfiability checkers
have been successfully applied to very large discrete-state systems that are infeasible for
proof engines based on complete methods. As mentioned above, similar technology for
hybrid systems is still in its infancy. In general we observe a large gap between the systems
that can be specified and those that can be verified.

Based on these observations, the German Research Council (DFG) approved the Tran-
sregional Collaborative research center AVACS (Automatic Verification and Analysis of
Complex Systems; www.avacs.org) between the Universities of Oldenburg, Freiburg and
Saarbrücken, and the Max-Planck-Institut für Informatik Saarbrücken. Researchers from
Technical University of Denmark, Kgs. Lyngby (Denmark) and Eidgenössische Tech-
nische Hochschule Zürich (Switzerland) are involved as associated partners. The AVACS
project consists of three project areas: system-level verification (project area S); verifica-
tion of real-time systems (project area R), and verification of hybrid systems (project area
H). The technology described in this paper corresponds to the sub-project H2 in project
area H, which is one of four sub-projects in this project area. The other three sub-projects
are concerned with: deduction and automata based approaches (H1), automatic abstrac-
tion (H3) and hybrid system stability (H4). The sub-project H2 sets out to advance the
state of the art in BMC and IV for hybrid systems by enhancement of several existing
verification methods for the hybrid domain and development of novel ones. Moreover,
we combine stand-alone methods into a tightly integrated framework. This will finally
result in a platform including translators, tightly integrated SAT engines and selection
heuristics thereby making feasible the verification of medium to large scale networks of
hybrid automata.

In this paper we describe the concept how we plan to achieve these aims and on the
other hand also give first results to show that our approach is very promising.

The remainder of the paper is structured as follows: In Sec. 2 we give the overall
verification flow and in particular discuss basic procedures necessary for the development
of the platform. Combining the expertise of partners coming from different domains, like
hybrid systems modeling and digital circuit verification, bounded planning and heuristic
search, combinatorial optimization and integer programming, essential milestones towards
our overall goals are compilation technology necessary for translating the hybrid system
and the verification goal into SAT representations (Sec. 3) and incremental integration of
DPLL, bounded planning and LP procedures into a solver for many-sorted logics (Sec. 4).
In Sec. 5 we present first results indicating that the combination and tight integration
of different verification engines is a promising approach. We sketch the relation between
and combination of “classical” ILP solvers and BDD based ILP solvers. The concept of
a pseudo-Boolean DPLL (Davis-Putnam-Loveland-Logemann) solver and its combination
with (MI)LP is discussed in 5.1. Finally we summarize and draw some conclusions.

2 Goals and Requirements

We aim at advancing scalability of BMC and IV for large hybrid verification problems.
The first step towards this goal is the translation of the system description from the



continuous variables
Discrete and

MILP, ...
CNF, ILP,

decisioncompositional
Basic

problem

Hybrid

model

Back-
translation example

Counter-
procedure
Decision

Language
Modeling

Figure 1: Flow of BMC/IV for hybrid systems

hybrid discrete-continuous domain into a combined SAT/LP instance. Then, our target
is the tight integration of different verification and analysis techniques for satisfiability
and optimization problems in order to combine their virtues. The overall verification flow
is depicted in 1. (Details on the several components are given in the following sections.)

Basic procedures used to realize this concept are:

Linear programming is well-suited for dealing with constant differential inclusions but
does not cover piecewise constant differential inclusions or discrete-continuous in-
teraction.

Resolution based propositional satisfiability checking efficiently tackles control as-
pects of discrete models but falls short on, e.g., integer arithmetic.

Integer linear programming is much better on discrete arithmetic facts (whenever
they fall into its domain), but not the predominant choice for the control part.

Heuristic search is a method for rapidly finding satisfying valuations in complex do-
mains.

Binary decision diagrams are data structures that can represent the complete proof
tree. For instance, they are capable of automatically constructing invariants of
discrete components, a prerequisite for efficient automatic inductive verification.

A tight integration of such heterogeneous computational procedures will provide a major
breakthrough in the performance of verification engines for hybrid systems, as witnessed
by existing, less ambitious, combinations, e.g. the linear programming based and reso-
lution based planner LPSAT [33] or satisfiability engines dedicated to bounded model
checking of timed automata [5, 28].

Our long-term vision is to provide a complete workbench comprising translators, mul-
tiple tightly integrated satisfiability engines, and selection heuristics invoking these such
that BMC and IV can be fully automated for medium to large-scale networks of hybrid au-
tomata. This will in particular involve an extension of the many-sorted propositional sat-
isfiability procedures phase to first-order logics, together with methods for (approximate
and thus computationally cheap) quantifier elimination facilitating automatic abstraction
refinement.

3 Translation and Backtranslation

We address the translation of hybrid systems modeled as interacting hybrid automata
into satisfiability problems. In industrial practice, hybrid systems are frequently modeled
as highly concurrent compositions of heterogeneous signal transducers. Instrumental to
breakthrough in the scalability of push-button verification methods for such systems is to

1. avoid blow-up when translating such descriptions into a predicative format suitable
for symbolic model checking,

2. find suitable encodings for different types of components such that efficient SAT
solving procedures can be applied.



We contribute to the state of the art in this domain by exploiting the formal semantics
of interacting hybrid automata for providing encodings of component and interface dy-
namics in various logical languages, and verifying their correspondence with the formal
semantics. Depending on the type of component, such encodings may involve just one of
the aforementioned formalisms (e.g. a propositional formula in case of pure control logic)
or a conjunction of different encodings with some common variables (e.g. a propositional
formula plus an MILP containing some zero-one variables).

A novel technique to be explored is the idea of redundant encodings, where abstrac-
tions of different fidelity coexist in a satisfiability problem. While this may appear to
just introduce overhead in the encoding, as the tightest overapproximation appearing in
the satisfiability problem subsumes all constraints arising from the laxer approximations,
it is beneficial in a satisfiability search based on combined engines. The most expensive
operation within a combined satisfiability solver (e.g., a DPLL based propositional SAT
procedure combined with a linear programming package) is the hand-over between the
two procedures. An instance of a (potentially) useful redundant encoding is a finite-state
overapproximation of continuous dynamics in addition to an LP-based continuous-state
representation. In this case, the DPLL procedure may perform inferences and refute ex-
istence of certain traces without hand-over to the LP package; the latter will only be
queried when the discrete approximation turns out to be insufficient. Similar savings on
hand-over cost can be expected between other satisfiability components. With consis-
tent use of such “redundant” encodings, it may be possible to combine even expensive
(semi-)decision procedures, like quantifier elimination for elementary geometry or flow-
pipe approximations for ordinary differential equations , into a heterogeneous decision
procedure for hybrid systems, as these expensive procedures would rarely be activated.
To the best of our knowledge, such a technique has not yet been implemented. In its
full generality, i.e. including above-mentioned expensive analysis procedures and activat-
ing these whenever knowledge on the coarser levels turns out to be insufficient, it could
provide a viable alternative to abstraction refinement, where refinement is substituted
by conflict analysis (in a subordinated decision procedure) and learning (in the calling
procedure).

Given this kind of translation, the solvers described in Section 4 are processing a piece-
wise linear overapproximation of the actual hybrid system. As a consequence, an error
trace identified by the solver is inherently approximate. To “backtranslate” this informa-
tion into valid error traces of the actual system is a non-trivial task. This problem will be
reduced to a sequence of search problems, where the search space is the space of values of
the input variables for one state transition. For each such state transition, goal conditions
are generated from the values in the abstract error trace, which are tried to be reached
using local search methods. The idea is to search in the transition system given by the
automaton to be checked, starting in the initial state of the attacked search problem, and
using solutions to a relaxed version of the problem as a measure of the distance to the
nearest state fulfilling the goal condition. Search can then prefer states that appear to
be closer to the goal. Techniques of this kind have been applied very successfully in the
context of planning [14, 24, 23].

4 Core Technology: Tightly Integrated Solvers

This section provides an overview on the solvers that perform the actual verification on
the data translated from the hybrid domain by the methods described above. The core of
the approach is the DPLL-style satisfiability engine, which invokes further routines, such
as ILP, when needed. The DPLL solver core is discussed next, followed by a description
of how ILP methods can be fitted to the hybrid system verification environment. Some
thoughts on the tight integration conclude this section.



4.1 DPLL solver

In both BMC and IV, the main reasoning is done by deciding satisfiability problems. In
our context these are heterogeneous satisfiability problems, i.e. problems that combine dis-
crete and continuous aspects. The best currently known procedures to decide satisfiability
of discrete problems are based on backtracking in the space of partial value assignments to
the decision variables, using constraint propagation to prune search branches when con-
flicts occur. In particular, variations of the Davis-Putnam-Loveland-Logemann (DPLL)
procedure (which propagate the constraints given by unit clauses) remain the state of the
art solvers for satisfiability of Boolean formulae in CNF. Recent results [17, 21], suggest
good transferability of DPLL techniques to more expressive logics than propositional,
e.g. to pseudo-Boolean formulae.

Our solver will incorporate all major components employed by the state of the art
SAT engines in the Boolean domain such as branching heuristics and conflict analysis
and adapt them appropriately for the SAT/LP instances under consideration. We also
will develop techniques that take the structure of the problem description into account
(similar to structural SAT for CNF or ATPG for digital circuits). To fit the needs of
bounded model checking and inductive verification the solver will be designed to work in
an incremental fashion in the sense that it allows to add (as well as delete) successively
sets of constraints to (from) an existing problem and then redo the satisfiability check
without starting SAT search from scratch each time.

4.2 SAT & Planning

Planning is a sub-field of Artificial Intelligence where, in a declaratively specified tran-
sition system, a path – a plan – is sought that leads from the initial configuration to a
state that satisfies a goal condition. Evidently, this problem is very similar to the search
for an error path in model-checking. First successful attempts have been made to trans-
port BDD-based model-checking techniques into planning [8, 9]. Just like it is done in
bounded model-checking, a possible approach to planning (called bounded planning) is to
perform (DPLL-style) satisfiability tests on finite unravellings of the transition relation.
It was recently observed in bounded planning that, within the DPLL solver that does the
reasoning, “relaxation-based” branching heuristics can by far outperform the traditional
criticality-based branching heuristics [22]. Our hope is that the same will hold true in
the satisfiability instances we will consider in our research. A relaxation is a simplified
version of the transition system under consideration. The idea is, during a DPLL-style
search, to extract a relaxed solution (an error path in the relaxed system) in each search
state (respecting the current search decisions), and base the variable selection on the in-
formation provided by this relaxed solution. In bounded planning, the relaxation ignores
certain restrictive aspects of the possible state transitions. Similar relaxations can be de-
fined in the context of model-checking, e.g. by abstraction techniques or LP relaxations.
DPLL search can then pick one (most critical) variable to branch on that corresponds to
a transition used by the relaxed solution.

Of course, extracting a relaxed solution is likely to be more costly than the traditional
criticality-based branching heuristics, which basically keep counters of literal occurrences
in clauses. One can experiment with incremental computation of the relaxed solutions,
with lazy schemes that extract relaxed solutions only in few search states, and with
DPLL-style procedures that use strong constraint propagation techniques (like, binary
instead of unary resolution) and thus invest more effort into the single search nodes
anyway. In bounded planning, the latter option has been taken, i.e. relaxation-based
branching heuristics have successfully been combined with a rather costly planning-specific
constraint propagation technique [22].



4.3 LP-SAT

The LP-SAT routine deals with the satisfiability of (mixed integer) linear programs. A
new approach to mixed integer satisfiability (SAT/LP) is introduced by incorporating
BDD techniques in a branch-and-cut framework. Moreover, the information generated by
our methods can be used for guiding the decision process of the DPLL procedure. The
reasons for inconsistency of an MILP (which can be determined by calculating an infeasible
subsystem) can be employed for pruning the search space of the combined DPLL/LP
procedure. The efficiency of this pruning approach is closely connected to the conciseness
of the reason supplied, i.e. to the minimality of the computed infeasible subsystem of
the MILP. In order to cope with difficulties induced by numerical instabilities of an LP
procedure, we incorporate result verification techniques based on exact arithmetic.

4.4 Integration

To allow the integration of various kinds of first-order solvers within the SAT solver, the
latter will offer a flexible and carefully designed interface which enables the interaction
between the different engines. The basic idea of the integration itself is to replace each
non-propositional constraint in the input formula with a new Boolean variable and to pass
the corresponding constraint to the mathematical decision procedure whenever the SAT
solver assigns that variable true. The first-order solver, working under control of the SAT
engine, decides the feasibility of the set of constraints residing in its database when being
called and reports a conflict to the SAT solver if the conjunction of constraints turns out
to be inconsistent. In the latter case it derives sufficiently general reasons for that conflict
which are communicated back and learned by the SAT solver to avoid repeated failure
due to these reasons in future search.

The integration scheme sketched above is eager in the sense that the first order solver
is invoked after each assignment of a Boolean variable referring to a non-propositional
constraint. As an alternative we will also consider more lazy schemes which postpone
certain invocations of the first-order solver, thereby avoiding the computational overhead
induced by frequent hand-overs between the different engines. The design of heuristics for
how fine-granular the interleaving should be will require a careful theoretical and empirical
investigation of the trade-off between frequent cache invalidations because of fine-granular
interleaving of different algorithms on the one hand, and redundant interference steps that
could have been avoided through early detection of inconsistencies in another engine if
that engine had been activated more frequently, on the other hand.

5 First Steps

5.1 ILP & BDD

A 0/1-ILP problem is given by a matrix A ∈ Z
m×n, and vectors b ∈ Z

m and c ∈ Z
n. A

vector x ∈ {0, 1}n is looked for, which satisfies the constraints Ax− b ≤ 0 and minimizes
the goal function g(x) := cT x. BDDs [15] can represent a Boolean function f : {0, 1}p →
{0, 1}, Kronecker Multiplicative Binary Moment Diagrams (K*BMDs) [16, 20] are an
extension of BDDs to functions from B to Z. Our approach uses BDDs for representing
the constraints and the goal function, and K*BMDs as a vehicle during build-up.

Consider the ith constraint (out of the total number of m) Ci(x1, x2, . . . , xn). We build
up the K*BMD of this function and transform it to a BDD of the characteristic function
χi (where χi(x1, . . . , xn) = 1 iff Ci(x1, . . . , xn) ≥ 0). Then, we calculate the conjunction
of the characteristic functions

∧m

i=1
χi(x1, . . . , xn). To minimze BDD size, we employ



Problem Divide & Conquer Binary Search lp solve
stein9 0.02 s 0.03 s 0.01 s
stein15 0.07 s 0.04 s 0.02 s
stein27 2.62 s 0.41 s 4.59 s
stein45 1290.90 s 127.85 s 355.03 s
p0033 0.31 s 758.97 s 0.32 s
p0040 0.10 s — 0.03 s
bm23 14.19 s 30.18 s 0.09 s

Table 1: Run time comparison for ILP+BDD approach

dynamic BDD variable ordering optimization and also have several strategies regarding
the order in which the conjunction is computed. Finally, we minimize the goal function
g (represented as a K*BMD) without violating the constraints (given as the BDD of
∧m

i=1
χi). We developed two alternative approaches for the latter problem.

The first method (which is based on the algorithm from [25] but is adapted to K*BMDs
instead of EVBDDs) works in a divide-and-conquer fashion. It solves the problem (re-
cursively) for both cofactors of the function and derives the global minimum from this
information. The K*BMD and the BDD are traversed simultaneously.

The second alternative is based on binary search. For this method, an upper bound U
and a lower bound L of the minimum are needed. Trivial values (such as 0 and sum of
all non-negative coefficients of the ILP instance, respectively) can be used as U and L.
More preferably, some known algorithm should be used to determine tighter bounds.

We set M := b(U + L)/2c. Then, we add g(x1, . . . , xn) ≤ M as a new constraint and
try to find an assignment of x1, . . . xn which satisfies all constraints (the original ones as
well as the new one) without minimizing any goal function. If this succeeds (a solution
(x′

1
, . . . x′

n) has been delivered), then we set the upper bound U to g(x′

1
, . . . x′

n), otherwise
we set the lower bound L to M + 1. We calculate a new M and solve the problem
formulated above again (with updated new constraint). This is iterated until L and U
assume the same value. The assignment found in the last iteration solves the original ILP
problem.

Table 1 contains the run times for both our methods in comparison with lp solve [7], a
public domain (integer) linear programming solver, on benchmarks from MIPLIB3.0 [13].
It can be seen that the divide & conquer approach is typically either as fast as lp solve
or slower, but not dramatically.2 The picture is different for binary search, which seems
to be orthogonal to lp solve. The reason for this performance profile is as follows: once
all the BDDs are built up, the satisfiability check needed for the binary search is trivial
and is done quickly. On the other hand, the build-up of the BDDs is complicated by
adding the new constraint, which typically depends on all or almost all variables of the
problem in contrast to most other constraints. Consequently, binary search is efficient
for the instances with a goal function having a compact BDD representation. This is the
case for the stein problems, which are highly symmetric.

Currently, we implement a solver, which combines BDD techniques with branch-and-
cut. Preliminary results with this approach are encouraging.

2Note that the implementation of both our methods is in an early prototype stage.



5.2 DPLL-SAT & ILP

To integrate DPLL proof search with decision procedures for real arithmetic, we have
concentrated on:

1. generalizing acceleration techniques from recent satisfiability engines for CNFs to
linear constraint systems over the Booleans, and

2. coupling the resulting SAT solver with linear programming, resulting in an effi-
cient solver for mixed Boolean-linear problems as well as for massively disjunctive
(MI)LPs.

The rationale behind step 1 is that rewriting the propositional formulae occurring in
e.g. bounded model checking of discrete-state systems [11] to CNF requires a blow-up in
either the formula size (worst-case exponential) or in the number of propositional variables
(linear, leading to a worst-case exponential blow-up of the search space). These blow-ups
can be attributed to the low expressiveness of conjunctive normal forms, and could be
partially avoided when using SAT solving on more concise logics.

It has previously been observed that the DPLL procedure generalizes smoothly to
linear constraint systems over the Booleans [6, 32, 4]. Such constraint systems are expres-
sive enough to facilitate a linear-size encoding of, e.g., gate-level netlists without use of
auxiliary variables, thus avoiding the blow-up encountered upon CNF encoding. We gen-
eralized the acceleration techniques like observation lists and lazy clause evaluation [27],
as well as the more traditional non-chronological backtracking and learning techniques to
Davis-Putnam-like resolution procedures for linear constraint systems over the Booleans
[21]. Despite the more expressive input language, the performance of our prototype im-
plementation comes surprisingly close to that of state-of-the-art CNF-SAT engines like
ZChaff [27]. Our algorithm is very close to that independently developed by Chai and
Kuehlmann [17], yet avoids re-minimization of observation-set size upon backtracking.
This proves to be effective, as our lazy clause evaluation scheme shows speed-ups on arbi-
trary clause types [21], while Chai and Kuehlmann decided, based on benchmarking their
implementation, to constrain lazy clause evaluation to CNF and cardinality clauses (i.e.
linear clauses where all literals have weight 1) [18].

Step (2) is our first instance of a tight integration of DPLL proof search with arith-
metic decision procedures. Combining linear constraint systems over the Booleans with
(MI)LPs, the many-sorted logic supported by this integrated solver is actually only
marginally more expressive than MILPs, which can encode Boolean properties as well
as disjunctions of bounded LPs via 0-1-variables. Nevertheless, the underlying solver
technology is substantially different from traditional LP solvers (e.g., Simplex or interior
point algorithms), such that their synergistic interaction is feasible. New techniques for
resolving e.g. the problems of traditional LP methods on highly symmetric problems—a
standard situation in model-checking of multi-component systems—can be implemented.

Our work on integrating our DPLL-style SAT solver with linear programming packages
has recently led to a first operational prototype. In contrast to the methods from [33, 5,
29, 31], our system is based on a SAT solver manipulating a considerably more concise
logic, namely linear constraint systems over the Booleans instead of CNF. Our solver has
been extended with the concept of Boolean variables guarding arithmetic facts3 and with
an interface to arithmetic decision procedures that allows to incrementally construct and
deconstruct an arithmetic constraint system via calls to the decision procedure’s API.
The solver has been coupled with library GLPK4, which provides the feasibility check for

3i.e., if such a guard variable is set to true then the corresponding arithmetic fact is conjoined to an
initially empty arithmetic constraint system

4http://www.gnu.org/software/glpk/glpk.html



(MI)LPs (yet, currently not the construction of small infeasible subsystems that can be
handed back to the DPLL procedure via the interface, and used there to learn a Boolean
conflict). The resulting interaction between DPLL proof search and feasibility check via
LP is illustrated in Figure 2.

Linear Programming

y

x

Davis Putnam

Davis Putnam

y

x

Davis Putnam Linear Programming

y

x

Linear Programming

DeduceDeduce from conflict clause
Deduce

Deduce

Davis Putnam

y

x

Linear Programming

D

C

Davis Putnam Linear Programming

y

x

D

C

Davis Putnam Linear Programming

y

x

B
C

A D

Conflict !

Davis Putnam Linear Programming

y

Conflict !

xC

D

Minimal infeasible subsystem is 

Solver learns conflict clause

DeduceDeduce

Input formula:

Davis Putnam Linear Programming

y

x

Linear ProgrammingDavis Putnam

y

x

B

A D

C

D

∧
(

f → A ∧ B
)

∧
(

f ∨ g ∨ e
)

∧
(

g ∨ f
)

∧ (e → (C ∨ D) ∧ g)

∧ (A → (4x − 2y ≥ 9))

∧ (B → (2x − 4y ≤ −7))

∧ (C → (x + y ≤ 5))

∧ (D → (x ≤ 7))

2e + C + D ≥ 2

2f + A + B ≥ 2

f + g + e ≥ 1

3e + 2g + C + D ≥ 3

g + f ≥ 1

C + D ≥ 2

2f + A + B ≥ 2

f + g ≥ 1

g + f ≥ 1

2g + C + D ≥ 3

g + f ≥ 1

2f + A + B ≥ 2

CC, D

g, f, A, B

D

A + B ≥ 2

g ≥ 1

g ≥ 1

{A, B, C}

A ∨ B ∨ C

A, Bg, g

Φ = (e → C ∧ D)

ee

2f + A + B ≥ 2

f + g ≥ 1

g + f ≥ 1

f f

Figure 2: DPLL proof search on many-sorted (here: Boolean and continuous) problems.
x and y are real-valued, while e, f, g and A,B,C,D are Boolean. A,B,C,D are, further-
more, guard variables for arithmetic facts.

6 Conclusions

During the last ten years, formal verification of digital systems has evolved from an
academic subject to an approach accepted by the industry, with dozens of commercial
tools now available and used by major companies. Among the most successful methods in
formal verification of discrete systems are Bounded Model Checking (BMC) and Inductive



Verification (IV). This is not yet the case for verification of hybrid systems, where in
general we observe a large gap between the systems that can be specified and those that
can be verified.

Our goal is to make BMC and IV applicable to hybrid systems of realistic size and thus
to make these method accessible for the industry. Our approach is based on translating
the verification problem under consideration into a Boolean satisfiability instance en-
riched by numerical information; processing the problem using tightly integrated solvers;
and “backtranslating” the error trace into the hybrid domain. Our team combines skills
and competence in such different areas of Computer Science as Propositional Satisfiabil-
ity, (Integer) Linear Programming, Heuristic Search, and Decision Diagrams. First results
demonstrate that for some of these fields, incorporating concepts and ideas from other
areas can increase the efficiency of standard methods. We are confident that tight inte-
gration in a way that takes the specifics of hybrid system modeling and verification into
account will make this task as feasible as formal verification of digital systems is today.

7 References

[1] http://www.mathworks.com/products/simulink/.
[2] http://www.mathworks.com/products/stateflow/.
[3] http://www.ilogix.com/products/magnum/statemate magnum.pdf.
[4] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Generic ILP versus

specialized 0-1 ILP: An update. In Int’l Conf. on CAD, pages 450–457, November 2002.
[5] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowics, and R. Sebastiani. A SAT-based

approach for solving formulas over boolean and linear mathematical propositions. In
A. Voronkov, editor, Automated Deduction — CADE-18, volume 2392 of Lecture Notes
in Computer Science, pages 193–208. Springer-Verlag, 2002.

[6] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-boolean
optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik,
Saarbrücken, Germany, 1995.

[7] M. Berkelaar, J. Dirks, K. Eikland, and P. Notebaert. lp-solve.
ftp://ftp.ics.ele.tue.nl/pub/lp solve/.

[8] Piergioirgio Bertoli, Alessandro Cimatti, John Slaney, and Sylvie Thiebaux. Solving power
supply restoration problems with planning via symbolic model checking. In Proceedings of
the 15th European Conference on Artificial Intelligence (ECAI-02), pages 576–80.

[9] Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Planning in
nondeterministic domains under partial observability via symbolic model checking. In Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-01),
pages 473–478.

[10] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using
SAT procedures instead of BDDs. In DAC 99. ACM, 1999.

[11] A. Biere, A. Cimatti, and Y. Zhu. Symbolic model checking without BDDs. In TACAS’99,
volume 1579 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

[12] A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of a PowerPC
microprocessor using symbolic model checking without BDDs. In Computer Aided Veri-
fication (CAV ‘99), volume 1633 of Lecture Notes in Computer Science. Springer-Verlag,
1999.

[13] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0. Submitted to SIAM News, March 1996.

[14] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence, 129(1–
2):5–33, 2001.

[15] R.E. Bryant. Graph - based algorithms for Boolean function manipulation. IEEE Trans.
on Comp., 35(8):677–691, 1986.



[16] R.E. Bryant and Y.-A. Chen. Verification of Arithmetic Functions with Binary Moment
Diagrams. In IEEE Design Automation Conference, pages 535–541, 1995.

[17] Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. In Proc. of
the 40th Design Automation Conference (DAC 2003), pages 830–835, Anaheim (California,
USA), June 2003. ACM.

[18] Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. In Proc. of
the 40th Design Automation Conference (DAC 2003), pages 830–835, Anaheim (California,
USA), June 2003. ACM.

[19] Fady Copty, Limor Fix, Rana Fraer, Enrico Giunchiglia, Gila Kamhi, Armando Tacchella,
and Moshe Y. Vardi. Benefits of bounded model checking at an industrial setting. In
G. Berry, H. Comon, and A. Finkel, editors, Computer Aided Verification (CAV 2001),
volume 2102 of Lecture Notes in Computer Science, pages 436–453. Springer-Verlag, 2001.

[20] R. Drechsler, B. Becker, and S. Ruppertz. The K*BMD: A Verification Data Structure.
IEEE Design and Test, pages 51–59, 1997.

[21] Martin Fränzle and Christian Herde. Efficient SAT engines for concise logics: Accelerating
proof search for zero-one linear constraint systems. In Andrei Voronkov Moshe Y. Vardi,
editor, Proceedings LPAR ‘03, volume 2850 of Lecture Notes in Computer Science (subseries
LNAI), pages 302–316. Springer-Verlag, 2003.

[22] Jörg Hoffmann. Branching matters: Alternative branching in graphplan. In Proceedings
of the 13th International Conference on Automated Planning and Scheduling (ICAPS-03),
pages 22–31, Trento, Italy, 2003. Morgan Kaufmann.

[23] Jörg Hoffmann. The Metric-FF planning system: Translating “ignoring delete lists” to
numerical state variables. Journal of Artificial Intelligence Research, 2003. Special issue on
the 3rd International Planning Competition, to appear.

[24] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[25] Y.-T. Lai, M. Pedram, and S.B.K. Vrudhula. EVBDD-based algorithms for integer linear
programming, spectral transformation, and functional decomposition. IEEE Trans. on
CAD, 13(8):959–975, 1994.

[26] Magnus Ljung. Formal modelling and automatic verification of lustre programs uisng np-
tools. Master’s thesis, Royal Institute of Technology, Dpt. of Teleinformatics, Sweden,
1999.

[27] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01), June 2001.

[28] Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius Bozga, Oded Maler, and Navendu
Jain. Verification of timed automata via satisfiability checking. In Ernst-Rüdiger Olderog
and Werner Damm, editors, International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant systems (FTRTFT 2002), volume 2469 of Lecture Notes in Computer
Science, pages 224–244. Springer-Verlag, 2002.

[29] R. Sebastiani. Integrating SAT solvers with math reasoners: Foundations and basic algo-
rithms. Technical Report 0111-22, ITC-IRST, November 2001.

[30] M Sheeran, S. Singh, and G. St̊amark. Checking safety properties using induction and a
SAT-solver. In Warren A. Hunt Jr. and Steven D. Johnson, editors, FMCAD, volume 1954
of Lecture Notes in Computer Science, pages 407–420. Springer, 2000.

[31] A. Stump, C. Barrett, and D. Dill. CVC: a cooperating validity checker. In 14th Interna-
tional Conference on Computer-Aided Verification, 2002.

[32] Jesse Whittemore, Joonyoung Kim, and Karem Sakallah. SATIRE: A new incremental
satisfiability engine. In Proc. of the 38th Design Automation Conference (DAC 2001),
pages 542–545, Las Vegas (Nevada, USA), June 2001.

[33] Steven A. Wolfman and Daniel S. Weld. The LPSAT engine & its application to resource
planning. In Thomas Dean, editor, Proc. 16th International Joint Conference on Artificial
Intelligence, pages 310–315. Morgan Kaufmann Publishers, 1999.


