68 research outputs found

    On the Geometric Ramsey Number of Outerplanar Graphs

    Full text link
    We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n2n vertices are bounded by O(n3)O(n^{3}) and O(n10)O(n^{10}), in the convex and general case, respectively. We then apply similar methods to prove an nO(log(n))n^{O(\log(n))} upper bound on the Ramsey number of a path with nn ordered vertices.Comment: 15 pages, 7 figure

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,)\mathcal{G}=(G,\prec) where GG is a graph and \prec is a total ordering of its vertices. The ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric

    On geometric graph Ramsey numbers

    Get PDF
    For any two-colouring of the segments determined by 3n-3 points in general position in the plane, either the first colour class contains a triangle, or there is a noncrossing cycle of length n in the secondcolour class, and this result is tight. We also give a series of more general estimates on off-diagonal geometric graph Ramsey numbers in the same spirit. Finally we investigate the existence of large noncrossing monochromatic matchings in multicoloured geometric graphs

    Graph coloring with no large monochromatic components

    Full text link
    For a graph G and an integer t we let mcc_t(G) be the smallest m such that there exists a coloring of the vertices of G by t colors with no monochromatic connected subgraph having more than m vertices. Let F be any nontrivial minor-closed family of graphs. We show that \mcc_2(G) = O(n^{2/3}) for any n-vertex graph G \in F. This bound is asymptotically optimal and it is attained for planar graphs. More generally, for every such F and every fixed t we show that mcc_t(G)=O(n^{2/(t+1)}). On the other hand we have examples of graphs G with no K_{t+3} minor and with mcc_t(G)=\Omega(n^{2/(2t-1)}). It is also interesting to consider graphs of bounded degrees. Haxell, Szabo, and Tardos proved \mcc_2(G) \leq 20000 for every graph G of maximum degree 5. We show that there are n-vertex 7-regular graphs G with \mcc_2(G)=\Omega(n), and more sharply, for every \epsilon>0 there exists c_\epsilon>0 and n-vertex graphs of maximum degree 7, average degree at most 6+\epsilon for all subgraphs, and with mcc_2(G)\ge c_\eps n. For 6-regular graphs it is known only that the maximum order of magnitude of \mcc_2 is between \sqrt n and n. We also offer a Ramsey-theoretic perspective of the quantity \mcc_t(G).Comment: 13 pages, 2 figure

    Some Ramsey- and anti-Ramsey-type results in combinatorial number theory and geometry

    Get PDF
    A szerző nem járult hozzá nyilatkozatában a dolgozat nyilvánosságra hozásához

    Rainbow subgraphs in edge-colored planar and outerplanar graphs

    Get PDF

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page
    corecore