246 research outputs found

    Hitting all maximum cliques with a stable set using lopsided independent transversals

    Full text link
    Rabern recently proved that any graph with omega >= (3/4)(Delta+1) contains a stable set meeting all maximum cliques. We strengthen this result, proving that such a stable set exists for any graph with omega > (2/3)(Delta+1). This is tight, i.e. the inequality in the statement must be strict. The proof relies on finding an independent transversal in a graph partitioned into vertex sets of unequal size.Comment: 7 pages. v4: Correction to statement of Lemma 8 and clarified proof

    On lower bounds for the matching number of subcubic graphs

    Full text link
    We give a complete description of the set of triples (a,b,c) of real numbers with the following property. There exists a constant K such that a n_3 + b n_2 + c n_1 - K is a lower bound for the matching number of every connected subcubic graph G, where n_i denotes the number of vertices of degree i for each i

    Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles

    Full text link
    Given a simple graph G=(V,E)G=(V,E), a subset of EE is called a triangle cover if it intersects each triangle of GG. Let νt(G)\nu_t(G) and τt(G)\tau_t(G) denote the maximum number of pairwise edge-disjoint triangles in GG and the minimum cardinality of a triangle cover of GG, respectively. Tuza conjectured in 1981 that τt(G)/νt(G)≤2\tau_t(G)/\nu_t(G)\le2 holds for every graph GG. In this paper, using a hypergraph approach, we design polynomial-time combinatorial algorithms for finding small triangle covers. These algorithms imply new sufficient conditions for Tuza's conjecture on covering and packing triangles. More precisely, suppose that the set TG\mathscr T_G of triangles covers all edges in GG. We show that a triangle cover of GG with cardinality at most 2νt(G)2\nu_t(G) can be found in polynomial time if one of the following conditions is satisfied: (i) νt(G)/∣TG∣≥13\nu_t(G)/|\mathscr T_G|\ge\frac13, (ii) νt(G)/∣E∣≥14\nu_t(G)/|E|\ge\frac14, (iii) ∣E∣/∣TG∣≥2|E|/|\mathscr T_G|\ge2. Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs, Combinatorial algorithm

    Fractional total colourings of graphs of high girth

    Get PDF
    Reed conjectured that for every epsilon>0 and Delta there exists g such that the fractional total chromatic number of a graph with maximum degree Delta and girth at least g is at most Delta+1+epsilon. We prove the conjecture for Delta=3 and for even Delta>=4 in the following stronger form: For each of these values of Delta, there exists g such that the fractional total chromatic number of any graph with maximum degree Delta and girth at least g is equal to Delta+1
    • …
    corecore