research

On the Geometric Ramsey Number of Outerplanar Graphs

Abstract

We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n2n vertices are bounded by O(n3)O(n^{3}) and O(n10)O(n^{10}), in the convex and general case, respectively. We then apply similar methods to prove an nO(log(n))n^{O(\log(n))} upper bound on the Ramsey number of a path with nn ordered vertices.Comment: 15 pages, 7 figure

    Similar works