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Summary of the thesis

In this thesis my goal is to present some applications of combinatorial methods

in number theory, group theory, and geometric graph theory. Combinatorial

methods are considered as profound and current topics of mathematics nowa-

days. In particular, I will study Ramsey and anti-Ramsey (or rainbow type)

problems. The great number of journals publishing papers in the concerned

areas attests to the important role of these branches. The following jour-

nals publish papers of this type (without making any claims of completeness):

Combinatorica , Discrete and Computational Geometry, Integers, Journal of

Combinatorics and Number Theory, Moscow Journal of Combinatorics and

Number Theory, The Electronic Journal of Combinatorics. We always will

concentrate us on Ramsey-type problems. It is important to clarify what we

mean by Ramsey-type results. In this thesis we speak about a Ramsey-type

theorem, if the result can be formulated in the following way: if one colors every

element of a "large" structure with exactly one of k �xed colors, then one can

always �nd a monochromatic partial structure of a desired size (independent of

the chosen coloring). The �rst known theorem of this sort was proved by Frank

P. Ramsey (see [13]). Since his death in 1930 many new Ramsey-type problems

have been posed and solved. This branch of mathematics has a widespread

literature. The book of Graham, Rotschild and Spencer ([13]) is one of the

most profound summaries of the most important results. In addition, the book

of Landman ([27]) contains many important results concerning Ramsey-type

number theoretical problems. We have to distuingish between Ramsey-type

theorems and density theorems. We speak about a density theorem if we can

formulate our results in the following way: if one chooses a "large" subset of

a given set, then one can �nd another subset of the chosen subset with the

desired properties. It is clear that density theorems are stronger than Ramsey-

type theorems. This means that it is possible, that one can �nd a Ramsey-type

result without even when no density result exists, but from the existence of a

density theorem one can conclude that there is also a Ramsey-type theorem.

We have to explain what we understand by rainbow Ramsey-type theorems.
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In these cases one colors every element of a given set by exactly one of the

k given colors (in the same manner as in the case of Ramsey-type theorems),

but now we look for multicolored substructures of given type. In this thesis

we focus primarily on Ramsey-type theorems in number theory and its related

areas.

The �rst chapter is based on [2]. In this chapter we proceed from a problem of

Roth (see [17]) that was solved by Erdös, Sárközy and T. Sós in an elementary

way (see [11]). We will extend their methods in order to achieve more gen-

eral results. For any k-coloring of a special subset of r-dimensional vectors we

investigate asymptotically the minimal number of r-dimensional vectors that

are representable as a sum of distinct r-dimensional vectors of the same color.

Throughout the �rst chapter we use the following notations: for any integers

k and l, where k ≤ l, (k, l) denotes the set {k, k + 1, · · · , l}. Moreover, for any

positive integer r and for any sets H1, H2, · · · , Hr, we denote the Cartesian

product of these r sets by H1 ×H2 × · · · ×Hr. If H1 = H2 = · · · = Hr = H,

then we write Hr = H1 × H2 × · · · × Hr. In Chapter 1 �rst we prove the

following additive theorem:

Theorem 1. For �xed positive integers r, s, k there is a positive integer m0

with the following property: For any positive integer m > m0 and for any

k-coloring of the elements of the set (1,m)r there are at least[m
s

]r
− 3 ·

(
2r−1mr

)1−2−ks+k−1

vectors ~x in (1,m)r, such that there are pairwise distinct vectors ~x1, ~x2, · · · , ~xs
of the same color in (1,m)r, whose sum is ~x.

Moreover, in the �rst chapter we achieve a result concerning the number of

representations:

Theorem 2. For every positive real number α and β with the property

αr + βr ≤ 1

22r+1k
,

there is a positive integer mαβ, such that for every m > mαβ and for every

k-coloring of Nr the number of elements in (1,m)r having representations as
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a sum of two monochromatic distinct vectors in more than βr

2
mr ways is more

than αrmr.

The second chapter is based on [3]. In the second chapter we approach the

problem of Roth from another point of view. This means that we look for

analogous results in some abelian groups, but this time we focus on rainbow-

type Ramsey problems. More precisely, for any k-coloring of some special

abelian groups G we investigate the minimal number of elements that are

representable as a sum of r elements of distinct colors. First we prove the

following theorem in an elementary way:

Theorem 3. For every k-coloring of the positive integers 1, 2, ..., n, where

color i occurs exactly ni times (i = 1, 2, ..., k), where n1 ≥ n2 ≥ · · · ≥ nk, there

are at most r− 1 +
∑r−1

i=1 (r − i)ni numbers in the set {1, 2, · · · , n} having no
representation as a sum of r integers of distinct colors (r ≥ 1).

Then we investigate analogous questions in �nite abelian groups. We prove

the following theorem by using Kneser's theorem:

Theorem 4. For every k-coloring of the elements of the additive abelian group

G of �nite order m, where every color class is used, there are at least

min

{
m− (k − 1) ·m

Dk (G)
,

m

dk (G)

}
elements of the group having a representation as the sum of k elements of G

of di�erent colors (where dk (G) is the largest positive integer not greater than

k dividing the number |G|, and Dk (G) is the smallest positive integer greater

than k dividing the number |G|).

Then, by using Vosper's theorem, we achieve the following result in Zp:

Theorem 5. If the elements of Zp are colored by k ≥ 2 colors such that every

color class is used, then at least p− 1 elements of Zp have a representation as

a sum of k − 1 elements of pairwise distinct colors.

Moreover, we have the conjecture, that even the following stronger result

holds:
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Conjecture 1. If the elements of Zp are colored by k ≥ 4 colors such that

every color class is used, then each element of Zp has a representation as a

sum of k − 1 elements of pairwise distinct colors.

It is a natural question how to extend the result of Theorem 5 in other �nite

abelian groups. We could not solve the problem, but we have the following a

conjecture:

Conjecture 2. Let G be a �nite abelian group having m elements, and let r

and k be positive integers such that 2 ≤ r < k. If m = p1 · p2 · · · ps, where
p1 ≤ p2 ≤ · · · ≤ ps are prime numbers, then the following statement is true:

for every k-coloring of the given abelian group G, where every color class is

used, the number of elements of G having a representation as a sum of r

elements of distinct colors is

(i) exactly m, if r = 2 and m < 2k − 1

(ii) at least m− m
p1
, if r = 2 and 2k − 1 ≤ m

(iii) at least m− m
p1·p2···pk−r+1

, if 2 < r and k − r + 1 ≤ s

(iv) is eactly m, if 2 < r and k − r + 1 > s.

The bounds expressed above are tight.

It is trivial that Conjecture 1 is a consequence of Conjecture 2.

In the third chapter we generalize analogous Ramsey-type results concerning

products. For any k-coloring of the positive integers up toM will estimate the

minimal number of positive integers that are representable as a product of r

integers of the same color. The results of this chapter are written in [4]. In

the third chapter we �rst prove the following theorem:

Theorem 6. There is a positive absolute constant c such that if r and k

are positive integers, where k is greater than r, and M is a positive integer

large enough depending on k, then every k-coloring of the elements of the set

{1, 2, · · · ,M} satis�es the inequality

∑
b∈B

1

b
> c · 2

r
· 1

kr−1
· logM,
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where B denotes the set of positive integers that are representable as a product

of r elements of the set {1, 2, · · · ,M} of the same color.

Moreover, we investigate analogous problem in some �nite abelian groups.

We prove the following theorem:

Theorem 7. For any positive integers k and r there exists a positive integer

Tk,r, such that for every positive integer M greater than Tk,r the following

statement holds: for any k-coloring of the elements of any cyclic multiplicative

group G of order M there are at least

M

(M, r)
− 3 ·

(
M

(M, r)

)1−2−(k·(r−1)+1)

elements of G that have a representation as a product of r distinct elements of

the same color (here (M, r) denotes the greatest common divisor of the numbers

M and r).

In the fourth chapter we study the corresponding rainbow problems con-

cerning products. We achieve an exact asymptotic result. More precisely, if

k is a �xed positive integer and we color the positive integers up to n by k

colors so that every color is used, then by denoting the minimal number of

integers having a representation as a product of r numbers of distinct colors

by R(r)
k (n), we prove the following:

Theorem 8. limn→∞
R

(r)
k (n)

n
= 2− 1

2(r−1)(k−1)−(r−1)2
.

In the last chapter we present and solve a Ramsey-type problem in geomet-

ric graph theory concerning multiplicity of special subgraphs. The problem

was posed by Gyula Károlyi (see [22]). A geometric graph is a graph drawn

in the plane, where every vertex is represented by a point and the edges are

straight lines connecting some of the vertices (we assume, that an edge joining

two vertices does not pass through a third vertex). A convex geometric graph

is a special geometric graph, where the vertices of the graph lie in a convex

position.

The study of the Ramsey-multiplicity for abstract graphs was introduced in
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the paper of Harary and Prins (see [19]). One can similarly introduce this

de�nition for geometric graphs.

For a graph G the geometric Ramsey number Rg (G) denotes the smallest in-

teger r with the property that for every 2-coloring of the edges of a complete

geometric graph H on at least r vertices, there is a subgraph of H with non-

crossing edges, that is isomorphic to G and has all of its edges of the same

color.

One can similarly de�ne the number Rc (G). In this case we restrict the de�-

nition to convex geometric graphs.

The above numbers exist if and only if the graph G is outerplanar (see [14]).

The concept of Ramsey multiplicity is the same as in the case of abstract

graphs. RMg (G) denotes the minimum number of monochromatic copies of a

given geometric graph G as subgraphs of the complete geometric graph H on

Rg (G) vertices, which is colored by 2 colors. One can similarly interprete the

number RMc (G) in the case of convex geometric graphs.

Let us denote the non-crossing matching with 2n vertices byM2n for geometric

graphs. In [24] the authors proved the following theorem for geometric graphs:

Theorem 9. Rg (M2n) = Rc (M2n) = 3n− 1

In [22] Károlyi asks for a sharp estimate in the case of the numbersRMg (M2n)

and RMc (M2n). He means that these numbers are exponentially large in terms

of the number of the vertices. This conjecture seems reasonable, because in

the case of abstract graphs the Ramsey-multiplicity tends to be large. Ac-

cording to a conjecture of Harary and Prins, in the case of abstract graphs

the Ramsey-multiplicity can only be in some special cases non-exponential in

terms of the number of vertices (see [19]). That is why the following can seem

unexpected:

Theorem 10. RMg (M2n) = RMc (M2n) = 1.
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