118 research outputs found

    Advanced Multitemporal Phase Unwrapping Techniques for DInSAR Analyses

    Get PDF

    Topological Characterization and Advanced Noise-Filtering Techniques for Phase Unwrapping of Interferometric Data Stacks

    Get PDF
    This chapter addresses the problem of phase unwrapping interferometric data stacks, obtained by multiple SAR acquisitions over the same area on the ground, with a twofold objective. First, a rigorous gradient-based formulation for the multichannel phase unwrapping (MCh-PhU) problem is systematically established, thus capturing the intrinsic topological character of the problem. The presented mathematical formulation is consistent with the theoretical foundation of the discrete calculus. Then within the considered theoretical framework, we formally describe an innovative procedure for the noise filtering of time-redundant multichannel multilook interferograms. The strategy underlying the adopted multichannel noise filtering (MCh-NF) procedure arises from the key observation that multilook interferograms are not fully time consistent due to multilook operations independently applied on each single interferogram. Accordingly, the presented MCh-NF procedure suitably exploits the temporal mutual relationships of the interferograms. Finally, we present some experimental results on real data and show the effectiveness of our approach applied within the well-known small baseline subset (SBAS) processing chain, thus finally retrieving the relevant Earth’s surface deformation time series for geospatial phenomena analysis and understanding

    Interferometric SAR deformation timeseries: a quality index

    Get PDF
    Estimating unknown absolute phase from a wrapped observation is a challenging and ill-posed problem that possibly leads to misinterpretation of interferometric SAR (InSAR) deformation results. In this study, we introduce a quality index to cluster post-phase unwrapping multi-master InSAR timeseries outputs based on the estimated phase residuals and redundancy of network of interferograms. The index is supposed to indicate the reliability of a timeseries, including the identification of persistent scatterers (PSs) possibly affected by phase unwrapping jumps. The algorithm was tested on two Sentinel-1 interferometric datasets with 622,991 and 95,398 PSs, generated from the PSI processing chain PSIG of the geomatics division of CTTC. Promising result have been achieved-especially in identifying erroneous PSs with phase unwrapping jumps. Along with existing temporal phase consistency checking algorithms, the approach could provide rich information toward a better interpretation of the deformation timeseries results.This work has been funded by AGAUR, Generalitat de Catalunya, in the framework of Resolution EMC/ 2459/2019, FI-2020.Peer ReviewedPostprint (published version

    Satellite SAR Interferometry for Earth’s Crust Deformation Monitoring and Geological Phenomena Analysis

    Get PDF
    Synthetic aperture radar interferometry (InSAR) and the related processing techniques provide a unique tool for the quantitative measurement of the Earth’s surface deformation associated with certain geophysical processes (such as volcanic eruptions, landslides and earthquakes), thus making possible long-term monitoring of surface deformation and analysis of relevant geodynamic phenomena. This chapter provides an application-oriented perspective on the spaceborne InSAR technology with emphasis on subsequent geophysical investigations. First, the fundamentals of radar interferometry and differential interferometry, as well as error sources, are briefly introduced. Emphasis is then placed on the realistic simulation of the underlying geophysics processes, thus offering an unfolded perspective on both analytical and numerical approaches for modeling deformation sources. Finally, various experimental investigations conducted by acquiring SAR multitemporal observations on areas subject to deformation processes of particular geological interest are presented and discussed

    Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling and gravity measurements

    Get PDF
    We studied the Yellowstone caldera geological unrest between 1977 and 2010 by investigating temporal changes in differential Interferometric Synthetic Aperture Radar (InSAR), precise spirit leveling and gravity measurements. The analysis of the 1992–2010 displacement time series, retrieved by applying the SBAS InSAR technique, allowed the identification of three areas of deformation: (i) the Mallard Lake (ML) and Sour Creek (SC) resurgent domes, (ii) a region close to the Northern Caldera Rim (NCR), and (iii) the eastern Snake River Plain (SRP). While the eastern SRP shows a signal related to tectonic deformation, the other two regions are influenced by the caldera unrest. We removed the tectonic signal from the InSAR displacements, and we modeled the InSAR, leveling, and gravity measurements to retrieve the best fitting source parameters. Our findings confirmed the existence of different distinct sources, beneath the brittle-ductile transition zone, which have been intermittently active during the last three decades. Moreover, we interpreted our results in the light of existing seismic tomography studies. Concerning the SC dome, we highlighted the role of hydrothermal fluids as the driving force behind the 1977–1983 uplift; since 1983–1993 the deformation source transformed into a deeper one with a higher magmatic component. Furthermore, our results support the magmatic nature of the deformation source beneath ML dome for the overall investigated period. Finally, the uplift at NCR is interpreted as magma accumulation, while its subsidence could either be the result of fluids migration outside the caldera or the gravitational adjustment of the source from a spherical to a sill-like geometr

    Using ALOS PALSAR derived high - resolution DInSAR to detect slow - moving landslides in tropical forest: Cameron Highlands, Malaysia

    Get PDF
    Landslide is one of the natural hazards that pose maximum threat for human lives and property in mountainous regions. Mitigation and prediction of this phenomenon can be done through the detection of landslide-susceptible areas. Therefore, an appropriate landslide analysis is needed in order to map and consequently understand the characteristic of this disaster. One of the recent popular remote sensing techniques in deformation analysis is the differential interferometric synthetic aperture radar which is popularly known as DInSAR. Due to the mass vegetation condition in Malaysia, a long-wavelength synthetic aperture radar (∼24 cm) is required in order to be able to penetrate through the forests and reach the bare land. For that reason, ALOS PALSAR HH imagery was used in this study to derive a deformation map of the Gunung Pass area located in the tropical forest of the Cameron Highlands, Malaysia. In this study, the ascending orbit ALOS PALSAR images were acquired in September 2008, January 2009 and December 2009. Subsequently the displacement measurements of the study site (Gunung Pass) were calculated. The accuracy of the result was evaluated through its comparison with ground truth data using the R2 and root mean square error (RMSE) methods. The resulted deformation map showed the landslide locations in the study area from interpretation of the results with 0.84 R2 and 0.151 RMSE. The DInSAR precision was 11.8 cm which proved the efficiency of the proposed method in detecting landslides in a tropical country like Malaysia. It is highly recommended to use the proposed method for any other deformation studies

    Generation of Earth’s Surface Three-Dimensional (3-D) Displacement Time-Series by Multiple-Platform SAR Data

    Get PDF
    In this chapter, the recent advancements of differential synthetic aperture radar interferometry (DInSAR) technique are presented, with the focus on the DInSAR-based approaches leading to the generation of three-dimensional time-series of Earth’s surface deformation, based on the combination of multi-platform line-of-sight (LOS)-projected time-series of deformation. Use of pixel-offset (PO) measurements for the retrieval of North-South deformation components, which are difficult to be extracted from DInSAR data, only, is also discussed. A review of the principal techniques based on the exploitation of amplitude and phase signatures of sequences of SAR images will be first provided, by emphasizing the limitations and strength of each single approach. Then, the interest will be concentrated on the recently proposed multi-track InSAR combination algorithm, referred as minimum acceleration InSAR combination (MinA) approach. The algorithm assumes the availability of two (or more) sets of SAR images acquired from complementary tracks. SAR data are pre-processed through one of currently available multi-temporal DInSAR toolboxes, and the LOS-projected surface deformation time-series are computed. An under-determined system of linear equations is then solved, based on imposing that the 3-D displacement time-series have minimum acceleration (MA). The presented results demonstrate the validity of the MinA algorithm

    A simple solution to mitigate noise effects in time-redundant sequences of small baseline multi-look DInSAR interferograms

    Get PDF
    We present a simple and effective filtering algorithm to mitigate noise effects in a time-redundant sequence of multi-look small baseline (SB) differential synthetic aperture radar (SAR) interferograms by exploiting the temporal relationships among the selected interferometric data pairs. The proposed method relies on the estimation of the (wrapped) filtered phase terms associated to each SAR acquisition; this result is achieved via a non-linear minimization procedure which is applied to the phase signal of conventional multi-look interferograms without any pixel selection process, and with no a-priori information on the statistics of the involved complex-valued SAR images. Following their estimation, the phase images are paired to reconstruct a new sequence of filtered SB differential interferograms, which are used to generate surface deformation products, such as deformation velocity maps and displacement time-series. The filtering algorithm effectiveness is demonstrated by analysing a set of SAR images..

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit

    High-resolution deformation measurement using "Persistent Scatterer Interferometry"

    Get PDF
    Persistent Scatterer Interferometry (PSI) is a group of advanced differential interferometric SAR techniques that are used to measure and monitor terrain deformation. Different PSI techniques have been proposed in the last two decades. In this thesis, the two PSI chains implemented and used at the Geomatics division of CTTC are described: the local area PSI and the PSIG chains. The first part of the thesis is devoted to the local area PSI chain, used to analyse the deformations over small areas. The chain includes a linear deformation model to directly deal with interferometric wrapped phases. Moreover, it does not directly involve the estimation of the APS, thus simplifying the procedure and its computational cost. The chain has been tested using different types of SAR data. The availability of high resolution X-band SAR data has led to an improvement of the PSI results with respect to C-band data. The higher image resolution and phase quality implies an increase of the PS density, an improvement in the estimation precision of the residual topographic error and a higher sensibility to very small deformations, including the displacements caused by thermal dilation. An extension of the classical PSI linear deformation model has been proposed, to account for the thermal dilation effects. This allows obtaining a new PSI outcome, the thermal dilation parameter, which opens new interesting applications since it provides information on the physical properties of single objects, i.e. the coefficient of thermal expansion, and the static structures of the same objects. The second part of the thesis describes the PSIG chain, whose aim was to extend the interferometric processing to wider areas. The ability to cover wide areas is essential to obtain a unique and consistent deformation monitoring for the available SAR image full scenes, i.e. typically 30 by 50 km for TerraSAR-X, 40 by 40 km for CosmoSkyMed and 100 by 100 km for ASAR ENVISAT and ERS. This is particularly important for the forthcoming C-band Sentinel SAR data that will cover 250 by 250 km with a single image scene. The key steps of the PSIG procedure include a new selection of candidate PSs based on a phase similitude criteria and a 2+1D phase unwrapping algorithm. The procedure offers different tools to control the quality of the processing steps. It has been successfully tested over urban, rural and vegetated areas using X-band PSI data. The performance of the PSIG chain is illustrated and discussed in detail, analysing the procedure step by step.Persistent Scatterer Interferometry (PSI) és un grup de tècniques avançades d'interferometria diferencial SAR que s'utilitzen per mesurar i monitoritzar deformacions del terreny. Durant les últimes dues dècades s’han proposat diverses tècniques PSI. En aquesta tesi es descriuen les dues cadenes PSI implementades i utilitzades en la divisió de Geomàtica del CTTC: la cadena PSI d’àrea local i la cadena PSIG. La primera part de la tesi està dedicada a la cadena PSI d’àrea local, que s'utilitza per analitzar deformacions en zones d’extensió limitada. La cadena inclou un model de deformació lineal per tractar directament amb les fases interferomètriques wrapped. En canvi, no estima directament la component atmosfèrica, cosa que simplifica el procediment i el seu cost computacional. La cadena s’ha provat sobre diferents tipus de dades SAR. La disponibilitat de dades SAR d’alta resolució en banda X ha donat lloc a una millora dels resultats del PSI respecte a les dades en banda C. La resolució més gran de la imatge i la qualitat de la fase impliquen un augment de la densitat de PS, una millora en la precisió de l'estimació de l'error topogràfic residual i una sensibilitat més alta a deformacions subtils, incloent-hi els desplaçaments causats per la dilatació tèrmica. Per tenir en compte els efectes de la dilatació tèrmica, s'ha proposat una extensió del model PSI clàssic que ens permet obtenir un nou producte PSI: el paràmetre de dilatació tèrmica. Aquest paràmetre obre noves aplicacions interessants: proporciona informació relacionada amb les propietats físiques dels objectes mesurats –com el coeficient d'expansió tèrmica– i amb la seva pròpia estructura estàtica. La segona part de la tesi descriu la cadena PSIG, l'objectiu de la qual és estendre el processament interferomètric a àrees més extenses. La capacitat de cobrir àrees grans és fonamental per obtenir un únic mapa global de deformacions que sigui consistent i cobreixi l’extensió sencera de les imatges SAR disponibles, de 30 km per 50 km per TerraSAR-X, de 40 km per 40 km per CosmoSkyMed i de 100 km per 100 km per ASAR-ENVISAT i ERS. Això és particularment important tenint en compte la propera disponibilitat de les dades del satèl•lit Sentinel, que opera en banda C i cobrirà 250 km per 250 km amb una sola imatge. Els passos clau del procediment PSIG són una nova selecció de PS candidats en base a un criteri de similitud de fase i un algoritme de 2+1D phase unwrapping. El procediment ofereix diferents eines per controlar la qualitat dels diferents passos del processament. La cadena PSIG s’ha utilitzat amb èxit en àrees urbanes, rurals i amb vegetació utilitzant dades PSI en banda X. El funcionament de la cadena PSIG s'il•lustra i es descriu en detall, analitzant el procediment pas a pas
    corecore