Satellite SAR Interferometry for Earth’s Crust Deformation Monitoring and Geological Phenomena Analysis

Abstract

Synthetic aperture radar interferometry (InSAR) and the related processing techniques provide a unique tool for the quantitative measurement of the Earth’s surface deformation associated with certain geophysical processes (such as volcanic eruptions, landslides and earthquakes), thus making possible long-term monitoring of surface deformation and analysis of relevant geodynamic phenomena. This chapter provides an application-oriented perspective on the spaceborne InSAR technology with emphasis on subsequent geophysical investigations. First, the fundamentals of radar interferometry and differential interferometry, as well as error sources, are briefly introduced. Emphasis is then placed on the realistic simulation of the underlying geophysics processes, thus offering an unfolded perspective on both analytical and numerical approaches for modeling deformation sources. Finally, various experimental investigations conducted by acquiring SAR multitemporal observations on areas subject to deformation processes of particular geological interest are presented and discussed

    Similar works