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1. Introduction 

Differential Synthetic Aperture Radar Interferometry (DInSAR) represents nowadays a well-
established remote sensing technique to generate spatially dense surface deformation maps 
of large areas on Earth (Massonnet & Feigl, 1999; Bürgmann et. al., 2000). To achieve this 
task, the phase difference (known as interferogram) between SAR data pairs related to 
temporally-separated observations is exploited, retrieving a measure of the ground 
displacement projection along the radar line of sight (LOS) with centimeter to millimeter 
accuracy (Gabriel et. al., 1989). 

Altough DinSAR methodology was originally applied to analyze single deformation 
episodes ( Massonnet et. al., 1993; Goldstein et. a., 1993; Massonnet et. al., 1995; Peltzer et. 
al., 1995), it  has recently applied with  success to investigate the temporal evolution of the 
detected deformation phenomena through the generation of displacement time-series 
(Ferretti et. al., 2001; Berardino et. al., 2002) . In this case, the analysis is based on the 
computation of deformation time-series via the inversion of a properly chosen set of 
interferograms, produced from a sequence of temporally-separated SAR acquisitions 
relevant to the investigated area. In this context, two main categories of advanced DInSAR 
techniques for deformation time-series generation have been proposed in literature, often 
referred to as Persistent Scatterers (PS) (Ferretti et al., 2001; Hooper et. al., 2004), and Small 
Baseline (SB) (Berardino et. al., 2002; Mora et. al., 2003) techniques, respectively. The PS 
algorithms select all the interferometric data pairs with reference to a single common master 
image, without any constraint on the temporal and spatial separation (baseline) among the 
orbits. In this case, the analysis is carried out at the full resolution spatial scale, and is 
focused on the pixels containing a single dominant scatterer thus ensuring very limited 
temporal and spatial decorrelation phenomena (Zebker & Villasenor, 1992). Instead, for 
what concerns the SB techniques, the interferograms are generated by considering multiple 
master images, because this allows having interferometric data pairs with small temporal 
and spatial baselines. Accordingly, distributed targets can be also investigated, and the 
analysis may exploit both single-look and multi-look interferograms. Within the SB 
framework, a popular approach is the one referred to as Small BAseline Subset (SBAS), 
which was originally developed for analyzing multi-look interferograms (Berardino et. al., 
2002) and subsequently adapted to the full resolution ones; in the latter case the low 
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resolution results are properly extended to the full resolution scale, as discussed in (Lanari 
et. al., 2004). 

Despite the differences among the various implementations of the PS and SB algorithms, 
which are outside the scope of this work, a common problem to be faced is the Phase 
Unwrapping (PhU) operation representing the retrieval process of the full phase signals 
from their (measured) modulo-2π restricted components, often referred to as 
“interferometric fringes”. In the context of the advanced DInSAR techniques, the need of 
jointly analyzing sequences of multi-temporal interferograms has more recently promoted 
the development of new PhU approaches with improved performances with respect to those 
focused on processing single interferograms. In this chapter, following the description of the 
basic rationale of the most widely used PhU techniques, we present a short review of the 
most recent space-time PhU methodologies with a particular emphasis on the Extended 
Minimum Cost Flow (EMCF) and its recent improvements. Some experimental results 
obtained by applying these latter approaches will be shown to demonstrate the validity of 
the presented algorithms.    

2. Phase unwrapping 

We start by introducing the key ideas at the base of most of the Phase Unwrapping (PhU) 
techniques proposed up to now in literature. As stated before, the phase unwrapping 
problem concerns the retrieval of the full interferometric phase (unwrapped ones) from its 
computed modulo-2π restricted components. Within DInSAR processing codes, PhU 
operation actually represents one the most critical task to be successfully accomplished. The 
problem in reconstructing the true phase from the measured one arises in the presence of 
aliasing errors mainly caused by the phase noise caused by low coherence and 
undersampling phenomena due to locally high fringe rates (related to the deformation 
signals associated to the interferograms). 

To clarify the key aspects of the phase unwrapping problem, let us firstly focus on the 

problem to unwrap single interferograms. To this aim, let  ,z ga r  be the interferometric 

phase measured in correspondence to the pixel of SAR coordinates  ,z ga r . The 

unwrapping problem can be stated as the searching of the multiple 2-integer that must be 

added to the wrapped phases to retrieve the full interferometric phase  ,z ga r . Indeed:  

      , , 2 ,z g z g z ga r a r H a r     (1) 

This represents an ill-posed problem admitting an infinite set of acceptable solutions that 

can benefit from the knowledge of external information. In the absence of such information, 

the unwrapped field is typically reconstructed by computing the phase spatial gradients and 

integrating them over a “consistent” path. Accordingly, PhU algorithms can be grouped in 

two main categories depending on the fact that the unwrapping solution is path-dependent 

or not. To efficiently solve the problem, it is convenient to represent it in terms of discrete 

coordinates  ,x y  being: 

 
0

0

z z

g g

a a x a

r r y r

  
  

 (2) 
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wherein a and r are the azimuth and range pixel spacing, respectively and az0 and rg0 the 
corresponding azimuth and range first lines. The discrete counterpart of the partial 
derivatives are then computed by using the popular wrapped-differences-of-wrapped-

phases estimator     ,
sin cosarctg       . Accordingly, the phase gradient 

vector can be defined as follows: 

 
, ,

ˆ ˆ ˆ
x y   
  

    ψ x y  (3) 

whose components with respect to the two spatial axis x̂  and ŷ  are: 
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  (4) 

Accordingly, the phase gradient vector is estimated by wrapping possible phase differences 

greater than +/- in the   ,   interval by adding the correct multiples of  and by 

implicitly assuming that, in a properly sampled interferogram, the phase differences of 

adjacent samples are likely to be restricted to the  ,   interval. Moreover, the probability 

that the phase difference exceed   depends both on the noise level (i.e. the lower is the 

coherence value the more likely the derivatives exceed  ). For this reason, the introduced 

operator is not conservative, that is: 

    ˆ ˆ 0rot        (5) 

Consequently, the integration of such phase gradients depends on the chosen integration 
path. This suggests us that a way to unwrap interferograms is to correct the phase gradients 
in such a way that the unwrapped phase can be recovered independently of the integration 
direction. Moreover, we can observe that the phase gradient estimate has the advantage that 

its errors are localized and come in integer multiples of  so that its curl (hereafter referred 
to as residue field) can be profitably used to reconstruct the full phase terms.  The residue 
field expression (see Figure 1) is the following: 
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, 1, , 1 ,

x y y x
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r x y x y x y x y

x y x y x y x y

  

      

  

   



  

                 

         
  (6) 

Its values are either zero (no residues) or +/-  (positive or negative residue, respectively). 
Therefore, the goal of the phase unwrapping procedure is to eliminate potential integration 
paths enclosing unequal numbers of positive and negative residues. Residue derives from 
two sources in the radar measurements. The former is related to the true discontinuities in 
the data: the fringe spacing may be so fine on certain topographic slopes or, from large inter-
observation displacement, such to exceed the Nyquist criterion of half-cycle spacing. The 
latter is the noise present in the data set, whatever from thermal and other noise sources or 
from decorrelation due to baseline length and temporal changes in the scene. However, 
residues from whatever source require compensation in the phase unwrapping procedure.  
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One of the major PhU algorithm exploits the fact that residues mark the endpoints of lines in 

the interferogram along which the true phase gradient exceed /sample, these lines are 
commonly referred to as “branch-cuts” or “ghost-lines”. Most of the algorithm up to now 
proposed are based on a proper compensation of these residues and, among these, we will 
concentrate in the following on the residue-cut and the least-square approaches (Zebker & 
Lu, 1998). 

 

Fig. 1. Representation of the residue field. 

2.1 Branch-cut algorithms 

Within this class of algorithms we will point out our interest in particular on the so-called 
“residue-cut tree algorithm”. The initial residue-cut phase unwrapping procedure proposed 
in (Golstein et. al., 1998)  is implemented by first of all identifying the locations of all 
residues in an interferogram, and then connecting them with branch-cuts, so as to prevent 
the existence of integration paths that can encircle unbalanced numbers of positive and 
negative residues. The tree algorithm is a relatively conservative algorithm that tends to 
grow rather dense networks of trees in residue-rich regions. The algorithm initially connects 
closely spaced, oppositely charged, pairs of residues with cuts that prevent integration paths 
between them and, if all permitted integration paths enclose equal numbers of positive and 
negative residues, the consistency is assured. Progressively longer trees are permitted until 
all residues are connected to, at least one, other residue and until the next charge on each 
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tree is zero. Networks on small trees are used to prevent any single branch from becoming 
too long and isolating large sub-areas from the rest of the image. A consequence of the 
indiscriminate branch growth until charge neutrality is achieved from all trees, and all 
residues accounted for, is that in residue-rich regions the tree growth is so dense that the 
region is isolated from the remainder of the image and no unwrapped phase estimate can be 
obtained. By concluding, this conservative approach nearly eliminates mistakes but, at the 
expense of providing an incomplete unwrapping result. 

2.2 Least-squares algorithms 

The second major class of Phase Unwrapping algorithms, commonly in use today, was 

presented by (Ghiglia & Romero, 1994), who applied a mathematical formalism first 

developed by Hunt [69] to the radar interferometry phase unwrapping problem. Hunt 

developed a matrix formulation suitable for general phase reconstruction problems; Ghiglia 

found that a discrete cosine transform technique permits accurate and efficient least-squares 

inversion, even for the very large matrices encountered in the radar interferometry special 

case. In particular, the un-weighted LS method performs the following minimization 

problem 

    
2ˆmin , ,

i j

x y x y
    
  
ψ

ψ ψ


  (7) 

where ψ is the unknown unwrapped phase field. We may stress that, with respect to the 

branch-cut approaches, in these cases the solution will be no longer congruent with the 

original interferometric phase.  

Equation (7) represents a variational problem, whose Euler equation is the Poisson one: 

          2

, ,
, , , ,x x y yx y x y x y x y

   
   

 
            (8) 

under the Neumann boundary condition, which can be finally solved by using simple cosine 
or Fourier transform filtering (Fornaro et. al., 1996). 

One major difference between the residue-cut and least-squares solutions is that in the 

residue-cut approach only integral numbers of cycles are added to the measurements to 

produce the result. Conversely, in the least-squares approach, any value may be added to 

ensure smoothness and continuity in the solution, thus the spatial error distribution may 

differ between the approaches, and the relative merits of each method must be determined 

depending on the application.  

Least-squares methods are very computationally efficient when they make use of fast 
Fourier transform techniques but the resulting unwrapping is not very accurate, 
because they tend to spread the errors instead of concentrating them on a limited set of 
points. To overcome this problem a weighting of the wrapped phase can be useful. 
However, the proposed, weighted least squares algorithms are iterative and not as 
efficient as the un-weighted ones, and the result accuracy strongly depends on the used 
weighting mask. 
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Several other approaches, which can be found in the bibliography at the end of this work, 
have also been investigated but, in the following, we will address the capability of one of 
these, known as the minimum cost flow phase unwrapping technique, developed for the 
two-dimensional case by (Costantini, 1998), and belonging to the branch-cuts PhU algorithm 
class.  

2.3 Minimum cost flow algorithms 

Within the branch-cuts phase unwrapping algorithms an easy and fast algorithm is based on 
a solution of an equivalent minimum cost flow network and will be here addressed.  

Branch-cut methods are based on the integration of the estimated neighbouring pixel 
differences of the unwrapped phase along conservative paths, thus avoiding the regions 
where these estimated differences are inconsistent. The problem of building cuts 
delimiting these regions is very difficult and the resulting phase unwrapping algorithm is 
very computationally expensive. However, we may exploit the fact that the neighbouring 
pixel differences of the unwrapped phases are estimated with possibly an error that is an 

integer multiple of . This circumstance allows the formulation of the phase unwrapping 
problem as the one of minimizing the weighted deviations between the estimated and the 
unknown neighbouring pixel differences of the unwrapped phases with the constraint 

that the deviations must be integer multiple of . With this constraint, the unwrapping 
results will not depend critically on the weighting mask we used, and errors are 
prevented to spread. 

Minimization problems with integer variables are usually computationally very complex. 

However, recognizing the network structure underlying the phase unwrapping problem, it 

makes possible to employ very efficient strategies for its solution. In fact, the problem can be 

equated to the one of finding the minimum cost flow on a network, for the solution of which 

there are very efficient algorithms. To explain its basic principles and clarify how it can be 

performed, we refer to the unknown, unwrapped phase field and we impose that the result 

is consistent, thus requiring the irrotational property of this field: 
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 (9) 

Obviously, we can also express each term of (9) with respect to the wrapped phase derivates 

by introducing, for each phase term, a corresponding, unknown -multiple term, as 
follows: 
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          (10)  

These relations eventually lead to the following equation 
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          ,
, 1, , 1 ,

2
x y x y

r x y
K x y K x y K x y K x y


                 (11) 

that relates the integer unknowns to the measurable residues. At this stage, the phase 
unwrapping problem can be formulated as the searching of the K terms that satisfy the 
constraints (11) and solve the following minimization problem: 

        min , , , ,
x y

x x y y
K K

x y x y

c x y K x y c x y K x y
   
  
              (12) 

being c( ) the so-called cost functions allowing us  to individuate areas where the location of 

branch-cuts is likely or unlikely. It is easy to verify that, whether the costs were chosen 

constant, the problem (12) would be equivalent to search for the minimum total cut-line 

length. Cost functions are essentially expressed as a function of the estimated local 

interferogram quality (by exploiting the spatial coherence, or the phase gradient density or 

other properly identified quality factors). The problem given in (12) is a non-linear 

minimization problem with integer variables, and, if the following change of variables is 

considered 
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            (13) 

it can be re-formulated via two different linear problem, as follows: 
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             (14) 

It can be seen that the problem stated in (14) can be transformed to define a minimum cost 

flow problem on a network (see Figure 2), with the new variables representing the net flow 

running along the network arcs. Once the network has been solved, the solutions in terms of 

the 2-multiple integer functions will be expressed as follows: 

 
     
     

, , ,
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x x x
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K x y K x y K x y
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 (15)  

2.4 Extended Minimum Cost Flow (EMCF) algorithm 

This section is focused on the presentation of the rationale at the base of the so-called 
Extended Minimum Cost Flow (EMCF) PhU technique that represents a way to efficiently 
incorporate temporal information in the phase unwrapping problem of sequence of multi-
temporal differential interferograms. Before discussing the characteristics of the proposed 
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approach, some considerations about the MCF technique are first in order. The original 
minimum cost flow algorithm, thought to be applied to a regular spatial grid, was improved 
in order to deal with sparse data (Costantini, 1998). In particular, the grid of the investigated 
samples is typically chosen to be relevant to the coherent pixels present into the DInSAR 
interferograms, while the Delaunay triangulation is used to define the neighbouring points 
and the elementary cycles in the set of the identified coherent sparse pixels. The possibility 
to extend this approach to the three-dimensional case, in order to simultaneously unwrap an 
interferometric sequence, has already been investigated in (Costantini et. al., 2002). 
However, in this case, the problem cannot be formulated in terms of network minimum cost 
flow procedures. Accordingly, no computationally efficient codes are available and, 
therefore, the overall unwrapping process can be extremely time-consuming, particularly 
for long interferogram sequences.  

 
 
 

 
 
 

Fig. 2. A pictorial representation of the equivalent network to be solved for retrieving the  
integer multiples needed to reconstruct a conservative phase field. The network nodes are 
associated to each residue-cut and the bidirectional arcs are related to the phase differences 
arcs. 
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Fig. 3. SAR data representation in the temporal/perpendicular baseline plane for the ERS 
SAR data analyzed in the following experiments. (A) SAR image distribution. (B) Delaunay 
triangulation. (C) Triangulation after removal of triangles with sides characterized by spatial 
and/or temporal baseline values exceeding the selected thresholds (corresponding in our 
experiments to 300 m and 1500 days, respectively). 

The proposed unwrapping solution, in addition to the spatial characteristics of each DInSAR 
interferogram, also exploits the temporal relationships among a properly selected 
interferogram sequence, thus allowing the performance improvement of the MCF technique.  
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Fig. 4. Delaunay triangulation in the azimuth/range plane involving the set of spatially 
coherent pixels (in black). 

The starting point of our approach, mostly oriented to deformation time-series generation, is 
the computation of two Delaunay triangulations. The former is relevant to the SAR data 
acquisitions distribution in the so-called “Temporal/Perpendicular baseline” plane and 
allows us to identify the DInSAR interferograms sequence to be computed; the latter is 
carried out in the Azimuth/Range  plane and involves the coherent pixels common to the 
interferograms within the sequence. The unwrapping operation of the overall data set is 
then performed via a two-step processing procedure: first of all, we identify all the segments 
of the computed “spatial” triangles and, for each of these, we carry out a “temporal” PhU 
step by applying the MCF technique to the grid relevant to the temporal/perpendicular 
baseline plane. The second step uses, for each arc, the previously computed unwrapped 
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phases as a starting point for the subsequent spatial unwrapping operation, performed on 
each single interferogram; again the standard MCF network programming technique is 
applied and, in this case, we use the “costs” of the previous solutions to set the weights 
associated with the single arcs involved in the spatial unwrapping. Overall, the basic 
rationale of the procedure is quite simple: to exploit the temporal relationships among the 
computed multi-temporal interferograms to bootstrap the subsequent spatial unwrapping 
operation. We remark that the presented approach is focused on multilook interferograms. 
Moreover, the possibility to apply the MCF network programming algorithm to both the 
temporal and spatial unwrapping steps leads to a computationally efficient procedure. Let 
us start our analysis by investigating the generation process of the interferograms needed 
for the algorithm implementation discussed in the following sections. Accordingly, we 
consider a set of N+1 independent SAR images of the same area, which are co-registered 
with respect to a reference one, with respect to which we may compute the temporal and 
spatial (perpendicular) baseline components. Accordingly, each SAR image can be 
represented by a point in the temporal/perpendicular baseline plane (see Figure 3A) where 
we may also compute a Delaunay triangulation (see Figure 3B). Despite the constraints on 
the maximum allowed baseline extensions, we remark that the obtained triangulation may 
involve arcs relevant to data pairs whose baselines exceed the assumed maxima, thus 
potentially leading to generate interferograms strongly decorrelated. To avoid these effects 
without loosing our triangulation representation, we may remove all the triangles involving 
arcs with too large baselines, as shown in Figure 3C. Equivalently, we may also remove the 
triangles corresponding to interferograms including data pairs with large Doppler centroid 
differences; this is often the case for interferograms involving ERS data acquired after 2000, 
i.e., following the gyroscopes failure events (Miranda et. al., 2008). Notice that this triangles 
removal step may lead to discarding some acquisitions and/or to the generation of more 
than one independent subset of triangles, i.e., to a data representation consistent with the 
one described in the D-InSAR Small Baseline Subset (SBAS) procedure. Therefore, the 
compatibility between this data organization and the one exploited in the SBAS technique is 
clearly evident. Following the identification of the final triangulation, the computation of the 
DInSAR interferogram sequence is performed. At this stage, we can generate the “mask” of 
the pixels in the spatial plane that are considered coherent within the generated sequence. 
This mask can be obtained, for instance, by considering those pixels with an estimated 
coherence value greater than a selected threshold, which are common to a part or even to 
the entire interferogram sequence. Accordingly, as a final step, we compute a second 
Delaunay triangulation which involves the arcs connecting the neighbouring pixels of the 
computed mask. 

The presented PhU procedure is based on a two-step processing approach that benefits of 
the information available from both the grids. In particular, the key idea is to carry out first, 
for each arc connecting neighbouring pixels, a “temporal” unwrapping operation which 
implies the basic MCF approach. The second step relies on the use of these results as a 
starting point for the “spatial” unwrapping performed on each single interferogram. The 
key issues of these two processing steps are described in the following analysis which is 
focused on the use of multilook interferograms. The temporal PhU method benefits from the 
relationships existing between the phase differences of pixel pairs relevant to the wrapped 
and unwrapped signals. In particular, if we consider the spatial arc connecting the generic A 
and B pixel pair in the spatial plane, the unknown, unwrapped phase difference can be 
expressed as follows 
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Therefore, we may compute a Delaunay triangulation shown in Figure 4. In order to define 
a set of elementary cycles relevant to the coherent pixels only, and we may impose the 
irrotational property for the phase gradient, in a discrete space. At this stage, the PhU 
problem can be solved, as done for the original case, in a very efficient way by recognizing 
that a network structure underlines it and, by searching for the relevant network minimum 
cost flow solution, as fully described in (Pepe & Lanari, 2006). The unwrapped DInSAR 
phase differences computed via the previous temporal PhU step are then finally used as a 
starting point for the spatial unwrapping operation. This second step is carried out on the 
single interferograms through the application of the basic MCF unwrapping technique. 

3. EMCF-based region growing technique 

A different class of PhU algorithms is based on the general concept of the “region growing” 
allowing us to considerably increase the spatial density of the areas with correct unwrapped 
results. In particular, we present a space-time region growing (RG) technique whose core is 
represented by the EMCF algorithm described in section 2. Basic idea of such approaches is 
to retrieve the unwrapped phase of a set of investigated pixels that are in the 
neighbourhood of an already unwrapped region. In particular, the unwrapped phase of the 
analyzed pixels is computed by exploiting the phase values of neighbouring unwrapped 
points (Xu & Cumming, 1999). Notice that with respect to classic region growing approaches 
here we apply a method that allows to handle with non-linear deformation trends: this is 
beneficial to analyze areas characterized by strongly non-linear displacements behaviours. 
Some experimental results will be also presented to demonstrate the effectiveness of the 
proposed PhU methodology. In particular, the implemented RG-EMCF algorithm has been 
applied to sequences of multilook differential interferograms, relevant to the Central 
Nevada region, characterized by large non-linear deformation phenomena, as well as to a 
test site located in the Gardanne area (France), affected by strong decorrelation phenomena.  

The method provides a prediction of the (unwrapped) phase values at a pixel in the 

neighborhood of a region of pixels that have already been unwrapped. Following the 

preliminary PhU operation, we identify two sets of pixels. The former consists of Q high 

quality points  0 1 1, ,..., QS S S S , hereinafter referred to as seed points, that are characterized 

by temporal coherence values greater than a given threshold (typically set to 0,7 for DInSAR 

analyses). Notice that the temporal coherence is a measure of the correctness of the obtained 

unwrapping results originally proposed in (Pepe & Lanari, 2006) that is not fully discussed 

here for the sake of brevity. The region-growing procedure starts by analyzing the candidate 

pixels in the proximity of the DInSAR reference point location, and proceeds along a path (for 

instance, a spiral)  including all the previously selected candidate pixels.  

For the sake of generalization, let us describe the p-th iteration of the algorithm, aimed at 

analyzing the multitemporal unwrapped phases at the generic candidate pixel pC . This is 

done by exploiting the knowledge of the unwrapped phase values  piSΨ at the seed pixels 

piS , located within a rectangular area centered around the location of the candidate pixel 

[see Fig. 5(a)]. Thereby, we obtain different predictions of the (unwrapped) phases at the  
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Fig. 5. EMCF-based region-growing algorithm. (a) Pictorial representation of the p-th 
iteration of the algorithm: the phase values at the candidate pixel (located at the center) are 
predicted by the phases of the eight-seed-pixels (gray boxes) located in its neighborhood. (b) 
Diagram block of the algorithm. 
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selected candidate pixel, namely    i
pCΨ , computed by integrating the phase differences 

along the paths connecting the candidate and the i-th seed pixel: 

 
       , 1,...,
i

p pi p pi pC S C S i K   Ψ Ψ Ψ
             (17) 

where the estimate of the (unwrapped) phase difference  ,p piC SΨ  over the given 

candidate/seed arc is retrieved by applying the temporal PhU strategy detailed in (Pepe & 

Lanari, 2006). However, since different integration paths lead to independent phase 

predictions at the candidate pixel, we carry out a weighted average of such individuals 

predictions:  

      
1 1

p pK K
i

p i p i
i i

C w C w
 

   
    
   
   
 Ψ

              (18) 

where the weights {w} are set taking into account the (achieved) temporal network 
minimum costs (Pepe & Lanari, 2006). The average prediction in (18) is eventually used to 
compute the (unwrapped) phase vector at the selected candidate pixel. 

       1,...,p p p pC C C i K  Ψ Ψ r
            (19) 

where the      
,

p p pC C C
 

 r Φ Ψ term on the right-hand side of (19) guarantees that 

unwrapped and wrapped phase vectors differ by -integer multiples. 

A check whether the prediction in (19) is correct is finally performed: if this is the case, the 

selected candidate pixel is added to the set of seed points, otherwise it is discarded from the 

following analyses. To the purpose, two different reliability tests are exploited. 

Test 1- We invert (19) by the SBAS strategy and measure the related temporal coherence 

value (Pepe et al. 2006). The test is passed when the measured temporal coherence is greater 

than a given threshold. 

Test 2- It relies on the assumption the larger the values of the residual phase vector the 

larger the probability to retrieve incorrect phase estimates. Accordingly, we analyze the 

residual phase dispersion through: 
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             (20) 

This second test is passed when this additional coherence value is greater than a selected 

threshold.  

The block diagram of the algorithm is sketched in Fig. 5b. 
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3.1 Real data results 

In this section, we provide some experimental results relevant to two different test site areas 

(Casu, 2009): a wide area in central Nevada (USA) extending for about 600 x 100 km and the 

highly vegetated region of Gardanne (France).  

The Central Nevada SAR data set consists of 264 ERS-1/2 SAR data frames (track 442, 

frames: from 2781 to 2871), spanning the 1992-2000 time interval, and we generate 148 

multilook DInSAR interferograms, with a spatial resolution of about 160 x 160 m. Note that 

SAR data set and interferogram distribution are the same exploited by (Casu et al., 2008). 

First of all, we select the set of Seed Points from which the unwrapped phase will be 

propagated. To do this, we just impose a threshold value to the temporal coherence 

achieved by applying the EMCF algorithm, in particular we impose a value of 0.8, obtaining 

more than 850,000 Seed pixels. In Figure 6a it is shown the selected Seed Point mask. 

In order to evaluate the phase unwrapping step performances, we compare the achieved 

RG-EMCF results with those obtained by using a conventional SBAS processing chain. In 

particular, Figure 6b and Figure 6c show the temporal coherence masks of the reliable pixels 

(obtained by imposing previous mentioned thresholds for the RG-EMCF algorithm and for 

the conventional one) relevant to the conventional and new Region-Growing algorithm, 

respectively. By a first qualitative analysis, it is clear that the RG-EMCF approach permits to 

obtain a larger number of points at a given coherence threshold. More systematically, we 

measured an increase of about 88% for the number of “grown” pixels, while the total image 

increment is of about the 32%. 

Moreover, we also compute the temporal coherence histogram, shown in Figure 9, relevant 

to the common “grown” pixels only. It is clear the coherence improvement achieved by the 

RG-EMCF results. As mean coherence value we obtain 0.90 for the RG-EMCF approach 

while 0.85 for the conventional SBAS results. Also in this case, it is clearly visible the 

improvement of the new proposed algorithm. 

As final remark, we present in Figure 7 the mean deformation velocity maps of the two sets 

of unwrapped phases processed via the SBAS approach. Figure 8 clearly demonstrates the 

RG-EMCF capability to increment reliable pixels not only in non deforming areas, but also 

in zone affected by strong and non linear deformation. 

In general, Region-Growing is very helpful to unwrap wide areas. Indeed, to manage large 

set of points can imply PhU infeasibility, due to the complexity of the problem to be solved 

as well as to the high computational burden. Therefore, a cascade of global and local PhU 

steps permits to correctly unwrap large areas, by first deliberately reducing the amount of 

investigated points (Seed Pixels) and, subsequently, reconsidering the removed ones 

(Candidate Pixels) in a proper Region-Growing step. 

However, a Region-Growing approach can be applied also in highly decorrelated region, 

where the low coherence implies to deal with a reduced amount of Seed Pixels. Therefore, a 

Region-Growing step can help increasing the unwrapped pixel spatial density. 

Accordingly, we applied the proposed RG-EMCF PhU approach to the Gardanne (France) 

region which is highly vegetated and where an open pit mine is present. Therefore, the zone  
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Fig. 6. Temporal coherence masks relevant to Central Nevada area. a) Seed Point mask 
(~850,000 pixels). b) RG-EMCF results (~1,770,000 pixels). c) Conventional SBAS results 
(~1,340,000 pixels). Grown points are highlighted in red while in white are represented the 
Seed Points of Figure 6a. By courtesy of dr. Francesco Casu (Casu, 2009). 
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Fig. 7. Mean deformation velocity maps, in SAR coordinates, relevant to Central Nevada 
area. a) Conventional SBAS results. b) RG-EMCF results. By courtesy of dr. Francesco Casu 
(Casu, 2009). 
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Fig. 8. Temporal coherence histogram relevant to common “grown” pixels obtained by 
exploiting conventional (dashed line) and new (continuous line) Region-Growing algorithm. 
By courtesy of dr. Francesco Casu (Casu, 2009). 

is characterized by very low temporal coherence and is affected by strongly non linear 

deformation, implying to be a very critical test area for multi-temporal DInSAR analysis.  

In Figure 9, we present the mean deformation velocity maps computed by applying the 

SBAS approach to a set of 75 ERS-1/2 and 8 ENVISAT images acquired in the 1992-2004 

time period and coupled in 243 interferograms, the latter being unwrapped via both the 

procedure implemented in the SBAS processing chain and the RG-EMCF algorithm. Note 

that, DInSAR data have been multilook, obtaining a final spatial ground resolution of about 

80 by 80 meters.  

We just remark that, simultaneous exploitation of ERS and ENVISAT data implies that no 
cross sensor interferograms can be generated, due to the different signal wavelength of the 
two sensors. Therefore, the Temporal/Perpendicular baseline network will result 
decomposed in several subsets (at least two), corresponding to the different sensor 
interferograms. Also in this case, looking at Figure 9, it is clearly visible the strong increase 
of the correctly unwrapped pixels. Indeed, “grown” pixel number pass from about 2,500 for 
the conventional case to more than 87,000 for the RG-EMCF one, with a global improvement 
(for the whole area, i. e., accounting also for the Seed Points) of about the 113%. It is worthy 
to remark that the RG approach available in the SBAS processing essentially does not 
produced any results (only 2,500 “grown” pixels starting from 73,000 Seeds): this is because 
the strong decorrelation affecting the area. 
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Fig. 9. Mean deformation velocity maps relevant to the Gardanne area (France). a) 
Conventional SBAS results. b) RG-EMCF results. 

4. On unwrapping large interferograms 

In this section, we propose to exploit the highly efficient EMCF algorithm as the core 
procedure to unwrap sequences of large single-look DInSAR interferograms suitable for the 
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generation of deformation time-series through the SBAS approach. This PhU approach 
allows us to directly apply the SBAS inversion to the unwrapped full resolution DInSAR 
phase sequences, with no need to pass through the analysis of the corresponding sequences 
of multi-look DInSAR interferograms (Lanari et. al., 2004). To properly solve this PhU 
problem, we suggest to apply an effective divide-and-conquer approach to the space-time 
phase unwrapping problem. The key idea is to divide the complex minimum cost flow 
network problems, implementing the whole PhU step, into that of simpler sub-networks, 
which are solved by applying the EMCF approach. More precisely, we start by identifying, 
and solving, a primary network that involves a selected set of very coherent pixels in our 
interferograms. The results of this primary network minimization, representing the 
backbone structure of the overall network, are subsequently used to constrain the solution 
of the remaining sub-networks, including the entire set of coherent pixels. To achieve this 
task, the second EMCF PhU step relies on the generation of a Constrained Delaunay 
Triangulation (CDT) (Chew, 1989), whose constrained edges are relevant to the set of 
successfully unwrapped pixels analyzed during the first PhU operation. We remark that our 
approach has some similarities with [6] where a two-scale strategy was also suggested to 
unwrap large interferograms; however our strategy is similar but inverted because in our 
scheme the primary PhU step is used to figure out a (global) PhU solution, and the 
secondary one to locally “propagate” the PhU solution in low coherent areas. The key idea 
of the proposed approach is to split our complex MCF network problem into that of simpler 
sub-networks. This solution can be efficiently implemented, as shown in the following, 
through two subsequent processing steps that are both carried out by using the EMCF 
technique. 

Basically, the first PhU step is carried out on a set of very coherent pixels, used to compute a 
Delaunay triangulation in the Azimuth/Range plane, and the achieved PhU results are 
eventually exploited to successfully unwrap the remaining pixels. To achieve this task we 
solve a “constrained optimization problem” based on the computation of a Constrained 
Delaunay Triangulation (CDT) in the   plane from the grid of the overall coherent pixels. To 
clarify this issue, let us provide some basic information about the CDT, which is a 
triangulation of a given set of vertices with the following properties: 1) a pre-specified set of 
non-crossing edges (referred to as constraints, or constrained edges) is included in the 
triangulation, and (2) the triangulation is as close as possible to a Delaunay one. As an 
example, in Figure 10, it is shown a simple CDT relevant to a set of 96 points, see Fig. 10(a); 
in this case the selected constraints are represented by the 14 edges of the Delaunay 
triangulation generated from an eight-points subset of the originally 96 ones, see Fig. 10(b); 
the computed CDT is shown in Fig. 10(c), whereas the corresponding Delaunay 
triangulation is presented in Fig. 10(d). 

Similarly to the case of Figure 10, we compute a CDT for the spatial grid of the coherent 
pixels  , whose constrained edges are the arcs of the previously identified primary network. 
Since the EMCF Phase Unwrapping algorithm can work with generic triangular irregular 
grids, not necessarily Delaunay triangulations, it can be also applied to the irregular spatial 
grid obtained via our CDT. However, in this case we must solve a constrained optimization 
problem because we want to preserve, for each interferogram, the unwrapped phase values 
already obtained by solving the primary network. Accordingly, we perform the second 
unwrapping step again through the EMCF approach but applying the temporal PhU step 
only to the unconstrained arcs of the generated CDT. Moreover, the spatial PhU step is  
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Fig. 10. Examples of Triangulations. (a) Dataset of 96 points with highlighted 8 of them, 
labeled to as A, B, C, D, E, F, G, H, respectively. (b) The 8-points Delaunay triangulation 
drawn with red lines (c) Constrained Delaunay Triangulation generated from the set of 
points of (a), and by using as constraints the triangulation of (b). (d)  Delaunay triangulation 
computed from the 96 points in (a). 

carried out on each single interferogram via the basic MCF approach but, in order to 
preserve the unwrapped phases relevant to the primary network, the weights used for the 
spatial MCF minimization must be properly set. If we refer to the generic PQ arc, this is 
easily achieved by imposing: 
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               (21) 

where  ConstrainedG  is the set of constrained edges, and minCst  is the temporal minimum 

network cost relevant to the given spatial arc. Moreover, L is a very large integer number, 

and is a threshold value that is typically set not greater than 5% of the total number of 

interferograms. Based on (21), the flow into the constrained MCF network is automatically 

forced not to cross the constrained arcs and, as a consequence, the estimates of the primary 

network unwrapped phases are fully preserved. In other words, the presented approach 

allows us to effectively “propagate” the unwrapped solution from the primary network to 

the connected sub-networks, largely improving the phase unwrapping performances, and 

drastically decreasing the overall computational burden. 
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Fig. 11. SAR data representation in the temporal/perpendicular baseline plane for the ERS-
1/2 SAR data analyzed in the following experiments, relevant to the Napoli (Italy) bay area. 
(a) SAR image distribution. (b) Delaunay Triangulation after the removal of triangles with 
sides characterized by spatial and temporal baseline values, as well as doppler centroid 
differences, exceeding the selected thresholds (corresponding in our experiments to 400 m, 
1500 days and 1000 Hz, respectively). 

The proposed approach was validated by analyzing a dataset of 86 ERS-1/2 SAR images 
acquired on descending orbits (Track 36, Frame 2781) between June 8, 1992 and August 23, 
2007, over the Napoli (Italy) Bay area (see Figure 11). From these data, we identified a set of 
234 data pairs characterized by perpendicular baseline values smaller than 400 m, and a 
maximum time interval of 1500 days. Precise satellite orbital information and a 3 arcsec 
SRTM DEM of the area were used to generate a sequence of single-look DInSAR 
interferograms. The computed interferograms were then unwrapped by applying the EMCF 
approach. To achieve this task, we first identified the spatial grid of all the coherent pixels to 
be unwrapped, composed of about 530 000 pixels, where 50 000 of them are very coherent. 
From the latter pixels, we generated, in the spatial plane, a Delaunay triangulation. The arcs 
of this triangulation represent the constrained edges of the implemented CDT: this structure 
connects the overall set of coherent pixels , and is essential for the second EMCF PhU step, 
leading to the final estimate of the unwrapped interferograms on the chosen spatial grid.  

Figure 12 shows a false color map of the detected mean deformation velocity, where only 
points with high data quality are included, superimposed on a multi-look SAR amplitude 
image of the area. Moreover, in order to further investigate the achieved accuracy of the 
proposed approach, we focused on the Napoli city and surroundings, including Campi 
Flegrei caldera [see Fig. 3(a)] where independent geodetic information (leveling and GPS 
measurements) was available. In particular, for our analysis, we considered pixels located in 
correspondence to continuous GPS stations and leveling benchmarks and, for each of these 
points, we compared the retrieved DInSAR time-series with those obtained from the 
geodetic measurements, projected on the radar LOS. Note that, although we did not 
perform any filtering of the atmospheric phase artifacts affecting the DInSAR time-series, 
there is a good agreement between the SAR and the geodetic measurements. These results f 
confirm the effectiveness of the proposed phase unwrapping approach. 
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Fig. 12. ERS-1/2 DInSAR results. (a) Geocoded map of the mean deformation velocity of the 
investigated area (b) Zoomed view of the area of Napoli city and Campi Flegrei caldera 
(Italy) highlighted by the black box in (a). The plots show the DInSAR/leveling comparison 
of the deformation time-series corresponding to the pixels in (a) labeled as b (25A leveling 
benchmark) and c (236 leveling benchmark), respectively. 
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5. Conclusion 

This chapter has presented a short review of some advanced multi-temporal phase 

unwrapping approaches for the generation of surface deformation time series through the 

application of the Small Baseline Subset (SBAS) DInSAR technique. Following a description 

of the basic rationale of the PhU problem, we have described in details the space-time PhU 

algorithm known as Extended Minimum Cost-Flow (EMCF). Finally, we focused on the 

recent improvements of this algorithm to analyze large interferograms affected by 

significant decorrelation effects and/or with severe non-linear deformation signals. The 

presented results clearly demonstrate the validity of these approaches and their valuable 

applicability in real cases.      
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