280 research outputs found

    Key functions in BIM-based AR platforms

    Get PDF
    The integration of Augmented Reality and Building Information Modelling is a promising area of research; however, fragmentation in literature hinders the development of mature BIM-based AR platforms. This paper aims to minimise the fragmentation in the literature by identifying the key functions that represent the essential capabilities of BIM-AR platforms. A systematic literature review is employed to identify, categorise, and discuss the key functions. The outcome of this paper identifies six key functions: positioning (P), interaction (I), visualisation (V), collaboration (C), automation (A), and integration (T). These key functions act as the foundation for an evaluation framework that can assist practitioners, developers, and researchers with assessing the requirements of the targeted application area, and hence be better informed on the appropriate devices, software, and techniques to use. Finally, this paper emphasises the importance of industrial-academic collaboration in BIM-AR research and suggests prospects for automation through the application of artificial intelligence

    Toward digitalization in the construction industry with immersive and drones technologies: a critical literature review

    Get PDF
    Purpose In this study, a critical literature review was utilized in order to provide a clear review of the relevant existing studies. The literature was analyzed using the meta-synthesis technique to evaluate and integrate the findings in a single context. Design/methodology/approach Digital transformation in construction requires employing a wide range of various technologies. There is significant progress of research in adopting technologies such as unmanned aerial vehicles (UAVs), also known as drones, and immersive technologies in the construction industry over the last two decades. The purpose of this research is to assess the current status of employing UAVs and immersive technologies toward digitalizing the construction industry and highlighting the potential applications of these technologies, either individually or in combination and integration with each other. Findings The key findings are: (1) UAVs in conjunction with 4D building information modeling (BIM) can be used to assess the project progress and compliance checking of geometric design models, (2) immersive technologies can be used to enable controlling construction projects remotely, applying/checking end users’ requirements, construction education and team collaboration. Practical implications A detailed discussion around the application of UAVs and immersive technologies is provided. This is expected to support gaining an in-depth understanding of the practical applications of these technologies in the industry. Originality/value The review contributes a needed common basis for capturing progress made in UAVs and immersive technologies to date and assessing their impact on construction projects. Moreover, this paper opens a new horizon for novice researchers who will conduct research toward digitalized construction

    Place and Object Recognition for Real-time Visual Mapping

    Get PDF
    Este trabajo aborda dos de las principales dificultades presentes en los sistemas actuales de localización y creación de mapas de forma simultánea (del inglés Simultaneous Localization And Mapping, SLAM): el reconocimiento de lugares ya visitados para cerrar bucles en la trajectoria y crear mapas precisos, y el reconocimiento de objetos para enriquecer los mapas con estructuras de alto nivel y mejorar la interación entre robots y personas. En SLAM visual, las características que se extraen de las imágenes de una secuencia de vídeo se van acumulando con el tiempo, haciendo más laboriosos dos de los aspectos de la detección de bucles: la eliminación de los bucles incorrectos que se detectan entre lugares que tienen una apariencia muy similar, y conseguir un tiempo de ejecución bajo y factible en trayectorias largas. En este trabajo proponemos una técnica basada en vocabularios visuales y en bolsas de palabras para detectar bucles de manera robusta y eficiente, centrándonos en dos ideas principales: 1) aprovechar el origen secuencial de las imágenes de vídeo, y 2) hacer que todo el proceso pueda funcionar a frecuencia de vídeo. Para beneficiarnos del origen secuencial de las imágenes, presentamos una métrica de similaridad normalizada para medir el parecido entre imágenes e incrementar la distintividad de las detecciones correctas. A su vez, agrupamos los emparejamientos de imágenes candidatas a ser bucle para evitar que éstas compitan cuando realmente fueron tomadas desde el mismo lugar. Finalmente, incorporamos una restricción temporal para comprobar la coherencia entre detecciones consecutivas. La eficiencia se logra utilizando índices inversos y directos y características binarias. Un índice inverso acelera la comparación entre imágenes de lugares, y un índice directo, el cálculo de correspondencias de puntos entre éstas. Por primera vez, en este trabajo se han utilizado características binarias para detectar bucles, dando lugar a una solución viable incluso hasta para decenas de miles de imágenes. Los bucles se verifican comprobando la coherencia de la geometría de las escenas emparejadas. Para ello utilizamos varios métodos robustos que funcionan tanto con una como con múltiples cámaras. Presentamos resultados competitivos y sin falsos positivos en distintas secuencias, con imágenes adquiridas tanto a alta como a baja frecuencia, con cámaras frontales y laterales, y utilizando el mismo vocabulario y la misma configuración. Con descriptores binarios, el sistema completo requiere 22 milisegundos por imagen en una secuencia de 26.300 imágenes, resultando un orden de magnitud más rápido que otras técnicas actuales. Se puede utilizar un algoritmo similar al de reconocimiento de lugares para resolver el reconocimiento de objetos en SLAM visual. Detectar objetos en este contexto es particularmente complicado debido a que las distintas ubicaciones, posiciones y tamaños en los que se puede ver un objeto en una imagen son potencialmente infinitos, por lo que suelen ser difíciles de distinguir. Además, esta complejidad se multiplica cuando la comparación ha de hacerse contra varios objetos 3D. Nuestro esfuerzo en este trabajo está orientado a: 1) construir el primer sistema de SLAM visual que puede colocar objectos 3D reales en el mapa, y 2) abordar los problemas de escalabilidad resultantes al tratar con múltiples objetos y vistas de éstos. En este trabajo, presentamos el primer sistema de SLAM monocular que reconoce objetos 3D, los inserta en el mapa y refina su posición en el espacio 3D a medida que el mapa se va construyendo, incluso cuando los objetos dejan de estar en el campo de visión de la cámara. Esto se logra en tiempo real con modelos de objetos compuestos por información tridimensional y múltiples imágenes representando varios puntos de vista del objeto. Después nos centramos en la escalabilidad de la etapa del reconocimiento de los objetos 3D. Presentamos una técnica rápida para segmentar imágenes en regiones de interés para detectar objetos pequeños o lejanos. Tras ello, proponemos sustituir el modelo de objetos de vistas independientes por un modelado con una única bolsa de palabras de características binarias asociadas a puntos 3D. Creamos también una base de datos que incorpora índices inversos y directos para aprovechar sus ventajas a la hora de recuperar rápidamente tanto objetos candidatos a ser detectados como correspondencias de puntos, tal y como hacían en el caso de la detección de bucles. Los resultados experimentales muestran que nuestro sistema funciona en tiempo real en un entorno de escritorio con cámara en mano y en una habitación con una cámara montada sobre un robot autónomo. Las mejoras en el proceso de reconocimiento obtienen resultados satisfactorios, sin detecciones erróneas y con un tiempo de ejecución medio de 28 milisegundos por imagen con una base de datos de 20 objetos 3D

    Aportaciones al proceso de anotación en Realidad Aumentada

    Get PDF
    Las tecnologías de Realidad Aumentada tienen la capacidad de combinar información sintética del mundo virtual con elemento existentes en el mundo físico. Gracias a ello, la información virtual queda contextualizada y georreferenciada en el entorno físico que rodea al usuario, permitiéndole interactuar con ambos mundos en tiempo real. Dentro del paradigma de interacción de Realidad Aumentada, las anotaciones son su mayor exponente, pues se vinculan a un elemento concreto del entorno físico enriqueciéndolo de tal forma que modifican la percepción que el usuario tiene del mismo. Sin embargo, a pesar de su importancia, la literatura de la materia muestra muy pocos trabajos que aborden la anotación basada en tecnologías de Realidad Aumentada a nivel teórico. La mayoría de aportaciones presentan aplicaciones ad hoc que buscan mejorar algún aspecto técnico relevante. En consecuencia, la definición y caracterización de estos elementos virtuales están dispersas en la literatura y no se abordan de una manera global. En esta tesis, se presentan aportaciones al proceso de anotación en Realidad Aumentada. Éstas se concretan en dos contribuciones principales: una caracterización que permite definir de forma precisa cualquier tipo de anotación y un modelo de datos que facilita la implementación de dichas anotaciones con independencia del dispositivo utilizado. Para ello, se hace un exhaustivo análisis previo de los trabajos más relevantes sobre conceptos teóricos que ayuden a conseguir una caracterización lo más universal posible. Una vez desarrollados la caracterización y el modelo de datos, se aplican y validan a tres niveles: de forma teórica sobre sistemas publicados por otros autores; de forma práctica en un proyecto propio para el uso de Realidad Aumentada en inspección de edificios; y de forma experimental en el desarrollo de un sistema que puede ser utilizado en entornos sin preparación previa y con diferentes tipos de dispositivos. En esta última validación, se aporta, además, un método de calibración que permite el despliegue en diferentes dispositivos con variaciones mínimas de implementación. Los resultados obtenidos a lo largo del desarrollo de toda la tesis permiten afirmar que el objetivo principal de la misma se ha alcanzado con éxito: desarrollar herramientas que permitan implementar cualquier tipo de anotación de Realidad Aumentada con independencia del dispositivo final que se vaya a utilizar para interactuar con ella

    Literacy for digital futures : Mind, body, text

    Get PDF
    The unprecedented rate of global, technological, and societal change calls for a radical, new understanding of literacy. This book offers a nuanced framework for making sense of literacy by addressing knowledge as contextualised, embodied, multimodal, and digitally mediated. In today’s world of technological breakthroughs, social shifts, and rapid changes to the educational landscape, literacy can no longer be understood through established curriculum and static text structures. To prepare teachers, scholars, and researchers for the digital future, the book is organised around three themes – Mind and Materiality; Body and Senses; and Texts and Digital Semiotics – to shape readers’ understanding of literacy. Opening up new interdisciplinary themes, Mills, Unsworth, and Scholes confront emerging issues for next-generation digital literacy practices. The volume helps new and established researchers rethink dynamic changes in the materiality of texts and their implications for the mind and body, and features recommendations for educational and professional practice

    Robot Navigation in Human Environments

    Get PDF
    For the near future, we envision service robots that will help us with everyday chores in home, office, and urban environments. These robots need to work in environments that were designed for humans and they have to collaborate with humans to fulfill their tasks. In this thesis, we propose new methods for communicating, transferring knowledge, and collaborating between humans and robots in four different navigation tasks. In the first application, we investigate how automated services for giving wayfinding directions can be improved to better address the needs of the human recipients. We propose a novel method based on inverse reinforcement learning that learns from a corpus of human-written route descriptions what amount and type of information a route description should contain. By imitating the human teachers' description style, our algorithm produces new route descriptions that sound similarly natural and convey similar information content, as we show in a user study. In the second application, we investigate how robots can leverage background information provided by humans for exploring an unknown environment more efficiently. We propose an algorithm for exploiting user-provided information such as sketches or floor plans by combining a global exploration strategy based on the solution of a traveling salesman problem with a local nearest-frontier-first exploration scheme. Our experiments show that the exploration tours are significantly shorter and that our system allows the user to effectively select the areas that the robot should explore. In the second part of this thesis, we focus on humanoid robots in home and office environments. The human-like body plan allows humanoid robots to navigate in environments and operate tools that were designed for humans, making humanoid robots suitable for a wide range of applications. As localization and mapping are prerequisites for all navigation tasks, we first introduce a novel feature descriptor for RGB-D sensor data and integrate this building block into an appearance-based simultaneous localization and mapping system that we adapt and optimize for the usage on humanoid robots. Our optimized system is able to track a real Nao humanoid robot more accurately and more robustly than existing approaches. As the third application, we investigate how humanoid robots can cover known environments efficiently with their camera, for example for inspection or search tasks. We extend an existing next-best-view approach by integrating inverse reachability maps, allowing us to efficiently sample and check collision-free full-body poses. Our approach enables the robot to inspect as much of the environment as possible. In our fourth application, we extend the coverage scenario to environments that also include articulated objects that the robot has to actively manipulate to uncover obstructed regions. We introduce algorithms for navigation subtasks that run highly parallelized on graphics processing units for embedded devices. Together with a novel heuristic for estimating utility maps, our system allows to find high-utility camera poses for efficiently covering environments with articulated objects. All techniques presented in this thesis were implemented in software and thoroughly evaluated in user studies, simulations, and experiments in both artificial and real-world environments. Our approaches advance the state of the art towards universally usable robots in everyday environments.Roboternavigation in menschlichen Umgebungen In naher Zukunft erwarten wir Serviceroboter, die uns im Haushalt, im Büro und in der Stadt alltägliche Arbeiten abnehmen. Diese Roboter müssen in für Menschen gebauten Umgebungen zurechtkommen und sie müssen mit Menschen zusammenarbeiten um ihre Aufgaben zu erledigen. In dieser Arbeit schlagen wir neue Methoden für die Kommunikation, Wissenstransfer und Zusammenarbeit zwischen Menschen und Robotern bei Navigationsaufgaben in vier Anwendungen vor. In der ersten Anwendung untersuchen wir, wie automatisierte Dienste zur Generierung von Wegbeschreibungen verbessert werden können, um die Beschreibungen besser an die Bedürfnisse der Empfänger anzupassen. Wir schlagen eine neue Methode vor, die inverses bestärkendes Lernen nutzt, um aus einem Korpus von von Menschen geschriebenen Wegbeschreibungen zu lernen, wie viel und welche Art von Information eine Wegbeschreibung enthalten sollte. Indem unser Algorithmus den Stil der Wegbeschreibungen der menschlichen Lehrer imitiert, kann der Algorithmus neue Wegbeschreibungen erzeugen, die sich ähnlich natürlich anhören und einen ähnlichen Informationsgehalt vermitteln, was wir in einer Benutzerstudie zeigen. In der zweiten Anwendung untersuchen wir, wie Roboter von Menschen bereitgestellte Hintergrundinformationen nutzen können, um eine bisher unbekannte Umgebung schneller zu erkunden. Wir schlagen einen Algorithmus vor, der Hintergrundinformationen wie Gebäudegrundrisse oder Skizzen nutzt, indem er eine globale Explorationsstrategie basierend auf der Lösung eines Problems des Handlungsreisenden kombiniert mit einer lokalen Explorationsstrategie. Unsere Experimente zeigen, dass die Erkundungstouren signifikant kürzer werden und dass der Benutzer mit unserem System effektiv die zu erkundenden Regionen spezifizieren kann. Der zweite Teil dieser Arbeit konzentriert sich auf humanoide Roboter in Umgebungen zu Hause und im Büro. Der menschenähnliche Körperbau ermöglicht es humanoiden Robotern, in Umgebungen zu navigieren und Werkzeuge zu benutzen, die für Menschen gebaut wurden, wodurch humanoide Roboter für vielfältige Aufgaben einsetzbar sind. Da Lokalisierung und Kartierung Grundvoraussetzungen für alle Navigationsaufgaben sind, führen wir zunächst einen neuen Merkmalsdeskriptor für RGB-D-Sensordaten ein und integrieren diesen Baustein in ein erscheinungsbasiertes simultanes Lokalisierungs- und Kartierungsverfahren, das wir an die Besonderheiten von humanoiden Robotern anpassen und optimieren. Unser System kann die Position eines realen humanoiden Roboters genauer und robuster verfolgen, als es mit existierenden Ansätzen möglich ist. Als dritte Anwendung untersuchen wir, wie humanoide Roboter bekannte Umgebungen effizient mit ihrer Kamera abdecken können, beispielsweise zu Inspektionszwecken oder zum Suchen eines Gegenstands. Wir erweitern ein bestehendes Verfahren, das die nächstbeste Beobachtungsposition berechnet, durch inverse Erreichbarkeitskarten, wodurch wir kollisionsfreie Ganzkörperposen effizient generieren und prüfen können. Unser Ansatz ermöglicht es dem Roboter, so viel wie möglich von der Umgebung zu untersuchen. In unserer vierten Anwendung erweitern wir dieses Szenario um Umgebungen, die auch bewegbare Gegenstände enthalten, die der Roboter aktiv bewegen muss um verdeckte Regionen zu sehen. Wir führen Algorithmen für Teilprobleme ein, die hoch parallelisiert auf Grafikkarten von eingebetteten Systemen ausgeführt werden. Zusammen mit einer neuen Heuristik zur Schätzung von Nutzenkarten ermöglicht dies unserem System Beobachtungspunkte mit hohem Nutzen zu finden, um Umgebungen mit bewegbaren Objekten effizient zu inspizieren. Alle vorgestellten Techniken wurden in Software implementiert und sorgfältig evaluiert in Benutzerstudien, Simulationen und Experimenten in künstlichen und realen Umgebungen. Unsere Verfahren bringen den Stand der Forschung voran in Richtung universell einsetzbarer Roboter in alltäglichen Umgebungen
    corecore