7,405 research outputs found

    Approximation Algorithms for Facial Cycles in Planar Embeddings

    Get PDF
    Consider the following combinatorial problem: Given a planar graph G and a set of simple cycles C in G, find a planar embedding E of G such that the number of cycles in C that bound a face in E is maximized. This problem, called Max Facial C-Cycles, was first studied by Mutzel and Weiskircher [IPCO \u2799, http://dx.doi.org/10.1007/3-540-48777-8_27) and then proved NP-hard by Woeginger [Oper. Res. Lett., 2002, http://dx.doi.org/10.1016/S0167-6377(02)00119-0]. We establish a tight border of tractability for Max Facial C-Cycles in biconnected planar graphs by giving conditions under which the problem is NP-hard and showing that strengthening any of these conditions makes the problem polynomial-time solvable. Our main results are approximation algorithms for Max Facial C-Cycles. Namely, we give a 2-approximation for series-parallel graphs and a (4+epsilon)-approximation for biconnected planar graphs. Remarkably, this provides one of the first approximation algorithms for constrained embedding problems

    Binary object recognition system on FPGA with bSOM

    Get PDF
    Tri-state Self Organizing Map (bSOM), which takes binary inputs and maintains tri-state weights, has been used for classification rather than clustering in this paper. The major contribution here is the demonstration of the potential use of the modified bSOM in security surveillance, as a recognition system on FPGA

    Ortho-Radial Drawing in Near-Linear Time

    Get PDF
    An orthogonal drawing is an embedding of a plane graph into a grid. In a seminal work of Tamassia (SIAM Journal on Computing 1987), a simple combinatorial characterization of angle assignments that can be realized as bend-free orthogonal drawings was established, thereby allowing an orthogonal drawing to be described combinatorially by listing the angles of all corners. The characterization reduces the need to consider certain geometric aspects, such as edge lengths and vertex coordinates, and simplifies the task of graph drawing algorithm design. Barth, Niedermann, Rutter, and Wolf (SoCG 2017) established an analogous combinatorial characterization for ortho-radial drawings, which are a generalization of orthogonal drawings to cylindrical grids. The proof of the characterization is existential and does not result in an efficient algorithm. Niedermann, Rutter, and Wolf (SoCG 2019) later addressed this issue by developing quadratic-time algorithms for both testing the realizability of a given angle assignment as an ortho-radial drawing without bends and constructing such a drawing. In this paper, we improve the time complexity of these tasks to near-linear time. We establish a new characterization for ortho-radial drawings based on the concept of a good sequence. Using the new characterization, we design a simple greedy algorithm for constructing ortho-radial drawings

    On Semantic Word Cloud Representation

    Full text link
    We study the problem of computing semantic-preserving word clouds in which semantically related words are close to each other. While several heuristic approaches have been described in the literature, we formalize the underlying geometric algorithm problem: Word Rectangle Adjacency Contact (WRAC). In this model each word is associated with rectangle with fixed dimensions, and the goal is to represent semantically related words by ensuring that the two corresponding rectangles touch. We design and analyze efficient polynomial-time algorithms for some variants of the WRAC problem, show that several general variants are NP-hard, and describe a number of approximation algorithms. Finally, we experimentally demonstrate that our theoretically-sound algorithms outperform the early heuristics

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs

    Get PDF
    An orthogonal drawing of a graph is a planar drawing where each edge is drawn as a sequence of horizontal and vertical line segments. Finding a bend-minimized orthogonal drawing of a planar graph of maximum degree 4 is NP-hard. The problem becomes tractable for planar graphs of maximum degree 3, and the fastest known algorithm takes O(n^5 log n) time. Whether a faster algorithm exists has been a long-standing open problem in graph drawing. In this paper we present an algorithm that takes only O~(n^{17/7}) time, which is a significant improvement over the previous state of the art
    • 

    corecore