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Abstract
Consider the following combinatorial problem: Given a planar graph G and a set of simple
cycles C in G, find a planar embedding E of G such that the number of cycles in C that bound a
face in E is maximized. This problem, called Max Facial C-Cycles, was first studied by Mutzel
and Weiskircher [IPCO ’99] and then proved NP-hard by Woeginger [Oper. Res. Lett., 2002].

We establish a tight border of tractability for Max Facial C-Cycles in biconnected planar
graphs by giving conditions under which the problem is NP-hard and showing that strengthening
any of these conditions makes the problem polynomial-time solvable. Our main results are
approximation algorithms for Max Facial C-Cycles. Namely, we give a 2-approximation for
series-parallel graphs and a (4 + ε)-approximation for biconnected planar graphs. Remarkably,
this provides one of the first approximation algorithms for constrained embedding problems.
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1 Introduction

A planar graph is a graph that can be embedded into the plane, i.e., it can be drawn into
the plane without crossings. Such an embedding partitions the plane into topologically
connected regions, called faces. There is exactly one unbounded face, which is called outer
face. While there exist infinitely many such embeddings, the embeddings for connected
graphs can be grouped into finitely many equivalence classes of combinatorial embeddings,
where two embeddings are equivalent if the clockwise cyclic order of the edges around each
vertex is the same and their outer face is bounded by the same walk. Since a graph may
admit exponentially many different such embeddings, several drawing algorithms for planar
graphs simply assume that one embedding has been fixed beforehand and draw the graph
with this fixed embedding. Often, however, the quality of the resulting drawing depends
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strongly on this embedding; examples are the number of bends in orthogonal drawings [17]
or the area requirement of planar straight-line drawings [8].

Consequently, there is a long line of research that seeks to optimize quality measures
over all combinatorial embeddings. Not surprisingly, except for a few notable cases such as
minimizing the radius of the dual graph [2, 15], many of these problems have turned out
to be NP-complete. For example it is NP-complete to decide whether there exists a planar
embedding that allows for a planar orthogonal drawing without bends or for an upward
planar drawing [12]. While there has been quite a bit of work on solving these problems for
special cases, e.g., for the orthogonal bend minimization problem [4, 5], to the best of our
knowledge, approximation algorithms have rarely been considered.

Another way of describing a combinatorial embedding of a connected graph G is by
describing its facial walks, i.e., by listing the walks of G that bound a face. In the case of
biconnected planar graphs, the facial walks are simple, and we refer to them as facial cycles.
In this paper, we consider the problem of optimizing the set of facial cycles. Given a list C of
cycles in a biconnected graph G, the problem Max Facial C-Cycles asks for an embedding
E of G such that the number of cycles in C that are facial cycles of E is maximized. The
practical motivation for this problem comes from the need to visualize graphs in such a way
that particular substructures, in this case cycles, are clearly recognizable. These structures
may be either provided manually by the user or be the result of an automated analysis. We
note that, given a biconnected planar graph G and a set C of cycles of G, it can be efficiently
decided whether there exists a planar embedding of G in which all cycles of C are facial
cycles. For each cycle C ∈ C, we subdivide each edge of C once and connect the subdivision
vertex to a new vertex vC . If the resulting graph is planar, then the desired embedding of
G can be obtained by removing all vertices vC and their incident edges. However, from a
practical point of view, this approach is insufficient, as it does not produce a solution if it is
not possible to simultaneously have all the cycles in C as facial cycles. Instead, we would like
to compute an embedding that maximizes the number of cycles in C that are facial cycles.

The research on this problem was initiated by Mutzel and Weiskircher [16], who gave
an integer linear program (ILP) for a weighted version. Woeginger [19] showed that the
problem is NP-complete by showing that it is NP-complete to maximize the number of facial
cycles that have size at most 4. Da Lozzo et al. [6] consider the problem of deciding whether
there exists an embedding such that the maximum face size is k. They give polynomial-time
algorithms for k ≤ 4, show NP-hardness for k ≥ 5, and give a factor-6 approximation for
minimizing the size of the largest face. Dornheim [10] studies a decision problem subject
to so-called topological constraints, which specify for certain cycles of a planar graph two
subsets of edges of the graph that have to be embedded inside and outside the respective
cycle; note that a cycle is a facial cycle if its interior is empty. He proved NP-completeness
and reduced the connected case to the biconnected case. Another related problem, known as
Partially Embedded Planarity (for short PEP), has been studied by Angelini et al. [1].
Given a planar graph G and an embedding EH of a subgraph H of G, the PEP problem asks
for the existence of an embedding EG of G that extends EH, i.e., the restriction of EG to H
coincides with EH. As observed before, if H is biconnected, then its combinatorial embedding
is fully specified by the set of cycles of H (of G) that are faces in EH. Thus, the Max Facial
C-Cycles problem can be interpreted as an optimization counterpart of PEP in which one
tries to minimize the set of faces of H that are not faces in the final embedding of G.

Contribution and outline. We thoroughly study the complexity of Max Facial C-Cycles
for biconnected planar graphs. We start with preliminaries concerning connectivity and the
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SPQR-tree data structure in Section 2. In Section 3, we show that Max Facial C-Cycles
is NP-complete even if each cycle in C intersects any other cycle in C in at most two vertices
and intersects at most three other cycles of C. In Section 4, we complement these results with
efficient algorithms for series-parallel and general planar graphs when the cycles intersect
only few other cycles in more than one vertex. We note that, though these instances are
fairly restricted, this establishes a tight border of tractability for the problem in the sense
that dropping or strengthening any of the conditions for our algorithms yields an NP-hard
problem. Moreover, the techniques for obtaining these results are the basis for our main result
in Section 5, where we develop efficient approximation algorithms for the problem. More
specifically, we give a 2-approximation for series-parallel graphs and a (4 + ε)-approximation
for biconnected planar graphs, where ε > 0 is a constant. We remark that, to the best of
our knowledge, this work and our contribution in [6] provide one of the very few known
approximability results concerning constrained combinatorial embeddings.

A full version of the paper containing omitted or sketched proofs is available as [7].

2 Connectivity and SPQR-trees

A graph G is connected if there is a path between any two vertices. A cutvertex (separating
pair) is a vertex (a pair of vertices) whose removal disconnects the graph. A connected (bicon-
nected) graph is biconnected (triconnected) if it does not have a cutvertex (a separating pair).

We consider uv-graphs with two special pole vertices u and v, which can be recursively
defined as follows. An edge uv is an uv-graph with poles u and v. Now let Gi be an uv-graph
with poles ui and vi, for i = 1, . . . , k, and let H be a planar graph with two designated
vertices u and v and k + 1 edges uv, e1, . . . , ek. We call H the skeleton of the composition
and its edges are called virtual edges; the edge uv is the parent edge and u and v are the poles
of the skeleton H. To compose the Gi into an uv-graph with poles u and v, we remove the
edge uv and replace each ei by Gi, for i = 1, . . . , k, by removing ei and identifying the poles
of Gi with the endpoints of ei. In fact, we only allow three types of compositions: in a series
composition the skeleton H is a cycle of length k + 1, in a parallel composition H consists of
two vertices connected by k + 1 parallel edge, and in a rigid composition H is triconnected.

It is known that for every biconnected graph G with an edge uv the graph G − uv is
an uv-graph with poles u and v. The uv-graph G − uv gives rise to a (de-)composition
tree T describing how it can be obtained from single edges. Refer to Fig. 1. The nodes of T
corresponding to edges, series, parallel, and rigid compositions of the graph are Q-, S-, P-,
and R-nodes, respectively. To obtain a composition tree for G, we add an additional root
Q-node representing the edge uv. To fully describe the composition, we associate with each
node µ its skeleton denoted by skel(µ). For a node µ of T , the pertinent graph pert(µ) is
the subgraph represented by the subtree with root µ. Similarly, for a virtual edge ε of a
skeleton skel(µ), the expansion graph of ε, denoted by exp(ε), is the pertinent graph pert(µ′)
of the neighbour µ′ of µ corresponding to ε when considering T rooted at µ.

The SPQR-tree of G with respect to the edge uv, originally introduced by Di Battista
and Tamassia [9], is the (unique) smallest decomposition tree T for G. Using a different edge
u′v′ of G and a composition of G− u′v′ corresponds to rerooting T at the node representing
u′v′. It thus makes sense to say that T is the SPQR-tree of G. The SPQR-tree of G has size
linear in G and can be computed in linear time [13]. Planar embeddings of G correspond
bijectively to planar embeddings of all skeletons of T ; the choices are the orderings of the
parallel edges in P-nodes and the embeddings of the R-node skeletons, which are unique up
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Figure 1 (left) A biconnected planar graph G and (right) the SPQR-tree T of G rooted at
edge e = uv. The skeletons of all non-leaf nodes of T are depicted; virtual edges corresponding to
edges of G are thin, whereas virtual edges corresponding to S-, P-, and R-nodes are thick. Dashed
arrowed curves connect the (dotted) parent edge in the skeleton of a child node with the virtual
edge representing the child node in the skeleton of its parent.

to a flip. When considering rooted SPQR-trees, we assume that the embedding of G is such
that the root edge is incident to the outer face, which is equivalent to the parent edge being
incident to the outer face in each skeleton. We remark that in a planar embedding of G, the
poles of any node µ of T are incident to the outer face of pert(µ). Hence, in the following
we only consider such embeddings.

Let µ be a node of T with poles u and v. We assume that edge uv is part of skel(µ)
and pert(µ). Note that, due to this addition, pert(µ) may not be a subgraph of G anymore.
The outer face of a embedding of pert(µ) is the one obtained from such an embedding after
removing the edge (u, v) connecting its poles.

3 Complexity

In this section we study the computational complexity of the underlying decision problem
Facial C-Cycles of Max Facial C-Cycles, which given a biconnected planar graph G,
a set C of simple cycles of G, and a positive integer k ≤ |C|, asks whether there exists a
planar embedding E of G such that at least k cycles in C are facial cycles of E . Facial
C-Cycles is in NP, as we can guess a set C′ ⊆ C of k cycles and then check in polynomial
time (in |G|+ |C|) whether an embedding of G exists in which all cycles in C′ are facial. We
show NP-hardness for general graphs and for series-parallel graphs.

I Theorem 1. Facial C-Cycles is NP-complete, even if each cycle C ∈ C
intersects any other cycle in C in at most two vertices, and
intersects at most three other cycles of C in more than one vertex.

Proof sketch. We give a reduction from Maximum Independent Set in triconnected cubic
planar graphs, which is NP-complete [14]. Let H be a triconnected cubic planar graph.
Observe that H has a unique combinatorial embedding up to a flip [18]. We construct an
instance 〈G, C, k〉 of Facial C-Cycles as follows; see Fig. 2. Take the planar dual H? of H,
which is a triangulation, and take C as the set of facial cycles of H?. The graph G is obtained
from H? by adding for each edge e = uv ∈ E(H?) an edge vertex ve with neighbors u and v.
It is not hard to see that H admits an independent set of size k if and only if G admits a
combinatorial embedding where k cycles in C are facial (see [7]). J
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Figure 2 Illustrations for the proof of Theorem 1. (a) Graph H (black) and its planar dual H∗

(red). Vertex v1 is the only vertex in the MIS of H. (b) An embedding of graph G in which cycle C1

(corresponding to the face of H∗ that is dual to the vertex v1 of H) bounds a face.
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Figure 3 Illustrations for the proof of Theorem 2. (a) Cubic graph H with a Hamiltonian circuit
Q (thick, colored edges). (b) Gadget Ga for a vertex a ∈ V (H). (c) Combinatorial embedding of G
corresponding to circuit Q (facial cycles have the same color as the corresponding edge in Q).

I Theorem 2. Facial C-Cycles is NP-complete for series-parallel graphs, even if any two
cycles in C share at most three vertices.

Proof sketch. We reduce from Hamiltonian Circuit, which is known to be NP-complete
even for cubic graphs [11]. Let H be any such a graph.

Each vertex a ∈ V (H) is represented by a gadget Ga consisting of
1. the graph K2,3, where the vertices in the partition of size 2 are denoted sa and va and

the other vertices are denoted ua1 , ua2 , ua3 , and of
2. an additional vertex ta adjacent to va; see Fig. 3b.

To define graph G, we merge the vertices sa into a single vertex s and the vertices ta
into a single vertex t. To define C, we number the incident edges of each vertex of H
from 1 to 3. If ab is the i-th edge for a and the j-th edge for b, we define Cab ∈ C as the
cycle (s, uai , va, t, vb, ubj , s); see Fig. 3a and 3c. We claim that G admits a combinatorial
embedding with |V (H)| facial cycles in C if and only if H is Hamiltonian.

If Q is a Hamiltonian circuit of H, we embed G such that the order of the gadgets Ga is
the same as the order of the vertices in Q. We then choose embeddings of the gadgets such
that, for each edge ab of Q, the cycle Cab bounds the face between Ga and Gb; this yields
the claimed number of facial cycles in C. Conversely, observe that if Cab is a facial cycle
of an embedding of G, then Ga and Gb, where ab is an edge of H, must be consecutive in
the circular order around s. If G has |V (H)| facial cycles in C, it follows that the vertices
corresponding to the gadgets form a Hamiltonian circuit in this order. J

4 Polynomial-time Solvable Cases

In this section we discuss special cases of Max Facial C-Cycles that admit a polynomial-
time solution. In particular, we show that strengthening any of the conditions in Theorem 1

ISAAC 2018
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Figure 4 (b) Skeleton of the R-node µ of the SPQR-tree T rooted at edge e = uv of the graph
depicted in (a); see Fig. 1 for an illustration of tree T . The green and red cycles in (a) are relevant
for µ as they project to the green and red cycle in (b), respectively. The red cycle is an interface
cycle. Dotted edges and dotted virtual edges are associated with the parent of µ. (c) Pertinent graph
of the P-node depicted in (d) with three virtual edges corresponding to children from left to right
realizing none, the green and the red, and only the red cycle, respectively. The red cycle bounds face
f in (c) since, in addition, the second and third child are adjacent in the embedding of the skeleton.

or Theorem 2 makes the problem tractable.

4.1 General Planar Graphs
We study Max Facial C-Cycles when each cycle in C intersects at most two other cycles
in C in more than one vertex. In this setting, we give in Theorem 9 a quadratic-time algorithm
for biconnected planar graphs. For series-parallel graphs we present in Theorem 10 an FPT
algorithm with respect to the maximum number of cycles in C sharing two or more vertices
with any cycle in C. We remark that our algorithms imply that strengthening any of the two
conditions of Theorem 1 results in a polynomial-time solvable problem. In particular, Max
Facial C-Cycles is polynomial-time solvable if any two cycles in C share at most one vertex.

We compute the optimal solution in these cases by a dynamic program that works
bottom-up in the SPQR-tree T of G. Let µ be a node of T . We call a cycle C ∈ C relevant
for µ (or for skel(µ)) if it projects to a cycle in skel(µ), that is, the vertices of C in skel(µ)
and the edges of skel(µ) that contain vertices or edges in C form a cycle C ′ in skel(µ) with
at least two edges. The cycle C ′ is the projection of the cycle C in skel(µ). Similarly, we
also define the projection of a cycle C ∈ C to pert(µ). The cycle C is an interface cycle
of µ if its projection C ′ contains the parent edge of skel(µ). Refer to Figs. 4a and 4b. We
denote the set of relevant cycles and of interface cycles of a node µ by R(µ) and by I(µ),
respectively. Clearly, I(µ) ⊆ R(µ). We denote I(µ) = {X ⊆ I(µ) | |X| ≤ 2} as the set of
possible interfaces. Let µ be a node of T . We have the following two important observations.

I Observation 3. If each cycle in C intersects at most two other cycles in C in more than
one vertex, then |I(µ)| ≤ 3.

I Observation 4. In any combinatorial embedding E of G at most two interface cycles of µ
can simultaneously bound a face in E.

Observation 3 holds since all interface cycles of a node µ share at least the poles of µ.
Observation 4 holds since each interface cycle can only bound one of the two faces incident
to the virtual edge representing the parent of µ in skel(µ).

Thus, to the rest of G, the only relevant information about a combinatorial embedding
Eµ of pert(µ) is
(a) the number of facial cycles in C that bound a face of Eµ and
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(b) the set of cycles in C that project to the facial cycles incident to the parent edge of
pert(µ).

The reason for (a) is that cycles of C that are facial cycles of Eµ not incident to the parent
edge will be facial cycles of any embedding of G where the embedding of pert(µ) is Eµ. So
it suffices to track their number rather than which cycles are facial. For (b) observe that
only those cycles that project to a face incident to Eµ can potentially be realized by any
embedding of G where the embedding of pert(µ) is Eµ. We thus have to keep track of them.
However, by Observation 4, at most two of them can eventually become facial cycles, and
hence it suffices to consider any combination of at most two cycles for this interface.

If E is a combinatorial embedding of pert(µ) and the elements of I ∈ I(µ) project to distinct
faces incident to the parent edge in pert(µ), we say that E realizes I; see Figs. 4c and 4d.

For any node µ and any set I ∈ I(µ), we denote by T [µ, I] the maximum number k
such that there exists a combinatorial embedding E of pert(µ) that realizes I and such that
k cycles in C bound a face of E that is not incident to the parent edge of pert(µ). If no
such embedding exists, we set T [µ, I] = −∞. Due to Observation 4, for convenience we
extend the definition of T to the case in which the size of I is larger than 2; in this case, we
define T [µ, I] = −∞.

We show how to compute the entries of T in a bottom-up fashion in the SPQR-tree T
of G. It is not hard to modify the dynamic program to additionally output a corresponding
combinatorial embedding of G. We root T at an arbitrary Q-node ρ. Let φ be the unique child
of ρ. Note that the maximum number of facial cycles in C for any combinatorial embedding
of G is maxI∈I(φ) |I|+ T [φ, I]. For any leaf Q-node µ, we have that T [µ, I] = 0 for each I ∈
I(µ). The following lemmata deal with the different types of inner nodes in an SPQR-tree.

I Lemma 5. Let µ be an S-node with children µi, i = 1, . . . , k. Then, T [µ, I] =
∑k
i=1 T [µi, I],

for I ∈ I(µ). Also, each entry T [µ, I] can be computed in O(k) time.

Proof. The lemma follows easily from the observation that a combinatorial embedding
of pert(µ) realizes I if and only if each of its children realizes I. J

I Lemma 6. Let µ be a P-node with children µ1, . . . , µk. Then

T [µ, I] = max
I⊆C⊆R(µ)

(
k∑
i=1

T [µi, Cµi
] + f(C)) ,

where (i) Cµi
= C ∩ I(µi) and (ii) f(C) = |C \ I| if skel(µ) admits a planar embedding

E such that (a) each two virtual edges ei and ej corresponding to children µi and µj of µ,
respectively, such that |Cµi

∩ Cµj
| = 1 are adjacent in E, and where (b) the virtual edges e′

and e′′ corresponding to the children µ′ and µ′′ of µ such that C ′µ ∩ I 6= ∅ and C ′′µ ∩ I 6= ∅,
respectively, are incident to the outer face of E, and f(C) = −∞ otherwise.

Proof. Consider an embedding of pert(µ) that embeds T [µ, I] cycles of C as facial cycles
and the corresponding embedding E of skel(µ). Let C ⊆ R(µ) denote the set of cycles in C
that are facial cycles in E or that are in I. Obviously, to make a cycle c ∈ C \ I a facial
cycle, each of the two children of µ that contain c in their interface (i) must be adjacent in
E and (ii) must both realize cycle c. Also, in order for the cycles in I to bound the outer
face of the embedding of pert(µ), the two children of µ containing such interface cycles (i)
must be incident to the outer face of E and (ii) must each realize one of these cycles in
their interface. Hence T [µ,C] is a lower bound on the number of facial cycles in C in the
embedding of pert(µ). On the other hand, it is not hard to see that by picking the maximum
over all subsets C ⊆ R(µ) this bound is attained. J

ISAAC 2018
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We note that the existence of a corresponding embedding for a P-node µ with k children
can be tested in O(k) time for any set C ⊆ R(µ), thus allowing us to evaluate f(C) efficiently
as follows. Consider the auxiliary multigraph O that contains a vertex for each virtual edge
of skel(µ), except for the edge representing the parent of µ, and two such edges are adjacent
if and only if there is a cycle in C \ I that contains edges from both expansion graphs. Also,
if there exist two virtual edges in skel(µ) containing edges from cycles in I, multigraph O
contains an edge between them. A corresponding embedding exists if and only if O is either a
simple cycle or it is a collection of paths. In latter case, O can be augmented to a simple cycle
and the order of the virtual edges along this cycle defines a suitable embedding of skel(µ).

Generally, the size of R(µ) can be large. However, if every cycle C ∈ C shares two or
more vertices with at most r other cycles in C, the running time can be bounded as follows.

I Lemma 7. Let µ be a P-node with children µ1, . . . , µk such that any cycle of R(µ) shares
two or more vertices with at most r other cycles in R(µ). For each set I ∈ I(µ), table T [µ, I]
can be computed in O(r22r · k) time from T [µi, ·] with i = 1, . . . , k.

Proof. We employ Lemma 6. It is |R(µ)| ≤ r + 1, and |I(µ)| = O(r2). For each I ∈ I(µ) we
need to consider all the sets C ⊆ R(µ) such that I ⊆ C. There are O(2r) such sets C and
for each of them we evaluate f(C) in O(k) time. J

We now deal with R-nodes. Let µ be an R-node. Note that the instance in the hardness
of Theorem 1 is an R-node whose children are a parallel of an edge and a path of length 2.
If, however, any cycle in C shares two or more vertices with at most two other cycles from C,
then the subgraph of the dual of skel(µ) induced by the faces that are projections of cycles
in R(µ) consists of paths and cycles. We exploit the fact that these graphs have maximum
degree 2 to give an efficient algorithm via dynamic programming.

I Lemma 8. Let µ be an R-node with children µ1, . . . , µk. There is an O(k2)-time algorithm
for computing T [µ, ·] from T [µi, ·] for i = 1, . . . , k, provided that cycles in C share two or
more vertices with at most two other cycles from C.

Altogether, Lemmas 5, 7, and 8 imply the following theorem.

I Theorem 9. Max Facial C-Cycles can be solved in O(n2) time if every cycle in C
intersects at most two other cycles in more than one vertex.

4.2 Series-Parallel Graphs
In this section we consider Max Facial C-Cycles on series-parallel graphs. Combining the
results from Lemma 5 and Lemma 7 yields the following.

I Theorem 10. Max Facial C-Cycles is solvable in O(r22r · n) time for series-parallel
graphs if any cycle in C intersects at most r other cycles in two or more vertices.

I Corollary 11. Max Facial C-Cycles is solvable in O(n) time for series-parallel graphs
if any cycle in C intersects at most two other cycles.

In the following we show that Max Facial C-cycles can be solved in polynomial time
for series-parallel graphs if any two cycles in C share at most two vertices. The next lemma
shows the special structure of relevant cycles in P-nodes of the SPQR-tree in this case.

I Lemma 12. Let G be a series-parallel graph and C be a set of cycles in G such that any
two cycles share at most two vertices. For each P-node µ any two cycles in C that are relevant
for µ are either edge-disjoint in skel(µ) or they share the unique virtual edge of skel(µ) that
corresponds to a Q-node child of µ, if any.
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Proof. Let C and C ′ be two relevant cycles for some P-node µ with poles u and v. Clearly C
and C ′ share the two poles u and v. Now assume that C and C ′ additionally share a virtual
edge e of skel(µ). Consider the expansion graph Ge of e and observe that {u, v} cannot be
a separation pair of Ge, since µ is a P-node. Thus the corresponding child ν of µ must be
either a Q- or an S-node. If it is an S-node, however, then Ge contains a cutvertex c, which
is contained in both C and C ′, a contradiction. Further observe that a P-node may have at
most one child that is a Q-node. This concludes the proof. J

We again use a bottom-up traversal of the SPQR-tree of a series-parallel graph to obtain
the following theorem. The S-nodes are handled using Lemma 5 and the structural properties
guaranteed by Lemma 12 allow for a simple handling of the P-nodes.

I Theorem 13. Max Facial C-Cycles is solvable in O(n) for series-parallel graphs if any
two cycles in C share at most two vertices.

5 Approximation Algorithms

In this section we derive constant-factor approximations for Max Facial C-Cycles in series-
parallel graphs and in biconnected planar graphs. Again, we use dynamic programming on the
SPQR-tree. This time, however, instead of computing T [µ, I], we compute an approximate
version T̃ [µ, I] of it. A table T̃ [µ, ·] is a c-approximation of T [µ, ·] if 1/c · T [µ, I] ≤ T̃ [µ, I] ≤
T [µ, I], for all I ∈ I(µ). For P-nodes, we give an algorithm that approximates each entry
within a factor of 2, for R-nodes, we achieve an approximation ratio of (4 + ε) for any ε > 0.
In the following lemmas we deal separately with S-, P-, and R-nodes.

I Lemma 14. Let µ be an S-node with children µ1, . . . , µk and let T̃ [µi, I] be a c-approxi-
mation of T [µi, I] for i = 1, . . . , k. Then, T̃ [µ, I] =

∑k
i=1 T̃ [µi, I] is a c-approximation

of T [µ, I].

Proof. To see this, observe that by Lemma 5, it is 1/c · T [µ, I] = 1/c ·
∑k
i=1 T [µi, I] ≤∑k

i=1 T̃ [µi, I] and
∑k
i=1 T̃ [µi, I] ≤

∑k
i=1 T [µi, I] = T [µ, I]. J

Next we deal with a P-node µ with children µ1, . . . , µk. The algorithm works as follows.
Fix a set I ∈ I(µ). We construct an auxiliary graph H as follows. The vertices of H are the
children µ1, . . . , µk of µ. Two vertices µi and µj are adjacent in H if and only if there exists
a cycle C ∈ C that intersects µi and µj such that T̃ [µx, (I ∪{C})∩I(µx)] = T̃ [µx, I ∩I(µx)]
for x ∈ {i, j}, i.e., according to the approximate table T̃ additionally realizing C in the
interface of the children µi and µj does not decrease the number of facial cycles of pert(µi)
in C. If |I| = 2, assume that µ1 and µ2 are the two children intersected by the cycles in I.
Unless µ1 and µ2 are the only children of µ, we remove the edge µ1µ2 from H if it is there.
This reflects the fact that, due to the restrictions imposed by I, it is not possible to realize
a corresponding cycle. Now compute a maximum matching M in H. The matching M
corresponds to a set CM ⊆ R(µ) of relevant cycles of µ that are pairwise edge-disjoint. We
set T̃ [µ, I] =

∑k
i=1 T̃ [µi, (I∪CM )∩I(µi)]+ |M | =

∑k
i=1 T̃ [µi, I∩I(µi)]+ |M |. We claim that

this gives a max{2, c}-approximation of T [µ, ·] if the T̃ [µi, ·] are c-approximations of T [µi, ·].

I Lemma 15. Let µ be a P-node an let T̃ [µ, ·] be the table computed in the above fashion.
Then, T̃ [µ, ·] is a max{2, c}-approximation of T [µ, ·] if T̃ [µi, ·] is a c-approximation of T [µi, ·].

Proof. We first show that T̃ [µ, ·] ≤ T [µ, ·]. To this end, it suffices to show that, for
any I ∈ I(µ), there exists an embedding of pert(µ) that realizes I and has T̃ [µ, I] facial
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cycles in C. Consider the multigraph with vertex set {µ1, . . . , µk} and edge set CM ∪ I.
This graph has maximum degree 2 and, due to the special treatment of the edge µ1µ2,
unless k = 2, none of its connected components is a cycle. We can thus always complete
this graph into a cycle containing all µi, which defines a circular order of µ1, . . . , µk, and
hence an embedding of skel(µ). In this embedding, all the cycles in CM ∪ I project to facial
cycles. Realizing all these cycles yields T̃ [µ, I] =

∑k
i=1 T̃ [µi, (I ∪ CM ) ∩ I(µi)] + |M | ≤∑k

i=1 T [µi, (I ∪ CM ) ∩ I(µi)] + |M | realized cycles. By the definition of the T [µi, ·] we get
embeddings for the pert(µi) with a corresponding number of cycles in C. Combining them
according to the embedding of skel(µ) from above, yields an embedding of pert(µ) that
realizes I and has at least T̃ [µ, I] facial cycles in C. Hence T̃ [µ, I] ≤ T [µ, I].

Conversely, consider T [µ, I] and a corresponding embedding of skel(µ). Denote by Copt
the set of facial cycles in C in an optimal solution that project to facial cycles of skel(µ). We
consider two cycles in Copt as adjacent if they intersect the same child of µ. Clearly, each
child µi is intersected by at most two cycles in Copt and, moreover, the two faces of skel(µ)
incident to the parent edge are not realized. Hence the corresponding graph is a collection
of paths, and it can be edge-colored with two colors. Let C ′opt be the cycles in the larger
color class. We have |C ′opt| ≥ |Copt|/2 and no two distinct cycles in C ′opt intersect the same
child µi of µ, i.e., interpreting the cycles in C ′opt as edges on the vertex set {µ1, . . . , µk}
yields a matching M ′. We would like to argue that our matching M in the auxiliary graph H
is larger than M ′, and hence we realize at least half of the cycles of the optimum. However,
this argument is not valid, since M ′ may contain edges that are not present in H due to
approximation errors in the T̃ [µi, ·]. We will show that the contribution of these edges is
irrelevant and hence the intuition about comparing the matching sizes indeed applies.

Let M ′1 = M ′ \ E(H) and M ′2 = M ′ ∩ E(H). Let J = {1, . . . , k} and let J1 = {i ∈ J |
∃C ∈M ′1 that intersects µi} be the indices of children that are intersected by a cycle in M ′1.
The set J2 = J \ J1 contains the remaining indices.

Clearly, we have T [µ, I] =
∑k
i=1 T [µi, (I ∪ Copt) ∩ I(µi)] + |Copt| according to Lemma 6.

Realizing instead of Copt just the set of cycles CM ′ = C ′opt corresponding to M ′ drops at
most |Copt|/2 facial cycles in C, while imposing weaker interface constraints on the children.
We therefore have

T [µ, I] =
k∑
i=1

T [µi, (I ∪ Copt) ∩ I(µi)] + |Copt| ≤
k∑
i=1

T [µi, (I ∪ CM ′) ∩ I(µi)] + 2|M ′|

We now use the fact that the T̃ [µi, ·] are c-approximations of the T [µi, ·], and hence also
c′-approximations for c′ = max{c, 2}, and we also separate the sum by the index set J1
and J2 and consider the two matchings M ′1 and M ′2 separately.

k∑
i=1

T [µi, (I ∪ CM ′) ∩ I(µi)] + 2|M ′| ≤ c′ ·
∑
i∈J1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + 2|M ′1|

+ c′ ·
∑
i∈J2

T̃ [µi, (CM ′
2
∪ I) ∩ I(µi)] + 2|M ′2|. (1)

Observe that the indices of the children intersected by cycles that form a matchingM2 inH are
all contained in J2. By the definition of H, we have T̃ [µi, (CM ′

2
∪I)∩I(µi)] = T̃ [µi, I∩I(µi)],

for i ∈ J2.
For the first term, observe that, for each edge µiµj ∈M ′1, we have T̃ [µx, (M ′1∪I)∩I(µx)] ≤

T̃ [µx, I ∩ I(µx)] − 1 for at least one x ∈ {i, j}. Otherwise the edge would be in H, and
hence in M ′2. Let J ′1 ⊆ J1 denote the set of indices where this happens and let J ′′1 = J1 \ J ′1.
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Observe that |J ′1| ≥ |M ′1|. We thus have

c′ ·
∑
i∈J1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + 2|M ′1|

= c′ ·
∑
i∈J′

1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + c′ ·

∑
i∈J′′

1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + 2|M ′1|

≤ c′ ·
∑
i∈J′

1

(T̃ [µi, I ∩ I(µi)]− 1) + c′ ·
∑
i∈J′′

1

T̃ [µi, I ∩ I(µi)] + 2|M ′1|

≤ c′ ·

(∑
i∈J1

T̃ [µi, I ∩ I(µi)]− |J ′1|
)

+ 2|M ′1| ≤ c′ ·
∑
i∈J1

T̃ [µi, I ∩ I(µi)],

where the last step uses the fact that c′ ≥ 2. Plugging this information into Eq. 1, yields

c′ ·
∑
i∈J1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + 2|M ′1|+ c′ ·

∑
i∈J2

T̃ [µi, (CM ′
2
∪ I) ∩ I(µi)] + 2|M ′2|

≤ c′ ·
k∑
i=1

T̃ [µi, I ∩ I(µi)] + 2|M ′2| ≤ c′ ·
k∑
i=1

T̃ [µi, I ∩ I(µi)] + 2|M |

≤ c′ ·

(
k∑
i=1

T̃ [µi, I ∩ I(µi)] + |M |
)

= c′

(
k∑
i=1

T̃ [µi, (I ∪ CM ) ∩ I(µi)] + |M |
)

The last three steps use the facts that M ⊆ E(H) is a maximum matching, and hence
larger than M ′2, that c′ ≥ 2, and that CM ⊆ E(H), respectively. J

We note that the bottleneck for computing T [µ, I] is finding a maximum matching in
a graph with O(| skel(µ)|) vertices and O(|C|) edges. Hence the running time for one step
is O(| skel(µ)|+

√
| skel(µ)| · |C|). Since |I(µ)| ≤ |C|2, the running time for processing a single

P-node µ is O(| skel(µ)||C|2 +
√
| skel(µ)| · |C|3). The total time for processing all P-nodes

is O(n|C|2 +
√
n|C|3).

I Theorem 16. There is a 2-approximation algorithm with running time O(n|C|2 +
√
n|C|3)

for Max Facial C-Cycles in series-parallel graphs.

Next we deal with R-nodes. Let µ be an R-node with children µ1, . . . , µk. For each face
f of skel(µ) let Jf denote the indices of the children µi whose corresponding virtual edge in
skel(µ) is incident to f .

Fix I ∈ I(µ). We propose the following algorithm for computing T̃ [µ, I]. Consider the
subgraph H of the dual of skel(µ) induced by those vertices v corresponding to a face f not
incident to the parent edge of skel(µ) and such that there exists a cycle Cv ∈ C that projects
to the boundary of f and such that T̃ [µi, ({Cv} ∪ I) ∩ I(µ)] = T̃ [µi, I ∩ I(µ)], i.e., requiring
that Cv is realized in µi does not change the approximate number of faces of pert(µi) in C.

Now we compute a (1 + ε/4)-approximation of a maximum independent set of H, which
can be done in time polynomial in | skel(µ)| (and exponential in (1/ε)) [3]. Let X denote
this independent set, and let CX = {Cv | v ∈ X} be a set of corresponding cycles in
C. We set T̃ [µ, I] =

∑k
i=1 T̃ [µi, (I ∪X) ∩ I(µi)] + |X| =

∑k
i=1 T̃ [µi, I ∩ I(µi)] + |X|, and

claim that in this fashion T̃ [µ, ·] is a max{c, (4 + ε)}-approximation provided that T̃ [µi, ·]
is a c-approximation of T [µi, ·]. The proof is similar to that of Lemma 15. It 4-colors the
facial cycles Copt ⊂ C of an optimal solution and considers the largest color class, which is
an independent set of faces that has size at least |Copt|/4.
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I Lemma 17. Let T̃ [µ, ·] be the table computed in the above fashion. Then, T̃ [µ, ·] is a
max{c, (4+ε)}-approximation of T [µ, ·] provided that T̃ [µi, . . . ] is a c-approximation of T [µi,·].

Overall, we obtain the following theorem.

I Theorem 18. Max Facial C-Cycles for biconnected planar graphs admits an efficient
(4 + ε)-approximation algorithm for any ε > 0.

6 Conclusions

In this paper, we explored the boundaries of the computational complexity of Max Facial
C-Cycles. In particular, we proved the problem NP-hard under restrictive conditions,
showed that slightly stronger conditions make the problem tractable, and gave constant-
factor approximations for series-parallel and biconnected planar graphs with approximation
guarantees of 2 and 4 + ε for any ε > 0, respectively. Our main open question is whether
these approximation guarantees may be improved.
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