5,579 research outputs found

    Analytic aspects of the shuffle product

    Get PDF
    There exist very lucid explanations of the combinatorial origins of rational and algebraic functions, in particular with respect to regular and context free languages. In the search to understand how to extend these natural correspondences, we find that the shuffle product models many key aspects of D-finite generating functions, a class which contains algebraic. We consider several different takes on the shuffle product, shuffle closure, and shuffle grammars, and give explicit generating function consequences. In the process, we define a grammar class that models D-finite generating functions

    Controlled non uniform random generation of decomposable structures

    Get PDF
    Consider a class of decomposable combinatorial structures, using different types of atoms \Atoms = \{\At_1,\ldots ,\At_{|{\Atoms}|}\}. We address the random generation of such structures with respect to a size nn and a targeted distribution in kk of its \emph{distinguished} atoms. We consider two variations on this problem. In the first alternative, the targeted distribution is given by kk real numbers \TargFreq_1, \ldots, \TargFreq_k such that 0 < \TargFreq_i < 1 for all ii and \TargFreq_1+\cdots+\TargFreq_k \leq 1. We aim to generate random structures among the whole set of structures of a given size nn, in such a way that the {\em expected} frequency of any distinguished atom \At_i equals \TargFreq_i. We address this problem by weighting the atoms with a kk-tuple \Weights of real-valued weights, inducing a weighted distribution over the set of structures of size nn. We first adapt the classical recursive random generation scheme into an algorithm taking \bigO{n^{1+o(1)}+mn\log{n}} arithmetic operations to draw mm structures from the \Weights-weighted distribution. Secondly, we address the analytical computation of weights such that the targeted frequencies are achieved asymptotically, i. e. for large values of nn. We derive systems of functional equations whose resolution gives an explicit relationship between \Weights and \TargFreq_1, \ldots, \TargFreq_k. Lastly, we give an algorithm in \bigO{k n^4} for the inverse problem, {\it i.e.} computing the frequencies associated with a given kk-tuple \Weights of weights, and an optimized version in \bigO{k n^2} in the case of context-free languages. This allows for a heuristic resolution of the weights/frequencies relationship suitable for complex specifications. In the second alternative, the targeted distribution is given by a kk natural numbers n1,,nkn_1, \ldots, n_k such that n1++nk+r=nn_1+\cdots+n_k+r=n where r0r \geq 0 is the number of undistinguished atoms. The structures must be generated uniformly among the set of structures of size nn that contain {\em exactly} nin_i atoms \At_i (1ik1 \leq i \leq k). We give a \bigO{r^2\prod_{i=1}^k n_i^2 +m n k \log n} algorithm for generating mm structures, which simplifies into a \bigO{r\prod_{i=1}^k n_i +m n} for regular specifications

    If the Current Clique Algorithms are Optimal, so is Valiant's Parser

    Full text link
    The CFG recognition problem is: given a context-free grammar G\mathcal{G} and a string ww of length nn, decide if ww can be obtained from G\mathcal{G}. This is the most basic parsing question and is a core computer science problem. Valiant's parser from 1975 solves the problem in O(nω)O(n^{\omega}) time, where ω<2.373\omega<2.373 is the matrix multiplication exponent. Dozens of parsing algorithms have been proposed over the years, yet Valiant's upper bound remains unbeaten. The best combinatorial algorithms have mildly subcubic O(n3/log3n)O(n^3/\log^3{n}) complexity. Lee (JACM'01) provided evidence that fast matrix multiplication is needed for CFG parsing, and that very efficient and practical algorithms might be hard or even impossible to obtain. Lee showed that any algorithm for a more general parsing problem with running time O(Gn3ε)O(|\mathcal{G}|\cdot n^{3-\varepsilon}) can be converted into a surprising subcubic algorithm for Boolean Matrix Multiplication. Unfortunately, Lee's hardness result required that the grammar size be G=Ω(n6)|\mathcal{G}|=\Omega(n^6). Nothing was known for the more relevant case of constant size grammars. In this work, we prove that any improvement on Valiant's algorithm, even for constant size grammars, either in terms of runtime or by avoiding the inefficiencies of fast matrix multiplication, would imply a breakthrough algorithm for the kk-Clique problem: given a graph on nn nodes, decide if there are kk that form a clique. Besides classifying the complexity of a fundamental problem, our reduction has led us to similar lower bounds for more modern and well-studied cubic time problems for which faster algorithms are highly desirable in practice: RNA Folding, a central problem in computational biology, and Dyck Language Edit Distance, answering an open question of Saha (FOCS'14)

    Multi-dimensional Boltzmann Sampling of Languages

    Get PDF
    This paper addresses the uniform random generation of words from a context-free language (over an alphabet of size kk), while constraining every letter to a targeted frequency of occurrence. Our approach consists in a multidimensional extension of Boltzmann samplers \cite{Duchon2004}. We show that, under mostly \emph{strong-connectivity} hypotheses, our samplers return a word of size in [(1ε)n,(1+ε)n][(1-\varepsilon)n, (1+\varepsilon)n] and exact frequency in O(n1+k/2)\mathcal{O}(n^{1+k/2}) expected time. Moreover, if we accept tolerance intervals of width in Ω(n)\Omega(\sqrt{n}) for the number of occurrences of each letters, our samplers perform an approximate-size generation of words in expected O(n)\mathcal{O}(n) time. We illustrate these techniques on the generation of Tetris tessellations with uniform statistics in the different types of tetraminoes.Comment: 12p

    Generating all permutations by context-free grammars in Chomsky normal form

    Get PDF
    Let Ln be the finite language of all n! strings that are permutations of n different symbols (n1). We consider context-free grammars Gn in Chomsky normal form that generate Ln. In particular we study a few families {Gn}n1, satisfying L(Gn)=Ln for n1, with respect to their descriptional complexity, i.e. we determine the number of nonterminal symbols and the number of production rules of Gn as functions of n

    Grammar-based Representation and Identification of Dynamical Systems

    Get PDF
    In this paper we propose a novel approach to identify dynamical systems. The method estimates the model structure and the parameters of the model simultaneously, automating the critical decisions involved in identification such as model structure and complexity selection. In order to solve the combined model structure and model parameter estimation problem, a new representation of dynamical systems is proposed. The proposed representation is based on Tree Adjoining Grammar, a formalism that was developed from linguistic considerations. Using the proposed representation, the identification problem can be interpreted as a multi-objective optimization problem and we propose a Evolutionary Algorithm-based approach to solve the problem. A benchmark example is used to demonstrate the proposed approach. The results were found to be comparable to that obtained by state-of-the-art non-linear system identification methods, without making use of knowledge of the system description.Comment: Submitted to European Control Conference (ECC) 201

    Generating All Permutations by Context-Free Grammars in Greibach Normal Form

    Get PDF
    We consider context-free grammars GnG_n in Greibach normal form and, particularly, in Greibach mm-form (m=1,2m=1,2) which generates the finite language LnL_n of all n!n! strings that are permutations of nn different symbols (n1n\geq 1). These grammars are investigated with respect to their descriptional complexity, i.e., we determine the number of nonterminal symbols and the number of production rules of GnG_n as functions of nn. As in the case of Chomsky normal form these descriptional complexity measures grow faster than any polynomial function
    corecore