
Theoretical Computer Science 411 (2010) 3527–3552

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Controlled non-uniform random generation of decomposable structures
A. Denise a,b,∗, Y. Ponty a,c, M. Termier b
a LRI, Université Paris-Sud, CNRS, INRIA AMIB. Bat 490, 91405 Orsay cedex, France
b IGM, Université Paris-Sud CNRS. Bat. 400, 91405 Orsay cedex, France
c LIX, Ecole Polytechnique, CNRS, INRIA AMIB. 91128 Palaiseau cedex, France

a r t i c l e i n f o

Article history:
Received 14 March 2009
Received in revised form 1 May 2010
Accepted 12 May 2010
Communicated by E. Pergola

Keywords:
Combinatorics
Random generation
Decomposable structures
Combinatorial specification
Non-uniform distribution

a b s t r a c t

Consider a class of decomposable combinatorial structures, using different types of atoms
Z = {Z1, . . . ,Z|Z|}. We address the random generation of such structures with respect
to a size n and a targeted distribution in k of its distinguished atoms. We consider two
variations on this problem.
In the first alternative, the targeted distribution is given by k real numbers µ1, . . . , µk

such that 0 < µi < 1 for all i and µ1 + · · · + µk ≤ 1. We aim to generate random
structures among the whole set of structures of a given size n, in such a way that the
expected frequency of any distinguished atom Zi equals µi. We address this problem
by weighting the atoms with a k-tuple π of real-valued weights, inducing a weighted
distribution over the set of structures of size n.We first adapt the classical recursive random
generation scheme into an algorithm takingO(n1+o(1)+mn log n) arithmetic operations to
draw m structures from the π-weighted distribution. Secondly, we address the analytical
computation of weights such that the targeted frequencies are achieved asymptotically, i.e.
for large values of n. We derive systems of functional equations whose resolution gives an
explicit relationship between π and µ1, . . . , µk. Lastly, we give an algorithm in O(kn4)
for the inverse problem, i.e. computing the frequencies associated with a given k-tuple
π of weights, and an optimized version in O(kn2) in the case of context-free languages.
This allows for a heuristic resolution of the weights/frequencies relationship suitable for
complex specifications.
In the second alternative, the targeted distribution is given by k natural numbers

n1, . . . , nk such that n1 + · · · + nk + r = nwhere r ≥ 0 is the number of undistinguished
atoms. The structures must be generated uniformly among the set of structures of size
n that contain exactly ni atoms Zi (1 ≤ i ≤ k). We give a O(r2

∏k
i=1 n

2
i + mnk log n)

algorithm for generatingm structures, which simplifies into aO(r
∏k
i=1 ni+mn) for regular

specifications.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The problemofuniform randomgeneration of combinatorial structures has been extensively studied in the past fewyears.
Notably, the wide class of decomposable structures, that is combinatorial structures that can be constructed recursively in
an unambiguous way, has been the subject of great attention. Two general methods have been developed for the uniform
generation of these structures: the recursive method [1] and, more recently, the so-called Boltzmann method [2,3]. In the

∗ Corresponding author at: LRI, Université Paris-Sud, CNRS, INRIA. Bat 490, 91405 Orsay cedex, France. Tel.: +33 169156369.
E-mail addresses: Alain.Denise@lri.fr (A. Denise), Yann.Ponty@lri.fr (Y. Ponty), termier@igmors.u-psud.fr (M. Termier).

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.05.010

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:Alain.Denise@lri.fr
mailto:Yann.Ponty@lri.fr
mailto:termier@igmors.u-psud.fr
http://dx.doi.org/10.1016/j.tcs.2010.05.010

3528 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

present paper, we generalize this problem to the problem of generating combinatorial structures according to a given (non-
uniform) distribution. The distribution is defined by the desired frequencies of some given atoms in the structures that are
generated.
According to [1], decomposable structures are defined by combinatorial specifications. Briefly, a combinatorial

specification of a given class C of combinatorial structures is a tuple C of combinatorial classes which are interrelated by
means of productions made from basic objects of size zero (empty structures) or size one (atoms), and from constructions
(+ for disjoint union,× for products, sequence for sequences, set for multisets and cycle for directed cycles).
We are interested in the following problem. Let C be a combinatorial class, whose set of atoms isZ = {Z1, . . . ,Z|Z|}. Let

us distinguish k ≤ |Z| atoms inZ, say Z1, . . .Zk. Now let n be an integer, and let us denote Cn the set of structures of C of
length n. The problem consists in generating random structures in Cn while respecting a distribution of the k distinguished
atoms. We consider two variations of the problem:
1. Generation according to expected frequencies. The targeted distribution is given by k real numbers µ1, . . . , µk such that
0 < µi < 1 for all i andµ1+· · ·+µk ≤ 1. The structures must respect on the average the given frequency k-tuple. More
precisely, we generate structures at random in such a way that
(a) any structure of Cn has a positive probability to be generated;
(b) for any i ∈ {1, . . . , k}, the expected frequency of occurrences of Zi in the structures is equal to µi: if P(s) is the
probability of the structure s to be generated by the algorithm, we must have

∑
s∈Cn |s|ZiP(s) = nµi;

(c) two structures having the same distribution of the k distinguished atoms have the same probability of being
generated.

2. Generation according to exact frequencies. Here the distribution is given by k natural numbers n1, . . . , nk such that
n1 + n2 + · · · nk ≤ n. The distribution of the number of distinguished atoms of any structure must respect the given
k-tuple exactly. In other words, we generate structures uniformly at random in a subset of Cn constituted of all the
structures s ∈ C such that |s|Zi = ni for all i ∈ {1, . . . , k}, where |s|Zi stands for the number of atoms Zi in s.

The above two problems arise when one tries to model naturally occurring objects or to circumvent some limitations of
generative descriptions, therefore both were addressed under fairly specific settings. For instance, a non-uniform scheme
was used by Brlek et al. [4] to perform a generation of generalized Motzkin paths according to their area. The generation
according to exact frequencies was implicitly used in [5], where the problem of randomly generating structures while fixing
more than one parameter was addressed. One also needs to mention a very elegant Θ(n) algorithm for generating words
from regular languages with two types of atoms [6]. Finally, the original presentation of the recent Boltzmann method [2]
features the generation of adsorbing staircase walks according to both the size and number of contacts to the origin.
Our approach is based on the recursive method, which was initiated by Nijenhuis andWilf [7], and then generalized and

formalized by Flajolet, Zimmermann and Van Cutsem [1]. Section 2 is devoted to a short presentation of this methodology in
the classical context ofuniform generation. In Section 3,we focus on generating structures according to expected frequencies,
with an emphasis on the computation of suitable weights. Finally, we present in Section 4 another algorithm which allows
to generate structures according to exact frequencies.

2. Combinatorial specifications and uniform generation

As seen above, a combinatorial specification of a given class C of combinatorial structures is a tuple of classes which
are interrelated by means of productions made from basic objects (empty structures denoted ε and atoms, of size 0 and 1
respectively) and from constructions (+ for disjoint union,× for products, sequence for sequences, set for multisets and
cycle for directed cycles).
The algorithm works as follows: First translate the specification into a standard one, where all products are binary,

and the sequence, set, cycle constructions have been replaced with the marking and unmarking constructions Θ and
Θ−1 (see [1]). Then the standard specification translates directly into procedures for counting the number of structures
of a given size generated from a given non-terminal (see Table 1), or for generating one such object uniformly at random
(see Table 2). The computation of all tables up to size n requires O(n2) operations on coefficients, which can be lowered
to O(n(log n)2 log log n) by using Joris van der Hoeven’s technique for computing the coefficients [8]. Then one random
generation needs O(n log n) operations in the worst case using the boustrophedonic method. These complexities can be
lowered for some particular classes of combinatorial structures, notably those that give rise to holonomic generating
functions, so that the counting sequences satisfy linear recurrences [9,10], leading to O(n) operations only for computing
the tables. This is the case for context-free specifications for example [11].
The integer coefficients used in the algorithm usually have an exponential growthwith respect to the size n:O(n log n) in

the labelled case and O(n) in the unlabelled case [1]. Therefore, with Schönhage’s multiplication algorithm [12] for integer
arithmetic or Fürer’s recent improvement [13], the precomputation and the generation have bit-complexity O(n2+o(1)).
Meanwhile, using adaptative floating point computations, the bit-complexity of the generation step can be lowered to
O(n1+o(1)) [14]. Furthermore, combining [14] and the later work in [8] leads to a precomputation step in O(n1+o(1)) bit-
complexity too.
Another work extends this approach to unlabeled objects [15]. From now on, we suppose we are given an unlabeled

standard specification, with union, product, marking and unmarking constructions. Tables 1 and 2, respectively, summarize
the counting and generating procedures. The labeled case is very similar, with additional binomial coefficients.

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3529

Table 1
Counting procedures for standard specifications.

C = 1 ⇒ c0 = 1 (ε struct.) (1)
C = A+ B ⇒ cn = an + bn (2)

ΘC = A× B ⇒ cn =
1
n

n∑
k=0

akbn−k (3)

C = Zi ⇒ c1 = 1 (atom) (4)

C = A× B ⇒ cn =
n∑
k=0

akbn−k (5)

C = ΘA ⇒ cn = nan. (6)

Table 2
Uniform random generation procedures for standard specifications. The straightforward pointing and unpointing cases are
omitted.

Case: C = 1.
gC := procedure(n: integer);

if n = 0 then Return(1)
end.

Case: C = Z.
gC := procedure(n: integer);

if n = 1 then Return(Z)
end.

Case: C = A+ B.
gC := procedure(n: integer);

U := Uniform([0, 1]);
if U < an/cn

then Return(gA(n))
else Return(gB(n))

end.

Case: C = A× B.
gC := procedure(n: integer);

U := Uniform([0, 1]);
k := 0;
S := a0bn/cn;
while U > S do

k := k+ 1;
S := S + akbn−k/cn;

Return(〈gA(k), gB(n− k)〉)
end.

3. Generation according to expected frequencies

3.1. Weighted combinatorial structures and random generation

In this section, we consider the problem of generating structures of Cn at random in such a way that each structure s is
generated with positive probability P(s), and the k-tuple of expected frequencies of the atoms Z1, . . . ,Zk equals the given
k-tuple (µ1, . . . , µk). Formally:

P(s) > 0 ∀s ∈ Cn (7)

and ∑
s∈Cn

|s|ZiP(s) = nµi ∀i ∈ {1, 2, . . . , k}. (8)

Moreover, any two structures (s, s′) ∈ Cn×Cn having the same distribution in atomsZ1, . . . ,Zkmust be equally generated:

(|s|Zi = |s
′
|Zi ∀i ∈ {1, . . . , k}) ⇒ P(s) = P(s′). (9)

Our method consists in adjoining a k-tuple of weights π = (π1, . . . , πk) to the specification, assigning a real-valued weight
πi ∈ R∗

+
to each distinguished atom Zi ∈ Z. The weight of any combinatorial structure is then defined to be the product of

the weights of its distinguished atoms:

π(s) =
∏
1≤i≤k

π
|s|Zi
i ,

and the weight of a finite combinatorial class is the sum of the weights of its members. In particular, for Cn we have:

π(Cn) =
∑
s∈Cn

π(s).

If the algorithm is such that

P(s) =
π(s)
π(Cn)

, ∀s ∈ Cn, (10)

then the larger the weight of any given atom is (with regard to the weights of the other ones), the more this atom occurs in
a random sample. On the other hand, formula (10) implies conditions (7) and (9).

3530 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Now we have to solve two problems:

1. Find a k-tuple π that satisfies (8) assuming that (10) holds;
2. Design a generation algorithm which satisfies (10).

Let us first solve the latter, for which we adapt the recursive scheme.

Proposition 1. Suppose thatπ is given. Then an adaptation of the recursive approach gives an algorithmwhich takesO(n1+o(1)+
mn log n) arithmetic operations for generating m structures of size n such that each structure s is generated with probability P(s).

In order to generate words with the required distribution (10), we use the methodology presented in Section 2, with just
a slight change: Now the rule

C = Zi ⇒ c1 = π(Zi) ≡ πi.

replaces rule (4) in Table 1. The generation process then works exactly like the uniform one described in Section 2. It can be
easily shown that the probability of generating a structure s occurs will be proportional to its weight π(s).
TheO(n log n) behavior of a Boustrophedon search follows from the facts that: (i) Theworst-case complexity of the uniform

generation is in O(n log(n)), as was shown in [1]; (ii) For any sampled structure s, the costs of generating s in the weighted
and uniform distribution are strictly identical. Since the generation cost of any structure is in O(n log(n)), then so is the
expected cost of a generation, regardless of the distribution.

From now on, given C , π and n, let us write fπ(Zi, C, n) for the average number of atoms Zi in the structures of Cn
generated by the above scheme. Our problem is then the following: given the k-tuple (µ1, . . . , µk), find the k-tuple π of
weights that achieves targeted frequencies, that is such that

fπ(Zi, C, n) = n · µi for all i such that 1 ≤ i ≤ k.

We give two different approaches to tackle this problem. The first one, detailed in Section 3.2, is analytic and gives, if
some conditions on C hold, asymptotic formulas for fπ(Zi, C, n)when n is large, assuming we are able to solve some system
of functional equations. By contrast, our second programme, described in Section 3.3, leads to an heuristic for approximating
π in the general case.

3.2. Computing weights suitable for asymptotical frequencies

3.2.1. The (non-rational) context-free case
A combinatorial class is said to be context-free if it can be specified without using set and cycle operations. A result of

Drmota [16], applied by Denise et al. [17] to the case of weighted context-free grammars allows us to foresee a symbolic
approach to the computation of weights compatible with expected frequencies. More specifically, it defines sufficient
conditions such that the number cn of structures of size n asymptotically follows the ubiquitous behavior

cn ∼ κπ ·
ρnπ

n
√
n
(1+ O(1/

√
n))

and such that the coefficients c in that count the total number of symbolsZi in allwords of size n follow asymptotic expansions
of the form

c in ∼ κπ,i ·
ρnπ
√
n
(1+ O(1/

√
n))

for κπ and κπ,i some explicit constants of n. It follows that a relationship exists between the weights and the asymptotical
frequencies of occurrence for each atom Zi. This relationship is in most cases quite simple, and allows to derive suitable
weights π for reasonable objective k-tuples of frequencies (µ1, . . . , µk).

Definition 2 (Simple Type Specification). Let Ψ = {Ψi} be a set of standard specifications for a tuple C of algebraic (context-
free) combinatorial classes.
Let cn1,...,nk,r be the number of structures of size n = r +

∑k
i=1 ni in a combinatorial class C , having nj occurrences of atom

Zj, j ∈ [1, k], and r remaining atoms.
Then Ψ is said to be of simple type if there exists, for each combinatorial class C ∈ C, a k-dimensional cone Ni ⊂ Rk that is
centered on 0 and saturated such that

∀(n1, . . . , nk, r) ∈ Ni ∩ Nk+1, c in1,...,nk,r 6= 0.

Theorem 3 (Asymptotics of Algebraic Specifications [16]). Let Ψ = {Ψi}mi=1 be a combinatorial specification for a m-tuple
C = (C1, . . . , Cm) of combinatorial classes such that:
1. for any i ∈ [1,m], Ci is not isomorphic to a rational language.
2. Ψ doesn’t use any ε-production.

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3531

Fig. 1. Two equivalent grammars for the Motzkin language along with their dependency graphs.

3. Ψ is a simple type specification.
4. Ψ is strongly connected.

For each i ∈ [1, k] and j ∈ [1,m]:

- Let ui be a random complex variable and πi a real-valued weight.
- Let Sj be the multivariate generating function for class Cj.
- LetΦj(t, u1, . . . , u|Z|, S1, . . . , Sm) be the term obtained from Ψj by replacing Zi by t · πi · ui, and Cj by Sj.

Finally, let A be the Jacobian matrix ofΦ , such that A =
(
∂Φi
∂Cj

)
i,j∈[1,|Ψ |]

.

Consider the following system:
S1(tπ1u1, . . . , tπ|Z|u|Z|) = Φ1(t, u1, . . . , u|Z|, S1, . . . , S|Ψ |)

. . .
S|Ψ |(tπ1u1, . . . , tπ|Z|u|Z|) = Φ|Ψ |(t, u1, . . . , u|Z|, S1, . . . , S|Ψ |)

0 = det(I− A).

(11)

Let (ρ∗π, S
∗

1 , . . . , S
∗

|Ψ |) be a |Ψ | + 1-tuple of functions of u = (u1, . . . , u|Z|), solution of System (11) such that ρ
∗
π(1) ∈ R+ and

is minimal. Then we have:

fπ(Zi, C, n) = −
1

ρ∗π(1)
∂ρ∗

∂ui
(1) . n+ O(1). (12)

The intuition behind the conditions of this theorem is the following:

- The non-rationality of the corresponding language helps avoiding simple poles, a casewhere the simplifications presented
in Section 3.2.2 appear.
- The strongly connected condition ensures that the dominant singularity is the same for all functions Si(t, . . . , t).
- Furthermore, adding a simple type condition guarantees a square-root type dominant singularities for all generating
functions Si.
- The value x∗π(1, . . . , 1) is the dominant singularity, necessarily positive as we are considering series with positive
coefficient (Pringsheim’s Theorem).

Remark 4. The original formulation of the Theorem [16] addresses awider range of candidate systems (11) than the context-
free languages, thus it is expected that some of its most stringent constraints can sometimes be relaxed. For instance, the
coefficients of the equations derived fromΨ are positive, which is a real restriction since the class of context-free languages
is not closed under complement.
Also, the ε-free condition can be relaxed, since it is a classic result that any grammar can be transformed into an ε-free

one generating the same language.
Lastly, a property that might be too stringent is the strong-connectedness, whose role is to avoid some complicated cases

where several concurrent singularities may interfere, e.g. giving rise to oscillating asymptotic behaviors. Indeed, many
concrete examples show that, as can be verified through singularity analysis [18], correct frequencies can be predicted by
mean of the theorem although their graphs are not strongly connected.
Some of these examples are purely artefactual, a phenomenon illustrated by the two grammars from Fig. 1. In this

example, the two grammars have different dependency graphs, and grammar G trivially does not meet the strong-
connectedness criteria of Theorem3, despite generating the same combinatorial class. One can even build classes of languages
such that the conclusions of Theorem 3 applies, whereas the language cannot be generated by any strongly-connected
grammar. For instance, one may consider all sorts of k-ary trees whose leaves are sequences of a dedicated axiom.
Therefore it remains to propose a tighter characterization of eligible specifications, not necessarily based on the

structure of the system (not sufficiently informative) or on properties of associated generating functions (solving some
of these systems may be challenging) but rather on intrinsic properties of the associated combinatorial classes. Such a
characterization remains a challenging problem at the moment.

3532 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Fig. 2. Convergence toward the asymptotic regimes (Dashed lines) of the proportions fc (Solid lines) of unary nodes among π-weighted unary/binary trees
of size n. Five values for the couple (π, fc) are shown here (From top to bottom): (10, 5/6), (2, 1/2), (1, 1/3), (1/2, 1/5), and (1/10, 1/21).

Example 1 (Motzkin Words/Unary-Binary Trees). Motzkinwords are the easiest and themost ubiquitous representant of the
context-free class of languages for which two atoms can occur independently. They are also known to be in bijection with
the rooted trees having nodes of degrees 1 and 2. They are generated by the following context-free grammar:

S → a S b S | c S | ε.

Through weighting the terminal letter c with a real-valued weight π and marking the terminal symbol c with a complex
variable u, we get the following expression forΦSπ

Sπ (t, tu) = ΦSπ (t, u, Sπ) = tSπ (t, tu)tSπ (t, tu)+ tuπSπ (t, tu)+ 1. (13)

Since there is only one non-terminal (e.g. combinatorial class) S, the Jacobian is reduced to a 1× 1 matrix A such that:

A = 2t2Sπ (t, tu)+ πut

and

det (I− A) = 1− 2t2Sπ (t, tu)− πut. (14)

Putting together Eqs. (13) and (14) from above yields the following system{
Sπ (t, tu) = tSπ (t, tu)tSπ (t, tu)+ tuπSπ (t, tu)+ 1

0 = 1− 2t2Sπ (t, tu)− πut
(15)

whose solutions for t are

t± =
1

πu± 2
.

Taking the positive solution t+ and applying Eq. (12) yields the following weight π that achieves an asymptotic frequency
fc for the terminal symbol c

π =
2fc
1− fc

.

It is then possible to gain full control over the asymptotic frequency for terminal letters c and (a, b). Although in principle
this relationship holds only for large values of n, a fairly quick convergence toward the asymptotic regime is observed, as
can be seen in Fig. 2. Also, the impact of the weight on this convergence, although noticeable, does not seem too drastic.
Alternatively, the three types of atoms can be weighted with a triplet (πa, πb, πc) and the weight/frequency relationship
remarkably simplifies1 into πa = πb = fa = fb, and πc = fc with fa + fb + fc = 1.
Since these letters map respectively to unary and binary branches through the classic unary-binary tree bijection, we

can draw random instances of weighted unary-binary trees. We get the typical behaviors exhibited in Fig. 3 for increasing
values of π .

1 As was pointed out by an anonymous reviewer.

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3533

Fig. 3. Unary-binary trees associated with weighted Motzkin words of size 500, for different values of π the weight of unary nodes.

3534 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Fig. 4. Average value of an arithmetic expression, computed by generating 100 000 random expression, for various sizes n and frequencies of symbols +
and 1.

Example 2 (Binary Arithmetic Expressions). Another class of structures that can be seen as a context-free language is the
language of arithmetic expressions.Wewill restrict our operations to the addition and subtraction and accept only numbers
having one binary digit. This yields the following grammar, given in polish notation (prefix form) to avoid potential
ambiguity:

E → + E E | − E E | N
N → 0 | 1.

Average value of an expression: Although this problem can probably be solved exactly through bivariate generating
function techniques, we choose a random generation approach to get a rough idea of the influence of the number of
occurrences of the+ symbol over the average asymptotic value of an arithmetic expression. Therefore, we adjoin a weight
π+ to the atom+ that will be used to control its frequency f+. Also we define the length n of a binary expression to be the
length of its encoding, ie its number of terminal symbols.
As shown previously, the above unambiguous context-free grammar can be translated into a system of functional

equations. Solving the system gives the length generating functions associated with each non-terminal. In particular for
E, we have

Eπ+(t, u) =
1−

√
1− 8 (1+ uπ+) t2

2t (1+ uπ+)
with u and t respectively marking only+ and any atom.
The above generating function, after some basic singularity analysis, yields

π+ =
2f+
1− 2f+

.

Unsurprisingly, it is impossible to find a weight π+ such that more than 50% of the symbols are+’s, which follows directly
from the binary tree-like structure of our expressions.
One can also adjoin a second weight π1 to each occurrence of the atom 1, along with a new complex variable v. Solving

the new system yields the following generating functions:

Eπ+,π1(t, u, v) =
1−

√
1− 4t2(1+ uπ+)(1+ vπ1)

2t(uπ+ + 1)
.

Again it is possible to link the asymptotic frequency f1 (resp. f+) for 1 (resp.+) with both weights π+ and π1, which yields

f1 =
π1

2(1+ π1)
and f+ =

π+

2(1+ π+)
.

A remarkable property here is the absence of correlation between the frequencies of 1 and +, once again due to the tree-
like structure of arithmetic expressions. We can then use these equations to estimate the average value of an arithmetic
expression having different proportions of 1 and+’s. A random generation of 100 000 expressions for sizes ranging from 1
to 200 allows us to conjecture a size-independent average value when π+ = 1 (See Fig. 4).

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3535

Exact analysis of the π+ = 1 case: In the π+ = 1 case, it is an interesting fact that the average value E(Vn) of an expression
is in fact independent from n. More specifically, it can be shown that

E(Vn) =
π1

1+ π1
, ∀n ≥ 1.

This can be proven by induction on n, since

E(V1) =
1

1+ π1
· 0+

π1

1+ π1
· 1 =

π1

1+ π1
and that assuming E(Vk) = π1/(1+ π1), ∀k < n yields

E(Vn) =
n−1∑
k≥1

p+k,n (E(Vk)+ E(Vn−k))+
n−1∑
k≥1

p−k,n (E(Vk)− E(Vn−k))

=

n−1∑
k≥1

p+k,n
2π1
1+ π1

where p+k,n (resp. p
−

k,n) is the probability that an expression of size n having root + (resp. −) is composed of two
subexpressions having sizes k and n− k. Since

n−1∑
k≥1

p+k,n +
n−1∑
k≥1

p−k,n = 1, ∀n ≥ 1

and p−k,n = p
+

k,n when π+ = 1, then
∑n−1
k≥1 p

+

k,n = 1/2 and the claimed result holds. The results then specializes into
E(Vn) = 1/2 in the uniform (π+ = 1, π1 = 1) case, and into E(Vn) = 2/3 in the (π+ = 1, π1 = 2), both values being
conjectured from Fig. 4.

3.2.2. The rational case
In this section, we show how to compute a k-tuple of weights that is suitable for generating words according to given

frequencies for a non-trivial class of rational languages. As we will see in some examples below, the result generalizes to
combinatorial classes whose generating functions are rational.
If C is a rational language, then its (weighted) generating function writes

Sπ(t,u) =
Pπ(t,u)
Qπ(t,u)

where u stands for u1, . . . , uk, and where there exists r > 0 and δ1, . . . , δk > 0 such that Pπ and Qπ are analytic in the
domainD = {(t,u) : |t| ≤ r, |ui − 1| < δi∀i}.
We establish a simple formula for the average number of occurrences of each symbol in the weighted distribution. Quite

noticeably, this formula does not require locating all the actual singularities, a difficult task as the weights are evolving, but
only involves derivatives of Qπ and ρπ the unique dominant singularity.

Proposition 5. Let C be a rational language counted by a (weighted) generating function Sπ(t,u) = Pπ(t,u)/Qπ(t,u) such
that Sπ(t,u) has a unique dominant singularity ρπ ∈ R+. For any i ∈ [1, k] and any k-tuple π such that πj 6= 0, ∀j ∈ [1, k], we
have:

fπ(Zi, C, n) = ρ−1π

cπ,i(ρπ)

cπ
(ρπ)n+ O(1),

where

cπ,i(t) =
∂Qπ

∂ui
(t, 1) and cπ(t) =

∂Qπ

∂t
(t, 1).

and ρπ is the unique real zero of smallest modulus of Qπ(t, 1).

Proof. For the sake of simplicity, we make the ubiquitous dependency on π implicit by dropping it from our notations. Let
α ∈ N+ be the multiplicity of ρ as the unique dominant singularity of S(t, 1). There exists α roots (ρ1(u), . . . , ρα(u)) of
Q (t,u) such that ∀j ∈ [1, α], ρj(1) = ρ. Furthermore there exists a polynomial R(t,u) such that

Q (t,u) = R(t,u) ·
α∏
j=1

(1− t/ρj(u)) (16)

and the function P(t, 1)/R(t, 1) is analytic at t = ρ, where it takes a positive real value κ .

3536 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

As will be shown in Proposition 8, we have f (Zi, C, n) =
[tn] ∂S

∂ui
(t,1)

[tn]S(t,1) , and

∂S
∂ui
(t, 1) = −

P(t, 1)
R(t, 1)

t
∑α
j=1

∂ρj
∂ui
(1)

ρ2(1− t/ρ)α+1
+

∂(P/R)
∂ui

(t, 1)

(1− ρ)α
.

Both S(t, 1) and ∂S
∂ui
(t, 1) are rational generating functions and a generic treatment of such functions (See [19]) yields the

following asymptotic equivalents:

[tn] S(t, 1) ∼ κ ·
nα−1

(α − 1)!ρn
+ O(nα−2ρ−n)

[tn]
∂S
∂ui
(t, 1) ∼ κ ·

 α∑
j=1

−
∂ρj
∂ui
(1)

ρ

 nα

α!ρn
+ O(nα−1ρ−n).

Remark that there exists degenerate cases where the multiplicity of ρ as a pole is decreased (or cancelled) by the derivative
on ui. Therefore the first term of the expansion may cancel but the statement remains valid thanks to the O(·) notation.
Taking the ratio, we obtain the following equivalent for f (Zi, C, n)

f (Zi, C, n) = −

∑α
j=1

∂ρj
∂ui
(1)

αρ
n+ O(1). (17)

Now using Eq. (16), we obtain the following derivatives of Q

ci(t) = (1− t/ρ)α−1
(
κt
ρ2

α∑
j=1

∂ρi

∂ui
(1)+ (1− t/ρ)

∂R
∂ui
(t, 1)

)

c(t) = (1− t/ρ)α−1
(
−
κα

ρ
+ (1− t/ρ)

∂R
∂ui
(t, 1)

)
and in turn

ρ−1
ci(ρ)
c(ρ)

n = −

∑α
j=1

∂ρj
∂ui
(1)

αρ
n

where one recognizes the first term of Eq. (17). �

Now consider that one is given a k-tuple (µ1, . . . , µk) and aims at finding a k-tuple π such that, for any i, fπ(Zi, C, n) ∼
nµi. Let πi be the weight of atom Zi for any i.
Under the assumption of a unique dominant singularity in Sπ(z, 1), the following algorithm can solve the problem

numerically if such a solution exists:

• From Qπ(t,u), compute cπ(t) and the cπ,i(t)’s (for 1 ≤ i ≤ k) where t and the πi’s remain symbolic variables.
• Build a system of k algebraic equations:

Qπ(ρ, 1) = 0

ρ−1
cπ,1(ρ)
cπ

(ρ) = µ1

...

ρ−1
cπ,k(ρ)
cπ

(ρ) = µk

(18)

in the unknown variables ρ, π1, . . . , πk.
Solve the system using numerical techniques (using FGb [20] for example)

• Among the solutions, take one for which ρ is real and has the smallest modulus.

Remark 6. The prerequisite of Proposition 5 (uniqueness of dominant singularity) is satisfied by specifications associated
with strongly connected, aperiodic automata, where the dominant singularity is known to be unique and has multiplicity 1
(See [19, Theorem IX-9, p. 656]). Such a property also holds for any specification whose strongly-connected components are
aperiodic in the sense that, internally to each component, the greatest common divisor of all cycle length is 1 (Easily proved
by induction).

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3537

Remark 7. In the case of multiple dominant singularities, corresponding to periodic automata, Proposition 5 may fail.
However it is worth mentioning that, using partial knowledge of the targeted length n, one can transform any rational
specification into an equivalent one meeting the requirement of Proposition 5.
Let C be a rational specification and Cr,D its restriction to objects of any size n′ such that n′ ≡ r [D], respectively counted

by

S(t,u) =
∑
n≥0

∑
i≥0
sn,i tn

k∏
j=1

ujij and Sr,D(t,u) =
∑
N≥0

∑
i≥0
sND+r,i tN

k∏
j=1

ujij .

Notice that, in order to avoid trivial periodicities in Sr,D(t,u),N is no longer the size of counted objects but rather the number
of periods.
We rely on the fact that, in any rational generating functions with positive coefficients (See [19, Theorem V-3, p. 302]),

there exists a modulus D ∈ N+ such that, for any base r ∈ [0,D − 1], Sr,D(t, 1) has a unique dominant singularity on the

positive real axis. Since any dominant singularity ρj is such that (ρj/|ρj|) = e
i
2πpj
qj where pj ∈ N, qj ∈ N+ and gcd(pj, qj) = 1

(See [19, Theorem IV-3, p. 267]), then a suitable value for Dwill be the least common multiple of all qj’s.
Then a specification Cr,D counted by Sr,D(t,u) can always be built from an automaton for C . In short, one starts by

intersecting C with the language denoted by a rational expressionmr,D generating all objects of size n′ such that n′ ≡ r [D],
given by

mr,D = (Z1 + · · · + Z|Z|)
r((Z1 + · · · + Z|Z|)

D)∗.

Theminimal automaton for the intersection language (rational and constructible) only has cycles of lengths that aremultiple
of D. Sr,D(t,u) can then be obtained, either by only marking with the size variable t the atoms occurring at position p such
that p ≡ r + 1 [D], or through a variable substitution in the resulting generating function.
Finally, Proposition 5 applies to Sr,D(t,u) such that the weights π and the average proportion µi of an atom Zi are

interrelated through ρ−1 cπ,icπ (ρ) = Dµi. Reflecting this slight modification into System (18) and solving the system gives
suitable weights for large values of n such that n ≡ r [D].

Example 3 (The Fibonacci Language). The simple and well known Fibonacci language is defined by the regular expression
(a + bb)∗, and admits a strongly connected aperiodic automaton. Suppose we want to generate words while biasing the
average number of a’s. We thus put a weight πa on the letter a. The weighted generating function writes:

Sπa(t, ua, ub) =
1

1− πauat − u2bt2
,

so Qπa(t, ua, ub) = 1− πauat − u
2
bt
2. We have

cπa,a(t, ua, ub) = −πat and cπ (t, ua, ub) = −πaua − 2u2bt,

which leads to

fπa(a, S, n) ∼ ρ
−1 −πaρ

−πa − 2ρ
n

∼
πa

πa + 2ρ
n.

Now let µa be the desired asymptotic proportion of a’s in the generated words, we just have to solve{
1− πaρ − ρ2 = 0

πa

πa + 2ρ
= µa

which gives

πa =
2µa√
1− µ2a

and ρ =
1− µa√
1− µ2a

.

This gives, for example, πa = 2/
√
3 ≈ 1.1547 (and ρ = 1/

√
3 ≈ 0.577) in order to reach µa = 0.5, that is an

asymptotically equal proportion of a’s and b’s in random Fibonacci words. Note that, in the uniform generation scheme
(that is πa = 1), we get µa = 1

√
5
≈ 0.447. Finally, it is worth mentioning that adding a weight πbb on each occurrence of

bb leads to the simplification πa = 2µa/(1 + µa) and πbb = 1 − πa. Fig. 5 shows random weighted Fibonacci words for
different values of πa.

3538 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Fig. 5. Sets of randomly generated Fibonacci words of length 100 for different values of πa . White boxes: a’s; grey boxes: b’s.

Fig. 6. A finite state automaton recognizing the language generated by the grammar.

Example 4 (Motifs in Random Sequences). We consider here the number of occurrences of a given motif in a random
sequence. This is a classical issue in bioinformatics. Our approach follows, in some sense, the one in [21], though for a
different purpose. Our example is the following: we want to fix the average number of occurrences of the motif aug in a
random RNA sequence, that is a sequence on the alphabet {a, c, g, u}. In order to distinguish the aug ’s, we mark the last g ,
replacing it with ḡ . Hence, in fact we consider words on {a, c, g, ḡ, u}where there is no occurrence of uag and where every
occurrence of ḡ is immediately preceded by ua. Obviously, counting the auḡ ’s in this language is equivalent to counting the
aug ’s in {a, c, g, u}∗. And, in order to generate words in the suitable alphabet, we will just have to replace each letter ḡ with
a letter g during the random generation process.
Our language can be represented by the (strongly connected and aperiodic) deterministic finite automaton of Fig. 6 or,

equivalently, by the following non-ambiguous regular grammar:

S0 → ε | a S1 | c S0 | g S0 | u S0
S1 → ε | a S1 | c S0 | g S0 | u S2
S2 → ε | a S1 | c S0 | ḡ S0 | u S0.

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3539

Now by putting a weight πḡ on ḡ , we are able to tune the number of occurrences of the motif. Namely we have:

Sπ (t, a, c, g, ḡ, u) =
1

1− t(a+ c + g + u)+ t3aug − πḡ t3auḡ
,

thus

Qπ (t, a, c, g, ḡ, u) = 1− t(a+ c + g + u)+ t3aug − πḡ t3auḡ

which gives

cπḡ ,ḡ(t, a, c, g, ḡ, u) = −πḡ t
3ua

and

cπḡ (t, a, c, g, ḡ, u) = −(a+ c + g + u)+ 3t
2uag − 3πḡ t2uaḡ.

Hence we find

fπ (ḡ, C, n) ∼
πḡρ

2

4− 3ρ2 + 3πḡρ2
n

where ρ satisfies the equation Qπ (ρ, 1, 1, 1, 1, 1) = 0. Thus we have to solve the system
1− 4ρ + (1− πḡ)ρ3 = 0

πḡρ
2

4− 3ρ2 + 3πḡρ2
= µḡ .

in order to find the suitable value of πḡ that gives the desired asymptotic ratioµḡ of motifs atg in the words to be generated.
For example, setting µḡ = 0.1 gives πḡ ≈ 11.148 and setting µḡ = 0.01 gives πḡ ≈ 0.621. Note that, in the uniform
generation scheme (that is πḡ = 1), we would have µḡ = 1

64 ≈ 0.016.
Let us take an additional parameter into account. We aim to fix the (joint) proportion of letters a and u in the sequences,

which is called the ‘‘a+u content’’ in bioinformatics. This is a natural issue in bioinformatics, where the observed frequencies
of nucleotides have to be taken into account. To this purpose, let us replace each letter a or uwith a new letter α, and let us
put the weight πα on this letter. We get

Qπ (t, c, g, ḡ, α) = 1− t(2παα + c + g)+ π2α t
3α2g − πḡπ2α t

3α2ḡ

then

c(πα ,πḡ),ḡ(t, c, g, ḡ, α) = −π
2
απḡ t

3α2,

c(πα ,πḡ),α(t, c, g, ḡ, α) = −2παt + 2π
2
α t
3αg − 2π2απḡ t

3αḡ

and

c(πα ,πḡ)(t, c, g, ḡ, α) = −(2παα + c + g)+ 3π
2
α t
2α2g − 3π2απḡ t

2α2ḡ.

Hence

fπ (ḡ, C, n) ∼
π2απḡρ

2

2+ 2πα − 3π2αρ2 + 3π2απḡρ2
n

and

fπ (α, C, n) ∼
2πα(1− παρ2 + παπḡρ2)
2+ 2πα − 3π2αρ2 + 3π2απḡρ2

n.

Now, adjusting the a+ u content and the number of motifs atg reduces to solve a system of three algebraic equations in πα ,
πḡ , and ρ:

1− 2ρ(1+ πα)+ ρ3π2α(1− πḡ) = 0
π2απḡρ

2

2+ 2πα − 3π2αρ2 + 3π2απḡρ2
= µḡ

2πα(1− παρ2 + παπḡρ2)
2+ 2πα − 3π2αρ2 + 3π2απḡρ2

= µα.

For example, setting µα = 0.7 and µḡ = 0.1 gives πα ≈ 2.475 and πḡ ≈ 9.430 (with ρ ≈ 0.128).

3540 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Example 5 (RNA Multiple Stem-Loops). Here we show that Proposition 5 can be sometimes apply in some cases where the
language is not rational. At first, let us consider the following language : L = {ancmbn : m, n > 0}. In molecular biology,
this represents what is called a stem-loop in a RNA secondary structure (see [22] or [23] for details). Roughly, a’s and b’s
represent paired nucleotides (in the stem), while c ’s represent unpaired ones (in the loop). Now let us define the language
L′ = d∗(Ld∗)∗. that is the language consisting in series of stem-loops, where each two consecutive stem-loops are possibly
separated by stretches of unpaired nucleotides, represented by d’s. Obviously L and L′ are not rational languages, but their
generating function are rational. Indeed, there is a straightforward one-to-one correspondence between the words of L′ and
the words of the rational language d∗((ab)+c+d∗)∗. Additionally, the minimal automaton of this language is aperiodic and
strongly connected, thus Proposition 5 holds.
Suppose we aim to generate words of L′ while fixing the average number of stem-loops and the average number of

paired nucleotides. For the latter, it suffices to put a weight πa on each letter a. As regards the number of stem-loops, let us
distinguish one letter in each loop (for example the last one) by changing the c to c̄. Now our language obeys the following
grammar:

S → D T S | D
T → a T b | a C b
C → c C | c̄
D → d D | ε.

The weighted generating function is

Sπ(a, b, c, d) =
1− tc − πat2ab+ πat3abc

1− t(c + d)− t2(πaab− cd)− πat3(πc̄abc̄ − abc − abd)− πat4abcd
.

Finally we find the following system:
1− 2ρ + (1− πa)ρ2 + (2πa − πaπc̄)ρ3 − πaρ4 = 0

πaρ(1+ (πc̄ − 2)ρ + ρ2)
2+ 2ρ(πa − 1)+ 3ρ2πa(πc̄ − 2)+ 4ρ3πa

= µa

πaπc̄ρ
2

2+ 2ρ(πa − 1)+ 3ρ2πa(πc̄ − 2)+ 4ρ3πa
= µc̄ .

It can be solved symbolically, leading to
ρ =

1− 2µa − µc̄
1− 2µa + µc̄

πa =
(µa − µc̄)(1− 2µa + µc̄)2

µa(1− 2µa − µc̄)2

πc̄ =
4µ3c̄

(µa − µc̄)(1− 2µa − µc̄)(1− 2µa + µc̄)
.

Note that we must have 2µa + µc̄ < 1 since there are as many b’s as a’s in the words to be generated, and room must be
left too for c ’s and d’s. For example, setting µa = 0.4 (for 80% of paired nucleotides in average) and µc̄ = 0.1 (for n/10
stem-loops in average in a structure of size n) gives πa = 27/4 and πc̄ = 4/9 (with ρ = 1/3).

3.3. Computing weights for fixed lengths: an heuristic approach

Now we address the problem of finding suitable weights for expected frequencies in its most general setting. Indeed, it
is not always possible to apply purely analytic methods such a the ones described in Section 3.2, or even only to compute
explicitly the generating function. By contrast, it is always possible to translate an unambiguous context-free grammar into a
recurrence equation, which allows for an exact evaluation of the numbers of words in the grammar. Applying thismethod to
theweighted context-free languages gives an algorithm, described in Section 3.3.1, for computing the frequencies associated
with givenweights. From this, we can use a continuous optimization algorithm described in Section 3.3.2, to obtain a precise
approximation of suitable weights.

3.3.1. Preliminary: computing frequencies from weights
Let us consider the following generating function:

Sπ(t,u) =
∑
s∈C

π(s)t |s|u
|s|Z1
1 . . . u

|s|Zk
k ,

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3541

where u = (u1, . . . , uk). We can write

Sπ(t,u) =
∑

n,j1,...,jk≥0

πn,j1,...,jk t
nuj11 · · · u

jk
k ,

where πn,j1,...,jk stands for the sum of weights of the structures of size n having ji occurrences of atomZi for all i = 1, . . . , k.
The following result holds:

Proposition 8. Let fπ(Zi, C, n), be the expected number of occurrences of Zi in the structures of Cn generated by the algorithm.
We have:

fπ(Zi, C, n) =
[tn] ∂Sπ

∂ui
(t, 1)

[tn]Sπ(t, 1)
. (19)

Proof. This is a standard result. By definition, we have

fπ(Zi, C, n) =
∑
s∈Cn

|s|ZiP(s) =
∑
s∈Cn

|s|Zi
π(s)
π(Cn)

.

from P(s) = π(s)
π(Cn)

by Formula (10). The numerator is obtained from∑
s∈Cn

|s|Ziπ(s) =
∑

j1,...,jk≥0

jiπn,j1,...,jk = [t
n
]
∂Sπ
∂ui

(t, 1),

while the denominator arises from

π(Cn) =
∑

j1,...,jk≥0

πn,j1,...,jk = [t
n
]Sπ(t, 1). �

This result allows to compute fπ(Zi, C, n) from the generating functions Sπ(t,u). However, computing the partial
derivatives requires a closed-form expression of the generating function Sπ , which can be hard to obtain for complex
grammars. Therefore for practical applications, we propose a different approach based on recurrence formulae.

Proposition 9. The frequencies fπ(Zi, C, n) associated with allZi’s can be computed in O(n4) arithmetic operations. Moreover,
if C uses only the product and union constructs (context-free language), then there exists aO(n2) arithmetic operations algorithm
for computing the fπ(Zi, C, n).

We define gπ(Zi, C, n,m) to be the sum of weights for all structures in Cn featuringm occurrences of Zi. Then we have:

C = Zj ⇒ gπ(Zi, C, n,m) =

{
π(Zi) ≡ πi if i = j, n = 1 andm = 1
π(Zj) ≡ πj if i 6= j, n = 1 andm = 0
0 otherwise

C = A+ B ⇒ gπ(Zi, C, n,m) = gπ(Zi, A, n,m)+ gπ(Zi, B, n,m)

C = A× B ⇒ gπ(Zi, C, n,m) =
n−1∑
a=1

m∑
b=0

gπ(Zi, A, a, b) . gπ(Zi, B, n− a,m− b)

C = ΘA ⇒ gπ(Zi, C, n,m) = n . gπ(Zi, A, n,m)

and then in turn

fπ(Zi, C, n) =

n∑
m=0

m . gπ(Zi, C, n,m)

n∑
m=0

gπ(Zi, C, n,m)

.

These recurrence relations lead to an algorithm, which needs to compute a table of the values for each gπ(Zi, C, n,m).
Its size is O(n2), and each entry needs, at worst, O(n2) arithmetic operations. Thus the overall worst-case complexity for
computing the expected number of occurrences of any atom Zi in a structure of size n is O(n4).
An alternative way for computing these frequencies in context-free grammar specifications is based on a generalization

of the grammar transform associated with the pointing operator (See [2] for examples). Namely, we introduce a partial
pointing operator which duplicates objects by marking any occurrences of a given atom. For context-free languages, we
show how to adapt a specification for the partially-pointed language from the input grammar. Extracting coefficients from
the resulting grammars gives us both the numerators and denominator of Eq. (19) at the usual cost of coefficient extractions,
effectively improving on the complexity of the previous method.
Let us first define the partial pointing operator ΘZi , taking a class C and returning a class C•i whosemembers are obtained

from a member of C by pointing an occurrence of Zi. Consequently any object o ∈ C gives rise to a number of objects in C•i
that is equal to its number of occurrences of Zi, and the ordinary generating function of C•i is therefore clearly ∂Sπ∂ui .

3542 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Based on the obvious combinatorial interpretation of the partial pointing operator, it is possible to build a grammar G•i
for partially pointed language from the rules of an initial context-free grammar G. Generalizing from the rules used for the
general pointing operator [2], we obtain

C → A | B ⇒ C•i → A•i | B•i

C → A · ×B ⇒ C•i → A•i · B | A · B•i

C → Zj ⇒ C•i →
{
Z•ij If i = j
∅ Otherwise.

The ∅ symbol tags as non-productive a non-terminal C , which can be eliminated through an iterated post-treatment.
However non-necessary, this may decrease the constants involved in the complexity of this approach, since the complexity
of our enumeration algorithm depends, in a somewhat hidden fashion, on the number of non-terminals.
Using counting rules from Table 1, we can then evaluate the number g•in of words of size n in G•i. Since the generating

function S•iπ (t,u) of G
•i is such that S•iπ (t,u) = ui ·

∂Sπ(t,u)
∂ui

, then we have

[tn]
∂Sπ
∂ui

(t, 1) = [tn]S•iπ (t, 1) = g
•i
n .

The expression of Proposition 8 for fπ can then be rephrased as follows:

fπ(Zi,G, n) =
g•in
gn
.

Since both g•in and gn are numbers (resp. total weights in weighted specifications) of words in a context-free grammar,
they can be computed in O(n2) arithmetic operations and in Θ(n3) space complexity and so can fπ(Zi,G, n). These can
be lowered to O(n) arithmetic operations and Θ(n2) space complexity by using the linear recurrences obtained for any
grammar by symbolic methods (GFun [24]). Although this approach could in principle be adapted to general standard
specifications, it is unclear at the moment how some of the partial/general pointing/unpointing combinations may interact,
and we favored the former approach in our implementation despite its higher theoretical complexity.

3.3.2. Assessing suitable weights through an optimization heuristic
Remember we want to find a k-tuple of weights π = (πi)i∈[1,k] that achieves targeted frequencies (µ1, . . . , µk)

associated with our k distinguished atoms (Z1, . . . ,Zk). To that purpose, we reformulate our problem as an optimization
one.
Let Φ : Rk × N → Rk be the function that takes a k-tuple of weights π = (π1, . . . , πk) and a length n ∈ N, and

returns the k-tuple of frequencies (f ∗i)i∈[1,k] observed among words of length n. We described in Section 3.3.1 two methods
to compute the functionΦ which, in addition to an expected smoothness of the functionΦ , allows us to foresee an efficient
optimization approach for the inversion ofΦ . More specifically, we want to find weights that achieves targeted frequencies
µ = (µi)i∈[1,k]. To that purpose we reformulate our problem as an optimization problem by defining an objective function
F : Rk × N→ R such that

F(π1, . . . , πk, n) =

√√√√ k∑
i=1

(
f ∗i − µi
f ∗i

)2
.

We point out the fact that(
F(π∗1 , . . . , π

∗

k , n) = 0
)
⇒

(
Φ(π∗1 , . . . , π

∗

k , n) = (µ1, . . . , µk)
)

so that solving the former yields a solution for the latter. Also, it is worth noticing that, thanks to the partial pointing
described above, F can be computed in O(k · n) arithmetic operations.

CONDOR is a continuous optimization algorithm, developed and implemented byVandenBerghen et al. [25]. It attempts at
finding the values for a set of parameters thatminimizes an objective function. It proceeds by building a local approximation
of F around a given point, as a polynomial of degree two and uses it to perform an analog of a steepest descent while
maintaining a trust regions.We used a C++ implementation of theCONDOR algorithm, downloaded from F. Vanden Berghen’s
website. We implemented the partial pointing algorithm described in Section 3.3.1 for the computation of Φ , using the
C++ arbitrary precision library apfloat created by M. Tommila. We combined these three components into a software
GRGFreqs, which takes as input a grammar formatted as a GenRGenS [26] description file with additional target frequencies
for the terminal symbols, and iteratively finds a set of weights that achieves such frequencies (Fig. 7).
By contrast to the analytic approach, which relies on the assumption that the asymptotic regime has been reached, this

approach works for fixed, potentially small, values of n. Moreover it is fully automated and does not require any interaction
with a computer algebra system. This allows for a computation of suitable weights, even for complex grammars for which
solving the associated systems of functional equations by computer algebra is challenging. Finally it is also possible to use
sophisticated methods inspired by [17] to achieve exact values for F , or just to take advantage of the numerical stability of
our algorithm and set the precision of the mantissa to a large fixed value. Since the CONDOR algorithm uses real numbers
internally, this allows for a reasonably accurate computation of suitable weights, as illustrated by the following application.

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3543

Fig. 7. General principle of our heuristic approach to the problem of computing weights π that achieve targeted frequencies µ.

Remark 10. As pointed out by one of the referees, one can bound the error made on targeted frequencies when using fixed-
precision reals for computing theweights. Letπ∗1 , . . . , π

∗

k be the exact solution, i.e. a set of weights that generates the atoms
with the targeted probabilities µ1, . . . , µk. Now suppose that floating point approximations π1, . . . , πk are used instead of
exact weights, then one can define the relative errors εi as πi = (1 + εi)π∗i . Consider the maximal and minimal relative
errorsMε = maxi(εi) andmε = mini(εi), then one has

(1+mε)nπ∗(s) ≤ π(s) ≡ π∗(s) ·
∏
1≤i≤k

(1+ εi)|s|Zi ≤ (1+Mε)nπ∗(s)

and similar bounds hold forπ(Cn) the cumulatedweights of structures of size n. By construction, each structure is generated
with probability P(s) = π(s)

π(Cn)
therefore we have

(1/q) · P∗(s) ≤ P(s) ≤ q · P∗(s), with q :=
(
1+Mε
1+mε

)n
.

Let us now use floating point arithmetics with a binary mantissa of a given fixed size b. Assuming that the method
converges toward the closest expressible approximation of π∗, one hasmε = −21−b andMε = 21−b. One can then compute
a precision b such that the sampling probability P(s) for any structure deviates from the targeted one P∗(s) by less than
some ε ∈ [0, 1[:

(1− ε) · P∗(s) ≤ P(s) ≤ (1+ ε) · P∗(s).

It can be easily shown that q ≤ 1+ ε implies 1/q ≥ 1− ε, so we are left to find a precision b such that(
1+ 21−b

1− 21−b

)n
≤ 1+ ε.

Applying the natural logarithm on both sides, one obtains

n
(
log(1+ 21−b)− log(1− 21−b)

)
≤ log(1+ ε).

Taylor expansions can be used for both logarithms, simplifying into

log(1+ X)− log(1− X) = 2X + X ·
∑
k≥1

2X2k

2k+ 1
≤ 3X, ∀0 ≤ X ≤ 1/2.

Here X = 21−b and the X ≤ 1/2 condition holds for any b ≥ 2, so any b such that

b ≥ 1+
log 3+ log(n)− log log(1+ ε)

log 2

will achieve a relative error less than ε.

Future directions for this research will aim at replacing the current optimization scheme with a numerical iteration,
following the pioneering work of Pivoteau et al. [27] for computing the so-called Boltzmann oracle.

3544 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Fig. 8. Evolution of the node degree distribution for trees of increasing size in the uniform model. The asymptotic proportions of nodes of degree
(0, 1, 2, 3, 4) are respectively (81/256, 27/64, 27/128, 3/64, 1/256).

3.3.3. Application 1: altering the node degree distribution for quadtrees
Quadtrees are data structures, mostly used in computer graphics to partition the view plane, thus helping in determining

which parts are obfuscated, or which geometrical objects are in collision. Considered as a combinatorial object, a quadtree
can be recursively defined as either an empty tree, or a tree having four children, denoted by their orientations (Northern-
eastern, southern-eastern, southern-western and northern-western). This definition gives rise to the following context-free
grammar

S → a S b S c S d S | ε

which generates all quadtrees through an encoding similar to that of Dyck words for binary trees. More specifically, it can
be shown that the number of words of length 4n generated by this grammar is exactly the number of quadtrees having n
internal nodes.
Now, we defines the degree of a node to be the number of its non-empty children.
The grammar above can then be altered in such a way that each production will create a node of known degree i, marked

by an occurrence of a distinctive letter ai:

S → T | ε
T → a4 T b T c T d T
| a3 b T c T d T | a3 T b c T d T | a3 T b T c d T | a3 T b T c T d
| a2 b c T d T | a2 b T c d T | a2 b T c T d | a2 T b c d T
| a2 T b c T d | a2 T b T c d
| a1 T b c d | a1 b T c d | a1 b c T d | a1 b c d T
| a0 b c d.

Computing the proportions of symbols {a0, . . . , a4}, which can be done for instance by one of the algorithms from
Section 3.3.1), yields the distribution of node degrees for increasing lengths plotted in Fig. 8. This distribution shows uneven
proportions of each types of nodes.
Assumewewant to draw quadtrees at random in a weightedmodel, chosen such that the proportions of nodes of degree

1, 2, 3 and 4 are equal, while leaving out nodes of degree 0 as a necessary degree of freedom. Furthermore, we want to make
sure that there exists a quadtree that achieves the target frequencies. Let {n0, . . . , n4} be the numbers of nodes of respective
degrees {0, . . . , 4} in a quadtree, then our quadtrees must obey the following constraints:

• The number of nodes n in any tree is related to the sum of degrees.
• The numbers ni of nodes of different degrees have to sum to n.
• Nodes having degrees 1 to 4 have to be equally represented.

These constraints translate into the following system{0n0 + 1n1 + 2n2 + 3n3 + 4n4 = n− 1
n0 + n1 + n2 + n3 + n4 = n

n1 = n2 = n3 = n4 = k

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3545

Fig. 9. Left:Weight optimization for weighted quadtrees of size 201. The targeted proportions are 121/201 (resp. 20/201) for nodes of degree 0 (resp. 1,
2, 3 and 4). Right: Node degree distributions for weighted quad trees of increasing size in our weighted model. Although formally the computed weights
only work for size 201 structures, a good approximation of the targeted distribution is already observed for smaller sizes.

Solving the system yields the following values in n0 and k:{
n0 = 3n+2

5
k = n−1

10

A corollary is that our set of constraints can only be fulfilled by trees of size equal to 1 modulo 10.
For instance, any quadtree of size 201 that meets the three conditions above will necessarily contain 121 nodes of degree

0 and 20 nodes of each other degree. Fig. 9–Left illustrates a run of our software GrgFreqs using such proportions as target
(121/201 for nodes of degree 0 and 20/201 otherwise). After about 100 evaluation of the objective function, a k-tuple π of
candidate weights for symbols ai, giving rise to a value 3.6 10−6 for the objective function, was found. From Remark 10, the
weights can be safely truncated to 6 decimal digits to ensure a 10−3 precision in each frequency, thus we obtain

Letter ai a0 a1 a2 a3 a4
Weight π(ai) 1.0 0.0711964 0.0819891 0.212971 1.47891
Frequency f ∗i (%) 60.19949 9.94975 9.95000 9.95024 9.95049

Using these weights, it is then possible to replot the average frequencies for these symbols for sizes between 1 and 100
(Fig. 9–Right). The modification of the average profile resulting from adding such weights is illustrated by random instances
drawn in Fig. 10.
Finally, as pointed out by one of the referees, there also exists a simple and efficient ad hoc way to generate quadtrees

that obeys to an exact degree distribution. This can be done through a well-known bijection between the set of trees having
nodes of degree less than a given k and the Lukasiewicz language on the alphabet {a0, a1, . . . , ak} [28]. The letter ai in the
Lukaciewicz word corresponds to a node of degree i in the left to right depth-first traversal of the tree. For adapting this
bijection to quadtrees, we set k = 4, and each letter aimust be colored to differentiate the children’s positions of a node. For
example, there will be 6 different colors for a2 since there are 6 ways to choose two leaves within the four possible nodes.
Thus, to generate a tree with the node degree distribution (n0, n1, n2, n3, n4), it suffices to generate a randomword with n0
occurrences of the a0 symbol, n1 symbols a1 (with 4 possible colors), n2 symbols a2 (6 colors), n3 symbol a3 (4 colors), n4
symbol a4; Then use the Cyclic Lemma [29] to change this word into a Lukaciewicz word, which corresponds to a quadtree,
and finally build the quadtree for a total O(n) complexity.

3.3.4. Application 2: realistic RNA secondary structures

Features of a realisticmodel. The combinatorial properties of RNA structures have been thoroughly studied [22,23,30–33].
The asymptotical analysis of the uniformmodel [30,34] shows striking dissimilarities between the structural features of the
uniform model and those experimentally observed. By structural features, one understands:

• Proportions of paired and unpaired bases
• Numbers and average size of hairpin, bulge, interior, and terminal loops

Fig. 11 (upper-left) illustrates the principle of a loop decomposition, underlying the so-called Turner model of energy [35].
We show how weighted grammars provide in such a case with an elegant way to build a model that captures observed
properties.

3546 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Fig. 10. Typical sets of randomly generated quad trees of size 201 in the uniformmodel (Top) and using weights output by our optimizer, whose objective
was to balance the numbers of nodes for each degree (Bottom). We show here the tree representation of quad trees in addition to the classic square one,
since the latter tends to overemphasize nodes of low depth.

Annotation of existing structures. First, we evaluate our features on a database of known RNA secondary structures [36],
previously used to benchmark thermodynamics based approaches for the ab-initio folding problem. To that purpose, we

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3547

Fig. 11. Different types of loops in an RNA secondary structure (Left), principles of our structure annotation (Right) and result of the annotation (Bottom).

annotate these secondary structures as follows:

- Replace each base with a character depending on the type of loop it belongs to: Hairpin (h), Bulges (b), Terminal loops
(t), Interior loops (i) or Multiple loops (m).
- Bold characters (h, b, t, i, andm) are used for the first element of each loop.

The result of this process is illustrated by Fig. 11. Through a carefully designed recursive scheme, this operation can be
performed in linear time. We get the following frequencies for each characters among the whole database of secondary
structures:

Feature b b i i m m t t h h
Target freq. (%) 1.5 2.3 1.9 11.2 1.1 9.0 2.6 16.6 4.8 48.9

Structural features of the uniform model. Then, we use a general grammar, independently proposed by one of the
authors [34] and Nebel [37], from which these features can be distinguished:

S → T | H | B H | H B | i I H I i | M | ε
T → t tτ−1 | T t
B → b | B b
I → ε | I i
H → h H ′ h
H ′ → h H ′ h | T | B H | H B | i I H I i | M
M → H M | m M ′′ H M ′

| m M ′′ H M ′′ H M ′′

| H m M ′′ H M ′′

| H H m M ′′

M ′ → M ′′ H M ′

→ M ′′ H M ′′ H M ′′

M ′′ → M ′′ m | ε.

This grammar ensures that at least τ unpaired bases are found in each terminal loop. Additionally, this grammar requires at

least one unpaired base to be found in each multiple loop, since we need tomark each occurrence of a multiple loop with a
characterm.
A combinatorial validation for this complex grammar can be found in the following way: Set τ = 1; Replace M by M ′

in the right hand sides of the grammar; Translate the grammar into a system of functional equations on the univariate
generating functions associated with each non-terminal; Solve the algebraic system. We obtain the generating function of
RNA secondary structures as first counted by Waterman [22]. It is worth noticing that doing the same with τ = 0 gives the
Motzkin numbers. Thereforewe claim that the restrictions imprinted in our grammar only induce a controlled and biologically
relevant loss of generality.

3548 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Fig. 12. Minimization of the objective functions in the Helices (Left) and Loops (Right) models. A logarithmic scale is used for the value of the objective
function (Y -axis).

In the rest of this study, wewill focus on RNA structures having 300 nucleotides. We use GRGFreqs to evaluate the exact
expected frequencies for each of the terminal symbols in the uniform modelM0, and obtain the following frequencies:

Feature b b i i m m t t h h
M0 (%) 7.2 5.6 2.8 7.3 3.7 7.6 5.2 14.5 18.6 27.5
Target 1.5 2.3 1.9 11.2 1.1 9.0 2.6 16.6 4.8 48.9

Adequate weights for hairpins. Since the optimizer complexity empirically grows quickly with the number of variables,
we will first focus on hairpin features, for which the highest discrepancy is observed between the uniform model and real
structures. Namely, we will build an Helix model MH , that achieves average expected lengths and frequencies for hairpins
similar to that of real structures. We slightly alter the general grammar in order to anonymize all symbols for which we do
not need a specific weight to be computed (b, b, i, i, m, m, t and t), replacing them with a generic letter u. The respective
targeted frequencies (µu, µh, µh) for u, h and h are then such that

µu = 46.3 µh = 4.8 µh = 48.9.

We run GRGFreqs with these settings, and observe the optimization scenario from Fig. 12 (Left part). After only 150
evaluations of F , a candidate set of weights for u, h and h is found such that associated frequencies only deviate by less
than e−11 ≈ 1.6 10−5 from the target frequencies. Namely, we get

πH
u = 1.0 πH

h ≈ 3.6036391 10
−3 πH

h ≈ 1.1359318.

Using these weights, we can exactly compute the frequencies for the full set of atoms in the HelixmodelMH :

Features b b i i m m t t h h
MH (%) 0.6 2.3 1.2 10.4 1.8 15.5 2.2 13.0 4.8 48.9
Target 1.5 2.3 1.9 11.2 1.1 9.0 2.6 16.6 4.8 48.9

Adding constraints to multiple loops. From the values just above, we can see that the biggest divergence between the
model MH and real data resides in multiple loops. Since these act indirectly on the connectivity of the tree backbone of
sampled structures, it may be useful to further constraint associated features (Charactersm and m). Therefore we propose
a loop model ML which addsm and m to the constraints of the previous model helix model:

µu = 37.3 µm = 1.1 µm = 9.0 µh = 4.8 µh = 48.9.

Running GRGFreqswith these new settings yields a set of weightsπL, that scores less than e−10.5 ≈ 2.76 ·10−5, after about
1000 evaluations of the objective function.

πL
m = 1.0 πL

u ≈ 1.138626 πL
m ≈ 2.168521 πL

h ≈ 3.422990 10
−3 πL

h ≈ 1.246468.

Feature b b i i m m t t h h
ML (%) 0.6 3 1.5 15.9 1.1 9.0 1.9 13.2 4.8 48.9
Target 1.5 2.3 1.9 11.2 1.1 9.0 2.6 16.6 4.8 48.9

From these three models, it is possible to use our prototype to generate random structures of size 300, draw them using
the RNAPlot tool from the Vienna package [38] and compare them visually to the real ones. We observe in Fig. 13 a clear
progression from the messyM0 to the more realisticML. This illustrates the ability of our program to assist in the design
of models for biological sequences and structures.

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3549

Fig. 13. Typical random structures of size 300 in the three studied randommodels of increasing fitness, and in real structures of similar size.

4. Generation according to exact frequencies

Here, given a targeted size n and a k-tuple (n1, . . . , nk) of integers, our goal is to generate uniformly at random a structure
of Cn which contains exactly ni atoms Zi for all 1 ≤ i ≤ k. Let r be the number of occurrences of undistinguished atoms
in the structure: we have r = n −

∑k
i=1 ni. The principle of the method that we describe here is a natural extension of the

general outline given in Section 2.

3550 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

Table 3
Counting procedures for standard specifications in the case of the randomgeneration according
to exact frequencies.

C = 1 ⇒ c0,0,...,0 = 1 ;
C = Zi ⇒ c0,...,0,1,0,...,0 = 1 (ji = 1) ;
C = A+ B ⇒ cj = aj + bj ;
C = A× B ⇒ cj =

∑
j′1+j
′′
1=j1
...

j′k+j
′′
k=jk

r ′+r ′′=r

aj′1,...,j′k,r ′bj′′1 ,...,j′′k ,r ′′ ;

ΘC = A× B ⇒ cj = 1
n

∑
j′1+j
′′
1=j1
...

j′k+j
′′
k=jk

r ′+r ′′=r

aj′1,...,j′k,r ′bj′′1 ,...,j′′k ,r ′′ ;

C = ΘA ⇒ cj = naj.

A first general algorithm was given in [17] by two of the authors of this article. Here we present an improvement of that
algorithm.

Proposition 11. The generation of m structures of size n = n1 + · · · + nk + r featuring exactly ni occurrences of atom Zi can
be performed inO(r2

∏k
i=1 n

2
i +mnk log n) arithmetic operations for general specifications, or inO(r

∏k
i=1 ni +mn) for regular

specifications.

For any class C given as a standard specification, wewrite cj1,...,jk,r for the number of structures of C of size n = r+
∑k
i=1 ji,

which contain ji atoms Zi for each i ∈ [1, k], and r other atoms. For short, we can also write cj, where j = (j1, . . . , jk, r).
Let us first outline the algorithm given in [17]. The preprocessing stage consists in computing a table of the cj1,...,jk,r for

{0 ≤ ji ≤ ni}i∈[1,k] and 0 ≤ r ≤ n −
∑k
i=0 ni. This requires computing a table of Θ(r

∏k
i=1 ni) entries, with the recurrences

stated in Table 3. Since Θ(r
∏k
i=1 ni) arithmetic operations are required to compute each entry, this preprocessing clearly

takes time Θ(r2
∏k
i=1 j

2
i) for general specifications. For regular specifications, given using only rules of the form C = TiB,

Ti = Zi and C = 1, only one of the entries associated with the Ti’s is non-null, and the product rule can be evaluated inO(1)
arithmetic operations, bringing the preprocessing complexity down toΘ(r

∏k
i=1 ni).

Now, each step of the generation stage consists in choosing a rewriting rule of the current class. Suppose that, at a given
step of generation of a structure having distribution j = (j1, . . . , jk, r), one has to choose a rewriting rule for the class C .
If C = A + B, one generates a structure with distribution j deriving from A with probability aj/cj, or deriving from B with
probability bj/cj. If C = A × B, one chooses a vector h = (h1, . . . , hk, s) with probability ahbj−h/ch. Then one generates a
structure deriving from A having distribution h and a structure from B having distribution j− h.
This generation stage, which has a worst-case complexity in Θ(n

∏k
i=1 ni), can be improved drastically. Indeed, the

bottleneck of the above procedure is the C = A × B case, where there are j1j2 . . . jkr possible different choices. Now, let
c(h1,...,hi)(j1,...,jk,r)

be the number of structures generated from C , having distribution (j1, . . . , jk, r) and such that, for each x ∈ [1, i],
exactly hx of the targeted jx occurrences of atom Zx are generated from A. We have:

c(h1,...,hi)(j1,...,ji,...,jk,r)
=

∑
hi+1≤ji+1

. . .
∑
hk≤jk

∑
r ′≤r

ah1,...,hk,r ′bj1−h1,...,jk−hk,r−r ′ .

Now the probability of counting hi atomsZi in the structure from A, given that the structure contains h1 atomsZ1, . . . , hi−1
atoms Zi−1 is:

P(hi|h1, . . . , hi−1) =
c(h1,...,hi)(j1,...,ji,...,jk,r)

c(h1,...,hi−1)(j1,...,ji,...,jk,r)

and the probability of counting h1 atoms Z1 in the structure from A is:

P(h1|∅) =
c(h1)(j1,...,jk,r)

cj1,...,jk,r
.

This allows to choose the adequate decomposition h1, . . . , hk sequentially. Since picking a suitable value for hi involves
investigating at most ji alternatives, the overhead compared to the classic generation is limited to a factor O(k).

A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552 3551

Hence the whole algorithm is as follows:

1. Preprocessing stage. For any combinatorial class C in the standard specification, compute a table of the c(h1,...,hi)(j1,...,ji,...,jk,r)
for

1 ≤ i ≤ k, {0 ≤ jx ≤ nx}x∈[1,k] and {0 ≤ hx ≤ jx}x∈[1,i]. This can be done with the same recurrences as for the previous
approach. Indeed the c(h1,...,hi)(j1,...,jk,r)

are in fact partial sums of the one involved in products, and can therefore be computed

on the fly during the computation of coefficients cj1,...,jk,r . This gives a complexity inO(r2
∏k
i=1 n

2
i) arithmetic operations,

while requiring storage ofΘ(kr
∏k
i=1 ni) numbers.

For regular specifications, the sums associatedwith product rules only have onenon-null term, sowe can add a specific
counting procedure

C = Ti × A⇒ cj1,...,jk,r = cj1,...,ji−1,...,jk,r

which lowers the time/space complexity toΘ(r
∏k
i=1 ni).

2. Generation stage. The C → 1, C → Zi, and C → A+ B rules are trivially borrowed from [17]. In the case of product rules,
a sequential choice of h described above leads to an overall generation complexity in O(mn log n) arithmetic operations
through a Boustrophedon investigation (See [1]) of eligible decompositions in each dimension.

Remark 12 (Multidimensional Boustrophedon). Let us discuss the improvement observed by adopting a Boustrophedon
order of investigation in this multidimensional scheme. We remind that, during the generation stage for products (×), the
Boustrophedon search consists in investigating potential partitions of the targeted size from the edges toward the middle
((0, n), (n, 0), (1, n− 1), . . .) instead of sequentially ((0, n), (1, n), . . .). In the unidimensional Boustrophedon generation [1]
the worst case complexity f (n) of the generation follows

f (n) = max
a+b=n

(2min(a, b)+ f (a)+ f (b)) (20)

which has aO(n log n) solution [39]. In themultidimensional case, let c = (c1, . . . , ck)be the targeted k-tuple of occurrences,
then the worst case complexity of our algorithm is given by

g(c, r) = max
a,b,r ′,r ′′ s.t.
ai+bi=ci
r ′+r ′′=r

(
2min(r ′, r ′′)+ 2

k∑
i=1

min(ai, bi)+ g(a, r ′)+ g(b, r ′′)

)
.

Let |x| =
∑k
i=1 xi, then one has

2min(r ′, r ′′)+
k∑
i=1

min(ai, bi) ≤ min(r ′ + |a|, r ′′ + |b|).

and a straightforward induction shows that
g(c, r) ≤ f (|c| + r) ∈ O(n log n).

In the case of regular specifications, only binary decisions appear and the generation can be performed inΘ(mn) operations.

5. Conclusion

In this paper, we introduced and developed a new scheme for the non-uniform, yet controlled, generation of
combinatorial structures. First we addressed the random generation according to expected frequencies, motivated both by
bioinformatics and computer science applications.We introduced the notion ofweighted standard specification, and derived
a random generation algorithm based on the so-called recursive approach taking O(mn log n + n1+o(1)) for the generation
of m structures in the according to the weighted distribution. We showed that computing asymptotic weights, i.e. weights
that are suitable for asymptotic targeted frequencies, can be reduced to solving an explicit algebraic system. For fixed sizes,
we gave two distinct algorithmic approaches for the opposite problem, i.e. the computation of atom frequencies achieved
by given weights, without solving any functional algebraic system. The first works for every standard specification and
takesO(k ·n4) arithmetic operations whereas the secondworks for context-free languages and uses grammar transforms to
compute all frequencies inO(k·n2) arithmetic operations. This allowed us to reformulate the problem of computing suitable
weights as an optimization problem, which we solved in a heuristic fashion. Finally, we addressed the exact frequency
generation and derived a recursive algorithm that generatesmwords having a predefined atoms distribution (n1, . . . , nk, r)
in O(mn log n+ r2

∏k
i=1 n

2
i) arithmetic operations.

Acknowledgements

We are very grateful to Philippe Flajolet for helpful discussions and valuable suggestions. We thank Olivier Roques and
Frédéric Sarron for their help at an early stage of the present work. We also thank the reviewers for their thorough review.
Their comments and suggestions significantly contributed to improving the quality of the publication.
This researchwas supported in part by the French ACI IMPBio program, and by the ANR projects BRASEROANR-06-BLAN-

0045 and GAMMA 07-2_195422.

3552 A. Denise et al. / Theoretical Computer Science 411 (2010) 3527–3552

References

[1] P. Flajolet, P. Zimmermann, B. Van Cutsem, A calculus for the random generation of labelled combinatorial structures, Theoretical Computer Science
132 (1994) 1–35.

[2] P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer, Boltzmann samplers for the random generation of combinatorial structures, Combinatorics,
Probability, and Computing 13 (4–5) (2004) 577–625 (special issue on Analysis of Algorithms).

[3] P. Flajolet, E. Fusy, C. Pivoteau, Boltzmann sampling of unlabeled structures, in: Proceedings of the Fourth Workshop on Analytic Algorithmics and
Combinatorics, ANALCO, SIAM, 2007, pp. 201–211.

[4] S. Brlek, E. Pergola, O. Roques, Non uniform random generation of generalized Motzkin paths, Acta Informatica 42 (8) (2006) 603–616.
[5] I. Dutour, J.-M. Fédou, Object grammars and random generation, Discrete Mathematics and Theoretical Computer Science 2 (1998) 47–61.
[6] A. Bertoni, P. Massazza, R. Radicioni, Random generations of words in regular languages with fixed occurrences of symbols, in: Proceedings of
Words’03, vol. 27, TUCS Gen. Publ., Turku Cent. Comput. Sci, Turku, Finland, 2003, pp. 332–343.

[7] A. Nijenhuis, H. Wilf, Combinatorial Algorithms, Academic Press Inc., 1979.
[8] J. van der Hoeven, Relax, but don’t be too lazy, Journal of Symbolic Computation 34 (6) (2002) 479–542.
[9] L. Lipshitz, D-finite power series, Journal of Algebra 122 (2) (1989) 353–373.
[10] A. Bostan, F. Chyzak, G.e. Lecerf, B. Salvy, E. Schost, Differential equations for algebraic functions, in: C.W. Brown (Ed.), ISSAC’07: Proceedings of the

2007 International Symposium on Symbolic and Algebraic Computation, ACM Press, 2007, pp. 25–32. doi:10.1145/1277548.1277553.
[11] M. Goldwurm, Random generation of words in an algebraic language in linear binary space, Information Processing Letters 54 (1995) 229–233.
[12] A. Schönhage, V. Strassen, Schnellemultiplikation großer Zahlen. (German) [Fastmultiplication of large numbers], Computing 7 (3–4) (1971) 281–292.
[13] M. Fürer, Faster integer multiplication, in: Proceedings of the 39th ACM STOC 2007 Conference, 2007, pp. 57–66.
[14] A. Denise, P. Zimmermann, Uniform random generation of decomposable structures using floating-point arithmetic, Theoretical Computer Science

218 (1999) 233–248.
[15] P. Flajolet, P. Zimmermann, B. Van Cutsem, A calculus of random generation: unlabelled structures, unpublished manuscript, 1997.
[16] M. Drmota, Systems of functional equations, Random Structures and Algorithms 10 (1-2) (1997) 103–124.
[17] A. Denise, O. Roques, M. Termier, Random generation of words of context-free languages according to the frequencies of letters, in: D. Gardy,

A. Mokkadem (Eds.), Mathematics and Computer Science: Algorithms, Trees, Combinatorics and probabilities, in: Trends in Mathematics, Birkhaüser,
2000, pp. 113–125.

[18] P. Flajolet, A. Odlyzko, Singularity analysis of generating functions, SIAM Journal on Discrete Mathematics 3 (2) (1990) 216–240.
[19] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
[20] J. Faugère, A new efficient algorithm for computing Gröbner bases (f4), Journal of Pure and Applied Algebra 139 (1–3) (1999) 61–88.
[21] P. Nicodème, B. Salvy, P. Flajolet, Motif statistics, Theoretical Computer Science 287 (2) (2002) 593–618.
[22] M.S. Waterman, Secondary structure of single stranded nucleic acids, Advances in Mathematics Supplementary Studies 1 (1) (1978) 167–212.
[23] M. Vauchaussade de Chaumont, X.G. Viennot, Enumeration of RNA secondary structures by complexity, in: V. Capasso, E. Grosso, S. Paven-Fontana

(Eds.), Mathematics in Medecine and Biology, in: Lecture Notes in Biomathematics, vol. 57, 1985, pp. 360–365.
[24] B. Salvy, P. Zimmerman, GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Transactions on

Mathematical Software 20 (2) (1994) 163–177.
[25] F.V. Berghen, H. Bersini, CONDOR, a new parallel, constrained extension of Powell’s UOBYQA algorithm: experimental results and comparison with

the DFO algorithm, Journal of Computational and Applied Mathematics 181 (1) (2005) 157–175.
[26] Y. Ponty, M. Termier, A. Denise, GenRGenS: software for generating random genomic sequences and structures, Bioinformatics 22 (12) (2006)

1534–1535.
[27] C. Pivoteau, B. Salvy, M. Soria, Boltzmann oracle for combinatorial systems, in: DMTCS Proceedings, Fifth Colloquium on Mathematics and Computer

Science, 2008, pp. 475–488.
[28] X.G. Viennot, Une théorie combinatoire des polynômes orthogonaux, Publications du LACIM, Universié de Montréal, 1994, reprint 1991.
[29] N. Dershowitz, S. Zaks, The cycle lemma and some applications, European Journal of Combinatorics 11 (1990) 35–40.
[30] M. Nebel, Combinatorial properties of RNA secondary structures, Journal of Computational Biology 3 (9) (2003) 541–574.
[31] W. Fontana, D.A. Konings, P.F. Stadler, P. Schuster, Statistics of RNA secondary structures, Biopolymers 33 (9) (1993) 1389–1404.
[32] I.L. Hofacker, P. Schuster, P. Stadler, Combinatorics of RNA secondary structures, Discrete Applied Mathematics 88 (1998) 207–237.
[33] E.Y. Jin, J. Qin, C.M. Reidys, Combinatorics of RNA structures with pseudoknots, Bulletin of Mathematical Biology 70 (1) (2008) 45–67.
[34] Y. Ponty, Etudes combinatoire et génération aléatoire des structures secondaires d’ARN, Master’s Thesis, Université Paris Sud, 2003.

http://www.lri.fr/~ponty/docs/DEA.ps.
[35] D. Mathews, J. Sabina, M. Zuker, D. Turner, Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary

structure, Journal of Molecular Biology 288 (1999) 911–940.
[36] D.H. Mathews, Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization,

RNA 10 (8) (2004) 1178–1190.
[37] M. Nebel, Identifying good predictions of RNA secondary structure, in: Pacific Symposium on Biocomputing, vol. 9, 2004, pp. 423–434.
[38] I.L. Hofacker, W. Fontana, P.F. Stadler, S.L. Bonhoeffer, M. Tacker, P. Schuster, Fast folding and comparison of RNA secondary structures, Chemical

Monthly 125 (1994) 167–188.
[39] D.H. Greene, D.E. Knuth, Mathematics for the Analysis of Algorithms, Birkhauser, Boston, 1981.

http://dx.doi.org/doi:10.1145/1277548.1277553
http://www.lri.fr/~ponty/docs/DEA.ps

	Controlled non-uniform random generation of decomposable structures
	Introduction
	Combinatorial specifications and uniform generation
	Generation according to expected frequencies
	Weighted combinatorial structures and random generation
	Computing weights suitable for asymptotical frequencies
	The (non-rational) context-free case
	The rational case

	Computing weights for fixed lengths: an heuristic approach
	Preliminary: computing frequencies from weights
	Assessing suitable weights through an optimization heuristic
	Application 1: altering the node degree distribution for quadtrees
	Application 2: realistic RNA secondary structures

	Generation according to exact frequencies
	Conclusion
	Acknowledgements
	References

