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Grammar-based Representation and Identification of Dynamical
Systems

Dhruv Khandelwal, Maarten Schoukens and Roland Tóth

Abstract— In this paper we propose a novel approach to
identify dynamical systems. The method estimates the model
structure and the parameters of the model simultaneously,
automating the critical decisions involved in identification such
as model structure and complexity selection. In order to
solve the combined model structure and model parameter
estimation problem, a new representation of dynamical systems
is proposed. The proposed representation is based on Tree
Adjoining Grammar, a formalism that was developed from
linguistic considerations. Using the proposed representation,
the identification problem can be interpreted as a multi-
objective optimization problem and we propose an Evolutionary
Algorithm-based approach to solve it. A benchmark example
is used to demonstrate the proposed approach. The achieved
performance of the proposed method, without making use of
knowledge of the system description, was comparable to that
obtained by state-of-the-art non-linear system identification
methods that do take advantage of correct selection of model
structure and complexity based on a priori information.

I. INTRODUCTION

The problem of inferring models from data has been well
studied in many research domains including systems and
control. Modelling of complex systems using first principle
laws and relations is often too cumbersome to be accom-
plished in practice. This led to the development of several
data-driven grey-box and black-box modelling approaches
[1]. Each of these methods have been developed and tuned
to identify a well specified class of dynamical systems
described by the so-called model class associated with the
method [1]. However, they are, in general, not well-equipped
to identify systems that do not belong to the assumed model
class. As a result, most identification procedures require an
expert practitioner to make several critical choices and ensure
the validity of key assumptions, including model class,
complexity and noise structure, to successfully complete a
data-driven modelling task [1].

Due to these critical user choices, even for a skilled practi-
tioner, the task of modelling complex systems remains ardu-
ous, making automation of these choices highly challenging.
In this contribution, we develop a framework for system
identification that can function across different model classes
and automatically explores varying levels of complexity. In
order to realize a method that can work across different
classes of models, we propose a new representation for
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stochastic dynamical models. The proposed representation
uses Tree Adjoining Grammar (TAG) [2] - a tree-generating
methodology originating from computational linguistics. As
we show, the use of TAG-based representation allows one
to express a dynamic model in terms of a set of fundamen-
tal building blocks called elementary trees. These building
blocks can be combined in specific ways in order to build
more complex models. The advantage of using TAG-based
representations is that a given set of elementary trees may be
used to generate models that belong to different classes of
dynamical systems. This allows the proposed identification
framework to function across different model classes.

In the context of unknown model structure and complexity,
the problem of inferring models from data can be divided
into two components: i) the search of the appropriate model
structure and complexity, and ii) optimization of the model
parameters. The former is a combinatorial optimization prob-
lem, while the latter is a continuous optimization problem,
which may or may not be convex, depending on the structure
of the model [1]. In order to solve the combinatorial problem,
we use an algorithm based on Genetic Programming (GP)
and TAG. TAG makes the combinatorial search more efficient
by restricting the search space explored by GP. Moreover,
since the combinatorial search is formulated on the set
of elementary trees of a TAG and not a particular model
structure, the GP-based algorithm for structure estimation
runs independent of the model structure.

In order to effectively illustrate the idea, in this paper,
we consider the problem of identifying models across model
structures that belong to the superset of SISO (Single-
Input Single-Output) polynomial NARX (Non-linear Auto-
Regressive with eXogenous inputs) model class [3]. The
polynomial NARX class contains a number of commonly-
used model structures such as FIR, ARX and truncated
Volterra series. We propose a TAG that generates polynomial
NARX models. We show that the proposed TAG can be
scaled down to restrict the scope of the identification task.
Similarly, it is also possible to scale up the proposed TAG.
This task will be taken up in future research.

Evolutionary Algorithms (EAs) have been previously used
for structure determination in non-linear System Identifica-
tion (SI) [4]–[9]. However, these methods are developed
for pre-specified model structures, and EAs are used to
estimate the appropriate complexity. This makes it difficult to
automate the aforementioned approaches for different model
structures. In contrast to the existing literature, our proposed
EA-based SI method uses TAG-based representations. TAG
enables EA-based structure determination across multiple



model classes, thereby automating the SI process. TAG also
allows the user to incorporate prior information, if any,
within EA-based SI.

Previous attempts to use TAG in a data-driven modelling
context has been made in [10] to estimate static models for
a curve-fitting problem. However, the extension of the idea
to dynamical systems, as proposed in this paper, is far from
trivial. For instance, the presence of noise in the data may
introduce bias in the estimates if the noise contributions
are not treated carefully. In this paper, we extend TAG
representation to stochastic dynamical models.

II. TREE ADJOINING GRAMMAR OF DYNAMICAL
MODELS

A. Preliminaries
TAG [2] is a tree generating system that was initially

developed in order to capture features of natural languages
that could not be captured by Context Free Grammars (CFG).
Several formal properties can be attributed to TAG and can
be found in [11]. To develop our contribution, we briefly
introduce some key ingredients of TAG. For a more detailed
treatment of TAG, see [11] and [12].

Let γ = 〈V,E, r〉 denote a finite tree, where V is the
set of vertices, E is the set of edges, and r ∈ V is the root
node. A vertex of a finite tree with out-degree 0 (i.e., number
of outgoing edges) is called a leaf. Introduce the labelling
function of a tree l : V → A that maps from the set of
vertices V of a tree to an alphabet (i.e., set of symbols) A.

Definition 1 (Tree Adjoining Grammar): A Tree Adjoin-
ing Grammar G is a tuple 〈N,T, S, I, A〉, where

- N is an alphabet of non-terminal symbols;
- T is an alphabet of terminal symbols;
- S is a specific start symbol in N ;
- I is a set of initial trees. An initial tree γ = 〈V,E, r〉

has l(vint) ∈ N for all internal vertices vint ∈ V and
l(vleaf) ∈ (N ∪ T ) \ {l(r)} for all leaves vleaf ∈ V ;

- A is a set of auxiliary trees. A tree γ = 〈V,E, r〉 is
an auxiliary tree iff l(vint) ∈ N for all internal vertices
vint ∈ V and l(vleaf) ∈ (N ∪T ) for all leaves vleaf ∈ V
and there is a unique leaf f ∈ V with l(f) = l(r). The
node f is called the foot node. The auxiliary tree is
denoted as 〈V,E, r, f〉.

The set of trees I∪A is called elementary trees. A syntactic
tree is a tree γ = 〈V,E, r〉 that satisfies l(r) ∈ S, l(vint) ∈ N
for all internal vertices vint ∈ V and l(vleaf) ∈ (N ∪ T ) for
all leaves vleaf ∈ V . A syntactic tree is said to be saturated
if all leaves vleaf ∈ V satisfy l(vleaf) ∈ T . The set of all
finite saturated trees of a TAG G is called the tree language
LT(G) of G. The yield of a saturated tree is the string of
labels of the leaves of the tree. The set of yields of the trees
in LT(G) is called the string language L(G).

The TAG framework provides two operations, substitution
and adjunction, that can be used to generate or modify tree
structures with a TAG G.

- Substitution: substitute a leaf vleaf in a syntactic tree
γ = 〈V,E, r〉 with an initial tree γ′ = 〈V ′, E′, r′〉 ∈ I
iff l(r′) = l(vleaf). See Fig. 1a.
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Fig. 1: Illustration of the TAG operations.

- Adjunction: insert an auxiliary tree γ′ =
〈V ′, E′, r′, f ′〉 ∈ A at an internal vertex vint of
a syntactic tree γ = 〈V,E, r〉. The adjunction
operation is defined iff l(vint) = l(r′). Adjunction
takes place in three steps. First, detach the sub-
tree γ′′ = 〈V ′′, E′′, vint〉 starting at the internal
node vint. Subsequently, substitute the foot node
f ′ with the tree 〈V ′′, E′′, vint〉. This is valid since
l(vint) = l(r′) = l(f ′). Finally, insert the new syntactic
tree in the original tree in place of the the internal
vertex vint. See Fig. 1b.

B. TAG representation of polynomial NARX models

The discrete-time polynomial NARX model class can be
represented as

yk =

p∑
i=1

θi

nu∏
j=0

u
bi,j
k−j

ny∏
m=1

y
ai,m

k−m + ξk, (1)

where p is the number of model terms, uk, yk ∈ R are values
of input and output signals at time instant k, ξk is a white
noise process, θi are the model parameters, and ai,m, bi,j ∈
Z≥0 are the exponents of the signal values. In (1), we can
observe a hierarchy in the structure of the Right Hand Side
(RHS) of the model expression, summarized as follows

- a model expression consists of a sum of terms, i.e.,
parts of the expression that are connected by addition.
Addition and subtraction are “equivalent” operators.

- each term is a multiplication of factors, i.e., parts of the
expression that are connected by multiplication. These
factors may be real parameters, input or output signals,

- each input and output factor may contain delays.
We assign the labels expr0, expr1, expr2 for each of
the three levels of hierarchy. Furthermore, we use op, aff
and par as labels for operators, the affine noise term ξk
and real coefficients θi, respectively. For convenience, the
time index k is dropped. This should not lead to ambiguity
since delays will be explicitly denoted by the backward shift
operator q−1. We propose the following TAG representation
for (1).

Proposition 1: The TAG of polynomial NARX models is
GNARX = 〈N,T, S, I, A〉 with

- N = {expr0, expr1, expr2, op, aff,par},
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Fig. 2: Initial tree I = {α1} and auxiliary trees A = {βi}5i=1

of the TAG GNARX. Symbol ∗ marks the foot node of the
auxiliary tree.

- T = {u, y, ξ, c,+,× ,q−1},
- S = {expr0},
- I = {α1}, with the initial tree α1 depicted in Fig. 2,
- A = {β1, β2, β3, β4, β5}, with the auxiliary trees
{βi}5i=1 depicted in Fig. 2.

The string language L(GNARX) of grammar GNARX is the
set of all expressions that can be expressed as the RHS of
(1) with finite values of p, nu, ny .
For brevity, we provide a short sketch of the proof here. The
simplest saturated tree that can be generated from GNARX

is the initial tree α1. The yield of the tree is ξ which
corresponds to the simplest model that can be generated:

yk = ξk. (2)

Eqn. (2) can be augmented by adjoining it with auxiliary
trees from A. Observe that the auxiliary trees have the same
structure as the hierarchy in (1). Adjunction with β1, β2
results in the addition of new input or output terms to the
expression, parameterized by a place-holder parameter c. The
next level of hierarchy is the multiplication with an arbitrary,
but finite number of input and output factors, achieved by
adjunction of β3, β4. Finally, adjunction of auxiliary tree β5
can introduce an arbitrary, but finite number of delays to
each factor. Hence, we can conclude that for any NARX
model in the from of (1) we can generate a tree satisfying
the construction rules of GNARX such that the resulting tree
is saturated and its yield is the RHS of (1). Similarly, we
can show that any saturated tree in LT(GNARX) has a yield
which is in the form of (1).

C. Discussion

Representation of dynamical systems using the proposed
GNARX has some interesting implications from both the
system theory and the system identification perspectives.

1) Model representation: TAG provides a new representa-
tion for dynamical systems, based on the initial and auxiliary
trees used to construct the model. An example is depicted
in Fig. 3. In the example, the tree labelled (A) depicts the
adjunctions used to construct the model, starting from the
initial tree α1. The labels on the edges are the Gorn addresses
(see [13]) of the vertices at which the adjunction takes place.

𝑦𝑘 = 𝑐1𝑦𝑘−1
2 + 𝑐2𝑢𝑘 + 𝜉𝑘
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Fig. 3: Illustrative example - TAG representation of a NARX
model.

In TAG terminology, this is called the derivation tree. The
tree labelled (B) in Fig. 3 is the tree generated using GNARX,
and is called the derived tree. Notice that the derived tree
depicts the model structure on the non-terminal vertices, and
the model expression on the leaves.

2) Dynamical sub-classes: The set of auxiliary trees A
determine the possible ways in which a model may be
developed. Choosing relevant subsets of A of grammar
GNARX results in TAG formulations of model sub-classes
such as FIR, ARX and truncated Volterra series. For example,
choosing the subset A1 = {β1, β5} yields the TAG for
FIR models, and the subset A2 = {β1, β2, β5} yields the
TAG for ARX models. Similarly, adding suitable auxiliary
trees results in TAG for more flexible model classes such as
NARMAX. In a data-driven modelling context, this provides
a systematic way to introduce prior knowledge of model
structure.

3) Ranking of models across various model classes:
In system identification, Occam’s Razor principle is often
used as a guiding heuristic for model selection. A pre-
requisite for using this principle is that one should be able to
rank various models in terms of some complexity measure.
TAG based representations provide an opportunity to rank
models that belong to different model classes. However, such
a ranking cannot possibly be 1-dimensional, as is usually
the case. In order to rank a model, one must take into
account not only the dimensions of the TAG representation
of the model (for example, the number of vertices in the
derivation tree in Fig. 3), but also the specific auxiliary trees
used. Various auxiliary trees add to the complexity of a
model differently. For example, adjunction of β3 of GNARX

introduces a multiplicative non-linearity, while adjunction of
β1 introduces a new linear term to a model.

III. SYSTEM IDENTIFICATION USING TAG
REPRESENTATIONS

In this Section, we describe a TAG-based approach to iden-
tify dynamical systems from measured data. For any system
identification problem, three crucial choices have to be made
- the model class, the performance criterion and the algorithm
and numerical machinery used for model estimation (as per



the chosen model class and performance criterion). Each of
these choices are introduced and motivated in this Section.

A. Model class and complexity

Since our aim is to estimate model structure and com-
plexity, the notion of “model class” needs to be made more
flexible to include a collection of model structures. The
proposed grammar GNARX can be used to generate FIR,
ARX, truncated Volterra series or polynomial NARX models
of varying complexities. Hence, the notion of “model class”
is used to describe the generative capacity of the grammar.
In this paper, the chosen model class is the set of all models
that can be generated by GNARX. Note that, while the choice
of grammar remains a user-choice, it is not as critical as
the choice of a specific model class and complexity, since
multiple model classes with varying complexities can be
generated by the same TAG.

In the proposed identification approach, operations related
to the search of model structure will be based on the deriva-
tion tree representation, and operations related to parameter
optimization will use the symbolic representation (1).

B. Performance criteria

Due to the rich representational capability of TAG, we
propose the use of multiple performance criteria in order
to measure the quality of proposed models along multi-
ple dimensions. We use 1-step-ahead prediction error to
measure short-term prediction capability of the model and
to ensure stochastic optimality of the parameter estimates
(under certain conditions, see [1]). However, prediction er-
ror is typically less sensitive to errors in model structure,
which is unavoidable given the generality of the model set
introduced in Sec. III-A. Hence, simulation error, which is
typically more sensitive to model errors (see [14], [15]),
is used to measure long-term prediction capability of the
model. Finally, the number of model parameters is used as a
complexity measure. The three performance criteria are used
in a multi-objective optimization setting (see [16]).

Simulation of a non-linear stochastic model is a non-trivial
task. The common approach to simulation is to set the noise
contributions to 0. However, it has been shown in [17] that
this leads to biased simulation models in the case of non-
linear systems. An approach to compute simulation models
from stochastic models is proposed in [17], and is used here.

C. Algorithm

This section describes the algorithm for estimation of
model structure and model parameters. Since model structure
estimation, even under the proposed TAG representation, is a
combinatorial problem for which no systematic solution ex-
ists, it is reasonable to rely on heuristic solution approaches.
Genetic Programming (GP) provides a set of biologically-
inspired heuristics that have yielded competitive results in
multiple domains of science and engineering (e.g., [18]).
GP also provides a numerical platform to solve the multi-
objective optimization problem using the notion of non-
dominated solutions and pareto-optimality [18]. For these

reasons, GP is a natural choice for the estimation of model
structure and with TAG, the evolutionary search via GP can
be efficiently formulated. See overview in Algorithm 1.

1) Genetic Programming: GP is an iterative scheme that
develops and propagates a set of M solutions (the popula-
tion) iteratively. In each iteration, a new set of population
is proposed by using genetic operators such as crossover
and mutation. Subsequently, a selection scheme is used to
select M solutions from the existing and the newly proposed
solutions, based on a user-defined performance measure. The
selected models are propagated to the next iteration, and this
process is repeated for a fixed number of maximum iterations
L. See [19] for details.

Algorithm 1 Multi-objective optimization using TAG3P and
LS
Require: population size M > 0, number of iterations L >

0, grammar G, crossover rate pc, mutation rate pc, pm
1: Initialize population X(0), l = 0, X(−1) = {} . See

[19]
2: repeat
3: Estimate parameters in X(l) . See Sec. III-C.2
4: Compute multi-objective fitness of models in X(l)

5: Perform non-dominated sorting of populations
X(l−1) and X(l) . See [16]

6: X(l) ← first M individuals of the sorted combined
population.

7: Propose new population X(l+1) using crossover and
mutation . See [20]

8: l← l + 1
9: until l ≤ L+ 1 return X(L)

In the proposed algorithm, we use a variant of GP called
Tree Adjoining Grammar-Guided GP (TAG3P) [20], that
was developed for TAG formulations. Hence, the genetic
operations of crossover and mutation are adapted for deriva-
tion tree representation of the model. The search scheme
is initialized with M randomly generated derivation trees
from GNARX. In each iteration, a non-dominated sorting and
selection algorithm, proposed in [16], is used to select and
propagate pareto-optimal solutions. Other hyper-parameters
involved are the number of iterations L, the probability for
crossover pc and the probability of mutation pm. A high
probability of crossover ensures that sub-structures of models
that achieve better performance are transferred to other
models in the population. A high probability of mutation
allows for more frequent random explorations in the space
of models.

2) Parameter estimation: In each iteration of GP, the new
solutions contain yet-to-be-determined model parameters.
Since TAGs may generate models that belong to different
model classes, the parameter estimation approach should be
robust enough to deal with variability of model structures.
Optimization methods such as CMA-ES (see [21]) can be
used to estimate model parameters in a linear or non-
linear setting. An alternative, more efficient approach would
be to make use of one out of a collection of parameter



TABLE I: Algorithm hyper-parameters

Hyper-parameter Value
Population Size M 100
Maximum GP iterations L 150
Maximum adjunctions 150
Probability of crossover pc 1
Probability of mutation pm 0.8
Grammar GNARX

estimation algorithms, depending on the model structure
generated by the grammar. The use of TAG makes it possible
to systematically infer the model structure, and hence the
appropriate optimization algorithm.

Since the scope of this paper is limited to polynomial
NARX models, the parameter estimation problem can be
solved efficiently. Minimization of the sum-of-squares of the
prediction error of (1) leads to a quadratic cost function that
can be solved using LS [1].

IV. IDENTIFICATION RESULTS

To illustrate the proposed TAG-based identification proce-
dure, we use the benchmark Silverbox data-set proposed in
[22]. The silverbox system in an electronic implementation of
a mass-spring-damper system with a non-linear spring. The
data-set, measured at a sampling rate of 610.35 Hz, consists
of 2 parts. The excitation signal used in the first 40000
samples is a low-pass filtered Gaussian noise signal with
a bandwidth of 200 Hz and a linearly increasing amplitude
ranging from 0 to a maximum value of about 0.3 V. The
data-set is plotted in Fig. 4a. The excitation signal in the
second part of the data-set consists of 10 realizations of
a random odd multi-sine signal (see [22] for details). We
use the first 9 realizations of the multi-sine data-set as
estimation data-set to estimate model parameters in Step
3, and the last realization as validation data-set to evaluate
the multi-objective fitness of the proposed models in Step 4.
Furthermore, the Gaussian excitation signal associated part
of the data-set is used as a test data-set that is independent of
the remaining data used during the identification procedure,
and is used to evaluate the performance of the pareto-front
obtained at the end of Alg. 1.

The hyper-parameters used in the algorithm are given in
Table I. As there are no guarantees of convergence, the
hyper-parameters are chosen conservatively. It should be
noted that no other information specific to the benchmark
example was incorporated into the identification procedure.
The results obtained are plotted in Fig. 4. To plot these
figures, the complexity measure was chosen as the number of
real parameters in the model. Fig. 4d depicts the evolution
of the performance measures (average and minimum over
all models in the population) with respect to GP iterations.
Fig. 4b and 4c depict 2-D projections of the final pareto-
front obtained from the identification procedure, the bold
dots indicate the pareto-front of the best models found and
the smaller dots indicate some of the sub-optimal models
found during the procedure. It should be noted that the bold
dots in both Fig. 4b and 4c correspond to the same models
for each level of complexity.

TABLE II: Performance if estimated models computed in the
test data-set and compared with literature. The blank cells
correspond to values not reported in the literature.

Identified
model

Test RMS
simulation

(mV)

Test RMS
prediction

(mV)

Val. RMS
simulation

(mV)

Val. RMS
prediction

(mV)
M1 1.8046 0.4525 1.235 0.2941
M2 0.4196 0.1017 0.2698 0.0731
Best Linear
Approx. [24] 13.5 - 6.9 -

PNLSS [24] 0.26 - - -

From Fig. 4b and 4c we observe that beyond the complex-
ity level of 6 (i.e. 6 model parameters), the improvement in
both performance measures is only gradual. Furthermore, the
model that achieves the best performance in both measures
contains 27 parameters. For the sake of analysis and com-
parison, we select two models from the pareto-front - M1

corresponding to the best model containing 6 parameters,
and M2 corresponding the best model with 19 parameters.
Model M1 is described by the following equation

yk = 0.3694uk−1 +0.0467uk +0.1024yk−3−1.0939yk−2

+ 1.5809yk−1 − 1.3923y3k−1 + ξk. (3)

The structure of M1 is the same as the structure of the
ideal circuit as reported in [23]. However, in [23], it was
also reported that the realization of the electronic circuit
was non-ideal, which explains the steady improvement in the
pareto-fronts in Fig. 4b and 4c beyond the model complexity
of 6. Fig. 4e and 4f depicts the prediction and simulation
errors (scaled up by a factor of 5) of models M1 and M2.
We can observe in Fig. 4f that M2 performs adequately
well also in the latter half of the test data-set where the
model is required to extrapolate (since the magnitude of the
input is greater than that in the estimation and validation
set). The performance metrics of M1 and M2 are given
in Table II. The performance of the proposed approach
is comparable to that of state-of-the-art non-linear system
identification methods. The results obtained by PNLSS iden-
tification [24] are also provided in Table II for comparison.
While the PNLSS method produces a single model, in this
case with 37 parameters, the proposed approach provides a
pareto-front of models. This enables the user to choose the
performance-complexity trade-off a-posteriori. Furthermore,
in the proposed method, the user is not required to make any
critical choices, while in the case of PLNSS, the user must
make critical decisions, such as the order of non-linearity
considered and the initialization method.

V. CONCLUSIONS

We proposed a new identification procedure that uses
TAG-based representations to identify both the structure
and the parameters of a model. The proposed framework
is formulated on auto-regressive forms ranging from linear
to (non-linear) polynomial models. It is demonstrated on a
benchmark data-set that, without prior information on the
system dynamics, the proposed method was able to correctly
estimate an efficient choice of the model structure and also
achieve comparable estimation results as those achieved by
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(e) Evaluation of model M1 on test data-set.
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(f) Evaluation on model M2 on test data-set.

Fig. 4: Illustration of numerical results.

user-assisted identification methods. TAG-based represen-
tation of models is vital to this approach as it provides
a mechanism to isolate the numerical algorithm from the
choice of model class, thereby allowing systematic explo-
ration of model structures among different model classes.
While the scope of the paper was restricted to illustrate the
idea efficiently, it is certainly possible to extend it to general
non-linear system descriptions and beyond.
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