54,635 research outputs found

    Efficiency of Scale-Free Networks: Error and Attack Tolerance

    Full text link
    The concept of network efficiency, recently proposed to characterize the properties of small-world networks, is here used to study the effects of errors and attacks on scale-free networks. Two different kinds of scale-free networks, i.e. networks with power law P(k), are considered: 1) scale-free networks with no local clustering produced by the Barabasi-Albert model and 2) scale-free networks with high clustering properties as in the model by Klemm and Eguiluz, and their properties are compared to the properties of random graphs (exponential graphs). By using as mathematical measures the global and the local efficiency we investigate the effects of errors and attacks both on the global and the local properties of the network. We show that the global efficiency is a better measure than the characteristic path length to describe the response of complex networks to external factors. We find that, at variance with random graphs, scale-free networks display, both on a global and on a local scale, a high degree of error tolerance and an extreme vulnerability to attacks. In fact, the global and the local efficiency are unaffected by the failure of some randomly chosen nodes, though they are extremely sensititive to the removal of the few nodes which play a crucial role in maintaining the network's connectivity.Comment: 23 pages, 10 figure

    Sampling motif-constrained ensembles of networks

    Full text link
    The statistical significance of network properties is conditioned on null models which satisfy spec- ified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency, or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this paper we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, net- works with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.Comment: Updated version, as published in the journal. 7 pages, 5 figures, one Supplemental Materia

    A statistical model for brain networks inferred from large-scale electrophysiological signals

    Get PDF
    Network science has been extensively developed to characterize structural properties of complex systems, including brain networks inferred from neuroimaging data. As a result of the inference process, networks estimated from experimentally obtained biological data, represent one instance of a larger number of realizations with similar intrinsic topology. A modeling approach is therefore needed to support statistical inference on the bottom-up local connectivity mechanisms influencing the formation of the estimated brain networks. We adopted a statistical model based on exponential random graphs (ERGM) to reproduce brain networks, or connectomes, estimated by spectral coherence between high-density electroencephalographic (EEG) signals. We validated this approach in a dataset of 108 healthy subjects during eyes-open (EO) and eyes-closed (EC) resting-state conditions. Results showed that the tendency to form triangles and stars, reflecting clustering and node centrality, better explained the global properties of the EEG connectomes as compared to other combinations of graph metrics. Synthetic networks generated by this model configuration replicated the characteristic differences found in brain networks, with EO eliciting significantly higher segregation in the alpha frequency band (8-13 Hz) as compared to EC. Furthermore, the fitted ERGM parameter values provided complementary information showing that clustering connections are significantly more represented from EC to EO in the alpha range, but also in the beta band (14-29 Hz), which is known to play a crucial role in cortical processing of visual input and externally oriented attention. These findings support the current view of the brain functional segregation and integration in terms of modules and hubs, and provide a statistical approach to extract new information on the (re)organizational mechanisms in healthy and diseased brains.Comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil

    Networks based on collisions among mobile agents

    Get PDF
    We investigate in detail a recent model of colliding mobile agents [Phys. Rev. Lett.~96, 088702], used as an alternative approach to construct evolving networks of interactions formed by the collisions governed by suitable dynamical rules. The system of mobile agents evolves towards a quasi-stationary state which is, apart small fluctuations, well characterized by the density of the system and the residence time of the agents. The residence time defines a collision rate and by varying the collision rate, the system percolates at a critical value, with the emergence of a giant cluster whose critical exponents are the ones of two-dimensional percolation. Further, the degree and clustering coefficient distributions and the average path length show that the network associated with such a system presents non-trivial features which, depending on the collision rule, enables one not only to recover the main properties of standard networks, such as exponential, random and scale-free networks, but also to obtain other topological structures. Namely, we show a specific example where the obtained structure has topological features which characterize accurately the structure and evolution of social networks in different contexts, ranging from networks of acquaintances to networks of sexual contacts.Comment: 12 pages, 17 figure

    On the formation of structure in growing networks

    Full text link
    Based on the formation of triad junctions, the proposed mechanism generates networks that exhibit extended rather than single power law behavior. Triad formation guarantees strong neighborhood clustering and community-level characteristics as the network size grows to infinity. The asymptotic behavior is of interest in the study of directed networks in which (i) the formation of links cannot be described according to the principle of preferential attachment; (ii) the in-degree distribution fits a power law for nodes with a high degree and an exponential form otherwise; (iii) clustering properties emerge at multiple scales and depend on both the number of links that newly added nodes establish and the probability of forming triads; and (iv) groups of nodes form modules that feature less links to the rest of the nodes.Comment: 17 pages, 9 figures, we apply the proposed mechanism to generate network realizations that resemble the degree distribution and clustering properties of an empirical network with no directed cycles (i.e., when the model parameter n=0), updated reference

    Evolving Clustered Random Networks

    Get PDF
    We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks

    Random Graph Generator for Bipartite Networks Modeling

    Full text link
    The purpose of this article is to introduce a new iterative algorithm with properties resembling real life bipartite graphs. The algorithm enables us to generate wide range of random bigraphs, which features are determined by a set of parameters.We adapt the advances of last decade in unipartite complex networks modeling to the bigraph setting. This data structure can be observed in several situations. However, only a few datasets are freely available to test the algorithms (e.g. community detection, influential nodes identification, information retrieval) which operate on such data. Therefore, artificial datasets are needed to enhance development and testing of the algorithms. We are particularly interested in applying the generator to the analysis of recommender systems. Therefore, we focus on two characteristics that, besides simple statistics, are in our opinion responsible for the performance of neighborhood based collaborative filtering algorithms. The features are node degree distribution and local clustering coeficient

    Statistical Analysis of Bus Networks in India

    Full text link
    Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in \textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe that the networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, like Internet, WWW and airline, which are virtual, bus networks are physically constrained. The presence of various geographical and economic constraints allow these networks to evolve over time. Our findings therefore, throw light on the evolution of such geographically and socio-economically constrained networks which will help us in designing more efficient networks in the future.Comment: Submitted to PLOS ON

    A spatial model for social networks

    Full text link
    We study spatial embeddings of random graphs in which nodes are randomly distributed in geographical space. We let the edge probability between any two nodes to be dependent on the spatial distance between them and demonstrate that this model captures many generic properties of social networks, including the ``small-world'' properties, skewed degree distribution, and most distinctively the existence of community structures.Comment: To be published in Physica A (2005
    • …
    corecore