3,845 research outputs found

    Supervised Classification: Quite a Brief Overview

    Full text link
    The original problem of supervised classification considers the task of automatically assigning objects to their respective classes on the basis of numerical measurements derived from these objects. Classifiers are the tools that implement the actual functional mapping from these measurements---also called features or inputs---to the so-called class label---or output. The fields of pattern recognition and machine learning study ways of constructing such classifiers. The main idea behind supervised methods is that of learning from examples: given a number of example input-output relations, to what extent can the general mapping be learned that takes any new and unseen feature vector to its correct class? This chapter provides a basic introduction to the underlying ideas of how to come to a supervised classification problem. In addition, it provides an overview of some specific classification techniques, delves into the issues of object representation and classifier evaluation, and (very) briefly covers some variations on the basic supervised classification task that may also be of interest to the practitioner

    Information Cost Tradeoffs for Augmented Index and Streaming Language Recognition

    Get PDF
    This paper makes three main contributions to the theory of communication complexity and stream computation. First, we present new bounds on the information complexity of AUGMENTED-INDEX. In contrast to analogous results for INDEX by Jain, Radhakrishnan and Sen [J. ACM, 2009], we have to overcome the significant technical challenge that protocols for AUGMENTED-INDEX may violate the "rectangle property" due to the inherent input sharing. Second, we use these bounds to resolve an open problem of Magniez, Mathieu and Nayak [STOC, 2010] that asked about the multi-pass complexity of recognizing Dyck languages. This results in a natural separation between the standard multi-pass model and the multi-pass model that permits reverse passes. Third, we present the first passive memory checkers that verify the interaction transcripts of priority queues, stacks, and double-ended queues. We obtain tight upper and lower bounds for these problems, thereby addressing an important sub-class of the memory checking framework of Blum et al. [Algorithmica, 1994]

    How to Find More Supernovae with Less Work: Object Classification Techniques for Difference Imaging

    Get PDF
    We present the results of applying new object classification techniques to difference images in the context of the Nearby Supernova Factory supernova search. Most current supernova searches subtract reference images from new images, identify objects in these difference images, and apply simple threshold cuts on parameters such as statistical significance, shape, and motion to reject objects such as cosmic rays, asteroids, and subtraction artifacts. Although most static objects subtract cleanly, even a very low false positive detection rate can lead to hundreds of non-supernova candidates which must be vetted by human inspection before triggering additional followup. In comparison to simple threshold cuts, more sophisticated methods such as Boosted Decision Trees, Random Forests, and Support Vector Machines provide dramatically better object discrimination. At the Nearby Supernova Factory, we reduced the number of non-supernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming projects such as PanSTARRS and LSST.Comment: 25 pages; 6 figures; submitted to Ap
    corecore