15,034 research outputs found

    Smaller Parameters for Vertex Cover Kernelization

    Get PDF
    We revisit the topic of polynomial kernels for Vertex Cover relative to structural parameters. Our starting point is a recent paper due to Fomin and Str{\o}mme [WG 2016] who gave a kernel with O(X12)\mathcal{O}(|X|^{12}) vertices when XX is a vertex set such that each connected component of GXG-X contains at most one cycle, i.e., XX is a modulator to a pseudoforest. We strongly generalize this result by using modulators to dd-quasi-forests, i.e., graphs where each connected component has a feedback vertex set of size at most dd, and obtain kernels with O(X3d+9)\mathcal{O}(|X|^{3d+9}) vertices. Our result relies on proving that minimal blocking sets in a dd-quasi-forest have size at most d+2d+2. This bound is tight and there is a related lower bound of O(Xd+2ϵ)\mathcal{O}(|X|^{d+2-\epsilon}) on the bit size of kernels. In fact, we also get bounds for minimal blocking sets of more general graph classes: For dd-quasi-bipartite graphs, where each connected component can be made bipartite by deleting at most dd vertices, we get the same tight bound of d+2d+2 vertices. For graphs whose connected components each have a vertex cover of cost at most dd more than the best fractional vertex cover, which we call dd-quasi-integral, we show that minimal blocking sets have size at most 2d+22d+2, which is also tight. Combined with existing randomized polynomial kernelizations this leads to randomized polynomial kernelizations for modulators to dd-quasi-bipartite and dd-quasi-integral graphs. There are lower bounds of O(Xd+2ϵ)\mathcal{O}(|X|^{d+2-\epsilon}) and O(X2d+2ϵ)\mathcal{O}(|X|^{2d+2-\epsilon}) for the bit size of such kernels

    An explicit formula for the Berezin star product

    Full text link
    We prove an explicit formula of the Berezin star product on Kaehler manifolds. The formula is expressed as a summation over certain strongly connected digraphs. The proof relies on a combinatorial interpretation of Englis' work on the asymptotic expansion of the Laplace integral.Comment: 19 pages, to appear in Lett. Math. Phy

    Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)

    Full text link
    In this article, we study directed graphs (digraphs) with a coloring constraint due to Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs, which appears in numerous fields of research such as game theory, complexity theory, artificial intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use a generating function approach to get new informations: we use technique of symbolic and analytic combinatorics (generating functions and their singularities) in order to get exact and asymptotic results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach "a la Wright". Our method could be applied to more general "local coloring constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and Algebraic Combinatorics (Vancouver, 2004), electronic proceeding

    Data Reduction for Graph Coloring Problems

    Full text link
    This paper studies the kernelization complexity of graph coloring problems with respect to certain structural parameterizations of the input instances. We are interested in how well polynomial-time data reduction can provably shrink instances of coloring problems, in terms of the chosen parameter. It is well known that deciding 3-colorability is already NP-complete, hence parameterizing by the requested number of colors is not fruitful. Instead, we pick up on a research thread initiated by Cai (DAM, 2003) who studied coloring problems parameterized by the modification distance of the input graph to a graph class on which coloring is polynomial-time solvable; for example parameterizing by the number k of vertex-deletions needed to make the graph chordal. We obtain various upper and lower bounds for kernels of such parameterizations of q-Coloring, complementing Cai's study of the time complexity with respect to these parameters. Our results show that the existence of polynomial kernels for q-Coloring parameterized by the vertex-deletion distance to a graph class F is strongly related to the existence of a function f(q) which bounds the number of vertices which are needed to preserve the NO-answer to an instance of q-List-Coloring on F.Comment: Author-accepted manuscript of the article that will appear in the FCT 2011 special issue of Information & Computatio

    FPT is Characterized by Useful Obstruction Sets

    Full text link
    Many graph problems were first shown to be fixed-parameter tractable using the results of Robertson and Seymour on graph minors. We show that the combination of finite, computable, obstruction sets and efficient order tests is not just one way of obtaining strongly uniform FPT algorithms, but that all of FPT may be captured in this way. Our new characterization of FPT has a strong connection to the theory of kernelization, as we prove that problems with polynomial kernels can be characterized by obstruction sets whose elements have polynomial size. Consequently we investigate the interplay between the sizes of problem kernels and the sizes of the elements of such obstruction sets, obtaining several examples of how results in one area yield new insights in the other. We show how exponential-size minor-minimal obstructions for pathwidth k form the crucial ingredient in a novel OR-cross-composition for k-Pathwidth, complementing the trivial AND-composition that is known for this problem. In the other direction, we show that OR-cross-compositions into a parameterized problem can be used to rule out the existence of efficiently generated quasi-orders on its instances that characterize the NO-instances by polynomial-size obstructions.Comment: Extended abstract with appendix, as accepted to WG 201
    corecore