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Abstract
We revisit the topic of polynomial kernels for vertex cover relative to structural parameters.
Our starting point is a recent paper due to Fomin and Strømme [WG 2016] who gave a kernel
with O(|X|12) vertices when X is a vertex set such that each connected component of G − X
contains at most one cycle, i.e., X is a modulator to a pseudoforest. We strongly generalize this
result by using modulators to d-quasi-forests, i.e., graphs where each connected component has
a feedback vertex set of size at most d, and obtain kernels with O(|X|3d+9) vertices. Our result
relies on proving that minimal blocking sets in a d-quasi-forest have size at most d + 2. This
bound is tight and there is a related lower bound of O(|X|d+2−ε) on the bit size of kernels.

In fact, we also get bounds for minimal blocking sets of more general graph classes: For
d-quasi-bipartite graphs, where each connected component can be made bipartite by deleting at
most d vertices, we get the same tight bound of d + 2 vertices. For graphs whose connected
components each have a vertex cover of cost at most d more than the best fractional vertex cover,
which we call d-quasi-integral, we show that minimal blocking sets have size at most 2d + 2,
which is also tight. Combined with existing randomized polynomial kernelizations this leads
to randomized polynomial kernelizations for modulators to d-quasi-bipartite and d-quasi-integral
graphs. There are lower bounds of O(|X|d+2−ε) and O(|X|2d+2−ε) for the bit size of such kernels.
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1 Introduction

The vertex cover problem plays a central role in parameterized complexity. In particular,
it has been very important for the development of new kernelization techniques and the study
of structural parameters. As a result of this work, there is now a solid understanding of which
parameterizations of vertex cover lead to fixed-parameter tractability or existence of a
polynomial kernelization. This is motivated by the fact that parameterization by solution
size leads to large parameter values on many types of easy instances. Thus, while there is a
well-known kernelization for instances of vertex cover(k) to at most 2k vertices, it may
be more suitable to apply a kernelization with a size guarantee that is a larger function but
depends on a smaller parameter.

Jansen and Bodlaender [13] were the first to study kernelization for vertex cover under
different, smaller parameters. Their main result is a polynomial kernelization to instances
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20:2 Smaller Parameters for Vertex Cover Kernelization

with O(|X|3) vertices when X is a feedback vertex set of the input graph, also called a
modulator to the class of forests. Clearly, the size of X is a lower bound on the vertex
cover size (as any vertex cover is a modulator to an independent set). Since then, their
result has been generalized and complemented in several ways. The two main directions of
follow-up work are to use modulators to other tractable cases instead of forests (see below)
and parameterization above lower bounds (see related work).

For any graph class C, we can define a parameterization of vertex cover by distance
to C, i.e., by the minimum size of a modulator X such that G − X belongs to C. For
fixed-parameter tractability and kernelization of the arising parameterized problem it is
necessary that vertex cover is tractable on inputs from C. For hereditary classes C, this
condition is also sufficient for fixed-parameter tractability but not necessarily for the existence
of a polynomial kernelization. Interesting choices for C are various well-studied hereditary
graph classes, like forests, bipartite, or chordal graphs, and graphs of bounded treewidth,
bounded treedepth, or bounded degree.

Majumdar et al. [16] studied vertex cover parameterized by (the size of) a modulator
X to a graph of maximum degree at most d. For d ≥ 3 this problem is NP-hard but for d = 2
and d = 1 they obtained kernels with O(|X|5) and O(|X|2) vertices, respectively. Their
result motivated Fomin and Strømme [9] to investigate a parameter that is smaller than both
a modulator to degree at most two and the size of a feedback vertex set: They consider X
being a modulator to a pseudoforest, i.e., with each connected component of G−X having
at most one cycle. For this they obtain a kernelization to O(|X|12) vertices, generalizing
(except for the size) the results of Majumdar et al. [16] and Jansen and Bodlaender [13].
They also prove that the parameterization by a modulator to so-called mock forests, where
no cycles share a vertex, admits no polynomial kernelization unless NP ⊆ coNP/poly.

For their kernelization, Fomin and Strømme [9] prove that minimal blocking sets in a
pseudoforest have size at most three, which requires a lengthy proof. (A minimal blocking set
is a set of vertices whose deletion decreases the independence number by exactly one.)1 This
allows to reduce the number of components of the pseudoforest such that one can extend
the modulator X to a sufficiently small feedback vertex set by adding one (cycle) vertex
per component to X. At this point, the kernelization of Jansen and Bodlaender [13] can be
applied to get the result.

The results of Fomin and Strømme [9] suggest that the border for existence of polynomial
kernels for feedback vertex set-like parameters may be much more interesting than expected
previously. Arguably, there is still quite some room between allowing a single cycle per
component and allowing an arbitrary number of cycles so long as they share no vertices. Do
larger numbers of cycles per component still allow a polynomial kernelization? Similarly,
cycles in the lower bound proof have odd length and it is known that absence of odd cycles
is sufficient, i.e., a kernelization for modulators to bipartite graphs is known. Could this be
extended to allowing bipartite graphs with one or more odd cycles per connected component?

Our work. We show that the answers to the above questions are largely positive and provide,
essentially, a single elegant proof to cover them. To this end, it is convenient to take the
perspective of feedback sets rather than the maximum size of a cycle packing. Say that a
d-quasi-forest is a graph such that each connected component has a feedback vertex set of
size at most d, whereas in a d-quasi-bipartite graph each connected component must have an
odd cycle transversal (a feedback set for odd cycles) of size at most d.

1 Like previous work [13, 9] we prefer to work with independent set rather than vertex cover, but
this makes no important difference.
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We show that vertex cover admits a kernelization with O(|X|3d+9) vertices when X is
a modulator to a d-quasi-forest (Section 3). The case for d = 1 strengthens the result of Fomin
and Strømme [9] (as one cycle per component is stricter than feedback vertex set size one).
For every fixed larger value of d we obtain a polynomial kernelization, though of increasing
size. The result is obtained by proving that minimal blocking sets in a d-quasi-forest have size
at most d+2 (and then applying [13]). Intuitively, having a large minimal blocking set implies
getting a fairly small maximum independent set because there are optimal independent sets
that avoid all but any chosen vertex of a minimal blocking set. In contrast, a d-quasi-forest
always has a large independent set because each connected component is almost a tree.

The value d+ 2 is tight already for cliques of size d+ 2, which are permissible connected
components in a d-quasi-forest. Such cliques also imply that our parameterization inherits a
lower bound of O(|X|d+2−ε) from the lower bound of O(|X ′|r−ε) (assuming NP * coNP/poly)
for X ′ being a modulator to a cluster graph with component size at most r [16].

It turns out that our proof directly extends also to d-quasi-bipartite graphs, proving
that their minimal blocking sets similarly have size at most d+ 2 (Section 4). Thus, when
given a modulator X such that G−X is d-quasi-bipartite, we can extend it to an odd cycle
transversal X ′ of size at most d · |X|d+3 + |X|, which directly yields a randomized polynomial
kernel by using a randomized polynomial kernelization for vertex cover parameterized by
an odd cycle transversal [15]. Motivated by this, we explore also modulators to graphs in
which each connected component has vertex cover size at most d plus the size of a minimum
fractional vertex cover, which we call d-quasi-integral (Section 4). This is stronger than
the previous parameter because it allows connected components that have an odd cycle
transversal of size at most d. We show that minimal blocking sets in any d-quasi-integral
graph have size at most 2d+ 2. This bound is tight, as witnessed by the cliques with 2d+ 2
vertices, and the problem inherits a lower bound of O(|X|2d+2−ε) from the lower bound for
modulators to cluster graphs with clique size at most r = 2d+ 2 [16]. Using the upper bound
of 2d+ 2 one can remove redundant connected components until the obtained instance has
vertex cover size at most d · |X|2d+3 + |X| more than the best fractional vertex cover. In
other words, one can reduce to an instance of vertex cover parameterized above LP with
parameter value d · |X|2d+3 + |X| and apply the randomized polynomial kernelization of
Kratsch and Wahlström [15] to get a randomized polynomial kernel.

Related work. Recent work of Bougeret and Sau [5] shows that vertex cover admits a
kernel of size O(|X|f(c)) when X is a modulator to a graph of treedepth at most c. Their
result is incomparable to ours: Already the kernelization by feedback vertex set size [13],
which we generalize, allows arbitrarily long paths in G−X; such paths are forbidden in a
graph of bounded treedepth. Conversely, taking a star with d leaves and appending a 3-cycle
at each leaf yields a graph with feedback vertex set and odd cycle transversal size equal to d
but constant treedepth; d can be chosen arbitrarily large.

The fact that deciding whether a graph G has a vertex cover of size at most k is
trivial when k is lower than the size MM(G) of a largest matching in G has motivated
the study of above lower bound parameters like ` = k −MM(G). The strongest lower
bound employed so far is 2LP (G)−MM(G), where LP (G) denotes the minimum cost of
a fractional vertex cover, and Garg and Philip [10] gave an O∗(3k−(2LP (G)−MM(G))) time
algorithm. Randomized polynomial kernels are known for parameters k −MM(G) and
k − LP (G) [15] and for parameter k − (2LP (G)−MM(G)) [14]. Our present kernelizations
are not covered even by the strongest parameter k − (2LP (G)−MM(G)) because already
d-quasi-forests for any d ≥ 2 can have a vertex cover size that is arbitrarily larger than
k − (2LP (G)−MM(G)): Consider, for example, a disjoint union of cliques K4 with four
vertices each, where 2LP (K4)−MM(K4) = 2 but vertex cover size is three per component.

IPEC 2017
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Regarding lower bounds for kernelization (all assuming NP * coNP/poly), it is of course
well known that there are no polynomial kernels for vertex cover when parameterized by
width parameters like treewidth, pathwidth, or treedepth (cf. [2]). Lower bounds similar to
the one for modulators to mock forests by Fomin and Strømme [9] were already obtained
by Cygan et al. [7] (modulators to treewidth at most two) and Jansen [12] (modulators to
outerplanar graphs). Bodlaender et al. [3] showed that there is no polynomial kernelization
in terms of the vertex deletion distance to a single clique, which is stronger than distance
to cluster or perfect graphs for example. Majumdar et al. [16] ruled out kernels of size
O(|X|r−ε) when X is a modulator to a cluster graph with cliques of size bounded by r.

Due to space limitations several proofs are deferred to the full version.

2 Preliminaries and notation

Graphs. We use standard notation mostly following Diestel [8]. Let G = (V,E) be a graph.
For a set X ⊆ V , let NG(X) denote the neighborhood of X in G, i.e., NG(X) = {v ∈ V \X |
∃u ∈ X : {u, v} ∈ E} and let NG[X] denote the neighborhood of X in G including X, i.e.,
NG[X] = NG(X) ∪X. We omit the subscript whenever the underlying graph is clear from
the context. Furthermore, we use G − X as shorthand for G[V \ X]. For a graph G we
denote by vc(G) the vertex cover number of G and by α(G) the independence number of
G. Let Y ⊆ V , we call Y a blocking set of G, if deleting the vertex set Y from the graph G
decreases the size of a maximum independent set, hence if α(G) > α(G− Y ). A blocking set
Y is minimal, if no proper subset Y ′ ( Y of Y is a blocking set of G. We denote by Kn the
clique of size n.

Linear Programming. We denote the linear program relaxation for vertex cover resp.
independent set for a graph G = (V,E) by LPVC(G) resp. LPIS(G). Recall that
LPVC(G) = min{

∑
v∈V xv | ∀{u, v} ∈ E : xu + xv ≥ 1 ∧ ∀v ∈ V : 0 ≤ xv ≤ 1} and

LPIS(G) = max{
∑
v∈V xv | ∀{u, v} ∈ E : xu + xv ≤ 1 ∧ ∀v ∈ V : 0 ≤ xv ≤ 1}. A feasible

solution to one of the above linear program relaxations is an assignment to the variables
xv for all vertices v ∈ V which satisfies the conditions of the linear program. An optimum
solution to LPVC(G) resp. LPIS(G) is a feasible solution x which minimizes resp. maximizes
the objective function value w(x) :=

∑
v∈V xv. It follows directly from the definition that x

is a feasible solution to LPVC(G) if and only if x′ = 1− x is a feasible solution to LPIS(G);
thus w(x′) = |V | − w(x). It is well known that there exists an optimum feasible solution x
to LPVC(G) with xv ∈ {0, 1

2 , 1}; we call such a solution half integral. The same is, of course,
true for LPIS(G). Given a half integral solution x (to LPVC(G) or LPIS(G)), we define
V xi = {v ∈ V | xv = i} for each i ∈ {0, 1

2 , 1}. Note that if x is an optimum half integral
solution to LPVC(G), then it holds that N(V x0 ) = V x1 , whereas, it holds that N(V x1 ) = V x0 ,
when x is an optimum half integral solution to LPIS(G). We omit the subscript x, when the
solution x is clear from the context.

3 Vertex Cover parameterized by a modulator to a d-quasi-forest

In this section we present a polynomial kernel for vertex cover parameterized by a modu-
lator to a d-quasi-forest. More precisely, we develop a polynomial kernel for independent
set parameterized by a modulator to a d-quasi-forest which, by the relation between these
two problems, directly yields a polynomial kernel for vertex cover parameterized by a
modulator to a d-quasi-forest.
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Consider an instance (G,X, k) of the problem, which asks whether graph G, with G−X
is a d-quasi-forest, has an independent set of size k. Like Fomin and Strømme [9], we reduce
the input instance (G,X, k) until the d-quasi-forest G−X has at most polynomially many
connected components in terms of |X|; see Rule 1. By adding for each component of the
d-quasi-forest a feedback vertex set of size d to the modulator X, we polynomially increase
the size of the modulator X. The resulting modulator is a feedback vertex set, hence we can
apply the polynomial kernelization for independent set parameterized by a modulator to
a feedback vertex set from Jansen and Bodlaender [13].

Let (G,X, k) be an instance of independent set parameterized by a modulator to
a d-quasi-forest. Since d is a constant we can compute in polynomial time a maximum
independent set in G−X. Choosing some vertices from the set X to be in an independent
set will prevent some vertices in G − X to be part of the same independent set; thus it
may be that we can add less than α(G − X) vertices from G − X to an independent set
that contains some vertices of X. To measure this difference, we use the term of conflicts
introduced by Jansen and Bodlaender [13]. Our definition is more general in order to use it
also for modulators to d-quasi-bipartite resp. d-quasi-integral graphs.

I Definition 1 (Conflicts). Let G = (V,E) be a graph and X ⊆ V be a subset of V , such
that we can compute a maximum independent set in G−X in polynomial time. Let F be
a subgraph of G −X and let X ′ ⊆ X. We define the number of conflicts on F which are
induced by X ′ as ConfF (X ′) := α(F )− α(F −N(X ′)).

Now we can state our reduction rule, which deletes some components of the d-quasi-forest
G−X. More precisely, we delete componentsH of which we know that there exists a maximum
independent set in G that contains a maximum independent set of the component H.

Rule 1: If there exists a connected component H of G−X such that for all independent sets
XI ⊆ X of size at most d+2 with ConfH(XI) > 0 it holds that ConfG−H−X(XI) ≥ |X|,
then delete H from G and reduce k by α(H).

The proof of safeness will be given in the sequel. In particular, we delete connected
components that have no conflicts. The goal of Rule 1 is to delete connected components
of the d-quasi-forest G−X such that we can bound the number of connected components
by a polynomial in the size of X. Thus, if we cannot apply this reduction rule any more
we should be able to find a good bound for the number of connected components in the
d-quasi-forest G−X. The following lemma yields such a bound.

I Lemma 2. Let (G,X, k) be an instance of independent set parameterized by a modulator
to a d-quasi-forest where Rule 1 is not applicable. Then the number of connected components
in G−X is at most |X|d+3.

Proof. Let H be a connected component of the d-quasi-forest G − X. Since Rule 1 is
not applicable, there exists an independent set XI ⊆ X of size at most d + 2 such that
ConfH(XI) > 0 and ConfG−H−X(XI) < |X|; otherwise Rule 1 would delete H (or another
connected component with the same properties).

Observe, that there are at most |X| connected components of the d-quasi-forest G−X
that have a conflict with an independent set XI ⊆ X, when XI is the reason that we cannot
apply Rule 1 to one of these connected components: Assume for contradiction that there
are p > |X| connected components H1, H2, . . . ,Hp of the d-quasi-forest G−X that have a
conflict with the same independent set XI ⊆ X of size at most d+ 2; therefore it holds that

IPEC 2017



20:6 Smaller Parameters for Vertex Cover Kernelization

ConfHi
(XI) > 0 for all i ∈ {1, 2, . . . , p}. But now, for all i ∈ {1, 2, . . . , p}

ConfG−Hi−X(XI) ≥
p∑

j=1
j 6=i

ConfHj
(XI) ≥ p− 1 ≥ |X|,

where the first inequality corresponds to summing over some connected components of
G−Hi−X. Thus, XI could not be the reason why the connected components H1, H2, . . . ,Hp

are not reduced during Rule 1.
This leads to the claimed bound of at most

( |X|
≤d+2

)
· |X| ≤ |X|d+3 connected components

in G−X, because for every independent set XI ⊆ X of size at most d+ 2 there are at most
|X| connected components for which XI is the reason that we cannot apply Rule 1. J

It remains to show that Rule 1 is safe; i.e. that there exists a solution for (G,X, k) if and
only if there exists a solution for (G′, X, k′), where G′ = G−H, k′ = k−α(H) and H is the
connected component of G−X we delete during Rule 1. The main ingredient for this is to
prove that any minimal blocking set has size at most d+ 2 (Lemma 6). To bound the size
of minimal blocking sets we need the existence of a half integral solution x to LPIS(G− Y )
for which every maximum independent set I in G − Y fulfills V1 ⊆ I ⊆ V 1

2
∪ V1. This is

similar to the result of Nemhauser and Trotter [17] and other results about the connection
between maximum independent sets (resp. minimum vertex covers) and their fractional LP
solutions [1, 4, 6, 11].

I Lemma 3. Let G = (V,E) be an undirected graph. There exists an optimum half integral
solution x ∈ {0, 1

2 , 1}
|V | to LPIS(G) such that for all maximum independent sets I in G it

holds that V x1 ⊆ I ⊆ V \ V x0 .

Proof. Let x ∈ {0, 1
2 , 1}

|V | be an optimum half integral solution to LPIS(G), such that V x1
2
is

maximal; this means, that there exists no optimum half integral solution x′ 6= x to LPIS(G)
such that V x1

2
( V x

′
1
2
. We will show that every independent set I in G with V x1 * I or

V x0 ∩ I 6= ∅ is not a maximum independent set in G.
First, we observe that for all subsets V ′0 ⊆ V x0 it must hold that the size of the neighborhood

of V ′0 in V x1 is larger than the size of V ′0 , i.e. |V x1 ∩ N(V ′0)| > |V ′0 |; if this is not the case,
then we can construct an optimum half integral solution x′ to LPIS(G) with V x1

2
( V x

′
1
2

(which contradicts the fact that V x1
2
is maximal), by assigning a value of 1

2 to all vertices in
(V x1 ∩N(V ′0)) ∪ V ′0 . Obviously, it holds that V x1

2
( V x

′
1
2

and that

w(x′) = w(x)− |V x1 ∩N(V ′0)|+ 1
2(|V x1 ∩N(V ′0)|+ |V ′0 |) ≥ w(x).

In order to show that x′ is indeed a feasible solution to LPIS(G), it suffices to consider edges
{u, v} of G that have at least one endpoint in V ′0 , say v ∈ V ′0 , because these are the only
vertices for which we increase the value of the half integral solution x to obtain x′. Since
x′v = 1

2 , the constraint x′u + x′v ≤ 1 can only be violated if x′u = 1. But then xu = 1 must
hold since the only changed values are 1

2 in x′. This of course means that u ∈ V x1 ∩N(V ′0)
and x′u = 1

2 ; a contradiction.
Now, we assume that there exists a maximum independent set I that contains a vertex of

the set V x0 . Let V ′0 = V x0 ∩ I 6= ∅. We will show that deleting the set V ′0 from the independent
set I and adding the set N(V ′0) ∩ V x1 to the independent set I leads to a larger independent
I ′ of G, i.e. I ′ = I \ V ′0 ∪ (N(V ′0) ∩ V x1 ). First we show that I ′ has larger cardinality than
I. Since I is an independent set, we know that (N(V ′0) ∩ V x1 ) ∩ I = ∅ and hence that the
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cardinality of I ′ is |I| − |V ′0 | + |N(V ′0) ∩ V x1 |. From the above observation, we know that
|N(V ′0)∩V x1 | > |V ′0 | and it follows that I ′ has larger cardinality than I. To prove that I ′ is an
independent set in G, it is enough to show that any vertex v ∈ N(V ′0) ∩ V x1 has no neighbor
in I ′; this holds because V x1 is an independent set, N(V x1 ) ⊆ V x0 and V x0 ∩ I ′ = ∅. Thus, I ′
is an independent set which has larger cardinality than I; this contradicts the assumption
that I is a maximum independent set.

It remains to show that there exists no maximum independent set I in G with V x1 *
I ⊆ V x1 ∪ V x1

2
. Let v ∈ V x1 \ I. Since I is a maximum independent set, there exists a vertex

w ∈ N(V x1 )∩ I (otherwise I ∪{v} would be a larger independent set in G). But N(V x1 ) ⊆ V x0
and hence w ∈ V x0 ∩ I, which contradicts the assumption that I ⊆ V x1 ∪ V x1

2
. J

Using the above lemma, we can show that every minimal blocking set in a d-quasi-forest
has size at most d+ 2. This generalizes the result of Fomin and Stromme [9], who showed
that a minimal blocking set in a pseudoforest has size at most three. Furthermore, we can
show that this bound is tight.

I Theorem 4. Minimal blocking sets have a tight upper bound of d+ 2 in d-quasi-forests.

The crucial part of Theorem 4 is to prove the upper bound.

I Lemma 5. Let H = (V,E) be a d-quasi-forest and let Z be a feedback vertex set in H of
size at most d. Then it holds that a minimal blocking set Y in the d-quasi-forest H has size
at most |Z|+ 2 ≤ d+ 2.

Proof. We consider an optimum half integral solution x to LPIS(H − Y ) which fulfills the
properties of Lemma 3; let Vi = {v ∈ V (H − Y ) | xv = i} for i ∈ {0, 1

2 , 1}. We know that
every maximum independent set I of H − Y contains the set V1 and no vertex of the set V0
(because x fulfills the properties of Lemma 3).

Observe that for all vertices y ∈ Y it holds that α(H − (Y \ {y})) = α(H); otherwise,
the set Y would not be a minimal blocking set. Furthermore, from the above observation it
follows that α(H) = α(H − Y ) + 1, because

α(H − Y ) < α(H) = α(H − (Y \ {y})) ≤ α(H − Y ) + 1 for all y ∈ Y .

The key observation of our proof is that NH(Y ) ⊆ V0 ∪ V 1
2
; this follows from the fact that

Y is minimal: As observed above, we know that α(H − (Y \ {y})) = α(H). Thus, for all
vertices y ∈ Y there exists a maximum independent set Iy in H that contains the vertex y
and no other vertex from the set Y . Consider the sets I ′y = Iy \ {y} for all vertices y ∈ Y .
Obviously, the sets I ′y are independent sets in H − Y for all vertices y ∈ Y , because y ∈ Y is
the only vertex of the set Y that is contained in Iy. Furthermore, we know that the sets I ′y
are maximum independent sets in H − Y because

|I ′y|+ 1 = |Iy| = α(H) = α(H − Y ) + 1.

The fact that I ′y is a maximum independent set for all vertices y ∈ Y implies that
V1 ⊆ I ′y = Iy \ {y} ⊆ Iy (by the choice of the solution x to LPIS(H − Y )). Thus, for all
vertices y ∈ Y it holds that V1 ⊆ Iy and therefore that NH(Iy) ∩ V1 = ∅ which implies that
NH({y}) ∩ V1 = ∅ (because V1 ∪ {y} ⊆ Iy). Since this holds for all vertices y ∈ Y it follows
that NH(Y ) ∩ V1 = ∅, hence NH(Y ) ⊆ V0 ∪ V 1

2
.

To bound the size of Y we try to find an upper bound for the size of a maximum
independent set in H − Y and a lower bound for the size of a maximum independent set
in H. An obvious upper bound for the size of a maximum independent set in H − Y is the

IPEC 2017
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optimum value of LPIS(H − Y ) which is equal to |V1|+ 1
2 |V 1

2
|. This leads to an upper bound

for α(H − Y ):

α(H − Y ) ≤ w(x) = |V1|+
1
2 |V

1
2
| = |V1|+

1
2 |H − V0 − V1 − Y |

= |V1|+
|H − V0 − V1|

2 − |Y |2 , (1)

because V0 ∪ V1 ⊆ H − Y .
Next, we try to find a lower bound for the size of a maximum independent set in H. We

will construct an independent set IH in H and the size of this independent set is a lower
bound for the size of a maximum independent set in H. First of all, we add all vertices
from the independent set V1 to IH ; this will prevent every vertex from NH(V1) to be part of
the independent set IH . Now, we can extend the independent V1 by an independent set in
H−NH [V1]. First, observe that NH [V1]∩Y = ∅, because V1 ⊆ (H−Y ) and NH(Y )∩V1 = ∅.
From this follows that H−NH [V1] = H−V0−V1, because N(V1) = V0. Instead of adding an
independent set of H − V0 − V1 to IH , we add a maximum independent set IF of the forest
H − V0 − V1 − Z to IH ; such an independent set IF has size at least 1

2 |H − V0 − V1 − Z|.
This leads to the following lower bound for α(H):

α(H) ≥ |IH | = |V1|+ |IF | ≥ |V1|+
|H − V0 − V1 − Z|

2

= |V1|+
|H − V0 − V1|

2 − |Z \ (V0 ∪ V1)|
2 ≥ |V1|+

|H − V0 − V1|
2 − |Z|2 (2)

Using the equation α(H) = α(H − Y ) + 1 together with the upper bound for α(H − Y )
and the lower bound for α(H) leads to the requested upper bound for the size of Y :

|V1|+
|H − V0 − V1|

2 − |Z|2
(2)
≤ α(H) = α(H − Y ) + 1

(1)
≤ |V1|+

|H − V0 − V1|
2 − |Y |2 + 1

=⇒ |Y | ≤ |Z|+ 2. J

We showed that every minimal blocking set in a d-quasi-forest has size at most d+ 2. To
proof Theorem 4 it remains to show that the bound is tight:

Proof of Theorem 4. We show the remaining part of Theorem 4, namely that the bound
is tight. Consider the connected graph H = Kd+2. It holds that H is a d-quasi-forest,
because any d vertices from H are a feedback vertex set. It holds that the size of a maximum
independent set in a clique is 1, hence α(H − Y ′) = 1 for all subsets Y ′ ( V (H). Therefore,
Y = V (H) is the only, and hence a minimal, blocking set in H. J

Recall that Rule 1 considers the conflicts that a connected component H of the d-quasi-
forest G − X has with subsets of X. So far, we only talked about the size of minimal
blocking sets instead of the size of minimal subset of X that leads to a conflict. Since every
independent set XI ⊆ X that has a conflict with H, has some neighbors in this component,
we know that these vertices are a blocking set of H. Using Lemma 5 we can argue that
only a subset of at most d+ 2 vertices (of the neighborhood of XI in H) is important. Like
Jansen and Bodlaender [13] resp. Fomin and Strømme [9] we show how a smaller subset
of V (H) ∩ N(XI) leads to a smaller subset of XI that has a conflict with the connected
component H.

I Lemma 6. Let (G,X, k) be an instance of independent set parameterized by a modulator
to a d-quasi-forest. Let H be a connected component of G − X and let XI ⊆ X be an
independent set in G. If ConfH(XI) > 0, then there exists a set X ′ ⊆ XI of size at most
d+ 2 such that ConfH(X ′) > 0.
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We showed that if a component H of G−X has a conflict with a subset X ′ ⊆ X of the
modulator, then there always exists a set X ′′ ⊆ X ′ of size at most d+ 2 that has a conflict
with the component H. Knowing this, we can show that Rule 1 is safe using Lemma 6 as
well as some observations that where already used in earlier work [9, 13].

I Lemma 7. Rule 1 is safe; let (G,X, k) be the instance before applying Rule 1 and let
(G′, X, k′) be the reduced instance. Then there exists a solution for (G,X, k) if and only if
there exists a solution for (G′, X, k′).

Recall that if we have an instance (G,X, k) of independent set parameterized by a
modulator to a d-quasi-forest where Rule 1 is not applicable then G−X has at most |X|d+3

connected components. To apply the kernelization for independent set parameterized by
a modulator to a forest from Jansen and Bodlaender [13], we have to add vertices from each
connected component of the d-quasi-forest G−X to the modulator X, getting a set X ′ ⊇ X,
such that the connected components of G−X ′ are trees.

We know that every connected component of the d-quasi-forest G−X has a feedback
vertex set of size at most d, which we can find in polynomial time, since d is a constant. Let
Z ⊆ V (G−X) be the union of these feedback vertex sets; it holds that |Z| ≤ d · |X|d+3. Now,
the instance (G′, X ′, k′) with G′ = G, X ′ = X ∪Z and k′ = k is an instance of independent
set parameterized by a modulator to feedback vertex set. Obviously, it holds that (G,X, k)
has a solution if and only if (G′, X ′, k′) has a solution. Applying the following result of
Jansen and Bodlaender [13] will finish our kernelization.

I Proposition 8 ([13, Theorem 2]). independent set parameterized by a modulator to a
feedback vertex set has a kernel with a cubic number of vertices: there is a polynomial-
time algorithm that transforms an instance (G,X, k) into an equivalent instance (G′, X ′, k′)
such that |X ′| ≤ 2|X| and |V (G′)| ≤ 2|X|+ 28|X|2 + 56|X|3.

I Theorem 9. independent set parameterized by a modulator to a d-quasi-forest admits
a kernel with O(d3|X|3d+9) vertices.

I Corollary 10. vertex cover parameterized by a modulator to a d-quasi-forest admits a
kernel with O(d3|X|3d+9) vertices.

4 Two other graph classes with small blocking sets

In this section we consider vertex cover parameterized by a modulator to a d-quasi-
bipartite graph and by a modulator to a d-quasi-integral graph. As in the case of vertex
cover parameterized by a modulator to a d-quasi-forest, we prove that the size of a minimal
blocking set is bounded linearly in d to reduce the number of connected components in
the d-quasi-bipartite graph resp. the d-quasi-integral graph. Having only polynomial in
the modulator many connected components we show that we can apply the randomized
polynomial kernelizations for vertex cover parameterized by a modulator to a bipartite
graph, resp. vertex cover above LPVC.

The proof that there exists a kernelization for vertex cover parameterized by a
modulator to a d-quasi-bipartite graph works just the same as the kernelization for vertex
cover parameterized by a modulator to a d-quasi-forest, except for the last step. Here we
apply the kernelization of vertex cover parameterized by a modulator to a bipartite graph.

I Corollary 11. In a d-quasi-bipartite graph the size of a minimal blocking set has a tight
upper bound of d+ 2.

IPEC 2017
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I Corollary 12. vertex cover parameterized by a modulator to a d-quasi-bipartite graph
admits a randomized polynomial kernel.

In contrast to d-quasi-forests and d-quasi-bipartite graphs, where every minimal blocking
set is of size at most d+ 2, d-quasi-integral graphs have minimal blocking sets of size up to
2d + 2. Nevertheless, all proofs, to show that there exists a polynomial kernel, still work,
because we only need the existence of a small blocking set.

I Lemma 13. Let H = (V,E) be a d-quasi-integral graph. Then it holds that a minimal
blocking set Y in the d-quasi-integral graph H has size at most 2d+ 2.

Proof. Like in the proof of Lemma 5 we consider an optimum half integral solution x to
LPIS(H − Y ) which fulfills the properties of Lemma 3. Let Vi = {v ∈ V (H − Y ) | xv = i}
for i ∈ {0, 1

2 , 1}.

Note that the upper bound α(H − Y )
(1)
≤ |V1|+ 1

2 |H − V0 − V1| − 1
2 |Y | also holds in this

case, because the value of an optimum half integral solution is always a valid upper bound.
In this case the lower bound for α(H) works slightly differently. Instead of constructing

an independent set in H we construct a feasible solution to LPIS(H). We first use the
fact that H is a d-quasi-integral graph, hence vc(H) ≤ LPVC(H) + d, which is equivalent
to α(H) ≥ LPIS(H) − d, because α(H) = |H| − vc(H) and |H| − LPVC(H) = LPIS(H).
Now, we construct a feasible solution x′ to LPIS(H). First, we assign every vertex v in the
independent set V1 the value 1 and every vertex w in NH(V0) the value 0. Like in the proof
of Lemma 5, it holds that NH [V1] = H − V0 − V1, because NH [V1] ∩ Y = ∅. Finally, we
assign the value 1

2 to every vertex in H − V0 − V1. Obviously, x′ is a feasible solution to
LPIS(H). This leads to the following lower bound for α(H):

α(H) ≥ LPIS(H)− d ≥ |V1|+ LPIS(H − V0 − V1)− d ≥ |V1|+
|H − V0 − V1|

2 − d (3)

Again, using the equation α(H) = α(H − Y ) + 1 together with the upper bound for
α(H − Y ) and the lower bound for α(H) leads to the requested bound for the size of Y :

|V1|+
|H − V0 − V1|

2 − d
(3)
≤ α(H) = α(H − Y ) + 1

(1)
≤ |V1|+

|H − V0 − V1|
2 − |Y |2 + 1

=⇒ |Y | ≤ 2d+ 2. J

I Theorem 14. In a d-quasi-integral graph the size of a minimal blocking set has a tight
upper bound of 2d+ 2.

I Theorem 15. vertex cover parameterized by a modulator to a d-quasi-integral graph
admits a randomized polynomial kernel.

Proof sketch. Let (G,X, k) be an instance of vertex cover parameterized by a modulator
to a d-quasi-integral graph. We can obtain in polynomial time an equivalent instance (G̃,X, k̃)
of vertex cover parameterized by a modulator to a d-quasi-integral graphs by applying
Rule 1 exhaustively, but instead of decreasing k by α(H) we decrease k by vc(H). Now,
G̃−X has at most |X|2d+3 connected components, because Lemma 2 uses only the fact that
a minimal blocking set in G−X has size at most d+ 2 (we only have to replace d+ 2 by
2d+2). These instances are equivalent, since we only delete connected components H (during
Rule 1) of which we know that there exists a minimum vertex cover in G that contains a
minimum vertex cover of H. We can assume that vc(G̃−X) + |X| > k̃. If this is not the
case, then we can compute in polynomial time a vertex cover in G̃−X of size vc(G̃−X)
which together with the set X is a vertex cover in G̃ of size at most k̃.
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Finally, we apply the kernelization algorithm for vertex cover above LPVC to the
instance (G̃, k̃) and obtain an instance (G′, k′) in polynomial time. Note that we can bound
the parameter k̃ − LPVC(G̃) by a polynomial in the size of X as follows:

k̃ − LPVC(G̃) ≤ k̃ − LPVC(G̃−X)

= k̃ −
∑

H c.c of G̃−X

LPVC(H)

≤ k̃ −
∑

H c.c of G̃−X

(vc(H)− d)

= k̃ + |X|2d+3d− vc(G̃−X)
≤ |X|+ |X|2d+3d

Since (G′, k′) is polynomially bounded in the size of k̃−LPVC(G̃), which is bounded by a
polynomial in the size of |X|, we know that the instance (G′, X ′ = V (G′), k′) is an equivalent
instance of vertex cover parameterized by a modulator to a d-quasi-integral graph. J

5 Conclusion

Starting from the work of Fomin and Strømme [9] we have presented new results for
polynomial kernels for vertex cover subject to structural parameters. Our results for
modulators to d-quasi-forests show that bounds on the feedback vertex set size are more
meaningful for kernelization than the treewidth of G −X (recalling that there is a lower
bound for treewidth of G−X being at most two). By extending our kernelization to work for
modulators to (d-quasi-bipartite and) d-quasi-integral graphs, we have encompassed existing
kernelizations for parameterization by distance to forests [13], distance to max degree two [16]
(both previously subsumed by), distance to pseudoforests [9], and parameterization above
fractional optimum [15]. It would be interesting whether there is a single positive result that
encompasses all parameterizations with polynomial kernels.

To obtain our results we have established tight bounds for the size of minimal blocking
sets in d-quasi-forests, d-quasi-bipartite graphs, and d-quasi-integral graphs. Tightness comes
from the fact that cliques of size d + 2 respectively 2d + 2 are contained in these classes.
The presence of these cliques also implies lower bounds ruling out kernels of size O(|X|r−ε),
assuming NP * coNP/poly, when r = r(d) is the maximum size of minimal blocking sets as
a consequence of a lower bound by Majumdar et al. [16]. It would be interesting whether
there are matching upper bounds for kernelization, e.g., whether the kernelization of Jansen
and Bodlaender [13] for modulators to forests can be improved to size O(|X|2).
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