24,778 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Using mobility and exception handling to achieve mobile agents that survive server crash failures

    Get PDF
    Mobile agent technology, when designed and used effectively, can minimize bandwidth consumption and autonomously provide a snapshot of the current context of a distributed system. Protecting mobile agents from server crashes is a challenging issue, since developers normally have no control over remote servers. Server crash failures can leave replicas, instable storage, unavailable for an unknown time period. Furthermore, few systems have considered the need for using a fault tolerant protocol among a group of collaborating mobile agents. This thesis uses exception handling to protect mobile agents from server crash failures. An exception model is proposed for mobile agents and two exception handler designs are investigated. The first exists at the server that created the mobile agent and uses a timeout mechanism. The second, the mobile shadow scheme, migrates with the mobile agent and operates at the previous server visited by the mobile agent. A case study application has been developed to compare the performance of the two exception handler designs. Performance results demonstrate that although the second design is slower it offers the smaller trip time when handling a server crash. Furthermore, no modification of the server environment is necessary. This thesis shows that the mobile shadow exception handling scheme reduces complexity for a group of mobile agents to survive server crashes. The scheme deploys a replica that monitors the server occupied by the master, at each stage of the itinerary. The replica exists at the previous server visited in the itinerary. Consequently, each group member is a single fault tolerant entity with respect to server crash failures. Other schemes introduce greater complexity and performance overheads since, for each stage of the itinerary, a group of replicas is sent to servers that offer an equivalent service. In addition, future research is established for fault tolerance in groups of collaborating mobile agents

    Blockchain Solutions for Multi-Agent Robotic Systems: Related Work and Open Questions

    Full text link
    The possibilities of decentralization and immutability make blockchain probably one of the most breakthrough and promising technological innovations in recent years. This paper presents an overview, analysis, and classification of possible blockchain solutions for practical tasks facing multi-agent robotic systems. The paper discusses blockchain-based applications that demonstrate how distributed ledger can be used to extend the existing number of research platforms and libraries for multi-agent robotic systems.Comment: 5 pages, FRUCT-2019 conference pape

    06121 Abstracts Collection -- Atomicity: A Unifying Concept in Computer Science

    Get PDF
    From 19.03.06 to 24.03.06, the Dagstuhl Seminar 06121 ``Atomicity: A Unifying Concept in Computer Science\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    FastPay: High-Performance Byzantine Fault Tolerant Settlement

    Get PDF
    FastPay allows a set of distributed authorities, some of which are Byzantine, to maintain a high-integrity and availability settlement system for pre-funded payments. It can be used to settle payments in a native unit of value (crypto-currency), or as a financial side-infrastructure to support retail payments in fiat currencies. FastPay is based on Byzantine Consistent Broadcast as its core primitive, foregoing the expenses of full atomic commit channels (consensus). The resulting system has low-latency for both confirmation and payment finality. Remarkably, each authority can be sharded across many machines to allow unbounded horizontal scalability. Our experiments demonstrate intra-continental confirmation latency of less than 100ms, making FastPay applicable to point of sale payments. In laboratory environments, we achieve over 80,000 transactions per second with 20 authorities---surpassing the requirements of current retail card payment networks, while significantly increasing their robustness

    The CLSTM system: reducing settlement risk in foreign exchange transactions.

    Get PDF
    The launch of the CLSTM system on 9 September 2002 marked the completion of an ambitious project undertaken by the banking sector following the G10 central banks’ recommendations on reducing settlement risk in foreign exchange transactions. The CLS system is owned by 66 of the largest foreign exchange-dealing banks, including 4 French banks. In the first phase, 7 currencies (euro, US dollar, sterling, yen, Swiss franc, Canadian dollar and Australian dollar) will be eligible for CLS. The system is bound to establish itself as the standard “market infrastructure” for settling foreign exchange transactions. The first section of this article looks at the CLS system in light of the central banks’ joint efforts with the banking industry to reduce settlement risk in foreign exchange transactions. The second section describes the CLS operating principles and its contribution to controlling settlement risk. The third section discusses the central banks’ role in the oversight of the CLS project. The final section looks at the impact that the implementation of the system may have on payment activities.
    • …
    corecore