735 research outputs found

    A flux-corrected RBF-FD method for convection dominated problems in domains and on manifolds

    Get PDF
    In this article we introduce a FCT stabilized Radial Basis Function (RBF)-Finite Difference (FD) method for the numerical solution of convection dominated problems. The proposed algorithm is designed to maintain mass conservation and to guarantee positivity of the solution for an almost random placement of scattered data nodes. The method can be applicable both for problems defined in a domain or if equipped with level set techniques, on a stationary manifold. We demonstrate the numerical behavior of the method by performing numerical tests for the solid-body rotation benchmark in a unit square and for a transport problem along a curve implicitly prescribed by a level set function. Extension of the proposed method to higher dimensions is straightforward and easily realizable

    An enhanced non-oscillatory BFECC algorithm for finite element solution of advective transport problems

    Get PDF
    In this paper, the so-called “back and forth error compensation correction (BFECC)” methodology is utilized to improve the solvers developed for the advection equation. Strict obedience to the so-called “discrete maximum principle” is enforced by incorporating a gradient–based limiter into the BFECC algorithm. The accuracy of the BFECC algorithm in capturing the steep–fronts in hyperbolic scalar–transport problems is improved by introducing a controlled anti–di¿usivity. This is achieved at the cost of performing an additional backward sub–solution–step and modifying the formulation of the error compensation accordingly. The performance of the proposed methodology is assessed by solving a series of benchmarks utilizing di¿erent combinations of the BFECC algorithms and the underlying numerical schemes. Results are presented for both the structured and unstructured meshes.This work was performed within the framework of AMADEUS project (”Advanced Multi-scAle moDEling of coupled mass transport for improving water management in fUel cellS”, reference number PGC2018-101655-B-I00) supported by the Ministerio de Ciencia, Innovacion e Universidades of Spain. The authors also acknowledge financial support of the mentioned Ministry via the “Severo Ochoa Programme” for Centres of Excellence in R&D (referece: CEX2018-000797-S) given to the International Centre for Numerical Methods in Engineering (CIMNE).Peer ReviewedPostprint (published version

    Dissipation-based WENO stabilization of high-order finite element methods for scalar conservation laws

    Full text link
    We present a new perspective on the use of weighted essentially nonoscillatory (WENO) reconstructions in high-order methods for scalar hyperbolic conservation laws. The main focus of this work is on nonlinear stabilization of continuous Galerkin (CG) approximations. The proposed methodology also provides an interesting alternative to WENO-based limiters for discontinuous Galerkin (DG) methods. Unlike Runge--Kutta DG schemes that overwrite finite element solutions with WENO reconstructions, our approach uses a reconstruction-based smoothness sensor to blend the numerical viscosity operators of high- and low-order stabilization terms. The so-defined WENO approximation introduces low-order nonlinear diffusion in the vicinity of shocks, while preserving the high-order accuracy of a linearly stable baseline discretization in regions where the exact solution is sufficiently smooth. The underlying reconstruction procedure performs Hermite interpolation on stencils consisting of a mesh cell and its neighbors. The amount of numerical dissipation depends on the relative differences between partial derivatives of reconstructed candidate polynomials and those of the underlying finite element approximation. All derivatives are taken into account by the employed smoothness sensor. To assess the accuracy of our CG-WENO scheme, we derive error estimates and perform numerical experiments. In particular, we prove that the consistency error of the nonlinear stabilization is of the order p+1/2p+1/2, where pp is the polynomial degree. This estimate is optimal for general meshes. For uniform meshes and smooth exact solutions, the experimentally observed rate of convergence is as high as p+1p+1

    Algebraically constrained finite element methods for hyperbolic problems with applications in geophysics and gas dynamics

    Get PDF
    The research conducted in this thesis is focused on property-preserving discretizations of hyperbolic partial differential equations. Computational methods for solving such problems need to be carefully designed to produce physically meaningful numerical solutions. In particular, approximations to some quantities of interest should satisfy local and global discrete maximum principles. Moreover, numerical methods need to obey certain conservation relations, and convergence of approximations to the physically relevant exact solution should be ensured if multiple solutions may exist. Many algorithms based on the aforementioned design principles fall into the category of algebraic flux correction (AFC) schemes. Modern AFC discretizations of nonlinear hyperbolic systems express approximate solutions as convex combinations of intermediate states and constrain these states to be admissible. The main focus of our work is on monolithic convex limiting (MCL) strategies that modify spatial semi-discretizations in this way. Contrary to limiting approaches of predictor-corrector type, their monolithic counterparts are well suited for transient and steady problems alike. Further benefits of the MCL framework presented in this thesis include the possibility of enforcing entropy stability conditions in addition to discrete maximum principles. Using the AFC methodology, we transform finite element discretizations into property-preserving low order methods and perform flux correction to recover higher orders of accuracy without losing any desirable properties. The presented methods produce physics-compatible approximations, which exhibit excellent shock capturing capabilities. One novelty of this work is the tailor-made extension of monolithic convex limiting to the shallow water equations with a nonconservative topography term. Our generalized MCL schemes are entropy stable, positivity preserving, and well balanced in the sense that lake at rest equilibria are preserved. Another desirable property of numerical methods for the shallow water equations is the capability to handle wet-dry transitions properly. We present two new approaches to dealing with this issue. To corroborate our computational results with theoretical investigations, we perform numerical analysis for property-preserving discretizations of the time-dependent linear advection equation. In this context, we prove stability and derive an a~priori error estimate in the semi-discrete setting. We also compare the monolithic convex limiting strategy to two representatives of related flux-corrected transport algorithms. Another highlight of this thesis is the chapter on MCL schemes for arbitrary order discontinuous Galerkin (DG) discretizations. Building on algorithms developed for continuous Lagrange and Bernstein finite elements, we extend our MCL schemes to the high order DG setting. This research effort involves the design of new AFC tools for numerical fluxes that appear in the DG weak formulation. Our limiting strategy for DG methods exploits the properties of high order Bernstein polynomials to construct sparse discrete operators leading to compact-stencil nonlinear approximations. The proposed numerical methods are applied to various hyperbolic problems. Scalar equations are considered mainly for testing purposes and to simplify numerical analysis. Besides the shallow water system, we study the Euler equations of gas dynamics

    Variational multiscale stabilization of finite and spectral elements for dry and moist atmospheric problems

    Get PDF
    In this thesis the finite and spectral element methods (FEM and SEM, respectively) applied to problems in atmospheric simulations are explored through the common thread of Variational Multiscale Stabilization (VMS). This effort is justified by three main reasons. (i) the recognized need for new solvers that can efficiently execute on massively parallel architectures ¿a spreading framework in most fields of computational physics in which numerical weather prediction (NWP) occupies a prominent position. Element-based methods (e.g. FEM, SEM, discontinuous Galerkin) have important advantages in parallel code development; (ii) the inherent flexibility of these methods with respect to the geometry of the grid makes them a great candidate for dynamically adaptive atmospheric codes; and (iii) the localized diffusion provided by VMS represents an improvement in the accurate solution of multi-physics problems where artificial diffusion may fail. Its application to atmospheric simulations is a novel approach within a field of research that is still open. First, FEM and VMS are described and derived for the solution of stratified low Mach number flows in the context of dry atmospheric dynamics. The validity of the method to simulate stratified flows is assessed using standard two- and three-dimensional benchmarks accepted by NWP practitioners. The problems include thermal and gravity driven simulations. It will be shown that stability is retained in the regimes of interest and a numerical comparison against results from the the literature will be discussed. Second, the ability of VMS to stabilize the FEM solution of advection-dominated problems (i.e. Euler and transport equations) is taken further by the implementation of VMS as a stabilizing tool for high-order spectral elements with advection-diffusion problems. To the author¿s knowledge, this is an original contribution to the literature of high order spectral elements involved with transport in the atmosphere. The problem of monotonicity-preserving high order methods is addressed by combining VMS-stabilized SEM with a discontinuity capturing technique. This is an alternative to classical filters to treat the Gibbs oscillations that characterize high-order schemes. To conclude, a microphysics scheme is implemented within the finite element Euler solver, as a first step toward realistic atmospheric simulations. Kessler microphysics is used to simulate the formation of warm, precipitating clouds. This last part combines the solution of the Euler equations for stratified flows with the solution of a system of transport equations for three classes of water: water vapor, cloud water, and rain. The method is verified using idealized two- and three-dimensional storm simulations.En esta tesis los métodos de elementos finitos y espectrales (FEM - finite element method y SEM- spectral element method, respectivamente), aplicados a los problemas de simulaciones atmosféricas, se exploran a través del método de estabilización conocidocomo Variational Multiscale Stabilization (VMS). Tres razones fundamentales justifican este esfuerzo: (i) la necesidad de tener nuevos métodos de solución de las ecuaciones diferenciales a las derivadas parciales usando máquinas paralelas de gran escala –un entorno en expansión en muchos campos de la mecánica computacional, dentro de la cual la predicción numérica de la dinámica atmosférica (NWP-numerical weather prediction)representa una aplicación importante. Métodos del tipo basado en elementos(por ejemplo, FEM, SEM, Galerkin discontinuo) presentan grandes ventajas en el desarrollo de códigos paralelos; (ii) la flexibilidad intrínseca de tales métodos respecto a lageometría de la malla computacional hace que esos métodos sean los candidatos ideales para códigos atmosféricos con mallas adaptativas; y (iii) la difusión localizada que VMSintroduce representa una mejora en las soluciones de problemas con física compleja en los cuales la difusión artificial clásica no funcionaría. La aplicación de FEM o SEM con VMS a problemas de simulaciones atmosféricas es una estrategia innovadora en un campo de investigación abierto. En primera instancia, FEM y VMS vienen descritos y derivados para la solución de flujos estratificados a bajo número de Mach en el contexto de la dinámica atmosférica. La validez del método para simular flujos estratificados es verificada por medio de test estándar aceptado por la comunidad dentro del campo deNWP. Los test incluyen simulaciones de flujos térmicos con efectos de gravedad. Se demostrará que la estabilidad del método numérico se preserva dentro de los regímenesde interés y se discutirá una comparación numérica de los resultados frente a aquellos hallados en la literatura. En segunda instancia, la capacidad de VMS para estabilizarmétodos FEM en problemas de advección dominante (i.e. ecuaciones de Euler y ecuaciones de transporte) se implementa además en la solución a elementos espectrales de alto orden en problemas de advección-difusión. Hasta donde el autor sabe, esta es una contribución original a la literatura de métodos basados en elementos espectrales en problemas de transporte atmosférico. El problema de monotonicidad con métodos de alto orden es tratado mediante la combinación de SEM+VMS con una técnica de shockcapturing para un mejor tratamiento de las discontinuidades. Esta es una alternativa a los filtros que normalmente se aplican a SEM para eilminar las oscilaciones de Gibbsque caracterizan las soluciones de alto orden. Como último punto, se implementa un esquema de humedad acoplado con el núcleo en elementos finitos; este es un primer paso hacia simulaciones atmosféricas más realistas. La microfísica de Kessler se emplea para simular la formación de nubes y tormentas cálidas (warm clouds: no permite la formación de hielo). Esta última parte combina la solución de las ecuaciones de Eulerpara atmósferas estratificadas con la solución de un sistema de ecuaciones de transporte de tres estados de agua: vapor, nubes y lluvia. La calidad del método es verificadautilizando simulaciones de tormenta en dos y tres dimensiones

    Finite elements for scalar convection-dominated equations and incompressible flow problems - A never ending story?

    Get PDF
    The contents of this paper is twofold. First, important recent results concerning finite element methods for convection-dominated problems and incompressible flow problems are described that illustrate the activities in these topics. Second, a number of, in our opinion, important problems in these fields are discussed
    corecore