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Abstract

In this paper, the so-called “back and forth error compensation correction (BFECC)” methodology is utilized to improve
he solvers developed for the advection equation. Strict obedience to the so-called “discrete maximum principle” is enforced
y incorporating a gradient-based limiter into the BFECC algorithm. The accuracy of the BFECC algorithm in capturing the
teep-fronts in hyperbolic scalar-transport problems is improved by introducing a controlled anti-diffusivity. This is achieved
t the cost of performing an additional backward sub-solution-step and modifying the formulation of the error compensation
ccordingly. The performance of the proposed methodology is assessed by solving a series of benchmarks utilizing different
ombinations of the BFECC algorithms and the underlying numerical schemes. Results are presented for both the structured
nd unstructured meshes.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Convection-dominated transport; BFECC; Limiter; Monotonicity preservation; Discrete maximum principle

1. Introduction

In a wide range of fluid dynamic applications, an elemental step in the numerical simulations is to solve advective,
r more generally, convection-dominated transport problems (for example see [1–3]). In this context, the main
hallenge addressed by the researchers presently is to accurately capture the steep fronts while suppressing the
purious oscillations. In other words, the numerical method should preserve the monotonicity property [4] of the
roblem while ensuring sufficient spatial accuracy [5]. This challenging requirement has made the numerical solution
f convection-dominated transport problems an active topic for decades, and adopting the continuous finite element
ethod, a vast variety of the approaches have so-far been developed [6–10].
Stemming from the streamline-upwind/Petrov–Galerkin (SUPG) method [11], a series of methods were developed

y introducing a residual-based stabilization term [6]. Although stable for rather smooth cases, SUPG-like
ethods are not monotonicity-preserving and therefore, suffer from spurious oscillations in the vicinity of a steep
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gradient [12,13]. This causes the development of the so-called “spurious oscillations at layers diminishing (SOLD)”
techniques [14], which need an extremely careful choice of parameters to provide a satisfactory result [15].

Taking into account that the mathematical description of the monotonicity-preservation can be rendered into
he discrete maximum principle (DMP) [13], the necessary requirement for obtaining a non-oscillatory solution
s that the solver embodies DMP. Successful methods have been developed based on introducing an artificial
iffusion adjusted so that DMP is satisfied [8,16–18]. The class of algebraic flux correction schemes [1,19–23]
s also developed by enforcing DMP at the level of the algebraic system of equations. Consistently with Godunov’s
tatement [24], in order to retain both the spatial accuracy and monotonicity, almost all these methods rely on a
onlinear discretized equation, which in most cases, necessitates an iterative solution procedure.

As an alternative to such iterative methods, the back and forth error compensation correction (BFECC) algorithm
reates a framework for improving the solution of any time-reversible problem [25,26]; applying BFECC to a first-
rder underlying scheme, a second-order numerical method is obtained [27]. The BFECC algorithm is based on three
ub-solution-steps; first, advancing in-time using a first-order scheme, then, retreating in-time using the same scheme
o evaluate the error, and finally, advancing the compensated field in-time using the same scheme. In this sense,
f an explicit underlying scheme is used, the resulting method is fully explicit (with a fixed number of sub-steps).
ssuming that the underlying scheme holds DMP, and considering the evaluated error as an anti-diffusivity term,
FECC can be categorized along with the predictor–corrector algorithms of the kind described in [28]. However,
espite its great potential, there are only a few attempts to utilize, analyze, and enhance the BFECC algorithm.
his is mainly due to the fact that the conventional (unlimited) BFECC algorithm deteriorates the capability of the
nderlying numerical scheme in terms of the prevention of the spurious oscillations. In order to circumvent this
ssue, limited BFECC algorithms were proposed; Selle et al. [27] proposed to detect and enforce the local bounds
f the final solution following the characteristic line of the advection equation. General application of such limiter
s not computationally justifiable unless the semi-Lagrangian CIR scheme [29] is used. In an alternative approach,
u et al. [30] introduced a limiter based on the detection of the over/under-shoots in the final solution, which

equires two additional sub-solution-steps that significantly increases the computational cost of the method.
Knowing that the BFECC algorithm violates DMP at the error compensation step, a shock detector (limiter)

an be employed to retain the monotonicity-preserving property of the solver if the underlying scheme, itself,
mbodies DMP. In this way, no additional sub-solution-step is required and consequently, the efficiency of the
FECC algorithm is not affected. In the present work, a gradient-based [31] continuous nodal limiter [32] is

ncorporated to the BFECC algorithm, recovering the DMP of the resulting scheme. In addition to the methods
ased on the conventional BFECC, a modified algorithm is proposed permitting more accurate capturing of the steep
ronts. This modified algorithm also results in a superior performance in the smooth cases. In order to highlight
he versatility of the proposed BFECC algorithm, it is applied to DMP-preserving Eulerian and semi-Lagrangian
nderlying schemes.

In the following sections, first, the scalar transport equation and the low-order over-diffusive monotonicity-
reserving solver are described. Then, the BFECC algorithms and the incorporation of the gradient-based limiter
re discussed. In Section 4, an enhanced underlying scheme is briefly presented that partially compensates for the
xtra-diffusivity of the low-order underlying scheme. In the final section of the present paper, numerical tests are
resented addressing the one- and two-dimensional advection problems on structured and unstructured meshes.

. Scalar transport equation

.1. Continuum formulation

As a frequently encountered example of hyperbolic problems, the conservation of scalar field u(x, t) is addressed
n this work. This problem is governed by a time-reversible partial differential equation [27] formulated as

∂u
∂t

+ ∇ · (vu) = 0 in Ω . (1)

ssuming that velocity field v(x, t) retains the incompressibility condition, ∇ · v = 0, Eq. (1) can be rewritten in
dvective form [33].

∂u
+ v · ∇u = 0 in Ω , (2)
∂t
2
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This equation is subject to the initial condition,

u(x, 0) = u0(x) in Ω , (3)

and Dirichlet boundary condition

u = uD on ∂ΩD, (4)

roviding that there is an inward flux at ∂ΩD , i.e. v · n < 0 with n denoting the outward normal to boundary ∂Ω .

.2. Galerkin discretization

Using test-function q ∈ L2(Ω ), Eq. (2) leads to the problem of finding u that satisfies∫
Ω

q
(

∂u
∂t

+ v · ∇u
)

= 0 ∀q. (5)

he finite element solution to this problem is obtained by discretizing the computational domain into a set of
lements, E , and choosing both the test-function and the trial-function in the finite element space. In this way, u
s approximated as uh =

∑
N e uiφ

e
i (x) and qh ∈ φi ; i ∈ N e

\ ND within element e. Here, φi denotes the shape
unction associated with node i , and N e and ND are the sets of nodes associated with e and the Dirichlet boundary
ondition, respectively. By doing the substitutions, the discrete form of the problem reads

Ae∈E

(
Me

C
dUe

dt
+ CeUe

)
= 0, (6)

here Ue is the vector of nodal unknowns ui with i ∈ N e
\ ND . Here, operator A represents the assembly of the

lemental system of equations, and E denotes the set of the elements in the computational domain. The entities of
he elemental consistent mass and convection matrices are calculated as

me
i j =

∫
Ωe

φiφ j dΩ , i ∈ N e
\ ND, and j ∈ N e, (7)

nd

ce
i j =

∫
Ωe

φi v · ∇φ j dΩ , i ∈ N e
\ ND, and j ∈ N e, (8)

espectively. Assembling the contributions of all the elements, the global linear system of equations is obtained as

MC
dU
dt

+ CU = 0. (9)

ithout loss of generality, the finite element space is constructed by shape functions of simplex elements in this
ork.

.3. Stabilization

It is widely known that in its pure form (i.e. without introducing any diffusion), Eq. (9) is subject to severe
umerical instabilities [12]. Starting from Eq. (6), an established practice [21,34,35] to achieve a stabilized numerical
cheme is to substitute the consistent mass matrix with lumped mass matrix Me

L and introduce artificial numerical
diffusion De, which gives

Ae∈E

(
Me

L
dUe

dt
+ CeUe

+ De
)

= 0. (10)

he entities of Me
L are obtained via row-sum lumping scheme, which reads

me
L ,i j =

{
me

i =
∫
Ωe φi dΩ if i = j

0 if i ̸= j
(11)

he numerical diffusion term can be calculated as
e e ( e e ) e
D = ν ML − MC U , (12)

3
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to formulate the global system of equations as

ML
dU
dt

= LU, (13)

with Le
= νe

(
Me

C − Me
L

)
− Ce. Equivalently, one can write

mi
dui

dt
=

∑
j

li j u j , (14)

ith mi =
∑

e∈Ei
me

i (for linear elements), where Ei denotes the set of elements that share node i . It is easy to
how that, as a requirement for conservation,

∑
j li j = 0; therefore, the sufficient condition to abide with DMP and

ositivity of the result [21,28] is

li j ≥ 0, i ̸= j. (15)

his is the key to attain a stabilized monotonicity-preserving low-order scheme [1,19], and subsequently, prevent
he spurious overshoots and undershoots in the result. Providing this condition, coefficient ν can be calculated for
ach element as

νe
= max(

ce
i j

me
i j

, 0) ∀i, j ∈ N e. (16)

he resulting scheme is known to be non-oscillatory but strongly over-diffusive [35]. It must be noted that one
an reduce the artificial diffusivity by calculating ν according to the DMP at the level of the assembled global
ystem of equation. Nonetheless, the excessive diffusion of the stabilized scheme must be alleviated in order to
btain an accurate method. One possibility consists in applying the so-called “back and forth error compensation
nd correction (BFECC)” algorithm that is described below.

. Back and forth error compensation and correction

The basic idea of the BFECC algorithm is to estimate and compensate for the error associated with any numerical
nderlying scheme utilized for solving a reversible differential equation [27]; this is done by reversing the solution
f the numerical scheme and comparing the result with the starting state, which requires consecutive application of
he underlying scheme in the forward and backward directions. For solving Eq. (2), the BFECC algorithm, as first
roposed in [26], can be summarized in four steps:

1. starting from un(x) and solving Eq. (2) forward in time to obtain u∗

n+1(x).
2. starting from u∗

n+1(x) and solving Eq. (2) backward in time (by reversing velocity vector v) to obtain u∗
n(x).

3. estimating the error as e(x) = [u∗
n(x) − un(x)]/2 and do the compensation as ũn(x) = un(x) − e(x).

4. starting from ũn(x) and solving Eq. (2) forward in time to obtain un+1(x).

ere, subscript n denotes the solution at time t = n∆t . It should be noted that a variable time-step (∆t) can be
sed according to the requirement (CFL-like condition) of the underlying numerical scheme.

If the numerical scheme acquired to solve Eq. (2) can be formulated as

M
dU
dt

= LU, (17)

employing the backward Euler scheme in time, the application of the BFECC algorithm reads(
1
∆t

M − LF

)
U∗

n+1 =
1
∆t

MUn, (18)(
1
∆t

M − LB

)
U∗

n =
1
∆t

MU∗

n+1, (19)

E =
1 (

U∗
− Un

)
=

∆t
M−1 (

LF U∗
+ LBU∗

)
, (20)
2 n 2 n+1 n

4
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and finally,(
1
∆t

M − LF

)
Un+1 =

1
∆t

MŨn

=
1
∆t

MUn −
1
2

(
LF U∗

n+1 + LBU∗n
)
.

(21)

Subscripts F and B, respectively, denote the forward and the backward advection of u. Here, it is assumed
that velocity field v(x, t) is given and therefore, matrices LF and LB are constructed for mid-time-step velocity
vn+1/2 = (vn+1 + vn)/2. For the simple one-dimensional case described in the following section, it is easy to show
that

Ce
=

1
2

(
Le

B − Le
F

)
. (22)

herefore, the last term on the right-hand-side of Eq. (21) can be interpreted as an anti-diffusive term, which is
ntroduced by application of the BFECC algorithm. This term partially compensates for numerical diffusion D.
his property of the BFECC algorithm leads to the dismissal of condition (15) and undermines the stability of

he method by making it prone to spurious over-/undershoots in the result. The occurrence of such oscillations has
een mentioned in the literature and was tackled by limiting the results [27,30]. In the following, this issue will be
urther discussed for a simple one-dimensional case.

.1. Analysis of one-dimensional case

For the one-dimensional case with linear elements of length h, the elemental matrices associated with the
lgebraically stabilized scheme described in Section 2.3 are

Me
C =

[
h
3

h
6

h
6

h
3

]
, (23)

Me
L =

[
h
2 0

0 h
2

]
, (24)

Ce
=

[
−

v
2

v
2

−
v
2

v
2

]
, (25)

Le
F =

[
0 0
v −v

]
, (26)

nd

Le
B =

[
−v v

0 0

]
. (27)

pon assembling these matrices to obtain the global linear system of equations, one has
dui

dt
+

v (ui − ui−1)

h
= 0, (28)

hich is equivalent to the first-order upwind scheme. In this simple case, j th element is formed by nodes j and
j + 1.

Considering the forward Euler scheme for more simplicity, and applying the BFECC algorithm, the resulting
method reads

un+1,i = un,i +
1
2

[(
λ3

− λ2) un,i−2 +
(
−3λ3

+ 4λ2
+ λ

)
un,i−1

+
(
3λ3

− 5λ2) un,i +
(
−λ3

+ 2λ2
− λ

)
un,i+1

]
,

(29)

where λ = v∆t/h denotes the Courant–Friedrichs–Levy (CFL) number. While the sum of the coefficients of nodal
u on the right-hand-side of Eq. (29) is zero, condition (15) is not fulfilled and hence, DMP is not guaranteed.
This explains the oscillatory results of the BFECC algorithm in the vicinity of steep fronts [30], regardless of the
underlying scheme used for solving Eq. (2). In Section 3.3, this issue is resolved by introducing a limited BFECC

algorithm with the monotonicity-preserving property.

5
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3.1.1. Truncation error
The exact solution of Eq. (2) in one-dimension requires that

u(x, t + ∆t) = u(x − δ, t) = u(x, t) − δ
∂u(x, t)

∂x
+

1
2
δ2 ∂2u(x, t)

∂x2

−
1
6
δ3 ∂3u(x, t)

∂x3 + O(δ4),
(30)

ith δ = v∆t . It is possible to perform the Taylor expansion for the discretized equations as well; the Galerkin
cheme (9) can be expanded as

un+1,i = un,i − δ
un,i+1 − un,i−1

2h
= un,i − δ

(
∂u
∂x

+
h2

6
∂3u
∂x3 + O(h3)

)
. (31)

t must be noted that here, for the sake of simplicity, the mass matrix is considered to be lumped. Comparing
qs. (30) and (31), the associated truncation error is

T ri = u(xi , tn + ∆t) − un+1,i =
δ2

2
∂2u
∂x2 +

δ3

6

(
h2

δ2 − 1
)

∂3u
∂x3 + O(δ4). (32)

imilarly, for the stabilized low-order underlying scheme (28) one obtains

T ri =
δ2

2

(
1 −

h
δ

)
∂2u
∂x2 + O(δ3). (33)

ere, it is assumed that CFL number λ and consequently h/δ are set as constants. In this sense, factorizing δ appears
o be logical.

Applying the same procedure to Eq. (29), for the BFECC algorithm using the stabilized low-order underlying
cheme (28), one has

un+1,i = un,i − δ
∂φ

∂x
+

δ2

2
∂2φ

∂x2 − δ3
(

1
2

+
h
2δ

+
h2

6δ2

)
∂3φ

∂x3 + O(δ4). (34)

he associated truncation error reads

T ri = δ3
(

1
3

+
h
2δ

+
h2

6δ2

)
∂3φ

∂x3 + O(δ4). (35)

he truncation error shows a one-order improvement comparing to Eq. (33). It is evident that keeping the CFL
umber constant, element-size h and time-step ∆t (or equivalently δ) are interchangeable.

It is worth noting that the positive coefficient of ∂2u/∂x2 in Eq. (32) shows the anti-diffusive (with severe
patial oscillations) characteristic of the Galerkin scheme. On the other hand, for λ < 1, the negative coefficient of

the leading term in Eq. (33) reveals the diffusive nature of the stabilized low-order scheme, which is worsen by
reducing the CFL number. Nonetheless, the absence of this leading term in Eq. (35), discloses the ability of the
BFECC algorithm to compensate for the excessive diffusion of the solver. This section is closed by further proving
the ability of the BFECC algorithm in removing the anti-diffusivity imposed by the Galerkin scheme; applying the
BFECC algorithm to Eq. (31), one obtains

un+1,i = un,i +
1

16

[
λ3un,i−3 + 2λ2un,i−2 +

(
−3λ3

+ 8λ
)

un,i−1

−4λ2un,i +
(
3λ3

− 8λ
)

un,i+1 + 2λ2un,i+2 − λ3un,i+3
]
,

(36)

nd consequently, has

un+1,i = un,i − δ
∂u
∂x

+
δ2

2
∂2u
∂x2 + δ3

(
1
4

−
h2

12δ2

)
∂3u
∂x3 + O(δ4). (37)

herefore, the associated truncation error is

T ri = δ3
(

−
5

12
+

h2

12δ2

)
∂3u
∂x3 + O(δ4). (38)

he absence of ∂2u/∂x2 in Eq (38) asserts the compensation for the anti-diffusivity detected in Eq. (32).
6
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3.2. Modified algorithm

In order to obtain further improvement, the BFECC algorithm can be modified as outlined in the following steps;

1. starting from un(x) and solving Eq. (2) forward in time to obtain u∗

n+1(x).
2. starting from [un(x)+u∗

n+1(x)]/2 and solving Eq. (2) half-way (∆t/2) backward in time (by reversing velocity
vector v) to obtain u∗

n(x).
3. estimating the error as e(x) = u∗

n(x) − un(x) and do the compensation as ũn(x) = un(x) − e(x).
4. starting from ũn(x) and solving Eq. (2) forward in time to obtain un+1(x).

s done before for the conventional BFECC algorithm by employing the backward Euler scheme in time, the
pplication of this modified BFECC algorithm to the scheme presented in Eq. (17) reads(

1
∆t

M − LF

)
U∗

n+1 =
1
∆t

MUn, (39)

s the first step, and(
2
∆t

M − LB

)
U∗

n =
1
∆t

M
(
U∗

n+1 + Un
)
, (40)

s the second step. Adding Eqs. (39) and (40), one obtains

2
∆t

MU∗

n = LBU∗

n + LF U∗

n+1 +
2
∆t

MUn, (41)

rom which the third step of the modified BFECC algorithm leads to

E = U∗

n − Un =
∆t
2
M−1 (

LF U∗

n+1 + LBU∗

n

)
, (42)

hat is the same as the error calculated in Eq. (20) for the conventional BFECC algorithm. Therefore, it is readily
een that both the conventional and the modified BFECC algorithms are equivalent if applied to a solver formulated
s Eq. (17) and discretized in time using the backward Euler scheme. Nevertheless, if an explicit (e.g. forward Euler)
cheme is used, this modified algorithm is not equivalent to the conventional BFECC algorithm. In the following,
t is shown that besides the conventional BFECC algorithm, the introduced modified BFECC algorithm can be
cquired to add a controlled anti-diffusivity to the solution.

.2.1. One-dimensional case
Similar to Section 3.1, application of the modified BFECC algorithm to the stabilized low-order scheme (28)

ith the forward Euler time discretization leads to

un+1,i = un,i +
1
4

[(
λ3

− 2λ2) un,i−2 +
(
−3λ3

+ 7λ2
+ 2λ

)
un,i−1

+
(
3λ3

− 8λ2) un,i +
(
−λ3

+ 3λ2
− 2λ

)
un,i+1

]
.

(43)

his leads to

un+1,i = un,i − δ
∂u
∂x

+
δ2

4
∂2u
∂x2 − δ3

(
1
4

+
h
2δ

+
h2

6δ2

)
∂3u
∂x3 + O(δ4), (44)

rom which, the truncation error is calculated as

T ri =
δ2

4
∂2u
∂x2 + δ3

(
1
6

+
h
2δ

+
h2

6δ2

)
∂3u
∂x3 + O(δ4). (45)

q. (45) clearly shows that the modified BFECC algorithm adds half the amount of the anti-diffusivity of the
alerkin scheme (see Eq. (32)). Moreover, the modified algorithm neither improves nor impairs the order of the

olver unlike the conventional BFECC algorithm which is proved to provide enhancement upon application to the
rst-order solvers. Nonetheless, in Section 3.4, a combined algorithm is introduced that benefits from the advantages

f both the conventional and the modified BFECC algorithms.

7
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3.3. Nodal limiter

As discussed above, the maximum principle and the positivity are no more guaranteed upon the application of
either the conventional or modified) BFECC algorithm. Therefor, in order to circumvent the associated instability
ssues in the present work, a continuous nodal limiter is utilized to control the application of the BFECC algorithm;
he idea is to fully apply the error compensation according to the BFECC algorithm wherever the convected field
s smooth while ignoring the correction in the vicinity of local extrema. In this way, upon the application of limiter
unction α, the third step of (either the standard or modified) BFECC algorithm reads ũn(x) = un(x) − α(x)e(x).
t is worth mentioning that while DMP and the positivity condition are guaranteed for the solver underlying the
ourth-step of the BFECC algorithm, preserving the monotonicity for ũn is the sufficient condition for the BFECC
lgorithm to satisfy these essential requirements. Here, the continuity of the limiter function allows the partial
pplication of the BFECC algorithm by quantifying the smoothness of the convected field.

The limiter utilized in the present work was originally proposed in [32] and further utilized in [18] to control over
he artificial diffusion associated with the stabilization term introduced to a convection–diffusion equation. Later
n, addressing its shortcoming for asymmetric meshes [31], a more general version of this limiter was introduced
s [35]

αi = 1 −

⎡⎣
⏐⏐⏐∑ j∈Ni \i βi j

(
ui − u j

)⏐⏐⏐∑
j∈Ni \i βi j

⏐⏐ui − u j
⏐⏐ + ε

⎤⎦ζ

, (46)

here αi = α(xi ) and Ni denotes the set of nodes, which share an edge with node i . In Eq. (46), ε ∼ O(10−15)
s an extremely small constant that is introduced to prevent division by zero in cases of flat u, and power ζ

haracterizes the spatial variation of α by determining the acuteness of its decay rate nearby the location of a
on-smooth convected field. In the present work, ζ = 2 is set for limiting the BFECC algorithm. Coefficient βi j is
alculated based on the procedure introduced by Kuzmin et al. [35] in order to maintain the linearity-preservation
n cases of an asymmetric mesh.

.4. Combined algorithm

The outstanding characteristic of the conventional BFECC algorithm in enhancing the order of accuracy of
he method begins to fade away as the limiter decreases from unity; this is an inevitable cost to preserve the

onotonicity. The more acute the local change in the gradient is, the smaller the limiter becomes. On the other hand,
he nodal limiter (46) can be employed as a shock detector [18], and consequently, a measure for determining the
odes that are subject to relatively large numerical diffusion. The basic idea here is to acquire the limited amount
f anti-diffusivity introduced by the modified BFECC algorithm (see Eq. (45) and the discussion afterwards) to
artially compensate for excessive numerical diffusion.

In this manner, the combined BFECC algorithm is proposed as

1. starting from un(x) and solving Eq. (2) forward in time to obtain u∗

n+1(x).
2. doing the backward steps:

2.1 starting from u∗

n+1(x) and solving Eq. (2) backward in time to obtain u∗
n(x).

2.2 starting from [un(x) + u∗

n+1(x)]/2 and solving Eq. (2) half-way (∆t/2) backward in time to obtain
u∗∗

n (x).

3. do the compensation as ũn(x) = un(x) − e(x) with error depending on α:

e(x) =

{[
u∗

n(x) − un(x)
]
/2 if α(x) > αth

u∗∗
n (x) − un(x) if α(x) ≤ αth

(47)

4. starting from ũn(x) and solving Eq. (2) forward in time to obtain un+1(x).

n this algorithm, αth denotes the threshold, below which the conventional BFECC algorithm is substituted by the

odified BFECC algorithm. Numerical tests show that the most desirable results can be obtained by αth ≈ 0.9.

8
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4. Enhanced scheme

In this section, a methodology is described that allows limiting the extra diffusivity of the stabilized low-order
underlying scheme (10). The resulting scheme is called as the “enhanced scheme” throughout this paper. The
improvement of the low-order stabilized scheme (10) is based on rolling back the stabilization procedure in the
smooth area in order to minimize the artificial diffusion. In the meantime, the formulation remains intact in the
vicinity of local extrema in order to hold DMP. Similar to the introduced limited BFECC algorithm, limiter α plays
the key role in this formulation enhancement procedure.

Rewriting Eq. (10) and expanding the artificial diffusion term, De, one has

Ae∈E

(
Me

L
dUe

dt
+ CeUe

+ νe (
Me

L − Me
C

)
Ue

)
= 0. (48)

owards the minimization of the numerical diffusion, one can take two distinguished steps; bringing back the
onsistent mass-matrix and compensating for the artificial diffusion term. Incorporating the limiter, these two steps
ead

Ae∈E

{[
αeMe

C + (1 − αe)Me
L

] dUe

dt
+ CeUe

+ νe (
Me

L − Me
C

)
Ue

− αeD̂e
}

= 0, (49)

here D̂e is an approximation of De. For a simplex element, it can be shown that [35]

me
i ui −

∑
j∈N e

me
i j u j = (1 + d)

∫
Ωe

φi (uh − ūe)dΩ , (50)

here d denotes the number of dimensions (d = 2 in 2D) and elemental average ūe is calculated as

ūe
=

∫
Ωe uhdΩ∫
Ωe dΩ

. (51)

Introducing uh(x) ≈ ūe
+ ge

· (x − x̄e) into Eq. (50), the entities of D̂e are calculated as

d̂e
i = νe(1 + d)

∫
Ωe

φi ge
· (x − x̄e)dΩ , (52)

n this work, ge is calculated as the elemental average of nodal gradients gi , which are obtained using lumped-mass
rojection of ∇u as

gi =
1

mi

∫
Ω

φi

∑
j∈N

∇φ j u j dΩ . (53)

The elemental limiter is then the minimum of the associated nodal ones, i.e.

αe
= min

i∈N e
αe

i . (54)

n the computation of Eq. (54), αe
i is calculated using Eq. (46) with ζ = 4. It must be noted that the presented

cheme can be considered as an explicit variant of the method proposed by Kuzmin et al. [35], which has similarities
n essence with the formulation introduced in [36]. It is also worth noting that for αe

→ 1, Eq. (49) tends to the
alerkin scheme and therefore, a strong anti-diffusivity is expected. In Appendix B, the implementation of this

nhanced scheme is further described. In the numerical tests, it is shown how the application of the proposed
imited BFECC algorithm further improves the results by eliminating the extra anti-diffusivity of this underlying
nhanced scheme. This property is likely to be related to the stabilization property of the BFECC algorithm, which
as proved in [29]. In this sense, the application of the BFECC algorithms to the numerical schemes belonging to

he class of the above described enhance scheme can be seen as a key for minimizing the imposed diffusivity by
sing more acute limiters.

. Results

In this section, the performance of the proposed combined BFECC algorithm is investigated in three test-cases;
n the first set of tests, different BFECC algorithms are applied to the low-order and enhanced underlying schemes
9
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Fig. 1. Semi-1D mesh for advection of the square wave. Results are presented for the nodes lie on the center-line marked by a red solid
ine. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

nd employed for the one-dimensional advection of both a non-smooth square-wave and a smooth sine-wave. The
econd test-case is the solid-body rotation of a notched cylinder, smooth hump and a cone [33], which is a well-
stablished benchmark in this context. Here, the versatility of the proposed BFECC methodology is further analyzed
y its application to the unconditionally stable (semi-Lagrangian) CIR scheme [27,29] (see Appendix A) and the
UPG scheme (with the cross-wind stabilization [12]). In the last test-case, the oblique in-flow of a scalar field is
imulated in order to study the effect of the combined BFECC algorithm on the cross-stream and the stream-wise
iffusion of the solver.

In the following, all the simulations are performed using the forward Euler scheme for discretizing the governing
quations in time. Moreover, for the application of the combined BFECC algorithm, the switch between the
lgorithms is done according to the threshold of αth = 0.9 and 0.95 for the Eulerian schemes and the semi-
agrangian approach, respectively. For these test-cases, L1- and L2-norm of the error are approximated as [28,31]

E1 =

∑
i∈N

mi |u(xi ) − ui | , (55)

and

E2 =

√∑
i∈N

mi [u(xi ) − ui ]2, (56)

respectively.

5.1. One dimensional advection

The test-cases addressed in this section consist of the one-dimensional1 advection of a square-wave with an
initially discontinuous field and a sine-wave, which corresponds to an initially smooth field; the associated initial
conditions are defined, respectively, by

u0(x) =

{
1 if 0.1 ≥ x ≤ 0.31
0 else

(57)

and

u0(x) =

{
1
2 −

1
2 sin

(
10(x − 0.1) +

π
2

)
if 0.1 ≥ x ≤ 0.3

0 else
(58)

he former case is a well-established test for the assessment of the performance of the numerical methods [19,37]
n the presence of a severe non-smoothness in the field. On the other hand, the sine-wave test is designed to reveal
he ability of the numerical approach to minimize the unwanted side-effects of the compensatory anti-diffusivity.
hese test-cases are simulated on the semi-1D mesh shown in Fig. 1 with L = 1, H = 0.02, and v = ex , where
x is the unit vector in the x-direction. The associated mesh-size is calculated as h = 1/DO Fcl ,2 where DO Fcl

enotes the number of degrees-of-freedom along the center-line of the domain shown in Fig. 1.

1 It must be highlighted that the results are obtained on a two-dimensional mesh as shown in Fig. 1.
2 It must be noted that due to the symmetry of the mesh (shown in Fig. 1), the effective mesh-size is smaller than 1/DO F .
cl

10
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Fig. 2. Advection of a square-wave using different BFECC algorithms combined with the stabilized low-order underlying scheme.

Fig. 3. Advection of a sine-wave with dt = 0.004 and θ = 0.

5.1.1. Low-order stabilized Eulerian scheme
The first scheme to analyze in combination with the proposed limited BFECC algorithm is the stabilized low-

order scheme described in Section 2.3. Here, the time-step is set to dt = 0.004 and DO Fcl = 100, which give
F L = dt |v|/h = 0.4. The final (t = 0.5) distribution of u along the center-line is illustrated for the non-smooth

nd the smooth wave in Figs. 2 and 3, respectively.
As expected, without the application of an error compensation algorithm, the stabilized low-order scheme is

oo diffusive and consequently, leads to an undesirable solution in both cases; making a compensation for the
xtra diffusivity, the conventional BFECC algorithm dramatically improves the result. By further adding an extra
nti-diffusion to the solution of the advection equation, the modified BFECC scheme provides a better result than
he conventional BFECC algorithm in the non-smooth case. However, this extra anti-diffusion disturbs the solution
or the smooth case. On the other hand, the combined BFECC algorithm although increases the computational cost
y 30%, leads to a result that closely follows that of the modified BFECC algorithm in the non-smooth case while
oes not disturb the solution in the smooth case. Fig. 3 clearly shows the great advantage of using the combined
FECC algorithm for the advection of the smooth-wave; comparing to the conventional BFECC algorithm, the
roposed BFECC algorithm provides a more accurate solution in the smooth case. A more critical assessment of
he performance of different BFECC algorithms is possible by comparing L1- and L2-norm of the associated errors
s presented in Tables 1 and 2.

So far, the results were reported for a single mesh with DO Fcl = 100. Here, the sine-wave test-case is further
solved for DO Fcl = 50, 200, and 400, in order to assess the effect of different BFECC algorithms on the
convergence of the solver, which is measured by the so-called “experimental order of convergence (E OC)” defined
as [33,38]

E OC =

log( E(h2)
E(h1) )

log( h2 )
, (59)
h1

11
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Table 1
Error associated with the advection of a square-wave using different BFECC algorithms combined
with the stabilized low-order underlying scheme.

Algorithm E1 E2

Without BFECC 1.301 × 10−3 1.951 × 10−2

Modified BFECC 2.995 × 10−4 1.036 × 10−2

Conventional BFECC 5.497 × 10−4 1.260 × 10−2

Combined algorithm 3.726 × 10−4 1.076 × 10−2

Table 2
Error associated with the advection of a sine-wave using different BFECC algorithms combined
with the stabilized low-order underlying scheme.

Algorithm E1 E2

Without BFECC 7.349 × 10−4 1.117 × 10−2

Modified BFECC 4.127 × 10−4 8.293 × 10−3

Conventional BFECC 1.015 × 10−4 2.370 × 10−3

Combined algorithm 6.947 × 10−5 1.388 × 10−3

Table 3
Convergence of the results of the advection of a sine-wave obtained using the stabilized low-order
underlying scheme with and without the proposed combined BFECC algorithm for dt = 0.001.

Mesh-size Without BFECC Combined BFECC algorithm

E1 E OC1 E2 E OC2 E1 E OC1 E2 E OC2

1/50 0.0016 0.022 0.0014 0.021
1/100 0.0011 0.55 0.016 0.46 0.00062 1.16 0.010 1.06
1/200 0.00062 0.83 0.0096 0.74 0.00013 2.22 0.0023 2.17
1/400 0.00024 1.40 0.0038 1.32 0.000019 2.80 0.00035 2.72

where E(h) is the error associated with mesh-size h. The E OC values are presented for the stabilized low-order
scheme with and without the proposed combined BFECC algorithm in Table 3. These set of data are obtained by
setting the time-step to dt = 0.001.

It is clearly observed that in addition to the dramatic decrease in the magnitude of the error, the proposed
combined BFECC algorithm improves the mesh-convergence; by applying the proposed algorithm, E OC is almost
doubled. In the following, the same tests are administered for the alternative underlying scheme discussed in the
present work, i.e. the enhanced method.

5.1.2. Enhanced scheme
Following the results presented for the low-order scheme, in this section, different BFECC algorithms are

combined with the enhanced scheme (described in Section 4) and applied to the same one-dimensional test-cases.
Considering that this enhanced underlying scheme is more sensitive to the time-step than the low-order scheme,
here, dt = 0.001 is set for DO Fcl = 100. Results are presented in Figs. 4 and 5 for the non-smooth and the smooth
test-cases, respectively.

Benefiting from limited corrective terms, it is expected that the enhanced scheme provides more accurate
solutions without violating the positivity as well as the maximum principle; it is clearly seen by comparing the
results presented in Fig. 4 with those presented in Figs. 2 for the non-smooth case. Nonetheless, for the smooth
case, the application of the proposed combined BFECC algorithm to the stabilized low-order scheme provides a
comparably accurate result (see Figs. 3 and 5).

Here, one should highlight the potential of the BFECC algorithm to adjust the extra anti-diffusivity together
with its capability to compensate for the extra diffusivity of the schemes developed for the convection-dominated
problems; it is evident in Fig. 5 that by applying either the conventional or the proposed combined BFECC algorithm,
the anti-diffusivity of the enhance scheme is finely adjusted minimizing the associated error in the smooth case.
In Tables 4 and 5, L1- and L2-norm of the error are presented for different approaches developed based on the

enhanced scheme and applied to the one-dimensional advection of the square-wave and the sine-wave, respectively.

12
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Fig. 4. Advection of a square-wave with improved stabilized scheme, dt = 0.001, and θ = 0.

Fig. 5. Advection of a sine-wave with improved stabilized scheme, dt = 0.001, and θ = 0.

Table 4
Error associated with the advection of a square-wave using different BFECC algorithms combined
with the enhanced underlying scheme.

Algorithm E1 E2

Without BFECC 2.729 × 10−4 8.750 × 10−3

Modified BFECC 3.502 × 10−4 1.378 × 10−2

Conventional BFECC 3.106 × 10−4 9.223 × 10−3

Combined algorithm 2.405 × 10−4 8.598 × 10−3

Similar to what is observed for the low-order scheme, the proposed combined BFECC algorithm shows an overall
utperformance in the non-smooth and smooth cases; it improves the method in the non-smooth case while provides
slightly more accurate result than the conventional BFECC algorithm in the smooth case.

.2. Solid-body rotation

In this section, the counter-clockwise rotation of a slotted disk,

u0(x, y) =

⎧⎪⎨⎪⎩1 if

{√
(x − 0.5)2 + (y − 0.75)2 ≤ 0.15 and

|x − 0.5| ≥ 0.025 or y ≥ 0.85 (60)
0 else
13
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Fig. 6. Initial configuration of the solid-body rotation test-case. Structured and unstructured meshes are shown.

Table 5
Error associated with the advection of a sine-wave using different BFECC algorithms combined
with the enhanced underlying scheme.

Algorithm E1 E2

Without BFECC 3.658 × 10−4 7.153 × 10−3

Modified BFECC 1.390 × 10−4 2.769 × 10−3

Conventional BFECC 7.812 × 10−5 1.536 × 10−3

Combined algorithm 7.587 × 10−5 1.446 × 10−3

a non-smooth (sharp) cone,

u0(x, y) =

{
1 −

√
(x−0.5)2+(y−0.25)2

0.15 if
√

(x − 0.5)2 + (y − 0.25)2 ≤ 0.15
0 else

(61)

nd a smooth hump,

u0(x, y) =

⎧⎨⎩ 1
4 +

1
4 cos

(
π
√

(x−0.25)2+(y−0.5)2

0.15

)
if

√
(x − 0.25)2 + (y − 0.5)2 ≤ 0.15

0 else
(62)

s simulated with v(x, y) = (0.5 − y, x − 0.5), in a square 1 × 1-domain centered at (x, y) = (0.5, 0.5). The initial
ondition, u0, is shown in Fig. 6. As first proposed in [33], this test has become a benchmark for the assessment
f the performance of the numerical methods developed for convection-dominated problems [28,38–40]. Here, the
ime-step is set to dt = 0.001 unless otherwise mentioned, and the computational domain is discretized using both
structured mesh with 1292 nodes and an unstructured mesh with the average mesh-size of h = 1/128 (see Fig. 6).

n this section, all the results are presented after one complete rotation at t = 6.28.
Figs. 7 shows the results of the stabilized low-order and enhanced schemes with and without the proposed

ombined BFECC algorithm that are obtained using the structured mesh. Here, the result of the CIR underlying
cheme is also included for the sake of its comparison with the low-order scheme. Without the BFECC algorithm,
he low-order scheme (as well as the CIR scheme) brings about a highly diffused u-field and therefore, the
orresponding results are not shown here. It is clearly seen that all the numerical schemes abide with the positivity
nd the maximum principle by keeping 0 ≥ u ≤ 1.0. For a better assessment of the performance of the acquired
umerical schemes, the results obtained using the enhanced scheme with and without the proposed combined

FECC algorithm on the unstructured mesh are also presented in Fig. 8.

14
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Fig. 7. Solid-body rotation at t = 6.28. Results are obtained using different schemes on the structured mesh and presented as surface
z = u(x, y); (a) and (b) correspond to the low-order Eulerian scheme and the semi-Lagrangian underlying scheme with the application of the
proposed combined BFECC algorithm, respectively. The results of the enhanced scheme without and with the combined BFECC algorithm
is shown in (c) and (d), respectively.

Fig. 8. Solid-body rotation at t = 6.28. Results are obtained for the unstructured mesh and presented as surface z = u(x, y); (a) and (b)
correspond to the enhanced underlying scheme without and with the combined BFECC algorithm, respectively.
15
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p

Fig. 9. Solid-body rotation at t = 6.28. Results are obtained using different schemes on the structured mesh and presented as contours of
u(x, y); (a) and (b) correspond to the low-order Eulerian scheme and the semi-Lagrangian approach with the underlying scheme of the

roposed combined BFECC algorithm, respectively. The results of the enhanced scheme without and with the combined BFECC algorithm
are shown in (c) and (d), respectively.

The slightly more accurate solution on the unstructured mesh is due to its slightly larger number of mesh-nodes
comparing to the structured mesh.

In Figs. 9 and 10, the same set of results are presented as the contours of u at t = 6.28. The L1-norm of the
corresponding errors is also reported in these figures.

It is observable that, in an overall view, the semi-Lagrangian approach slightly outperforms the low-order Eulerian
scheme while by applying these two schemes along with the BFECC algorithm, the symmetry of the slotted disk
is disturbed after one complete rotation. In case of the enhanced scheme, the application of the proposed BFECC
algorithm yields a considerable improvement in the advection of the slotted-disk.

In order to bring the effect of the proposed combined BFECC algorithm into sharp focus, the result of the
enhanced scheme with and without the application of this algorithm are shown in Figs. 11 and 12 along different
cut-lines passing through the domain. These figures correspond to the unstructured mesh.

In addition to the better representation of the slotted disk, the proposed BFECC algorithm remarkably improves
the results for the advection of the smooth hump and the linear body of the cone, which is brought about by its
capability to adjust the (anti-)diffusivity of the numerical schemes. In other words, using the presented enhanced
scheme, due to an excessive anti-diffusivity, the result is subject to a difficulty denoted as “terracing” [21] that is

majorly cured by utilizing the BFECC algorithm.
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Fig. 10. Solid-body rotation at t = 6.28. Results are obtained for the unstructured mesh and presented as contours of u(x, y); (a) and (b)
orrespond to the enhanced underlying scheme without and with the combined BFECC algorithm, respectively.

At the end of this section, it is worth to briefly investigate the performance of the proposed BFECC algorithm in
ombination with the SUPG-CWS scheme. Results are presented in Figs. 13 and 14 as the surface of z = u(x, y)
nd contours of u(x, y), respectively.

Upon the application of the proposed BFECC algorithm, the result of the SUPG-CWS scheme is dramatically
mproved. Therefore, the proposed BFECC can also be considered as a viable means to improve the class of
UPG-like methods.

.3. Oblique inflow

This section aims at the investigation of the effect of the proposed BFECC algorithm on reducing the stream-wise
s well as the cross-stream diffusion during the transport of a sharp layer. To this end, Eq. (2) is solved in a square
× 1-domain with constant velocity v = −0.8ex − 0.6ey , dt = 0.001, and Dirichlet boundary condition

u D(x, y) =

{
1 if x ≥ 0.8 and y = 1
0 else

(63)

mposed on the inflow (x = 1 and y = 1) boundaries of the domain. Here, the time-step is set to dt = 0.001 and
he results are obtained using the enhanced scheme with and without the proposed combined BFECC algorithm on
he 1292 structured mesh as shown in Fig. 15.

Figs. 16 and 17 present the results along a perpendicular to the stream and a parallel to the stream cut-
ine, respectively. It is clearly observable that the proposed combined BFECC algorithm effectively reduces the
ross-stream diffusivity while it improves the capturing of the theoretically sharp stream-wise front.

The L1-norm of the error is E1 = 0.0203 for the enhanced scheme without the BFECC algorithm. Upon the
pplication of the proposed combined BFECC algorithm, the error is reduced to E1 = 0.0158.

. Conclusion

This work constituted a methodology to substantially improve the accuracy of the numerical solution of the
dvection equation by adjusting the diffusivity of the numerical schemes; this was achieved by enhancing the back
nd forth error compensation and correction (BFECC) algorithm. It was shown how a gradient-based limiter can be
sed to retain the monotonicity of the numerical method obtained as a combination of the BFECC algorithm and an
riginally monotonicity-preserving scheme. The proposed algorithm was combined with different stabilized schemes
nd the resulting solvers were applied to a series of advection test-cases. It was revealed that while the proposed
lgorithm possesses the capability of the conventional BFECC algorithm for adjusting both the extra diffusivity

nd anti-diffusivity of the underlying numerical scheme, it provides a considerable improvement to the result in
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Fig. 11. Solid-body rotation at t = 6.28. Results are obtained using the enhanced underlying scheme on the unstructured mesh and presented
or the nodes lie on (a) x = 0.5 and (b) y = 0.75 cut-lines.

he vicinity of the local extrema. In addition to a strong reduction in the error, it was proved that the proposed
lgorithm substantially increases the rate of mesh-convergence; it was almost doubled upon the application of the
resented BFECC algorithm to a low-order scheme. In all cases, the compliance of the results with the positivity
nd maximum principle was observed.

All the results presented in this work were obtained utilizing an explicit scheme (forward Euler discretization
n time). Considering that the coefficient of unknowns incorporated only a combination of the consistent and the
umped mass matrix, the associated computational effort was rather low. Moreover, at each time-step, the proposed
lgorithm requires a fixed number of (four) sub-steps to estimate the error and do the correction. Therefore, in case
he contribution of the consistent mass matrix is neglected, a fully explicit method would be obtained. Taking into
ccount that by applying the proposed BFECC algorithm to the presented enhanced Eulerian scheme, the resulting
rror in the benchmark problem was comparable to that of the state-of-the-art numerical methods, this work provided
n alternative to the nonlinear approaches developed to address convection-dominated transport problems. It must
e noted that the application of the proposed algorithm is not limited to the underlying schemes presented in this
ork; in a wider view point, this algorithm can also be customized to be applied to numerical techniques other than
he finite element method.
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f

Fig. 12. Solid-body rotation at t = 6.28. Results are obtained using the enhanced underlying scheme on the unstructured mesh and presented
or the nodes lie on (a) x = 0.5 and (b) y = 0.75 cut-lines.

Fig. 13. Solid-body rotation at t = 6.28. Results are obtained for the structured mesh and presented as surface z = u(x, y); (a) and (b)
correspond to the SUPG-CWS underlying scheme without and with the combined BFECC algorithm, respectively.
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Fig. 14. Solid-body rotation at t = 6.28. Results are obtained for the structured mesh and presented as contours of u(x, y); (a) and (b)
correspond to the SUPG-CWS underlying scheme without and with the combined BFECC algorithm, respectively.

Fig. 15. Oblique inflow at t = 1, simulated using the enhanced underlying scheme with the proposed combined BFECC algorithm. The
esult is presented as surface z = u(x, y).
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Fig. 16. Oblique inflow at t = 1, simulated using the enhanced underlying scheme with and without the proposed combined BFECC
lgorithm. Results are presented along a cut-line perpendicular to the stream (y = 1 − 4x/3).

Fig. 17. Oblique inflow at t = 1, simulated using the enhanced underlying scheme with the BFECC algorithm. Results are presented along
cut-line parallel to the stream (y = 0.325 + 3x/4).

ppendix A. Semi-Lagrangian approach

The unconditionally stable CIR scheme [27,29,41,42], which is named after Courant, Isaacson, and Rees [43],
epicts the constructive idea of the semi-Lagrangian approach for solving hyperbolic differential equations; the
olution at (x, t) is obtained by following the corresponding characteristic line to reach (x′, t − ∆t) in the
patial–temporal space [44].

For Eq. (2) the CIR scheme reads

u(x, t) = u(x − ∆tv, t − ∆t). (A.1)

This scheme is temporally and spatially first-order [27]; nevertheless, it can be further enhanced to obtain a second-
order solver [42] by acquiring non-linear interpolation schemes, which is beyond the scope of the present work. It
should be noted that this scheme relies on the spatial search within the computational domain and consequently, in
cases that the characteristic line points to the outside of the domain, the implementation of the solution algorithm
is not straightforward. This issue specifically occurs in the vicinity of the inlet and curved boundaries.
21
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Appendix B. Comment on enhanced scheme implementation

The enhanced scheme is based on the implementation of Eq. (49) that by using the forward Euler time
discretization, reads

1
dt

MUn+1 =

(
1
dt

M + C + D
)

Un − Fn = 0, (B.1)

where the elemental contributions are assembled as

M = Ae∈E
(
αeMe

C + (1 − αe)Me
L

)
, (B.2)

D = Ae∈E
(
νe [

Me
L − Me

C

])
, (B.3)

and

F = Ae∈E

(
αeD̂e

)
. (B.4)

In combination of the BFECC algorithm, Eq. (B.1) is solved in forward and backward convection steps, i.e. first,
second, and fourth steps of the algorithms described in this paper.
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