103 research outputs found

    On Fairness in Simulatability-based Cryptographic Systems

    Get PDF
    Simulatability constitutes the cryptographic notion of a secure refinement and has asserted its position as one of the fundamental concepts of modern cryptography. Although simulatability carefully captures that a distributed protocol does not behave any worse than an ideal specification, it however does not capture any form of liveness guarantees, i.e., that something good eventually happens in the protocol. We show how one can extend the notion of simulatability to comprise liveness guarantees by imposing specific fairness constraints on the adversary. As the common notion of fairness based on infinite runs and eventual message delivery is not suited for reasoning about polynomial-time, cryptographic systems, we propose a new definition of fairness that enforces the delivery of messages after a polynomial number of steps. We provide strengthened variants of this definition by granting the protocol parties explicit guarantees on the maximum delay of messages. The variants thus capture fairness with explicit timeout signals, and we further distinguish between fairness with local timeouts and fairness with global timeouts. We compare the resulting notions of fair simulatability, and provide separating examples that help to classify the strengths of the definitions and that show that the different definitions of fairness imply different variants of simulatability

    Composability in quantum cryptography

    Full text link
    In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution protocol must fulfill to allow its safe use within a larger security application (e.g., for secure message transmission). To illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a quantum key distribution protocol. In a second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability framework and state the composition theorem which guarantees that secure protocols can securely be composed to larger applicationsComment: 18 pages, 2 figure

    Cryptographically sound analysis of security protocols

    Get PDF
    In this thesis, we show how formal methods can be used for the cryptographically sound verification of concrete implementations of security protocols in order to obtain trustworthy and meaningful proofs, and to eliminate human inaccuracies. First, we show how to derive secure concrete implementations of a given abstract specification. The security proofs are essentially based on the well-established approach of bisimulation which can be formally verified yielding rigorous proofs. As an example, we present both a specification and a secure implementation of secure message transmission with ordered channels. Moreover, the example comprises a general methodology how secure implementation of arbitrary specifications can be obtained. Thereafter, we concentrate on the actual goals the protocol should fulfill. Thus, we define integrity properties in our underlying model and we show that logic derivations among them carry over specification to the concrete implementation, which makes them accessible for tool-assisted verification. As an example, we formally verify one concrete protocol using the theorem prover PVS yielding the first machine-aided and sound proof of a cryptographic protocol. As additional properties of security protocols, we consider liveness and noninterference. The standard definition of these properties is not suited to cope with protocols involving real cryptographic primitives, so we introduce new definitions which are restricted to polynomial runs and include error probabilities. We show that both properties carry over from the specification to the concrete implementation, and we present two examples, one for each property, which we prove to fulfill our definitions.Diese Arbeit behandelt formale Verifikation von Sicherheitsprotokollen mit dem Ziel,maschinell verifizierte Beweise zu ermöglichen, die die kryptographische Semantik respektieren, d.h., deren Aussagen bzgl. der zugrundeliegenden Kryptographie und den kryptographischen Sicherheitsdefinitionen gültig sind (engl. cryptographically sound proofs).Als erstes zeigen wir, wie formale Methoden benutzt werden können, um sichere konkrete Implementationen anhand einer gegebenen abstrakten Spezifikation herzuleiten. Wir geben dafür eine allgemeingültige Methodologie an, die auf formal verifizierten Bisimulationen basiert, was uns rigorose und glaubhafte Sicherheitsbeweise liefert. Als Beispiel geben wir eine Spezifikation und eine konkrete Implementation für sichere geordnete Nachrichtenübertragung an. Die im Sicherheitsbeispiel der Implementation auftretende Bisimulation verifizieren wir mit Hilfe des Theorembeweisers PVS. Als zweites konzentrieren wir uns auf die Ziele, die ein Sicherheitsprotokoll erfüllen soll. Wir definieren Integritätseigenschaften in unserem zugrundeliegenden Modell, und wir beweisen, dass sich logische Schlussfolgerungen bzgl. dieser Eigenschaften von der Spezifikation auf die Implementation übertragen, was eine essentielle Voraussetzung für maschinelle Verifikation darstellt. Als Beispiel verifizieren wir ein konkretes Protokoll mit Hilfe des Theorembeweisers PVS, was uns den ersten Beweis eines Sicherheitsprotokolls liefert, der sowohl maschinell verifiziert ist als auch der kryptographischen Semantik "treu'; bleibt, d.h., der wirklich ein Beweis gegen die kryptographischen Primitive und deren kryptographische Sicherheitsdefinitionen ist. Als zusätzliche Eigenschaften von Sicherheitsprotokollen betrachten wir Lebendigkeit (engl. liveness) und Unbeeinflussbarkeit (engl. non-interference). Da sich die Standarddefinition dieser wichtigen Eigenschaften als ungeeignet für echte Kryptographie herausstellt, führen wir allgemeinere Definitionen ein, die auf polynomielle Länge beschränkt sind und Fehlerwahrscheinlichkeiten berücksichtigen.Wir zeigen, dass sich diese Eigenschaften von der Spezifikation auf die Implementation übertragen,was wiederum den Bezug zu formalen Methoden herstellt. Wir präsentieren zwei Beispiele, je eines für jede Eigenschaft, von denen wir beweisen, dass sie die entsprechende Definition erfüllen

    Cryptographically sound analysis of security protocols

    Get PDF
    In this thesis, we show how formal methods can be used for the cryptographically sound verification of concrete implementations of security protocols in order to obtain trustworthy and meaningful proofs, and to eliminate human inaccuracies. First, we show how to derive secure concrete implementations of a given abstract specification. The security proofs are essentially based on the well-established approach of bisimulation which can be formally verified yielding rigorous proofs. As an example, we present both a specification and a secure implementation of secure message transmission with ordered channels. Moreover, the example comprises a general methodology how secure implementation of arbitrary specifications can be obtained. Thereafter, we concentrate on the actual goals the protocol should fulfill. Thus, we define integrity properties in our underlying model and we show that logic derivations among them carry over specification to the concrete implementation, which makes them accessible for tool-assisted verification. As an example, we formally verify one concrete protocol using the theorem prover PVS yielding the first machine-aided and sound proof of a cryptographic protocol. As additional properties of security protocols, we consider liveness and noninterference. The standard definition of these properties is not suited to cope with protocols involving real cryptographic primitives, so we introduce new definitions which are restricted to polynomial runs and include error probabilities. We show that both properties carry over from the specification to the concrete implementation, and we present two examples, one for each property, which we prove to fulfill our definitions.Diese Arbeit behandelt formale Verifikation von Sicherheitsprotokollen mit dem Ziel,maschinell verifizierte Beweise zu ermöglichen, die die kryptographische Semantik respektieren, d.h., deren Aussagen bzgl. der zugrundeliegenden Kryptographie und den kryptographischen Sicherheitsdefinitionen gültig sind (engl. cryptographically sound proofs).Als erstes zeigen wir, wie formale Methoden benutzt werden können, um sichere konkrete Implementationen anhand einer gegebenen abstrakten Spezifikation herzuleiten. Wir geben dafür eine allgemeingültige Methodologie an, die auf formal verifizierten Bisimulationen basiert, was uns rigorose und glaubhafte Sicherheitsbeweise liefert. Als Beispiel geben wir eine Spezifikation und eine konkrete Implementation für sichere geordnete Nachrichtenübertragung an. Die im Sicherheitsbeispiel der Implementation auftretende Bisimulation verifizieren wir mit Hilfe des Theorembeweisers PVS. Als zweites konzentrieren wir uns auf die Ziele, die ein Sicherheitsprotokoll erfüllen soll. Wir definieren Integritätseigenschaften in unserem zugrundeliegenden Modell, und wir beweisen, dass sich logische Schlussfolgerungen bzgl. dieser Eigenschaften von der Spezifikation auf die Implementation übertragen, was eine essentielle Voraussetzung für maschinelle Verifikation darstellt. Als Beispiel verifizieren wir ein konkretes Protokoll mit Hilfe des Theorembeweisers PVS, was uns den ersten Beweis eines Sicherheitsprotokolls liefert, der sowohl maschinell verifiziert ist als auch der kryptographischen Semantik "treu\u27; bleibt, d.h., der wirklich ein Beweis gegen die kryptographischen Primitive und deren kryptographische Sicherheitsdefinitionen ist. Als zusätzliche Eigenschaften von Sicherheitsprotokollen betrachten wir Lebendigkeit (engl. liveness) und Unbeeinflussbarkeit (engl. non-interference). Da sich die Standarddefinition dieser wichtigen Eigenschaften als ungeeignet für echte Kryptographie herausstellt, führen wir allgemeinere Definitionen ein, die auf polynomielle Länge beschränkt sind und Fehlerwahrscheinlichkeiten berücksichtigen.Wir zeigen, dass sich diese Eigenschaften von der Spezifikation auf die Implementation übertragen,was wiederum den Bezug zu formalen Methoden herstellt. Wir präsentieren zwei Beispiele, je eines für jede Eigenschaft, von denen wir beweisen, dass sie die entsprechende Definition erfüllen

    08491 Abstracts Collection -- Theoretical Foundations of Practical Information Security

    Get PDF
    From 30.11. to 05.12.2008, the Dagstuhl Seminar 08491 ``Theoretical Foundations of Practical Information Security \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Unifying Simulatability Definitions in Cryptographic Systems under Different Timing Assumptions

    Get PDF
    AbstractThe cryptographic concept of simulatability has become a salient technique for faithfully analyzing and proving security properties of arbitrary cryptographic protocols. We investigate the relationship between simulatability in synchronous and asynchronous frameworks by means of the formal models of Pfitzmann et al., which are seminal in using this concept in order to bridge the gap between the formal-methods and the cryptographic community. We show that the synchronous model can be seen as a special case of the asynchronous one with respect to simulatability, i.e., we present an embedding from the synchronous model into the asynchronous one that we show to preserve simulatability. We show that this result allows for carrying over lemmas and theorems that rely on simulatability from the asynchronous model to its synchronous counterpart without any additional work, hence future work on enhancing simulatability-based models can concentrate on the more general asynchronous case

    On the Power of an Honest Majority in Three-Party Computation Without Broadcast

    Get PDF
    Fully secure multiparty computation (MPC) allows a set of parties to compute some function of their inputs, while guaranteeing correctness, privacy, fairness, and output delivery. Understanding the necessary and sufficient assumptions that allow for fully secure MPC is an important goal. Cleve (STOC\u2786) showed that full security cannot be obtained in general without an honest majority. Conversely, by Rabin and Ben-Or (STOC\u2789), assuming a broadcast channel and an honest majority enables a fully secure computation of any function. Our goal is to characterize the set of functionalities that can be computed with full security, assuming an honest majority, but no broadcast. This question was fully answered by Cohen et al. (TCC\u2716) -- for the restricted class of symmetric functionalities (where all parties receive the same output). Instructively, their results crucially rely on agreement and do not carry over to general asymmetric functionalities. In this work, we focus on the case of three-party asymmetric functionalities, providing a variety of necessary and sufficient conditions to enable fully secure computation. An interesting use-case of our results is server-aided computation, where an untrusted server helps two parties to carry out their computation. We show that without a broadcast assumption, the resource of an external non-colluding server provides no additional power. Namely, a functionality can be computed with the help of the server if and only if it can be computed without it. For fair coin tossing, we further show that the optimal bias for three-party (server-aided) rr-round protocol remains Θ(1/r)\Theta(1/r) (as in the two-party setting)

    Gage MPC: Bypassing Residual Function Leakage for Non-Interactive MPC

    Get PDF
    Existing models for non-interactive MPC cannot provide full privacy for inputs, because they inherently leak the residual function (i.e., the output of the function on the honest parties’ input together with all possible values of the adversarial inputs). For example, in any non-interactive sealed-bid auction, the last bidder can figure out what was the highest previous bid. We present a new MPC model which avoids this privacy leak. To achieve this, we utilize a blockchain in a novel way, incorporating smart contracts and arbitrary parties that can be incentivized to perform computation (“bounty hunters,” akin to miners). Security is maintained under a monetary assumption about the parties: an honest party can temporarily supply a recoverable collateral of value higher than the computational cost an adversary can expend. We thus construct non-interactive MPC protocols with strong security guarantees (full security, no residual leakage) in the short term. Over time, as the adversary can invest more and more computational resources, the security guarantee decays. Thus, our model, which we call Gage MPC, is suitable for secure computation with limited-time secrecy, such as auctions. A key ingredient in our protocols is a primitive we call “Gage Time Capsules” (GaTC): a time capsule that allows a party to commit to a value that others are able to reveal but only at a designated computational cost. A GaTC allows a party to commit to a value together with a monetary collateral. If the original party properly opens the GaTC, it can recover the collateral. Otherwise, the collateral is used to incentivize bounty hunters to open the GaTC. This primitive is used to ensure completion of Gage MPC protocols on the desired inputs. As a requisite tool (of independent interest), we present a generalization of garbled circuit that are more robust: they can tolerate exposure of extra input labels. This is in contrast to Yao’s garbled circuits, whose secrecy breaks down if even a single extra label is exposed. Finally, we present a proof-of-concept implementation of a special case of our construction, yielding an auction functionality over an Ethereum-like blockchain
    corecore