View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

Technical Report: Unifying Simulatability Definitions in
Cryptographic Systems under Different Timing Assumptions
(Extended Journal Version)

Michael Backes
Saarland University
backes@cs.uni-sh.de

April 17, 2007

Abstract

The cryptographic concept of simulatability has becomdiarsatechnique for faithfully analyzing
and proving security properties of arbitrary cryptographiotocols. We investigate the relationship
between simulatability in synchronous and asynchronamsdéworks by means of the formal models
of Pfitzmann et al., which are seminal in using this concepruter to bridge the gap between the
formal-methods and the cryptographic community. We shat thhe synchronous model can be seen
as a special case of the asynchronous one with respect téasimility, i.e., we present an embedding
from the synchronous model into the asynchronous one thathow to preserve simulatability. We
show that this result allows for carrying over lemmas anaitbms that rely on simulatability from the
asynchronous model to its synchronous counterpart withoytdditional work, hence future work on
enhancing simulatability-based models can concentratkeomore general asynchronous case.

Keywords: Probabilistic systems, security, simulatability, crygraphy, synchronous / asynchronous

1 Introduction

In recent times, the analysis of cryptographic protocok lbeen getting more and more attention, and the
demand for general frameworks for representing cryptdgcaprotocols and the security requirements of
cryptographic tasks has been rising. Existing framewoekegther motivated by the complexity-theoretic
view on cryptography, which aims at proving cryptographiotpcols with respect to the cryptographic
semantics, or they are motivated by the view of the formalimg#s community, which aims at capturing
abstractions of cryptography in order to make such protoaotessible for formal verification. Frameworks
built on abstractions of cryptography will be further desilth in the related literature along with a discussion
on the cryptographic justification of these abstractions.

For living up to the probabilistic nature of cryptographyframework for dealing with actual cryp-
tography necessarily has to be able to deal with probdbilisthaviors. The standard understanding in
well-known, non security-specific probabilistic framek®iike [3, 4] is that the order of events is fixed
by means of a probabilistic scheduler that has full infororabout the system. In contrast to that, the
standard understanding in cryptology (closest to a rigpaefinition in [5]) is that the adversary schedules

*Earlier versions of this paper appeared in [1, 2].

https://core.ac.uk/display/249325848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

everything, but only with realistic information. This cesponds to making a certain subclass of sched-
ulers explicit for the model from [3]. However, if one spléismachine into local submachines, or defines
intermediate systems for the purposes of proof only, thig m@oduce many schedules that do not corre-
spond to a schedule of the original system and thereforecpmplicate the proofs. The typical solution is
a distributed definition of scheduling which allows mackitleat have been scheduled to schedule certain
(statically fixed) other machines themselves.

Based on these requirements, several general definitiosscofe protocols were developed over the
years, e.g. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], with many iidisl extensions in subsequent papers, e.g.,
[16, 17], which are all potential candidates for such a fraré. To allow for a faithful analysis of cryp-
tographic protocols, it is well-known that such models ralydiave to capture probabilistic behaviors, but
also complexity-theoretically bounded adversaries a$ ageh reactive environment of the protocaol, i.e.,
continuous interaction with the users and the adversanfortimately, most of the above work does not
live up to these requirements in spite of its generality, ntyasince it concentrates on the task of secure
function evaluation, which does not capture a reactiverenment. Currently, the models of Pfitzmann et
al. [10, 13, 15] and Canetti [14], which have been develogmtterrently but independently, seem to be
establishing themselves as the standard models for sootmtpl analysis and design.

Regarding the underlying definition of time, such models bansplit into synchronous and asyn-
chronous ones. In synchronous models [10], time is assumbd expressible in rounds, whereas asyn-
chronous scenarios [13, 14, 15] do not impose any assummtidime. This makes asynchronous scenarios
attractive since no assumption is made about network delagshe relative execution speed of the parties.
Moreover, the notion of rounds is difficult to justify in ptam as it seems to be very difficult to estab-
lish them for the Internet for example. This attractivenisssubstantiated by a large body of literature on
asynchronous cryptographic protocols, e.g., [18, 19]. el@x, time guarantees are sometimes explicitly
desired, e.g., on when a process can abort. Hence assumpéioa to be made in this case, which induce a
certain amount of synchrony again. This sometimes makeshsynous assumption of time nevertheless
necessary in practice, e.g., in Kerberos [20].

Hence researchers usually restrict their attention to @fi@itdon of time, or they are driving double-
tracked by maintaining two separate models which, howgresupposes proving every theorem for both
models. This is not nice. An alternative approach, takehiswork, is to show that the synchronous model
can be regarded as a special case of an asynchronous onesreneddoes not have to be further advanced
separately, but still can be used to conveniently expressisgnous protocols.

Although this idea might not be surprising, it is very difficto achieve since it turns out that carrying
over general results from the asynchronous to the embeguaetironous model presupposes the possibility
of (at least partially) reversing the considered embeddRgcall that suitable frameworks, especially the
framework of Pfitzmann et al., have a distributed schedulihgch significantly complicates this reversion.

Formally, a special case means that there is an embeddimgtfre® synchronous model into the asyn-
chronous model that preserves a desired property. Whigiepsohas to be preserved depends on the goals
to strive for. For cryptographic protocols, the propertysghulatability stands out. Simulatability cap-
tures the notion of a cryptographically secure impleméoriaind serves as a link to the formal-methods
community, which typically only hold a top-level view of giography, where cryptographic primitives
are replaced by deterministic abstractions. A more congurailie discussion of simulatability and its rela-
tionship to protocol verification work done by the formaldmads community is given in the paragraph on
related literature below.

In the following, we investigate the synchronous and assorobus models of Pfitzmann et al. [10, 13,
15], which are seminal in using the concept of simulatabilit bridge the gap between the formal-methods
and the cryptographic community. We show that the synchusrmmoodel can be embedded in the asyn-
chronous model such that simulatability is preserved by ¢hibedding, i.e., if two systems fulfill the sim-

ulatability relation in the synchronous model, their regjppe images fulfill the relation in the asynchronous
model and vice versa. We show that this result allows foryiragrover lemmas and theorems from the
asynchronous case to the synchronous case without prdvimg twice, hence future work on enhancing
simulatability-based models can concentrate on the marergkasynchronous case. We are confident that
this result helps to make future protocol analysis in theedeats more convenient and more efficient.

Moreover, we believe that our approach for establishingetindedding and its properties can be suc-
cessfully used for other models with only minor changes. eEgly the asynchronous model of Canetti
is surely worth to be investigated. However, his correspuandynchronous model [12] is still specific for
secure function evaluation; hence adopting it to a rea@iwgronment is a necessary prerequisite for this
future work. The lack of such a reactive synchronous modsl-+waesides the fact that the models of Pfitz-
mann et al. are more rigorously defined than the one of Canetir main reason why we decided to base
our work on the model of Pfitzmann et al.

Related Literature. If cryptographic protocols should be verified using formadthods, some kind of
abstraction is needed as the underlying reduction prootsygitography are still out of scope of current
verification techniques. This abstraction is usually based on the so-called Dolav-astraction [24],
which considers cryptographic primitives, e g.for encryption and) for decryption, as operators in a free
algebra where only predefined cancellation rules hold. Rstance, twofold encryption of a message
does not yield another message from the basic message spdbe termE(E(m)). A typical cancellation
rule is D(E(m)) = m. This abstraction simplifies proofs of larger protocolssidarably, and it gave rise
to a large body of literature on analyzing the security oftgeols using techniques for formal verification
of computer programs (a very partial list of work includes,[26, 27, 28, 29, 30, 31, 32, 33, 34]).

Since this line of work turned out to be very successful, theresting question arose whether these ab-
stractions are indeed justified from the view of cryptogsaple., whether properties proved for the abstrac-
tions are still valid for the cryptographic implementati®uch cryptographic underpinnings of a Dolev-Yao
model were first addressed by Abadi and Rogaway in [35]. Hewehiey only handled passive adversaries
and symmetric encryption. The protocol language and dgquoperties handled were extended in [36, 37],
but still only for passive adversaries. This excludes mbshe typical ways of attacking protocols, e.g.,
man-in-the-middle attacks and attacks by reusing a megsagm a different place or a concurrent protocol
run. A full cryptographic justification for a Dolev-Yao mddee., for arbitrary active attacks and within ar-
bitrary surrounding interactive protocols, was first givef8, 39], with extensions in [40, 4£]It supports
nested operations in the intuitive sense; operations tegperformed locally are not visible to the adver-
sary. Itis secure against arbitrary active attacks, an#isvarthe context of arbitrary surrounding interactive
protocols. This holds independently of the goals that onetsvip prove about the surrounding protocols;
in particular, property preservation theorems for the $atadbility definition we use have been proved for
integrity, fairness, liveness, and non-interference §#l,46, 47, 48, 49]. Moreover, tailored tool support
for this library was subsequently added [50, 51]. Based ersgiecific Dolev-Yao model whose soundness
was proven in these papers, several well-known securityppots were proved in a computationally sound
manner [52, 53, 54, 55, 56, 57]. This shows that in spite ofregddertain operators and rules compared with
simpler Dolev-Yao models (in order to be able to use arhjitcayptographically secure primitives without
too many changes in the cryptographic realization), suchoaffis possible in the style already used in

LEfforts are also under way to formulate syntactic calculidealing with probabilism and polynomial-time considamas, in
particular [21, 9, 22, 23] and, as a second step, to encodeitiie proof tools. However, this approach can not yet hapoi¢ocols
with any degree of automation. Generally it should be seepmplementary to, rather than competing with, the approégketting
simple deterministic abstractions of cryptography andkivay with those wherever cryptography is only used in a biaskway.

2In more recent work, drawing upon insides gained from thefobthe cryptographic library, we showed that widely cahsi
ered symbolic abstractions of hash functions and of the X@&ation cannot be proven computationally sound in genkesice
indicating that their current symbolic representationghibe overly simplistic [42, 43].

3

automated tools, only now with a sound cryptographic basmther cryptographically sound proof of this
protocol was concurrently developed by Warinschi [58]. Pheof establishes a stronger security property
but is conducted from scratch in the cryptographic appreetich takes it out of the scope of formal proof
tools. Laud [59] has presented a cryptographic underpgnfona Dolev-Yao model of symmetric encryp-
tion under active attacks. His work enjoys a direct conoectiith a formal proof tool, but it is specific to
certain confidentiality properties, restricts the surding protocols to straight-line programs in a specific
language, and does not address a connection to the remaiminmigjves of the Dolev-Yao model. Herzog et
al. [60, 61] and Micciancio and Warinschi [62] have recemllgo given a cryptographic underpinning under
active attacks. Their results are considerably weaker ttaione in [38] since they are specific for public-
key encryption; moreover, the former relies on a strongsumption whereas the latter severely restricts
the classes of protocols and protocol properties that camblyzed using this primitive. Section 6 of [62]
further points out several possible extensions of theikwdrich all already exist in the earlier work of [38].
Guttman et al. [63] show that the probability of two execni@f the same protocol — either executed in a
Dolev-Yao-like framework or using real cryptographic pitires — may deviate from each other at most for
a certain bound. However, their results are specific for tegman-Carter system so far. Moreover, as this
system is information-theoretically secure, its secypityof is much easier to handle than primitives with
security guarantees only against computationally bouradedrsaries since no reduction proofs against un-
derlying number-theoretic assumptions have to be madeeSantiner approaches for special security goals
or primitives are [64, 37].

The first full justification of a Dolev-Yao model presented38] was achieved by exploiting the concept
of simulatability, which serves as a cryptographicallyfisignt relationship between abstract specifications
and cryptographic implementations, i.e., abstractiongkvhan be shown to simulate a given implemen-
tation in a particular sense are known to be sound with régpebe security definitions of cryptography.
Simulatability was first invented for multi-party functi@valuation [65, 6, 8, 7, 12], i.e., systems with only
one initial input set and only one output set. An extensiaaiteactive scenario, where participants can make
new inputs many times, e.g., start new sessions like keyaeygds, was first fully defined in [66], with exten-
sions to asynchronous systems in [13, 14, 15]. Each of tlee tonsidered models was already successfully
used to built up sound abstractions of various cryptog@phimitives like secure channels [13, 14], certified
mail [67], or key exchange [68, 69].

Comparing the models of Canetti and Pfitzmann et al., we candfiate that both models enjoy very
general composition theorems (where the first compositi@orems in [70, 13] were superseded by the
theorem in [14], and again by the one in [71]). Now on the onedh&anetti's model has been used to
address more abstractions of stand-alone cryptographiatpes so far like secure multi-party computa-
tion [72] or commitments [73]. On the other hand, the asyoebus model of Pfitzmann et al. was used
to solve the long-standing open problem of justifying a DeYao type model of cryptography as used in
virtually all automated protocol provers: the aforememtidcryptographic libraryfrom [38]. This library
is a flexible toolbox for constructing abstract nested agpdphic terms and for using them in arbitrary
protocols, together with a cryptographic realization ity secure under arbitrary active attacks in the
standard model of cryptography. Together with composidod preservation theorems of the underlying
model, the library serves as the foundation for machinest&sk reasoning about cryptographic protocols
while nevertheless providing a provably secure implenteamta Furthermore, the models of Pfitzmann et
al. are more rigorously defined and early examples of toppstted proofs in their models exist [16, 44],
using PVS [74].

Outline. In Section 2 we review the reactive models for synchronodsaagnchronous time. In Section 3,
we explain how the embedding works and give a rigorous difmitStarting with a proof sketch of the first
embedding theorem in Section 4 (there will be two of them) smme lemmas capturing essential steps in

the theorem’s proof, we fade to the embedding theorems itiddes. In conjunction, both theorems allow
for carrying over theorems from the asynchronous to thelsymous case, which is shown in Section 6 by
means of an example.

2 Review of the Reactive Models in Synchronous and Asynchramis Net-
works

In this section we review the synchronous and the asynchionmwdel for probabilistic reactive systems as
introduced in [10] and [13, 15], respectively. Several da@ins are only sketched, whereas those that are
essential for understanding our upcoming results are giverl detail. To simplify the basic understanding
of these models, we start with an informal overview of the enoomplex asynchronous model and the
distributed scheduling scheme.

2.1 Informal Overview of the Asynchronous Model

We consider sets of asynchronously communicating prabtbiktate machines; such sets are catietd
lectionsof machines. The left-hand side of Figure 1 sketches a d¢mifeof three machines connected via
channels represented by solid arrows. To model asynchsaimoing, messages sent between the machines
stay on their respective channel until they are scheduledhrically, each channel contains an additional
machine called a buffer, which stores messages in tranisis. i3 shown on the right-hand side of Figure 1.
WhenMs; sends a message kb3, this message is stored in the buffer. An incoming messagechick
channel for the buffer, represented by the dashed arromtédgpreted as a numbérand thei-th message

in the buffer is removed and output ké;. Buffers need not be specified explicitly; a completion epar
adds all necessary buffers to a collection of normal mashine

A distributed scheduling scheme that allows for expresaihgealistic scenarios is achieved by allow-
ing a machine that has been scheduled to schedule certanro#thines itself. This is done by giving the
machine the control over the clock channels of certain beiffén Figure 1, the machinkl; can schedule
messages sent froid, to M3, while the channels betwedvi; and My show procedure-call-style local
interaction. Where one wants to express that an advershedsles everything, one simply gives the ad-
versary all the scheduling rights. Problems with purelyeadarial scheduling were already noted in [75];
hence they schedule secure channels with uniform probabiifore adversary-chosen events. However,
that introduces a certain amount of global synchrony. Funtiore, the considered model does not require
local scheduling for all secure channels; they may be blisdheduled by the adversary (i.e., without even
seeing if there are messages on the channel). For instdnsanodels cases where the adversary has a
global influence on relative network speed.

Probability spaces for runs are defined in detail for suckectbns of machines, as well as the view
of a subset of the machines. These definitions are usefuhldey® more security-specific system classes
considered later. Further, the Turing-machine realiratiod runtime considerations are defined in this
generality.

Security-specificstructuresare defined as collections of machines with distinguishedcee ports for
the honest users. Such structures are augmented by arimteathinesH andA representing the honest
users and the adversary, who can interact. One then speaksmfiguration In the presence of adversaries,
the structure of correct machines running may not beirtkended structurehat the designer originally
planned. For instance, some machines might have been tedrugence they are missing from the actual
structure and the adversary took over their connectionss ishmodeled by defining aystemas a set of
possible actual structures.

e ————
v
<

5 v, —{[TIIII

Figure 1: A collection of three machines is shown on the [8iilid arrows represent channels. The dashed
arrow depicts thal; schedules messages on the channel fkbrio M3. Each channel implicitly contains
a buffer for storing messages in transit, shown on the right.

Scheduler for
q<!| buffer q
: - vas?
Sending q-? -
machine| 9 > [m]]]]]]]]] Buffer q
q-t 1
N Receiving
2197 |machine

Figure 2: Ports and buffers.

2.2 General System Model

In the following we consider a finite alphab8tand some special symbdls’, < < ¢ ¥ that will be used to
express different ports of machines. lsoe ¥* andl € Ny, we defines|; to be thel-letter prefix ofs.

Machines can exchange messages with each othgovia Intuitively, a port is a possible attachment
point for a channel when a machine of Figure 1 is consider&blation. As in many other models, channels
in collections of machines are specified implicitly by naghtonventions on the ports. Figure 2 gives an
overview of the naming scheme; it can be seen as a yet moriedetgew of the right-hand side of Figure 1.
The name of a port (hekg serves as an identifier and will later be used to define whixtsfare connected
to each other. Inspired by the CSP-notation [76], input amput ports are represented by the symkiols
and!, respectively. These ports are used for “usual” messagertriasion, whereas the pods’?, '/,
q“?, andq“! are used for the distributed scheduling. In the following, sall the porg! the clock-out port
for bufferg. In the synchronous model, buffers do not exist nor do thbeédaling” portsq**?, q**!, q97,
andq!.

As thelow-level complemeni® of a portq (either in- or output port) we denote the port with which it
connects according to Figure 2, .71 := g7, q!° := q©7, q*’!° := q7, and vice versa. Thiigh-level
complemeny© of a portq denotes the connecting port without the buffer, &, = q? and vice versa. For
a set or a sequende of ports, letin(P) andout(P) denote the subset or subsequenc® ebnsisting of the
input ports or the output ports d@t, respectively.

After introducing ports, we now defin@achines The primary machine model is probabilistic state-
transition machines, similar to probabilistic I/O automas in [77, 78]. Other terms for such machines are
extended finite-state automata or state-transition mashifor the computational complexity aspects, im-
plementations of such machines are defined by probabiiiggcactive Turing machines. Turing machines
are not used as the sole or primary model, in contrast to prigstographic literature, because the 1/0
automata allows for expressing non-cryptographic prdtpeots and abstractions from cryptography in a
well-defined way unencumbered with Turing-machine detdilss is important for the desired accessibility

of the resulting model to existing theorem provers and mobetkers. The model makes one addition to
individual machines compared with other I/0O automata nsdelorder to enable machines to have polyno-
mial runtime independent of their environment without lgegtutomatically vulnerable to denial-of-service
attacks by long messages: It allows state-depenigeigth boundon the inputs that a machine will read
from each channel.

A machine has @equence of portcontaining both input ports and output ports, and a setates
comprising sets oinitial andfinal states If a machine is switched, it receives an input tuple at ifsuin
ports and performs itgansition functionyielding a new state and an output tuple in the determincsiie,
or a finite distribution over the set of states and possiblpus in the probabilistic case. Furthermore,
each machine has state-dependent bounds on the lengthigptite accepted at each port to enable flexible
enforcement of runtime bounds. The parts of an input thabayend the length bound are ignored. The
valueoco denotes that arbitrarily long inputs are accepted.

Definition 2.1 (Machines) A machineis a tuple
M = (namewm, Portsy, Statesm, dm, Im, Inim, Finw)

of anamenamepn € X7, afinite sequencéortsy of ports a setStatesy C X* of states a probabilistic
state-transition functiody;, alength functiory : Statesy — (NU{oc})lin(Portsmll and setdniy, Finy C
Statesy of initial andfinal states Its input setis Zy, := (X*)/"(Portsml: thei-th element of an input tuple
denotes the input at theth input port. Itsoutput setis Oy = (X*)lout(Pertsm)l - The empty wordeg,
denotes no in- or output at a pody, maps each paifs, I) € Statesy x Zy to a finite distribution over
Statespm x Om. If s € Finy thenly(s) = (0,...,0); if I = (¢,...,¢) thendm(s,I) = (s, (e,...,€))
deterministically. Inputs are ignored beyond the lengtbriats, i.e.5m(s, I) = dm(s, I[,()) forall I €
Im, where(I [y, (s))i = Lil1(s), for alli.

In the text, we often write 1" also for namey. For a setM of machines, leports(M) denote the set
of ports of all machines! € M. We call a machinev a black-box submachinef a machineM’ if the
machineM’ has access to the state-transition functigmof M, i.e., it can executéy, for the current state of
the machine and arbitrary inputs. In order to concisely teespecific input and output tuples of a machine
M, we introduce some additional notation. Let?,...,p,?) := in(Portsy), let P := (p;?,...,p;7)
denote a subsequence @7, ...,p,7), and let(v;)cq1,.. ;3 € (X*)7. If the sequence of input ports of
M is clear from the context, we defiﬂgilrg:l,1 _____ pi; 7=v; to be the tupleZ of lengthn with Z; = v; for alll
le{l,...,jtandZ; =eforalll € {1,...,n}\ {i1,...,4;}. Inthe special cas€ = () orv; = € for all 7,
i.e., in case of an all-empty input, we wrife. Outputs are defined similarly.

For computational aspects, a machivigs regarded as implemented by a probabilistic interactiueng
machine as introduced in [79]. We refer to [15] for the predefinition of the implementation. The main
reason to introduce a Turing-machine realization of thehimecmodel is to define complexity notions. A
machine is callegholynomial-timeif its Turing machine implementation only needs time polynal in its
initial worktape content, independent of all inputs on cammiation tapes, i.e., if there exists a polynomial
@ such that all possible runs of the Turing machine are of leagmostQ (%), wherek is the length of the
initial worktape content.

After introducing individual machines, we now focus awilectionsof finitely many machines, with the
intuition that these machines interact. A collectidf machines is a finite set of machines with pairwise
different machine names and disjoint sets of ports. A por gbllection is calledree if its connecting
port is not in the collection. The free ports of a collecti®mre denoted aBee(C). Given a collection of
machines in the asynchronous model, we want to add buffeedlfthannels to model asynchronous timing.
This is modeled by theompletion[C] of a collectionC. The completion is the union of all machines®f

and the buffers needed for every channel. In the asynchsormmdel, a collectior® is calledclosedif its
completion|C] has no free ports except a special master clock-ingtt, i.e.,free([C]) = {clk?}. When
we define the interaction of several machines, the mastek-@foport will belong to a distinguished machine
called themaster schedulewhich is used to resolve situations where the interactiomeoaproceed. In the
synchronous case, we deménet(C) = 0.

For security purposes, special collections are neede@ubecan adversary may have taken over parts
of the initially intended system, e.g., different situatichave to be captured depending on which and how
many users are considered as being malicious. Therefogestens consists of several possible remaining
structures.

Definition 2.2 (Structures and Systems)A structureis a pairstruc = (M, S) whereM is a collection of
non-buffer machines callegbrrect machingsandS C free(M) is calledspecified portslf M is clear from
the context, letS := free(M) \ S. We callforb(M, S) := ports(M) U S theforbidden portsi.e., those
ports that the honest user is forbidden to havesyStemSys is a set of structures. It is polynomial-time iff
all machines in all its collectiona/ are polynomial-time. &

The separation of the free ports into specified ports andretisean important feature of the upcoming
security definitions. The specified ports are those wheretaineervice is guaranteed. Concretely, specified
ports will later be used to connect a user machine to thetsteic

Note that this definition is valid for both the synchronousl éne asynchronous case. In particular,
buffers do not have to be explicitly included in the spectfma of a system, e.g., in the specification of
a cryptographic protocol that one wants to analyze, but timeptetion operator will be used instead. The
different timing assumptions stem from the different déifams of runs which we will introduce in the
following.

A structure can be completed t@anfigurationby adding machined andA, modeling the joint honest
users and the adversary, respectively. The madhiiserestricted to the specified pot§s A connects to the
remaining free ports of the structure and both machinesranaict, e.g., in order to model active attacks.
In the asynchronous case, buffers are additionally addetbse the collection. Moreover, the initial state
of all machines is isomorphic to the natural numbers whitdwad for letting the machines run on input the
same security parameter in the subsequently describedguaritiam.

Definition 2.3 (Conflguratlons) A configurationof a systemSys is a tupleconf = (M S,H,A) where
(M,S) e Sys is a structureM U{H, A} is a closed collectiorports(H)Nforb(1, S) = 0, andIniy = {1}*

forall M € M U {H,A}. The set of configurations is writteGonf(Sys). The set of configurations cfys
with polynomial-time useH and adversar is calledConf,qy (Sys). The index,, is omitted if it is clear
from the context. &

2.3 Capturing Asynchronous Runs

For a configuration, both models define a probability spacerms (sometimes callddacesor executions

In the asynchronous model, the collection contains a unigaster scheduleX since the collection is
closed. Machines switch sequentially, i.e., we have examie active machin® at any time. If this
machine has clock-out ports, it can select the next messalge delivered by scheduling a buffer via one
of these clock-out ports. If a message exists at the respeptisition of the buffer’s internal queue, it is
delivered by the buffer and the unique receiving machinbesiext active machine. M tries to schedule
multiple messages, only one is taken, and if it scheduleg morthe message does not exist, the master
scheduleiX becomes active.

Definition 2.4 (Asynchronous Runs and Views)For a given configuratiorconf = (M, S,H,A) with
master scheduleX (which is uniquely determined by having the master-cloclpant clk®?), setC' :=
[M U{H, A}]. Runs and their probability spaces are defined inductivgihb following algorithm for each
tuple ini € {(1’“)M€MU{H’A}} C XyeqIniv of initial states of the machines at.

The probability space afunsis defined inductively by the following algorithm. It has ariedle r for
the resultingrun, an initially empty list, a variablélcs (“current scheduler”) over machine names, initially
Mcs := X, and treats each port as a variable odér initialized with e except forclk®? := 1. Probabilistic
choices only occur in Phase (1).

1. Switch current schedulerSwitch machinéVics, i.e., set(s’, O) <« dm (s, I) for its current states
and input port valueg. Then assign to all input ports ofMcs.

2. Termination:If X is in a final state, the run stops.

3. Buffer messagest-or each simple output pogt of Mcs, in their given order, switch buffeq with
inputq*’? := q!, cf. Figure 2. Then assignto all these portg! andq*’?.

4. Clean up schedulinglf at least one clock-out port dflcs has a valuéez ¢, letq“! denote the first such
port and assiga to the others. Otherwise letk®? := 1 andMcs := X and go back to Phase (1).

5. Scheduled messagBwitchq with inputq?? := q! (cf. Figure 2), set? := q“’! and then assigato
all ports ofq and toq“!. Let Mcs := M’ for the unique machin®!’ with q? € ports(M’). Go back to
Phase (1).

Whenever a machine (this may be a buffer) with name:ey is switched from(s, I) to (s’, O), we add a
step(namew, s, I', s', O) with I' := I[() to the runr, except ifs is final or I’ = (e, ..., €). This gives
a random variable for each tuple:, i.e., for each valué of the security parameter denotedras. .o, -
Hence we obtain a family of random variables

TUN conf = (TU’/L conf,k)k:EN .

The view of a subsetM < C in a runr is the restriction ofr to M, i.e., the subsequence of all steps
(namewm, s, I, s',0), wherenamey is the name of a machingl € M. This gives a family of random
variables

viewconf(M) = (’Uiewconf,k’(M))k’EN'
For a singletonV = {H} we write view .o,s (H) instead ofview conr ({H}). <&

This still rather informal definition of runs can naturallg formalized using transition probabilities, which
induce probability spaces over the finite sequences of siepitar to Markov Chains. The extension to
infinite sequences can then be achieved using well-edtellisesults of measure theory and probability
theory, cf. Sectiorb of [80]. It is further easy to show that views of polynomiati machines are of
polynomial size, i.e., that the length of any trace that eeawmith non-zero probability according to the
considered view is bounded by a polynomial in the securitampeter.

2.4 Capturing Synchronous Runs

In the synchronous model, ports, machines, collectiomactsires, and systems are defined similar to the
asynchronous model. The only exception is that there ardaoi ports and no buffers, which have only
been included to model asynchronous timing, i.e., cormedipg portsp? and p! are directly connected.
The main difference is the definition of runs. Instead of aymghronous run algorithm (cf. Definition 2.4),

9

runs are defined usingundswhich is the usual concept in synchronous scenarios. Euebabround is
again divided inton so-called subrounds, and there is a mappingalledclocking schemefrom the set
{1,...,n} into the powerset of considered machines, i.e., the mastihéhe structure, the user, and the
adversary.x(i) denotes which machines switch in subroundAfter finishing then-th subround, the run
starts the first subround of the next global round. At the fr@igh of each subround, all messages from
the previous subround are transported from the output potise connected input ports. After that, each
machine ofx (i) switches with its current inputs yielding a finite distrilaut over the set of states and the
set of possible outputs.

Definition 2.5 (Clocking Scheme)A clocking schemex for a configuration(M, S,H,A) andn € Nis a
mapping from the sefl, ..., n} to the powerset oM U {H, A}, i.e., it assigns each number a subset of the
machines. &

Definition 2.6 (Synchronous Runs and Views)Given a configuratioronf = (M, S, H,A) along with a
clocking scheme: for n € N, runs are defined as follows: Each global rodrdhsn subrounds, where we
denote thej-th subround of global roundby [i.j]. In subround; € {1,...,n} all machinesM € k()
switch simultaneously, i.e., each state-transition fiamcty, is applied toM’s current input yielding a new
state and output (probabilistically). The output at a gdris available as input gi? until the machine
with port p? is switched. If several inputs arrive until that time, they @oncatenated. Similar to the
asynchronous case, this gives a family of random variables

TUN conf,x = (TU’/L conf,/{,k:)keN-

More precisely, eachun is a function mapping each tripléV, 4, j) € M U{H,A} x Nx {1,...,n}to a
quadruple(s, I', ", O) of the old state, inputs (witl' := IT,;,,) again), new state, and outputs of machine
M in subroundi.j], with I’ = ¢, O = ¢, ands = & if M is not switched in this subround. Theéew of a
subsetM c M U {H,A} in a runr is the restriction of- to M x N x {1,...,n}. This gives a family of
random variables

Uiewconf,n(M) = (Uiewconf,n,k(M))k’ENa

and we omit the subscriptif it is clear from the context. &
Again, the view of a polynomial-time machine can easily bevainto be of polynomial size.

Remark 2.1Alternatively, we can consider runs as a sequence of sexgest(M, i, j, s, I’ s’, O) for as-
cending values of andj. More formally, we first have all tuple@M, 1,1,s,1’,s',0) for M € k(1). The
order of these tuples can be chosen arbitrary since theglswimultaneously and do not influence each
other. After that, we have the stefd, 1,2,s,I’,s',0) for all M € «(2) and so on, until we finally have
steps of the form{(M, 1,n,s,I’,s’,0) for all M € k(n). We then continue witliM, 2,1, s, I’ s, O) etc.
Obviously, this characterization of runs is equivalenti® original one (we just expanded the function), but
it is better suited for relating synchronous runs and “cgponding” asynchronous runs, which we will do
in our upcoming proofs. o

Instead of arbitrary clocking schemes as in the above defindf runs, the authors of [10] focus on only
one special clocking schemg given by (M U {H},{A}, {H}, {A}). Clocking the adversary between the
correct machines is the well-known model of “rushing adages”, where [81] is the earliest reference that
we are aware of. In [10], it has been shown that this clockititeme does not restrict the possibilities
of the adversary, hence we can use it without loss of geteraforeover, we restrict ourselves to those
configurations where the honest user and the adversary Breammected via one duplex channel. This is
indeed no restriction to generality in the synchronous mdukrause outputs at several ports to the same

10

machine can simply be concatenated using a separation samdbadecomposed again, respectively. In the
following, we give these two channels fixed nampgsy andpy_a, i.€., pa_n! sends messages frofnto H
and vice versa.

2.5 Simulatability

The definition of one system securely implementing anotimerie based on the common concepsiofi-
ulatability. Simulatability essentially means that whatever mightpegioto an honest user in a real system
Sys,es Can also happen in an ideal (abstract) system,: For every structur@truc; € Sys,e,, €Very user
H, and every adversary,, there exists an adversafy on a corresponding ideal structueucs, such that
the view of H is indistinguishable in the two configurations. Indistirgability (“~") is a well-defined
cryptographic notion from [82]. We only give the definitiohamputational indistinguishability; a more
comprehensive definition is given in the Appendix.

Definition 2.7 (Computational Indistinguishability) Two families (vary)xen and (var))ren of random
variables (or probability distributions) on common dongai?, arecomputationally indistinguishablg=")
if for every algorithmDis (the distinguisher) that is probabilistic polynomial-gnn its first input,

|P(Dis(1%, vary,) = 1) — P(Dis(1%,var},) = 1)| € NEGL.3

Intuitively, given the security parameter and an elemenseh according to eithear;, or var}, Dis tries to
guess which distribution the element came from. &

Corresponding structures in the simulatability definiteme designated by a functiofi from Sys,.,, to

the powerset obys,y. The functionf is calledvalid if it maps structures with the same set of specified
ports, so that the same user can connect. For many systeraddtmly one possible mapping that meets
this requirement, because the service ports of the stegtorrespond one-to-one to different sets of non-
corrupted machines. This mapping is then cattadonical We only give the definition of simulatability
based on computational indistinguishability, which capgéuthe most common case when applying sim-
ulatability to cryptographic protocols. A more compreheagefinition based on the remaining notions
of indistinguishability is again postponed to the Appendixr results hold as well for this more general
definition.

Definition 2.8 (Simulatability) Let systemsSys; and Sys, with a valid mappingf be given. We say
Sys; >T Sys, (at least as secure i for every polynomial-time configurationonf, = (]\2/1, S,H,A;) €
Conf(Sys,), there exists a polynomial-time configuratiennf, = (M,, S, H,As) € Conf(Sys,) with
(Ms, S) € f(My,S) (and the samél) such thatiew cong, (H) =~ view cony, (H). o

This is shown in Figure 3. In the following, we augmentwith a subscript,nc Or 45 nc to distinguish the
definition of the synchronous and asynchronous case. Inieatyigeal system, each structure contains only
one machinéd H called trusted host, which serves as an ideal functionafithe real system. The machine
TH is usually deterministic and maintains a very simple ti@msifunction, hence validation based on this
ideal functionality is in scope of current verification teajues.

3The classNEGL denotes the set of all negligible functions, ig:,N — R>o € NEGL if for all positive polynomialsQ,
JkoVk > ko: g(k) < 1/Q(k).

11

v H H

B e pg B e gl 3
g s L

M, A M, A

]

Figure 3: Overview of the simulatability definition.

3 Idea and Definition of the Embedding

The informal idea of the embeddings,, is to add an explicit master scheduler that should simulae t
synchronous run induced by the given clocking scheme. Herveue to the general distributed scheduling
(cf. Definition 2.4), leaving the actual machines unmodifieads to non-simulatable situations, as these
machines can clock themselves without ever giving contrdtis explicit master scheduler.

Hence, we first define a mappigg, from “synchronous” machines, i.e., from machines that ddave
any of the scheduling ports but only ports for usual messagesmission, to “asynchronous” machines, i.e.,
to machines which might additionally have clock-out ports.

Intuitively, this mapping surrounds single synchronoushirges with an “asynchronous coat”. More
precisely, if a synchronous machine makes a transitionbtaios all inputs at once that arrived since its
last scheduling, whereas in asynchronous scenarios, itif@#is come one by one and have to be processed
in several transitions. Thus, the surrounding asynchremoachine stores all inputs internally, until it is
asked to perform the transition of its synchronous submm&chit then schedules this submachine with
the collected inputs and forwards its outputs. As thesedmspmous machines do not produce any clock
outputs, the master scheduler can try to simulate the sgnohs time by a suitable scheduling strategy.

Definition 3.1 (Mapping ¢m) M iS @ mapping on single synchronous machines that assigmg mse
chineMgy,c an asynchronous machidd,ene := ¢m(Msync) by the following rules:

e The ports ofM,s,nc are given byPortsw,,,,. := Portsm,,. © (Pms,.. ’), Whereo denotes concatenation
of sequences.

o Internally, Masync maintains arrayginput_storey, . o7)p2ein(Portsuigne) over¥* initialized with € ev-
erywhere, which are used for storing incoming messagescatgat ofMgy ..

e Mssync has the machin®, . as a blackbox submachine, i.e., it has its transition foncy

sync*

¢ Internally, M,s,nc maintains a superset of the statesvy,,. (the additional states are only used to
model appropriate length functions). Moreover, the ihdiad final states of both machines are equal.

e Oninput: atp? # pwm,,.’: It concatenates to the element ofnput_storey,, 2, i-€., it stores all
inputs until the machin®,, . is eventually switched. The length function for such a paris defined
aslm,,. (s)p? — linput_storey . .|, wherely,, (s)p? is the length function of the machimésy . at

portp? in its current state and|input_storey, _ .»| is the number of elements input_storey, 7.

e On inputi at pvm,, 7: It applies the state transition functiaiy,,. on the contents of the arrays
input_storey, . > Yielding a tuple(s’, 0). Masync NOW assigns to input_storey,, > for all
p? € in(Portsw,,,.), Switches to the state’ and outputs the tupl®. The length function for this
port is defined to be zero if the listgput_storey,, > are empty for all porte?; otherwise it is

12

the runtime ofMy.. This case corresponds to the scheduling of the synchramasine; the port
PMsync - Will be connected to the explicit master scheduler.

For a setM of synchronous machines, we defipg (M) := Ungnec st #M(Msync)- o

Masync iS polynomial-time by construction iffls . is polynomial-time, since the machind,s . only
performs a polynomially bounded number of steps betweenttarsitions ofMs,,. (Which is especially
ensured by the used length functions), since both machineys stay in the same state after a transition
of the blackbox submachine, and finally since their finalestatre equal. We stress that making the outer
machineMs,n. polynomial-time for a polynomial submachine is not as easyrae might expect, e.g., as the
outer machine may be triggered exponentially often at omevpithout causing the submachine to switch.
Note further that the length functions Wk, . are always large enough by construction that inputd Qf .
are not ignored respectively truncated if they would beyfrdlad by the machin®lgy ..

Based on this definition, we now formalize the desired mappi,; on synchronous systems.

Definition 3.2 (Mapping ¢sys) Letan arbitrary synchronous systefys, . = {(Msync, Ssync) | sync € I}
for a finite index sef and a clocking schemebe given. We then define

~

@Sys(syssync) = {(@M(Msync) U {Xsync,n}a Ssync) | sync € I}'

The machin&sync .. is an explicit master scheduler that has to be added to ttedmed structure to model
the synchronous clocking schemeén the asynchronous system. Its ports are given by

e {clk??}: The master clock-in port.

{p?!'| p! € Ports Msync}: Ports for clocking all output ports of the given structure.

~

{p!| p? € free(Msync)}: Ports for clocking inputs of the systems (either madédlyr A).

{pan, pH.a""}: Ports for clocking the connection betwegrandH.*

~

{pm!,pm | M € (Msync U {H,A})}: Ports for clocking, i.e., giving control to, each machine.

The length functions are always set to infinity for all poitgernally, it maintains a variablecal_rnd over
{1,...,n} and a variablgjlobal_rnd overN both initialized with1. For the sake of readability, we describe
the behavior oy, .. Using “for’-loops. This is just a notational convention tishould be understood as
follows: every timeXqnc . is scheduled, it performs the next step of the loop.

1. Schedule Current Machines:For all machineM € x(local_rnd) output(global_rnd, local_rnd) at
pm!, 1 atpm“!. The order of the switched machines can be chosen arbitrary.

2. Schedule Outgoing Buffers:For allM € k(local_rnd) outputl at every porp! with p! € Portsy.
Here, the order of the switched machines can only be chogétnaay with the restriction that output
ports of the adversary are scheduled firgt i€ «(local_rnd).?

3. Switch to next Round: Setlocal_rnd := local_rnd + 1. If local_rnd > n, setglobal_rnd :=
global_rnd 4+ 1 andlocal _rnd := 1. Go to Phase (1).

“Note, thatXsync, . is defined independent from the honest udeand the adversarp, so it cannot know their ports. We
therefore restricted the configuration to a fixed number amdifnames of ports betweéhandA (cf. Section 2.4).

SWithout this restriction, the behavior of the adversarytsisivitching time could depend on outputs of machines sdbddn
the same subround, which would lead to non-simulatablatsitos.

13

confgyne 4 confagync,1

_________ 1
Hsyne i Hsyne X
0oy
Async,1 . H(A)
sync, Apply ¢conf | | sync,1
A A
Msync,1 Masync,1

lq)Sys(syssyncA) zf ¢Sys(syssync,2)

confsync,z confasync,z
. |
H |
Hsyne Reverse ¢gys L _syme

d(Hgyne)

ync

Async,2 Reverse ¢ | Aasync,2
A Define Async 2 A
Msync,2 Masync,Z

Figure 4: Synchronous Simulatability derived by Asynclmes Simulatability.

&

To put it all into a nutshell, the specific master scheduleusates the clocking schemsgby first scheduling
the machines that ought to switch in the particular subrq@tdp1) and afterwards scheduling all buffers
that could be influenced by outputs of these machines (Jtefinally, it switches to the next subround
(Step3) and continues with the first step again.

Moreover, we define a mapping.,,s on synchronous configurations of a systéps, i.e., configura-
tions which consist of synchronous machines only, by

A ~

Soconf(Msynu Ssync: H, A) = (QOM (Msync) U {Xsync,n}y Ssyno PM (H)7 PM (A))7
with X nc . given as inpg,, for the particular structure. We will in the following simyplvrite ¢ instead of
©Sys, PM» andy s if its meaning is clear from the context.
4 Preliminary Work for the Embedding Theorems
We now have to prove that the functignhas the desired properties with respect to simulatabiléy;,

@Sys(syssync,l) Zasync SDSyS(Syssyan) = Syssync,l Zsync Syssync,2'

This captures the content of our first embedding theorem.ottuniately, the converse direction does not
hold, but our second embedding theorem will state a weaksiorethat is still sufficient for our purpose.
4.1 Proof Overview

Before we turn our attention to the auxiliary lemmas for thebedding theorems we exemplarily present
an informal description of the proof of the first embeddingatem. The proof consists of four steps. A
graphical illustration is given in Figure 4.

14

1. Starting with a synchronous configuratioanfync1 € Conf(Syssnc 1), We apply our embedding
function y,,; Which yields an asynchronous configuratiamfasync,1 € Conf(pgys(Syssync1)). We
now define a mapping on the runs of the asynchronous system yielding runs of thehggnous sys-
tem. Intuitively, o “compresses” an asynchronous run to its synchronous amamtewhich consists
of fewer steps. We then show in Theorem 4.1 that

,Uiewconfsync,l (HSynC) = U(viewconfasync,l (‘p(HSynC)))'

2. We can now apply our preconditiopsys(Syssync.1) zgsync ©5ys(SYssync2) Yielding an indis-
tinguishable configuratiortonfisync> € Conf(wgys(Syssyncg)), ie., ’Uie’wconfasym’l((p(Hsync)) R
VICW confogyne.2 (P(Hsync)). We then show that

U(viewconfasync,l (@(Hsync))) ~ U(viewconfasync,Q (@(Hsync)))’

3. We finally reverse the functiop by removing the coating of the user and that of the machindiseof
structure. Since we do not know anything about the newlwedradversarA,s nc 2, i.€., in particular
itis not required that it fits the structure imposed by the piag,, we define a new adversafyn. »
usingA,sync,2 as a black-box submachine, and we will show in Theorem 412 tha

O’(Uiewconfasyncg ((IO(HSYHC))) = viewconfsyncg (HSYHC)'
4. Altogether, transitivity of the relatiors implies
Uiewconfsync,l(Hsync)) ~ mewconfsync,z(Hsync)'

We first take a look at the runs in a synchronous system, .. and in its asynchronous counterpart
SYSasync = P(SYSeync)- In the following, we will simply write S instead ofSyn., because the set of
specified ports is not influenced by the mapping

4.2 Compressing asynchronous runs to synchronous counteags

In the following, let an arbitrary synchronous systeéiys,, .. with a clocking scheme: and an arbitrary
configurationconfsync = (Msync, S, Hsyne, Async) € Conf(Sysgnc) b€ given. Moreover, let an asynchronous

configurationconf,sync be given which fits the formonfisync = (@(Msync) U {Xsyne,x }» S5 ©(Hsync), AY)
(i.e., o(confync) but with an arbitrary adversar$).

First of all, note that runs ofonf,s,nc always have a prescribed structure induced by the behafior o
the master schedul®ync : they are built by “blocks”. The ste#sync, 7,7, s,Z, s’, O) of the machines
Msync € Msync U {Hsync } switched in rounds.j] in the synchronous run are represented by the following
two blocks in the asynchronous run.

1. The first block consists of the steps induced by clockimgritachinesp(Mgync) With Mgyne € K(5)
andA’ if Agync € Kk(j), i.e., Step (1) in the definition ofsync .. More precisely, the block is built by
|k(j)| sub-blocks, one for every switched machine. Every subkadi®built by the following steps.

e The first step of the sub-block is alwayXenc «, 51, Zeksr=1, 5} Opmsync!:(i,j),pmsynﬁ!zl) for

two arbitrary states;, s§ of Xsync », i.€., the master scheduler schedules the mach{ive)
respectivelyA’.

®Note that we investigate the more general case heredthzan be chosen arbitrarily instead of being the embedded satye
em(A). This generality will be helpful during the upcoming proofs

15

o After that, we have the transition of the scheduled buffer.
o We now have to distinguish the following two cases:
— If Mgync # Agync, there is a Stemgo(l\/lsync),S,IpMsync7:(i7j),5’,(5M5ync(input_storeMSync))
and steps for the receiving buffers.
— If Mgync = Agync, We have a stepA’,s,IpASynC?:(m,s’, 0). If O # O, we have steps for
the receiving buffers. If there are nonempty outputs atspgrand p<! (which has to be
a self-loop because there are no free clock-in ports in tetesy), there is furthermore a
clocking step for this particular buffer. In this case, tlwvexrsary is scheduled again, so
this sub-point of the block is repeated until the self-lodthe adversary either ends or it is
repeated forever in case of divergence, i.e., we obtainpa(stes’, 7', s”, O) whereZ’ is
now given byZ’ := Z;;—¢,, and so on.

2. The second block consists of the steps induced by clodkiagutgoing messages of the switched
machines, i.e., Step (2) in the definitionX§. .. Now the buffers of the output ports are switched
by the master scheduler. This is done similar as in the fingtvpigh the restriction that output ports
of A" are clocked first ifAqync € k(j). The block again has:(;)| sub-blocks built by the following
steps.

e The first step of the sub-block is given 0¥sync,x, 51, Zeikar=1, 57, Opai=1) for the first output
portp! € ports(Msync) @and two arbitrary states;, s§ of Xeync -
e The step of the clocked buffer.
¢ In case of a nonempty output Ibt’ denote the unique machine wiplt € ports(M’). We now
have to distinguish two cases:
— If M’ # A, there is a stepM’, s, 7', ', O), whereZ’ consists of the output af(Mgyn.) at
pl.
— If M = A’, we obtain a stepA’, s, 7', s’, O), whereZ’ consists of the output @f(Msync)
respectivelyA’ atp!. If O # O, we have steps for the receiving buffers(fhas a clocked
self-loop, we proceed identical to the first block.

e The three previous steps are repeated for every output peveoy machinéVlsn. € x(j).

After this detailed description of the run, (i.e., its blegkhe mappingr can be defined. Informally, it
combines the blocks of all machinés,,.. € x(j) yielding the synchronous steps of every machihg,.
that switches in thg-th subround of the particular global round.

Definition 4.1 (Mapping o) Letan arbitrary synchronous systefys . with a clocking scheme and an
arbitrary configuratiorconfync = (Msync,S, Hsync, Async) € Conf(Sysg,nc) be given. For a given asyn-

chronous configuratioronf,sync Which fits the formconfasync = (@(Msync) U {Xsyne,r }+ S5 @(Hsync), A),
we define the mapping on the runs ofconfasync by the following algorithm. The algorithm has internal

arrays(inputsy 7) for M € p(Msync) U {(Hsync), A’} @andp? € in(Portsy). It goes from block to block
modifying them as follows.

1. Every step of a buffer is deleted from the run.

2. The two remaining steps of the first block are modified akvia. If the scheduled machine is
¢(Msync) # A', then the block is replaced §sync, i, j, s, inputsy, . 8's Mg, (inputsy,). If A’
is scheduled, the block is replaced @, i, j, s, mputsa,, s, Oas). Here,s denotes the state @f
when it is switched b¥qync ., ands’ andOas are the state and the output of the last step of the block,
respectively (In case of divergence, the algorithm for diefjthe mappingr diverges, too.).

16

3. The algorithm starts searching through the second bloirigdhe following. If a machin&!’ receives
amessageatp? in the second block, is concatenated to the arrayputsyy 7.

4. Finally, every step of the second block is deleted fronrtime

&

Note that all necessary information (e.Blsync, ¢, j, s, s’ etc.) is already given by the block except for the
inputs of each machine in the synchronous case. At this piviatso becomes clear why we defined the
master scheduler to schedule each machine specificallyanitple(i, 7) indicating the current global and
local round, since this information would otherwise not batained in the asynchronous run.

To overcome the absence of the gathered inputs in the ruralgiogithms has to collect all “partial”
inputs itself in its third step, and it can use this inforroatio calculate the outputs of each machine (although
for this, it could as well use the information contained ie thin). Moreover, the new blocks built by the
mappingo in one particular subround do not depend on the second bibttksosubround. The mapping
o is obviously also defined on the view of arbitrary subsets atinines, because the step in the first block,
carrying the information of the step, and the messageviecesteps in the second block will also be part of
the view of the considered machine. Furthermore, note tigatrtapping is explicitly defined for arbitrary
adversaries\’ (not only for ¢(Async)) Which we will need in Theorem 4.2. Furthermore, the follogi
lemma establishes a computational bound on the mappingpolynomial-time configurations:

Lemma 4.1 If confasync is a polynomial-time configuration that fits the form reqditey Definition 4.1, then
o applied to the view of the honest user and the adversary ipatable in polynomial-time. O

Proof. (Lemma 4.1) In case of a polynomial configuration, especiiié adversary has to be polynomial-
time. This implies that there cannot be any infinite suceesslocked self-loops, so the steps of every
sub-block are bounded by a polynomial in the security patanie Moreover, both the adversary and the
honest user will reach final state after a polynomial numibéilarks, so the algorithm for applied to the
view either of the honest user or the adversary only make$ya@mial number of transition, each one with
a polynomial number of steps. This implies tlats computable in polynomial-time when applied to the
view of the honest user and the adversary if it is used in anqmohjal-time configuration. [

4.3 Auxiliary Theorems

The following theorem captures the first step of our prodfdkef Section 4.1.

Theorem 4.1 Let a synchronous systeffys, ., a clocking scheme, and a configurationconfsyn. =
(Msync, S Hsync, Async) € Conf(Sysg n.) be given, and setonfasync := ¢(confsync). Then

VIEW confuyne (MsynC) = U(Uiewconfasync (‘P(MsynC)))

A

for everyMgyne € (Msync U {Hsync, Async}). confasync iS polynomial-time iffconfoync is polynomial-time.O

Proof. Note that the view ofp(Msync) does only contain the steps of its internal blackbox fumetall
after being modified by the mapping Thus, it is sufficient to show that the inputs of the blacklwaX

in confasync and the original inputs ofsync in confsync are equal. It is quite easy to see that the arrays
input_storey . andinputsy, - are always equal if the machidsyn. is switched. This can easily be
proven by induction over the number of (sub-)rounds. In the found, both arrays are empty yielding
a correct start of the induction. Starting with the seconahdy the contents of these arrays are totally

17

determined by the inputs at the ports\d§, ... However, these inputs only dependnor outputs of other
machines)M . Moreover, these outputs have to be equal because thesénemoled the same input tuple
in both configurations, since we haveput_storey, = inputsy, for all M € M by induction hypothesis.
Therefore, the arraysiputsy,, andinput_storeMsync must be equal at replacing the block by construction
of the algorithm, s@w,,,. (s, inputsy,,.) = Iy, (s, input_storey,) also holds. We do not have to worry
about the arrangement of the blocks because of the follovdagons. First of all, note that we first switch
all machines in a subround and schedule the outgoing mesaftgevards. Moreover, messages sent by the
adversary are always scheduled first if the adversary isisbbe in the considered subround. This prevents
that machines which should switch simultaneously in theebgamous system influence each other in the
asynchronous system in the same subround. If we did notdmmsiis restriction, the adversary would be
able to create a message that is scheduled in this partsulteound, but nevertheless depends on inputs
arriving in this subround.

Putting it all together, the runs induced by the mapping conf,sync and the original runs are equal by
definition of o, so we finally obtain

VIEW confuyne (MsynC) = U(Uiewconfasync (‘P(MsynC)))

for an arbitrary configuratioronfsync € Conf(Syseync), confasync := ¢(confsync), and an arbitrarplsyn. €

~

(Msync U {Hsync, Async }). As a special case, this implies

VIEW confyn (HsynC) = U(Uiewconfasync (‘P(HsynC)))
which finishes our proof. [

After performing this first step of the proof, asynchronoimgatability can now be applied. In order
to convert the derived asynchronous configuration into alsygmous configuration again (cf. Step 3 of our
proofsketch), we present the following theorem.

Theorem 4.2 Let an arbitrary synchronous systeftys,,. and a clocking scheme be given such that
every machine and the honest user are clocked at most oneedretwo successive clockings of the ad-
versary. Furthermore, let an arbitrary configuratiannfasync € Conf(¢(Syseync)) Of the formeonfasync =

A

(P(Msync) U {Xsync,x }, S, ©(Hsync), Aasync) be given. Then there exists an adversAgyn. usingA,sync as
a blackbox such that fofonfsync := (Msync, S, Hsync, Async), it holds

VIEW confyyne (MsynC) = U(Uiewconfasync (‘P(MsynC)))

A

for everyMgync € (Msync U {Hsync}). confasync is polynomial-time iffconfsnc is polynomial-time. O

Note, that the standard clocking schefié U {H}, {A}, {H}, {A}) fulfills the postulated requirement. The
proof of Theorem 4.2 is quite technical and hence postpamé@gpendix B for the sake of readability.

5 The Embedding Theorems

This section contains our two main theorems. We start wittnanha capturing some simple properties of
indistinguishable random variables. The lemma is wellvkm@and easily proved.

Lemma 5.1 Indistinguishability of two families of random variablemplies indistinguishability of any
functiono of them. For the polynomial case, the functiomas to be polynomial-time computable. More-
over, identically distributed variables are indistingh@ble and indistinguishability is an equivalence rela-
tion. O

18

Theorem 5.1 (First Embedding Theorem) Let two arbitrary synchronous systemigs, . ; and Sysqnc
with clocking schemes; and x5 be given such that, fulfills the property that every machine of the system
and the user is clocked at most once between two succesenkdngs of the adversary. Furthermore,
©(SYSsync.1) zfsync ©(SYSsync,2) Should hold for a valid mapping. Then

f/
Syssync,l Zsync Syssync,2)

where f’ is derived fromf by (Ms, S3) € f/(My, S)) < (M, S3) € f(o(Mi,S1)). m

Using the result of the previous theorems, the proof willd&t@er simple, cf. the illustration in Figure 4.

Proof. Let an arbitrary configurationonfync,1 = (Msync,1, S5 Hsyne, Async,1) € Conf(Sysg e 1) e given.

A

1. We apply@cons ON confeync,1 yielding a configurationconfasync1 = (©(Msyne,1) U {Xsync, 1,51 155
©(Hsync); P(Async,1)) € Conf(Sys,sync1)- According to Theorem 4.1, applying the mappingp the
runs of confasync,1 yields

VIeW confyne 1 (Hsyne) = 0 (View confygyne 1 (P(Hsync)))- 1)

Moreover, if confsync,1 iS polynomial-time therconfasync 1 iS also polynomial-time, and the mapping
o is polynomial-time computable.

2. Thus, the precondition(Syseync 1) zifsync ©(SYssync2) Can be applied yielding a configuration

A

Confasync,2 = (@(Msync,2) U {Xsync,2,ng}a S, @(Hsync)y Aasync,2) S Conf(sysasyncg) with

Uiewconfasync,l (QD(HSYHC)) ~ Uiewconfasync,Z (QD(HSYHC))

A A

and ¢(Msync2,5) € f(o(Msync,1,5)). Moreover, in the computational casepnfisync2 IS
polynomial-time, so the mappingis polynomial-time computable. Using Lemma 5.1, this yseld

U(viewconfasync,l (@(Hsync))) ~ U(viewconfasync,Q (@(Hsync)))’ (2)

3. We now apply Theorem 4.2 to the configurati@m/async,2, Which yields a configurationonfsync,> =
(MSyHC7 S, Hsync; AsynC,2) € Conf(Syssync,2) with

0 (VIEW confogyne. 2 (P(Hsync))) = view confype » (Hsync)- (3)
According to Theorem 4.2Zonfsnc 2 is a polynomial-time configuration ifonfasync 2 is polynomial.

4. Now Equation 1-3 together with Lemma 5.1 imﬂ"i’ewcon}gync,l(Hsync) ~ Uiewconfsync,g(Hsync)-
Hence, confsync2 is an indistinguishable configuration fotonfyn.1. Moreover, we have

¢(Meync2.) € f(p(Meyne1, 5)), .., (Mayne2. 5) € J'(Mayne1. 5) which yields the desired re-
sult Syssynql Zgync Syssync,2'

Note that the theorem is applicable to the standard clockaoigeme. So far, we have shown that asyn-
chronous simulatability among these asynchronous repiesans implies synchronous simulatability, i.e.,

QDSyS(SySsync,l) Zasync @Sys(syssync,” = Syssync,l Zsync Syssync,2'

19

We already briefly stated in the previous section that the@me implication does not hold in general. We
had to show that for each configuratiemfasync,1 € Conf(wsys(SYssync,1)) there exists an indistinguishable
configurationconfasync.2 € Conf(@sys(SYseync 2)) Provided thatSys nc 1 >sync SYSsync,2-

However, both the honest user and the adversary may havie-@ligoorts and they can alternately
schedule each other (and also the system erratically), hwhie cannot capture by a fixed synchronous
clocking scheme, so we cannot exploit our assumpdign, .. 1 >sync SYSsync 2-

Anyhow, it is sufficient for our purpose to show that the cldioids for at least those configurations
where the honest uset,qn fits the formppm(Hsync) for a synchronous machinds ... We denote this
version of simulatability for the restricted class of useys>,snc 1 in the sequel. Looking at the proof of
the first embedding theorem, it is immediately clear thathie®rem also holds for the weaker precondition
©5ys (SYSsync.1) ZasyncH Psys(SYSsync2), Since we only need to derive an indistinguishable configuma
for users of the special forp(Hsync), and the user remains unchanged at simulatability. We carcapture
the content of the second embedding theorem as

Syssync,l Zsync Sy55ync,2 = SOSyS(SySSync,l) Zasync,H SOSyS(SySSyan)'

Theorem 5.2 (Second Embedding Theorem).et two arbitrary synchronous systemSys, ., and
Syssync,2 With clocking schemes; and 2 be given such that, fulfills the property that every machine
of the system and the user is clocked at most once betweenitagssive clockings of the adversary. Fur-
thermore,Syssync 1 zsfync SYssync,2 Should hold for a valid mapping. Then

QO(Syssync,l) zfsync,H QO(Syssyan)
wheref’ is derived fromf by o(Ma, So) € f'(o(My, 81)) == (My, S2) € f(M, S). O

Before we turn our attention to the actual proof, we statefahewing lemma which captures that we can
“locally reverse” the functiomr for the honest user.

Lemma 5.2 Let a synchronous systesys,,,., a clocking scheme and a configurationconfsync =
(MsynCa S, Hsync> Async) € Conf(SySSync) be given. Letonfasync = (@(Msync) U {Xsync,n}> S, (P(Hsync)a A/)
be an arbitrary asynchronous configuration. If we now hawegi (view conf,q,.. (¢(Hsync))) then we can
“locally reverse” the functiono for the view of the user, i.e., we can define a func&qﬁ on the runs of the
synchronous configuration, such that

view CONfasync (‘P(HsynC)) = Uﬁl (U(Uiewconfasync (‘P(HsynC))))
holds. If confasync is polynomial-time, ther?rg1 is polynomial-time computable. O

The proof of the lemma is postponed to Appendix B.

Proof. (Theorem 5.2) For readability, we again s&s,qnc1 = ©(SYssync1) aNd Sys,gynco =
©(SYSsync2)- Let now an arbitrary configurationconfasync1 = ((p(]\?[syncvl) U {Xeyne,1,51 155
QO(Hsync)a Aasync,l) € Conf(Sysasync,l) be given.

1. We apply Theorem 4.2 omonfisync,i Which yields a synchronous configuratiamnfsync 1

~

(Msync,b S, Hsync> Async,l) S Conf(Syssyncvl) with

U(viewconfasync,l (‘p(HSynC))) = Uiewconfsync,l (HSynC)'

Moreover, if confasync,1 IS polynomial-time thervonfync 1 is also polynomial-time, and the mapping
o is polynomial-time computable.

20

2. Now the preconditiorbyss nc 1 >sync SYssync,2 CaN be applied yielding a configurationnfsync2 =
(Msync,27 S, Hsynu Async,2) S Conf(Syssynqz) with

VIEW confayne,1 (Hsync) VW confyync (Hsync)

and(M/, syncg, S) e f(sync,1, 9). Moreover, in the computational caserfsync 2 is polynomial-time.

3. We now apply Theorem 4.1 to the configurati@mf,.. > which yields a configuratioronfisync.> =
(¢(Msync,2)) {Xsync,2,n2}a S, QO(Hsync)p @(Async,2)) with

viewconfsyncg (HSYHC) = O’(viewconfasyncﬂ (QO(HSYHC)))'

Moreover, confasync,2 is @ polynomial configuration iftonfsync 2 is polynomial, according to Theo-
rem4.1.

4. Putting it all together, we have
° O’(viewconfasync,l (@(Hsync))) = viewconfsync,l(Hsync)

° viewconﬁync,l(Hsync) ~ 'Uiewconfsyncg(Hsync)

® VieW confyne » (Hsync)) = 0 (View confyyyne 2 (P(Hsync)))

Using Lemma 5.1, we obtain

U(Uiewconfasync,l (QD(HSYHC))) ~ U(Uiewconfasyan (QD(HSYHC)))'

We now finally apply our “reversing” functios, ! (cf. Lemma 5.2) on the above equation. Together
with Lemma 5.1, we obtain

VIEW confygyne 1 (¢(Hsync)) =~ VIEW confogyne 2 (¢(Hsync))-

Hence, confasyncg is an |nd|st|ngwshable conflguratlon fatonfosync,1. Moreover, we have
(Msyncg, S) € f(Msync,1,5), |e,go(Msync2, S) e fp(syncl,S)) which yields the desired re-

sult @(Syssync,l) zfsync,H QO(Sysasyan)'

6 Deriving Synchronous Theorems from Asynchronous Ones

Recall that our long-term goal is to avoid proving each argrgtheorem and lemma for both models. We
now briefly show how our two embedding theorems can be usedrfarmventing this problem. One of the
most important theorems of both models is transitivity &f tblation>.

Lemma 6.1 (Transitivity) If Sys; >/ Sys, and Sysy >12 Sys,, thenSys, >3 Syss, wherefs := foo fi
is defined agf3(M;, S) being the union of the sefs (M, S) with (M, S) € f1(M;, S). 0

This has been proven in [10] for the synchronous and in [18{He asynchronous model. We now exem-
plarily show how to derive the synchronous version from tiynahronous one using our previous results.

Lemma 6.2 Assume that the asynchronous version of the transitivityria (Lemma 6.1) has already been
proven, then the synchronous version holds as well. O

21

Proof. We omit the superscriptf for the sake of readability. Let arbitrary synchronous eystSys,, Sys,,
andSyss be given such thatys; >cync Sys, andSys, >sync Syss. We have to show thafys; >gync Syss
holds, provided that asynchronous transitivity has alydsen proven. According to our second embedding
theorem, we know that

(Sysl) ~async,H SO(S:‘/SQ) and QO(SySQ) ~ async,H SO(S?/53)

Obviously, the asynchronous version of transitivity islaggtle to the relatio> ,sync 1 instead of> ¢ as
well, since it is a special case only, and the honest userimsmiachanged at simulatability. Thus, we can
apply our (already proven) asynchronous version of thesitigity lemma, which yields

(Sysl) ~async,H SO(S:‘/SZS)

Now, we use our first embedding theorem in conjunction walsitbsequent remarks (stating that the theo-
rem holds as well for the restricted versiofsy,. 1 of simulatability) yieldingSys; >sync Syss. m

This proof technique is applicable to almost all theorenas taly on simulatability. As the most important

example, we name the preservation theorem [70, 44], whatestthat integrity properties expressed in
linear-time logic are preserved under simulatability. Tmeof of this theorem is difficult and comprises

several pages for both models. Using our work, the syncluspooof could as well be omitted.

Acknowledgments

This work benefited from fruitful discussions witlennis HofheinzBirgit Pfitzmann andMichael Waidner

References

[1] M. Backes, Unifying simulatability definitions in crypgraphic systems under different timing as-
sumptions (extended abstract), in: Proceedings of 14#rriational Conference on Concurrency
Theory (CONCUR), Vol. 2761 of Lecture Notes in Computer 8ci Springer, 2003, pp. 350-365,
preprint on IACR ePrint 2003/114.

[2] M. Backes, Unifying simulatability definitions in crypgraphic systems under different timing as-
sumptions, Journal of Logic and Algebraic Programming (PIL& (2005) 157-188.

[3] R. Segala, N. Lynch, Probabilistic simulation for prbbestic processes, Nordic Journal of Computing
2 (2) (1995) 250-273.

[4] S.-H.Wu, S. A. Smolka, E. W. Stark, Composition and bétis/of probabilistic I/O automata, Theo-
retical Computer Science 176 (1-2) (1997) 1-38.

[5] R. Canetti, Studies in secure multiparty computatiod applications, Department of Computer Sci-
ence and Applied Mathematics, The Weizmann Institute oéi8, revised March 1996 (Jun. 1995).

[6] S. Goldwasser, L. Levin, Fair computation of generaldiions in presence of immoral majority, in:
Advances in Cryptology: CRYPTO '90, Vol. 537 of Lecture Net@ Computer Science, Springer,
1990, pp. 77-93.

[7] S. Micali, P. Rogaway, Secure computation, in: Advanice€ryptology: CRYPTO '91, Vol. 576 of
Lecture Notes in Computer Science, Springer, 1991, pp. 892

22

[8] D. Beaver, Secure multiparty protocols and zero knogéedroof systems tolerating a faulty minority,
Journal of Cryptology 4 (2) (1991) 75-122.

[9] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov, A prolidistic poly-time framework for protocol

analysis, in: Proc. 5th ACM Conference on Computer and Comications Security, 1998, pp. 112—
121.

[10] B. Pfitzmann, M. Schunter, M. Waidner, Secure reactiy@esns, Research Report RZ 3206, IBM
Researchht t p: / / www. senper . or g/ si rene/ publ / Pf SWL_0OReact Si rmul | BM ps. gz
(May 2000).

[11] M. Hirt, U. Maurer, Player simulation and general achasy structures in perfect multiparty computa-
tion, Journal of Cryptology 13 (1) (2000) 31-60.

[12] R. Canetti, Security and composition of multiparty miggraphic protocols, Journal of Cryptology
3 (1) (2000) 143-202.

[13] B. Pfitzmann, M. Waidner, A model for asynchronous rizacsystems and its application to secure
message transmission, in: Proc. 22nd IEEE Symposium omri8e&Privacy, 2001, pp. 184—200.

[14] R. Canetti, Universally composable security: A newagabgm for cryptographic protocols, in: Proc.
42nd IEEE Symposium on Foundations of Computer Science §OZD01, pp. 136-145, extended
version in Cryptology ePrint Archive, Report 2000/6,t p: // eprint.iacr.org/.

[15] M. Backes, B. Pfitzmann, M. Waidner, Secure asynchremeactive systems, IACR Cryptology ePrint
Archive 2004/082 (Mar. 2004).

[16] M. Backes, C. Jacobi, B. Pfitzmann, Deriving cryptodnaglly sound implementations using compo-
sition and formally verified bisimulation, in: Proc. 11thr8gosium on Formal Methods Europe (FME
2002), Vol. 2391 of Lecture Notes in Computer Science, $y@nin2002, pp. 310-329.

[17] M. Backes, B. Pfitzmann, M. Waidner, A general composittheorem for secure reactive system,
in: Proceedings of 1st Theory of Cryptography Conferenc8Q), Vol. 2951 of Lecture Notes in
Computer Science, Springer, 2004, pp. 336—-354.

[18] M. Bellare, R. Canetti, H. Krawczyk, A modular approachthe design and analysis of authentica-
tion and key exchange protocols, in: Proc. 30th Annual ACNhBgsium on Theory of Computing
(STOC), 1998, pp. 419-428.

[19] C. Dwork, M. Naor, A. Sahai, Concurrent zero-knowledgre Proc. 30th Annual ACM Symposium
on Theory of Computing (STOC), 1998, pp. 409-418.

[20] B. Neuman, T. Ts’'o, Kerberos: An authentication sesvicr computer networks, IEEE Communica-
tions Magazine 32 (9) (1994) 33-38.

[21] J. Mitchell, M. Mitchell, A. Scedrov, A linguistic chacterization of bounded oracle computation and
probabilistic polynomial time, in: Proc. 39th IEEE Sympasi on Foundations of Computer Science
(FOCS), 1998, pp. 725-733.

[22] J. Mitchell, M. Mitchell, A. Scedrov, V. Teague, A probiéistic polynominal-time process calculus

for analysis of cryptographic protocols (preliminary refpoElectronic Notes in Theoretical Computer
Science 47 (2001) 1-31.

23

[23] R.Impagliazzo, B. M. Kapron, Logics for reasoning aboyyptographic constructions, in: Proc. 44th
IEEE Symposium on Foundations of Computer Science (FO@BR,%p. 372—-381.

[24] D. Dolev, A. C. Yao, On the security of public key proté&dEEE Transactions on Information Theory
29 (2) (1983) 198-208.

[25] J. K. Millen, The interrogator: A tool for cryptographprotocol security, in: Proc. 5th IEEE Sympo-
sium on Security & Privacy, 1984, pp. 134-141.

[26] C. Meadows, Using narrowing in the analysis of key mamagnt protocols, in: Proc. 10th IEEE
Symposium on Security & Privacy, 1989, pp. 138-147.

[27] R. Kemmerer, Analyzing encryption protocols usingmal verification techniques, IEEE Journal on
Selected Areas in Communications 7 (4) (1989) 448-457.

[28] M. Burrows, M. Abadi, R. Needham, A logic for authentic&, Technical Report 39, SRC DIGITAL
(1990).

[29] C. Meadows, Formal verification of cryptographic pmits: A survey, in: Proc. ASIACRYPT 94,
Vol. 917 of Lecture Notes in Computer Science, Springer419®. 135-150.

[30] R. Kemmerer, C. Meadows, J. Millen, Three systems fgptographic protocol analysis, Journal of
Cryptology 7 (2) (1994) 79-130.

[31] G. Lowe, Breaking and fixing the Needham-Schroeder iptkaly protocol using FDR, in: Proc.
2nd International Conference on Tools and Algorithms far @onstruction and Analysis of Systems
(TACAS), Vol. 1055 of Lecture Notes in Computer Science,iigger, 1996, pp. 147-166.

[32] L. Paulson, The inductive approach to verifying crygstaphic protocols, Journal of Cryptology 6 (1)
(1998) 85-128.

[33] F.J. Thayer Fabrega, J. C. Herzog, J. D. Guttman, Stspades: Why is a security protocol correct?,
in: Proc. 19th IEEE Symposium on Security & Privacy, 1998, 1§0-171.

[34] M. Abadi, A. D. Gordon, A calculus for cryptographic poools: The spi calculus, Information and
Computation 148 (1) (1999) 1-70.

[35] M. Abadi, P. Rogaway, Reconciling two views of cryptaghy: The computational soundness of
formal encryption, in: Proc. 1st IFIP International Corfiece on Theoretical Computer Science, Vol.
1872 of Lecture Notes in Computer Science, Springer, 20003422.

[36] M. Abadi, J. Jurjens, Formal eavesdropping and itsmatational interpretation, in: Proc. 4th Interna-
tional Symposium on Theoretical Aspects of Computer So#WaACS), 2001, pp. 82-94.

[37] P. Laud, Semantics and program analysis of computatipsecure information flow, in: Proc. 10th
European Symposium on Programming (ESOP), 2001, pp. 77-91.

[38] M. Backes, B. Pfitzmann, M. Waidner, A composable crgpaphic library with nested operations
(extended abstract), in: Proc. 10th ACM Conference on Caenpand Communications Security,
2003, pp. 220-230, full version in IACR Cryptology ePrintchive 2003/015, Jan. 2008 t p:
[leprint.iacr.org/.

24

[39] M. Backes, B. Pfitzmann, M. Waidner, A universally corspble cryptographic library, IACR Cryp-
tology ePrint Archive 2003 (2003) 15.
URLhttp://eprint.iacr.org/2003/015

[40] M. Backes, B. Pfitzmann, M. Waidner, Symmetric autheatton within a simulatable cryptographic
library, in: Proceedings of 8th European Symposium on Rekda Computer Security (ESORICS),
Vol. 2808 of Lecture Notes in Computer Science, SpringeQ32@p. 271-290, preprint on IACR
ePrint 2003/145.

[41] M. Backes, B. Pfitzmann, M. Waidner, Symmetric autheatton within a simulatable cryptographic
library, International Journal of Information SecurityI@®) 4 (3) (2005) 135-154.

[42] M. Backes, B. Pfitzmann, Limits of the cryptographiclizgtion of Dolev-Yao-style XOR, in: Pro-
ceedings of 10th European Symposium on Research in Competerity (ESORICS), Vol. 3679 of
Lecture Notes in Computer Science, Springer, 2005, pp. 19—

[43] M. Backes, B. Pfitzmann, M. Waidner, Limits of the reaetsimulatability/UC of Dolev-Yao mod-
els with hashes, in: Proceedings of 11th European SymposiirResearch in Computer Secu-
rity(ESORICS), Vol. 4189 of Lecture Notes in Computer ScierSpringer, 2006, pp. 404—-423.

[44] M. Backes, C. Jacobi, Cryptographically sound and riteelssisted verification of security protocols,
in: Proc. 20th Annual Symposium on Theoretical Aspects ah@ater Science (STACS), Vol. 2607
of Lecture Notes in Computer Science, Springer, 2003, pp-636.

[45] M. Backes, B. Pfitzmann, M. Steiner, M. Waidner, Polynainfairness and liveness, in: Proceedings
of 15th IEEE Computer Security Foundations Workshop (CSR2@92, pp. 160-174.

[46] M. Backes, B. Pfitzmann, Computational probabilistanfinterference, in: Proceedings of 7th Eu-
ropean Symposium on Research in Computer Security (ESORME 2502 of Lecture Notes in
Computer Science, Springer, 2002, pp. 1-23.

[47] M. Backes, B. Pfitzmann, Intransitive non-interfererfigr cryptographic purposes, in: Proc. 24th IEEE
Symposium on Security & Privacy, 2003, pp. 140-152.

[48] M. Backes, B. Pfitzmann, Relating symbolic and crypsgdic secrecy, IEEE Transactions on De-
pendable and Secure Computing (TDSC) 2 (2) (2005) 109-123.

[49] M. Backes, Quantifying probabilistic information floim computational reactive systems, in: Pro-
ceedings of 10th European Symposium on Research in Competerity (ESORICS), Vol. 3679 of
Lecture Notes in Computer Science, Springer, 2005, pp. 36—

[50] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, M. Waid@eyptographically sound theorem prov-
ing, in: Proceedings of 19th IEEE Computer Security FoundatWorkshop (CSFW), 2006, pp.
153-166.

[51] M. Backes, P. Laud, Computationally sound secrecy fgrbg mechanized flow analysis, in: Proceed-
ings of 13th ACM Conference on Computer and Communicatie@wfty (CCS), 2006, pp. 370-379.

[52] M. Backes, B. Pfitzmann, A cryptographically sound segwproof of the Needham-Schroeder-Lowe
public-key protocol, in: Proc. 23rd Conference on Fouradetiof Software Technology and Theoret-
ical Computer Science (FSTTCS), 2003, pp. 1-12, full versiolACR Cryptology ePrint Archive
2003/121, Jun. 2008t t p: //eprint.iacr.org/.

25

[53] M. Backes, A cryptographically sound dolev-yao stydewrity proof of the Otway-Rees protocol, in:
Proceedings of 9th European Symposium on Research in Cempaturity (ESORICS), Vol. 3193
of Lecture Notes in Computer Science, Springer, 2004, ppl1@88.

[54] M. Backes, M. Duermuth, A cryptographically sound DoeMao style security proof of an electronic
payment system, in: Proceedings of 18th IEEE Computer &gdtoundations Workshop (CSFW),
2005, pp. 78-93.

[55] M. Backes, B. Pfitzmann, On the cryptographic key sgcoé¢he strengthened Yahalom protocol, in:
Proceedings of 21st IFIP International Information Segutionference (SEC), 2006, pp. 233—-245.

[56] M. Backes, S. Moedersheim, B. Pfitzmann, L. Vigano, Sglieband cryptographic analysis of the
secure WS-ReliableMessaging Scenario, in: Proceedingwoifdations of Software Science and
Computational Structures (FOSSACS), Vol. 3921 of Lectum#eN in Computer Science, Springer,
2006, pp. 428-445.

[57] M. Backes, |. Cervesato, A. D. Jaggard, A. Scedrov, JFgay, Cryptographically sound security
proofs for basic and public-key kerberos, in: Proceedirgklth European Symposium on Research
in Computer Security(ESORICS), Vol. 4189 of Lecture Note€omputer Science, Springer, 2006,
pp. 362—-383, preprint on IACR ePrint 2006/219.

[58] B. Warinschi, A computational analysis of the Needh@ohroeder-(Lowe) protocol, in: Proc. 16th
IEEE Computer Security Foundations Workshop (CSFW), 2pp3248-262.

[59] P. Laud, Symmetric encryption in automatic analysascfanfidentiality against active adversaries,
manuscript, 2004.

[60] J. Herzog, Computational soundness of formal adviersalPh.D. thesis, MIT (2002).

[61] J. Herzog, M. Liskov, S. Micali, Plaintext awarenesa key registration, in: Advances in Cryptology:
CRYPTO 2003, Vol. 2729 of Lecture Notes in Computer ScieSgeinger, 2003, pp. 548-564.

[62] D. Micciancio, B. Warinschi, Soundness of formal ergtign in the presence of active adversaries,
in: Proc. 1st Theory of Cryptography Conference (TCC), V2851 of Lecture Notes in Computer
Science, Springer, 2004, pp. 133-151.

[63] J. D. Guttman, F. J. Thayer Fabrega, L. Zuck, The faitldss of abstract protocol analysis: Message
authentication, in: Proc. 8th ACM Conference on Computer @ammunications Security, 2001, pp.
186-195.

[64] D. Volpano, G. Smith, Verifying secrets and relativersey, in: Proc. 27th Symposium on Principles
of Programming Languages (POPL), 2000, pp. 268—-276.

[65] A. C. Yao, Protocols for secure computations, in: P2grd IEEE Symposium on Foundations of
Computer Science (FOCS), 1982, pp. 160-164.

[66] B. Pfitzmann, M. Schunter, M. Waidner, Cryptographiciséy of reactive systems, Presented at the
DERA/RHUL Workshop on Secure Architectures and Informatiow, 1999, Electronic Notes in The-
oretical Computer Science (ENTCS), March 200@,t p: / / ww. el sevi er. nl /cas/tree/
store/tcs/free/ noncas/ pc/ menu. ht m

26

[67] B. Pfitzmann, M. Schunter, M. Waidner, Provably secuggtifted mail, Research Report RZ 3207,
IBM Researchht t p: / / ww. senper . or g/ si rene/ publ / Pf SW2Cer t Mai | . ps. gz (Aug.
2000).

[68] M. Steiner, Secure group key agreement, Ph.D. thesig/eisitat des Saarlandelst t p: / / vwww.
senper.org/sirene/ publ/Stei 02.thesis-final.pdf (2002).

[69] R. Canetti, H. Krawczyk, Universally composable nosoof key exchange and secure channels (ex-
tended abstract), in: Advances in Cryptology: EUROCRYPUT20Vol. 2332 of Lecture Notes in
Computer Science, Springer, 2002, pp. 337-351, extendsibrmdn IACR Cryptology ePrint Archive
2002/059http://eprint.iacr.org/.

[70] B. Pfitzmann, M. Waidner, Composition and integrityg@evation of secure reactive systems, in: Proc.
7th ACM Conference on Computer and Communications Se¢c@@§0, pp. 245-254, extended ver-
sion (with Matthias Schunter) IBM Research Report RZ 3206yM000,ht t p: / / www. senper .
org/ sirene/ publ/PfSWL_O0OReact Si mul | BM ps. gz.

[71] M. Backes, B. Pfitzmann, M. Waidner, A general composittheorem for secure reactive systems,
in: Proc. 1st Theory of Cryptography Conference (TCC), 2851 of Lecture Notes in Computer
Science, Springer, 2004, pp. 336—-354.

[72] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Univally composable two-party and multi-party
secure computation, in: Proc. 34th Annual ACM Symposium bacdry of Computing (STOC), 2002,
pp. 494-503.

[73] D. Hofheinz, J. Miller-Quade, Universally composabbmmitments using random oracles, in: Proc.
1st Theory of Cryptography Conference (TCC), Vol. 2951 ottuee Notes in Computer Science,
Springer, 2004, pp. 58-76.

[74] S. Owre, N. Shankar, J. M. Rushby, PVS: A prototype weatfon system, in: Proc. 11th Interna-
tional Conference on Automated Deduction (CADE), Vol. 6@Zecture Notes in Computer Science,
Springer, 1992, pp. 748-752.

[75] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov, Probdistic polynomial-time equivalence and secu-
rity analysis, in: Proc. 8th Symposium on Formal Methodsopaer(FME 1999), Vol. 1708 of Lecture
Notes in Computer Science, Springer, 1999, pp. 776-793.

[76] C. A.R. Hoare, Communicating Sequential Processéstriational Series in Computer Science, Pren-
tice Hall, Hemel Hempstead, 1985.

[77] N. Lynch, Distributed Algorithms, Morgan Kaufmann Righers, San Francisco, 1996.

[78] R. Segala, N. Lynch, Probabilistic simulation for padsilistic processes, in: Proc. 5th International
Conference on Concurrency Theory (CONCUR), Vol. 836 of uextNotes in Computer Science,
Springer, 1994, pp. 481-497.

[79] S. Goldwasser, S. Micali, C. Rackoff, The knowledge ptexity of interactive proof systems, SIAM
Journal on Computing 18 (1) (1989) 186-207.

[80] J. Neveu, Mathematical Foundations of the CalculusrobBbility, Holden-Day, 1965.

27

[81] A. Z. Broder, D. Dolev, Flipping coins in many pocketsygantine agreement on uniformly random
values), in: Proc. 16th Annual ACM Symposium on Theory of @ating (STOC), 1984, pp. 157—
170.

[82] A. C. Yao, Theory and applications of trapdoor functpim: Proc. 23rd IEEE Symposium on Foun-
dations of Computer Science (FOCS), 1982, pp. 80-91.

A Postponed Definitions
The following definition for indistinguishability of rand variables is essentially from [82].

Definition A.1 (Indistinguishability) Two families(vary,)cn and(var),)ren of random variables (or prob-
ability distributions) on common domairs;, are

a) perfectly indistinguishabl€'=") if for each k, the two distributionsar;, andvar’;, are identical.

b) statistically indistinguishabl€*~syr41.1.") for a suitable clas§MALL of functions fromN to R~ if
the distributions are discrete and their statistical distz

1
A(vary, vary) := 5 Z |P(vary, = d) — P(var), = d)| € SMALL
de Dy,

(as afunction of). SMALL should be closed under affine addition, and with a funcjialso contain
every functiong’ < g.

c) computationally indistinguishabl¢~,,,,") if for every algorithmDis (the distinguisher) that is prob-
abilistic polynomial-time in its first input,

|P(Dis(1%,vary,) = 1) — P(Dis(1*,var,) = 1)| € NEGL.

Intuitively, given the security parameter and an elemeoseh according to eithemr;, or varj, Dis
tries to guess which distribution the element came from. @lass NEGL denotes the set of all
negligible functions, i.e.g: N — R>g € NEGL if for all positive polynomials, 3koVk > ko:
g9(k) <1/Q(k).

We write = if we want to treat all three cases simultaneously. &

For reasons of completeness, we now present the extendedidefof simulatability, based on the three

different kinds of indistinguishability. Definition 2.8 wasimplified in the sense that only computational
indistinguishability of views was covered, which reprdsetiie most common case when applying simu-
latability to cryptographic protocols.

Definition A.2 (Simulatability, extended version with three variants) Let systemsSys; andSys, with a
valid mappingf be given.

a) We saySys; zsféﬁe“f Sys, (perfectly at least as secure)asfor every configuratiorconf, = (]\2/1, S,
H,A1) € Conf(Sys,), there exists a configurationf, = (M, S,H,As) € Conf(Sys,) with
(Ma, S) € f(M,S) (and the samél) such that

m’ewconfl (H) = 'Uiewcoan (H)

28

b) We saySys; > SMALL Sys, (statistically at least as secure for a classSMALL if the same as

in @) holds withview conf, 1(H) ~smaLL viewonyt,,(H) for all polynomialsi, i.e., statistical indistin-
guishability of all families ofi-step prefixes of the views.

c) We saySys; zsfgﬁdy Syso (computationally at least as secure)akthe same as in a) holds with
configurations fronConf,,, (Sys;) andConfpey, (Sys,) and computational indistinguishability of the
families of views.

In all cases, we calbonf, anindistinguishable configuratiofor conf,. Where the difference between the
types of security is irrelevant, we simply writel.., and we omit the indiceg andsec if they are clear from
the context. &

B Postponed Proofs

A

Proof. (Theorem 4.2) We first reverse our functipron the structuréy(Msync) U {Xsync x },S) and on the
useryp(Hsync) yielding the structureMSync, S) of Sys¢ync 2 @nd the original honest uskky,.. Note, that we
cannot reverse the functiamon the new adversar,s,n in the same way, because we did not demand it to
have a similar internal structure, so we construct a newradweA,, . for the synchronous configuration
as follows. The ports o, . are given by

{p | P € (ports(Msync) U ports(Hsync)) A p & (ports(Msync) U ports(Hsync))},

i.e., it connects to all remaining free ports ﬂffsync and Hgync. Internally, Agnc maintains an array
(output_store o)picout(ports(Assync)) OF liSts overy® all initially empty.

Async has the adversar,s,nc as a blackbox submachine and its behavior is defined as fllwy
is clocked in the synchronous system, it gets an input Wpte(Z,7) p2cin(ports(Asyn)) - 1t NOW tries to restore
the order in which these messages would have arrived in yimelsonous system. More precisely, it knows
the clocking scheme, so it know which machines have been clocking after the lmgtking of Agync.
Moreover, it knows the order in which machines are switchg&§,. .. in one particular subround. Using
the order on the ports of the asynchronous machines, it caltyfilecide in which order messages sent by
one machine on different ports would have arrived in the elsganous system. The only problem which
might arise is that a machine has been clocked more then oreetke last clocking of the adversary. This
might result in two inputs at the same portA§,,. which would be concatenated without any separation
symbol. Such an input would not be restorable into its odbform, so we had to include the restriction to
the considered clocking scheme that every machine and #reates at most clocked once between two suc-
cessive clockings of the adversary. Note, that our usuakyclocking schem@? U {H}, {A}, {H}, {A})
fulfills this requirement.

After restoring both the usual messages and their origr. uses the blackbox functiody,,,. on
the first input yielding an output tupl®. This tupleO is appended to the arrayutput_store, i.e. each
componentO,, is appended toutput_store,. If there is a nonempty outputat a clock-out porp<!, we
would have a clocked self-loop ivnfasync if output_storey,[c] # €. Inthis case, this component is removed
from the array and,,, . is called again with the new state ahd= Ipi;:(,utput_swmp![c} and so on.

The above steps are repeated with the second input and thetaewfA .5y, and so on until all inputs
have been considered. Finally, the blackbox function islweéh Z,, ._(; ;) wherei denotes the global
round andj denotes the subround the adversary is clocked in. (Tﬁe satyeobviously knows bothand
j because he knows the clocking schemeo he may simply maintain two counters that he adapts every
time he is clocked.) This correspond to the clocking sigrfaKg.. . in the asynchronous system. The
output tuple is again concatenated to the same array anibleosocked self loops are considered again.

29

Finally, Async outputs the first elements of each lista@ftput_store, with plC e ports(]\?fsync U {Hsync}) @s
its output tuple©® and removes these elements from the lists.

Note, that this newly defined adversahy,n. is polynomial iff A,sync is polynomial by construction.
Thus, if the original configurationonf,sync has been polynomial-time (i.e., the ugéHs,n.) and the adver-
saryA,sync must be polynomial-time) then the configuratiamfyyn. = (]\?Isync, S, Hsyne, Async) Will also be
polynomial-time, since the runtime &f;, is always bounded by(Hsync).

Async “reverse” the functionp by construction. The asynchronous adversary would recaagy single
inputs, and it would produce outputs every time which wouddsbored in the outgoing buffers. Possible
clocked self-loops are handled by repeated calls of thesittan function with correct inputs. [A,gync
is scheduled by, « it again performs an arbitrary transition and the first eleto its outgoing buffer
would be clocked. The synchronous adversary first splitajiist messages into their original order and uses
the blackbox function one by one storing the outputsitput_store. The split inputs correspond to the
original inputs of the asynchronous system, so the outplésuare also equal after every step. Therefore,
the contents obutput_store always correspond to the outgoing buffers in the asynchussystem after a
clocking step ofA,snc. If the synchronous adversary is clocked it again callslaskbox function with the
correct input and stores the output in the array. After ihatjtputs the first element of each list of the array
and removes these elements from the lists. In the asynamsosystem messages stored in the outgoing
buffers are treated in the same way. More formally we can gheviollowing lemma.

Lemma B.1 We denote this “reversion” apy by ¢\ and the reversion of the whole configurationday, . ¢

for the moment. Then for an arbitrary configurationfasync = (©(Msync)I{Xsync,x }+ S5 ©(Hsync), Aasync)
we have

,Uiewsownf (@canf(confasync)) (QO(M)) = UiewCOnfasync (SO(M))
for everyM € (Myync U {Hgync}) and

/U/Le/w@canf (@canf (confasync)) (A35ync) = vzewconfasync (Aas}’nc)

where the view oA,y nc in the first configuration is given as a submachinef{om (Aasync))- O

Proof. The proof is illustrated in Figure 5. We first show thdt, .. := om(#m(Aasync)) behaves exactly as
Aasyne, 1.€., both machines are perfectly indistinguishable fieitenvironment. This is already sufficient to
show that the views ap(M) for everyM € (Msync U {Hsync }) are equal in both configurations because they
remain unchanged. We will also show that the viewAgf, . is equal in both configurations which finishes
our proof.

We show that both adversariég . and A,s,nc behave identically between two successive clock-
ings. Moreover, we show that the content of arayput_store,, of Agsync always equal the outgoing
buffersp in the corresponding asynchronous configuration at evegkilg of A,sync as a submachine of
Alsync if we identify clockings ofA,qnc in both configurations in the natural way. More preciselys th
means that we identify théth clocking of Aygync in confasyne With the i-th call of da,,,. by ALy, in
Peonf (Peonf (confasync)). Furthermore, we show that outputs made by the adversarghasys equal in
both configurations.

At the start of the run both buffers and arrays are empty whilfifis our claim. Now assume that, ..
receives an arbitrary input @ # pa,, 7. It stores the message in its arrayput_store,, and gives the
control to the master scheduler. Af, . receives a non-empty input pi? it applies the state transition
function d,,, (A,..c) ON the arraysinput_store. Now, the arraysinput_store are decomposed into single
inputs again preserving their original order, and the fiamc8,_,, . is applied to every such input. Since

the inputs are obviously equal in both configuration, we iobidentical outputs, and moreover identical

30

¢($ (Aasync))

—{ 1 }—

— ol
async

—>] |}

l

Figure 5: Overview of the proof of Lemma B.1.

views for A,qync. By precondition, the arraysutput_store are mapped to the outgoing buffers. After
one call oféa,,,., every output ap! is stored either iroutput_store, or in p at the same position, so
they remain validly mapped. Now, either the first componéntwgput _store,, or the first entry ofp for

p!¢ e (ports(Msync) U {Hsync }) are output yielding identical outputs and therefore idmtviews for the
environment in both configurations, i.e.,

VW s (B (confosne)) (P (M) = Vi€ congnc (9 (M)

for M € (Msync U {Hsync }). We already showed that the views &f . are equal in both configurations
which finishes our proof. [

According to Lemma B.1, the functiap,,,.s 0 @..ns Yields identical views fop(M) for everyM e (Msyncu
{Hsync}) and the asynchronous adversary;, i.e.,

® VIEW, (5o (confme)) (P(M)) = view cong, . (0(M)) and

b vzewwconf(@conf(confasync))(AaSync) = vzewconfas)’nc (Aasync)-

We already showed in Theorem 4.1 tha‘tzwmfsync(M) = 0 (viewy(congyne) ((M))) holds for every

synchronous configurationonfiyn. = (Msync,S Hsync; Async) and for every machinéMl < (Msync U
{Hsync; Async}). If we now setconfoync := @eons (Confasync), We obtain
)

® VieW confy. (M) = 0(vz’ew%(mf(g,wnf(confasync (p(M)))
Moreover, this implies

® VIEW confuyne (Async) = T(VI€Ws (5 ,0ns (confrsync)) (Aasync)))

since the views o ,sync andy(@(Aasync)) are identical. We apply the mappinagon the first two equations
and, using Lemma 5.1, we obtain

b U(viewSOcanf(Sacunf(ConfasynC))(SO(M))) = U(Uiewconfasync (SO(M))) and

° U(’(}Z‘e’wwmnf(@mnf(confasync))(Aasync)) = U(Uiewconfasync (Aasync))

31

Note, thato is in fact defined on runs of these configuration because betimtachines of the structure and
the honest user have the prescribed form. Using trangitivié immediately obtain the desired result

viewconfsync (M) = U(viewCOnfasync ((p(M)))

and
mewconfsync (Async) = U('Uiewconfasync (Aasync))

As a special case we sl := Hgync Which yields
view confeync (Hsync) = o(view CONfasync (@(Hsync)))-
|

Proof. (Lemma 5.2) In order to prove the claim, we present an algoritvhich undoes the changes of the
algorithm for deriving the mapping: It has an internal list oveE™ initially empty, which will be used
to construct the desired view. For every subroyhdt goes through all tuple$Mgync, i, 7,s,Z,s", O")

modifying them as follows: IfMg,. = Hsnc for one machine of this subround, it appends
((p(Hsync),S,IpHSyncrg:(i,j),S/,O/) to its internal list. Note that this tuple precisely matchis original

asynchronous tuple for switching the honest ugén.) by the master scheduler. After that, it pro-
ceed through all tuples of this subround in precisely theesamler they have been scheduled by the
master scheduler (the algorithm is surely allowed to knoev ¢locking scheme). For a given tuple of
the form (Msync, 4,7, s,Z,s",O'), it checks, whether there is a non-empty output at a pbih O’ with

p? € ports(¢(Hsync)). In this case, the honest user would be clocked in the seceymtlronous block,
so we use the state transition functi@g,,,.) on the current state of ¢ (Hsync) and input[,,?:o;! which
yields a new state’ and an (all-empty) outpu®.. We then add a stefp(Hsync), S,Ipfg:o;' ,8,0,). Thisis
done for all ports oM, according to their order and for all machines that switchindonsider subround.
Obviously, this algorithm reverses the mappingpr the honest user by construction. In case of a polyno-
mial configuration, especially the adversary has to be mohjial-time. This implies that there cannot be any
infinite successive clocked self-loops. Moreover, bothetheersary and the honest user will reach final state
after a polynomial number of blocks, so the algorithm équ applied to the view of the honest user will
only makes a polynomial number of transition, each one wiplolgnomial number of steps. This implies
thato is computable polynomial-time applied to the view of the éstruser if it is used in a polynomial-time
configuration. [

32

