
Technical Report: Limits of the BRSIM/UC Soundness of

Dolev-Yao-style XOR⋆

Michael Backes1 and Birgit Pfitzmann2

1 Saarland University & MPI-SWS
2 IBM Zurich Research Lab

January 17, 2009

Abstract. The abstraction of cryptographic operations by term algebras, called Dolev-Yao mod-
els, is essential in almost all tool-supported methods for proving security protocols. Recently sig-
nificant progress was made in proving that Dolev-Yao models can be sound with respect to actual
cryptographic realizations and security definitions. The strongest results show this in the sense of
blackbox reactive simulatability (BRSIM)/UC, a notion that essentially means the preservation of
arbitrary security properties under arbitrary active attacks and in arbitrary protocol environments,
with only small changes to the Dolev-Yao models and natural implementations.
However, these results are so far restricted to core cryptographic systems like encryption and signa-
tures. Typical modern tools and complexity results around Dolev-Yao models also allow operations
with more algebraic properties, in particular XOR because of its clear structure and cryptographic
usefulness. We show that it is not possible to extend the strong BRSIM/UC results to XOR, at
least not with remotely the same generality and naturalness as for the core cryptographic sys-
tems. We also show that for every potential soundness result for XOR with secrecy implications,
one significant change to typical Dolev-Yao models must be made. On the positive side, we show
the soundness of a rather general Dolev-Yao model with XOR and its realization in the sense of
BRSIM/UC under passive attacks.

1 Introduction

Tool-supported verification of cryptographic protocols almost always relies on abstractions of crypto-
graphic operations by term algebras with cancellation rules, called Dolev-Yao models after the first
authors [3]. An example term is Dske(Epke(Epke(m))), where E and D denote public-key encryption and
decryption, ske and pke a corresponding secret and public encryption key, and m a payload message. By
payloads we denote the type of non-cryptographic data that most Dolev-Yao models have. It is used for
data input by the users of the Dolev-Yao model, e.g., emails to be encrypted and signed or payment data
constructed by a payment protocol using the Dolev-Yao model. We wrote the keys as indices for read-
ability; formally they are normal operands in the term. A typical cancellation rule is Dske(Epke(t)) = t
for all corresponding keys and terms t, thus the above term is equivalent to Epke(m). The proof tools
handle these terms symbolically, i.e., they never evaluate them to bitstrings. In other words, the tools
perform abstract algebraic manipulations on trees consisting of operators and base messages, using only
the cancellation rules, the message-construction rules of a particular protocol, and abstract models of
networks and adversaries. The core of these term algebras are operations like encryption and decryption
which ideally have very few algebraic properties; essentially there are only constructors and destructors.
However, if one wants to benefit from such abstractions in protocols that also contain operations with
more algebraic properties, those operations have to be given a similar specification so that they fit into
the overall term algebra. A typical such operation is the exclusive or (XOR), see, e.g., [4–6], because it is
commutative and associative and has significant uses in cryptology, e.g., as the one-time pad, in modes
of operation of block ciphers, and in some protocols.

1.1 Dolev-Yao Soundness and XOR

It is not at all clear from the outset whether Dolev-Yao models are a sound abstraction from real
cryptography with its computational security definitions. In particular, the tools assume that only the

⋆ A preliminary version of this paper appeared in [1, 2].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

modeled operations and cancellation rules are possible manipulations on terms, and that terms that
cannot be constructed with these rules are completely secret. For instance, if an adversary (also called
intruder) only saw the example term above and only the mentioned cancellation rule was given, then m
would be considered secret. In term-algebra terminology, this corresponds to considering only the initial
model of the given equational specification. While it is usually clear that real cryptography is some
model of the specification, it is not clear that it is exactly the initial model. For instance, if arbitrarily
long payloads m are allowed, real cryptography cannot prevent that the term above leaks information
about the length of m. Hence there is already a soundness problem.

Recent work has essentially bridged this long-standing gap between Dolev-Yao models and real cryp-
tographic definitions: It was shown that an almost normal Dolev-Yao model of several important crypto-
graphic system types can be implemented with real cryptographic systems secure according to standard
cryptographic definitions in a way that offers blackbox reactive simulatability (BRSIM) [7]. This secu-
rity (or soundness) notion essentially means that one system, here the cryptographic realization, can
be plugged into arbitrary protocols instead of another system, here the Dolev-Yao model, without any
noticeable difference [8–10]. Essentially the same notion is also called UC for its universal composition
properties [11].1 This BRSIM/UC result was extended to more cryptographic primitives [12–14] and used
in protocol proofs [15–20]. General theorems on property preservation through the BRSIM notion imply
that the same Dolev-Yao model and realization also fulfill some other soundness notions [8, 21–23, 21, 24,
25], and further soundness results specific to this Dolev-Yao model and realization were proved in [26].
Stronger links of this Dolev-Yao model to conventional Dolev-Yao type systems were provided in [27],
and an integration into the Isabelle theorem prover in [28]. Earlier soundness results considered passive
attacks only [29–31]. Later papers such as [32–34] define weaker soundness notions, such as integrity
only or offline mappings between runs of the two systems, and/or allow less general protocol classes, e.g.,
only a specific class of key exchange protocols. For these cases, they can use simpler Dolev-Yao models
and/or realizations than [7]. Since computational soundness has become a highly active line of research,
we exemplarily list further recent results in this area without going into further details [35–40].

All these Dolev-Yao soundness papers consider only core cryptographic systems like encryption and
signatures, not operations with additional algebraic properties like XOR. The first sound formal ab-
straction of XOR was presented in [41, 42] in a calculus for pseudorandomness that can replace more
standard Dolev-Yao calculi if encryptions (e.g., block ciphers) are treated as cryptographic pseudorandom
permutations. It only treats passive attacks.

In this paper we first show that one change to Dolev-Yao models of XOR is necessary to obtain
any soundness result that implies secrecy: the adversary must be allowed to parse XORs unless one
component is uniformly random; we call this the XOR-parsing need. Types that are not uniformly
random are payloads, but also keys and ciphertexts for standard cryptographic realizations. Then we
study whether the soundness results in the sense of BRSIM/UC can be extended to Dolev-Yao models
with XOR. It turns out that this is impossible in a general way. We are quite surprised by this result,
because XOR seems a simple operation compared with systems like digital signatures, and it seems well
described by its algebraic properties. We have also not found reasonable restrictions to the protocol
class considered, or reasonable modifications to the Dolev-Yao model or the realization of XOR that
would make a BRSIM/UC result possible. The precise range of Dolev-Yao models, protocol classes, and
realizations, for which we show such BRSIM/UC impossibility results is discussed in more detail below.
The only positive result we show is restricted to passive attacks. Otherwise this result is strong: It shows
soundness in the sense of BRSIM/UC, allows a broad range of other operations in the Dolev-Yao model,
and correctly handles situations where some components in an XOR are uniformly random and others
are not. We call it passive BRSIM/UC XOR soundness. Although early papers on bridging the gap
between Dolev-Yao models and cryptography were also for passive attacks only, typical overall Dolev-
Yao attackers are active, and indeed most security protocols are intended for scenarios with wide-ranging
active attacks. We therefore consider our negative results for the active case more important.2

1 The 2005 revision of the long version of [11] also contains an explicit blackbox version of UC, which is proven to
be equivalent to UC. A similar equivalence was first shown in the long version of [8] for universal and blackbox
synchronous reactive simulatability.

2 Another soundness result for XOR in the passive case was recently obtained in [43]. Here XOR is restricted
to terms whose corresponding bitstrings have a uniformly random distribution. Thus, e.g., one cannot even

2

A considerable technical problem in the BRSIM/UC impossibility results is that we would like to show
that no Dolev-Yao model with XOR has any realization sound in the sense of BRSIM/UC. However, this
is a meta-theorem formulation: There is no current definition of a Dolev-Yao model independent of specific
system models such as CSP, π-calculus, I/O automata etc. For positive results, this is not a problem.
However, an impossibility result that only holds for one such model would not be very convincing. (In
particular, the closest model to build on would be the BPW-DY model from [7], because it already avoids
“smaller” impossibilities for BRSIM/UC soundness; however, due to syntax idiosyncrasies many people
find it hard to transfer basic ideas from that model to others. An equivalent less idiosyncratic version
was published too late to influence the present results [28].) Not even the notion of an XOR realization
is completely well-defined, e.g., if one considers adding XOR to a Dolev-Yao realization where other
operators are type-tagged. Hence, instead of proving impossibility for one specific Dolev-Yao model, we
will only make certain assumptions on the Dolev-Yao model; we believe they are fulfilled by all such
models existing so far.

Clearly, the BRSIM/UC impossibility results that we show for Dolev-Yao models with XOR leave
room for considering weaker notions of soundness. It is also not excluded that even a BRSIM/UC sound-
ness result holds for certain restricted protocol classes to which none of our impossibility results applies.
Furthermore, certain protocols built with XORs may be secure with respect to certain specifications
(ideal systems) in the sense of BRSIM/UC even when the underlying cryptographic operations altogether
cannot be abstracted by a BRSIM/UC-sound Dolev-Yao model. It will be interesting to investigate the
precise limits in the future. Nevertheless, these results show that the general secure pluggability of a
cryptographic realization for a Dolev-Yao model given by the BRSIM/UC results for core cryptographic
operations cannot be extended to XOR.

1.2 Further Related Work

The XOR operation has accompanied cryptography from its beginnings, from simple ciphers in ancient
and medieval times, over the one-time pad and the work of Shannon, to its widespread use in modern
cryptography where it constitutes an essential component in many cryptographic protocols, e.g., [45–47].
To the best of our knowledge, the XOR operation in the symbolic analysis of cryptographic protocols was
first mentioned by Meadows as a possible extension of the NRL analyzer [48]. It has been incorporated
into many formal proof tools, e.g., NRL [49], CAPSL [50], Isabelle [51], and OFMC [52]. Recent papers on
XOR in Dolev-Yao models mainly investigate the decidability and complexity of the security of certain
protocol classes against a Dolev-Yao attack in the presence of deduction rules for the XOR operator [5,
6].

The line of work on Dolev-Yao models with XOR typically continues with abstractions of more general
Abelian groups, e.g., [53–55], and the exponentiation function as used in many cryptographic systems
based on the discrete-logarithm problem, e.g., [56–58]. While we have not yet considered the soundness
of these extensions, we are convinced that a general use of such operations on other terms would lead
to similar problems as with XOR. For exponentiations, however, it may be more realistic than for XOR
to make strong restrictions on the types of terms that can be exponentiated and the use of the results
within larger terms, and such restrictions might help.

Reactive simulatability (RSIM) could, in terms of the semantics community, be called an implementa-
tion or refinement relation, with a particular emphasis on also retaining secrecy properties, in contrast to
typical implementation relations. It was first defined generally in [8], based on simulatability definitions
for secure (one-step) function evaluation [59–63]. On the side of formal methods, it is also highly related
to the observational equivalence notions for a probabilistic π-calculus from [64]. Reactive definitions of
simulatability for asynchronous systems were presented in [9, 11], called UC (universal composability)
and with somewhat different details in the latter. Since then, these definitions have been used in many
ways for proving individual cryptographic systems and general theorems. While the definitions of [9, 11]
have not been rigorously mapped, we believe that for the results in this paper the differences do not
matter, in particular if one thinks of the equivalent blackbox version of UC. Similarly, we believe that
the results would hold in the formalism started in [64].

model a one-time pad combining a random string and an arbitrary plaintext. Moreover, we recently showed a
similar results for Dolev-Yao style representations of hash functions [44].

3

In the wider field of linking formal methods and cryptography, there is also work on formulating
syntactic calculi for dealing with probabilism and polynomial-time considerations directly and encoding
them into proof tools, in particular [65–69]. This is orthogonal to the work of justifying Dolev-Yao models:
In situations where Dolev-Yao models are applicable and sound, they are likely to remain important
because of the strong simplification they offer to the tools, which enables the tools to treat larger overall
systems automatically than with the more detailed models of cryptography.

1.3 More Details on Our Results

We now summarize our results in a bit more detail.

XOR-parsing need. In Section 2, we show that the standard Dolev-Yao model of XOR used in the liter-
ature is not sound with respect to every moderately natural implementation if secrecy is required (not
necessarily BRSIM/UC) and arbitrary terms such as payloads can be XORed. Instead, the adversary
must be allowed to parse XORs unless one component is uniformly random. In realizations based only
upon standard cryptographic security definitions, the only sufficiently random types are nonces, i.e.,
explicitly generated fresh random or pseudorandom strings, while payloads, keys, ciphertexts, and sig-
natures are not automatically sufficiently random. However, in restricted situations more random types
may be possible, e.g., if the payload distribution is known and strong compression is used, or if one
restricts symmetric encryption or authentication schemes to those with uniformly random keys. While
this result is not very surprising from the cryptographic point of view, the consequences such as spe-
cial operators for the adversary would already be significant changes in some Dolev-Yao models in the
literature.

BRSIM/UC impossibility results. Our major results are negative results that aim at demonstrating the
informal claim that it is not possible to realize “true Dolev-Yao models” by “real XORs” in a generally
composable way. In the following, we summarize our concrete impossibility results.

– If we assume a Dolev-Yao model with XOR and payloads and a realization where payloads are
arbitrary bitstrings and used in their original form, and if we postulate that the Dolev-Yao model
treats XORs of payloads in a certain natural way, then it is not sound in the sense of BRSIM/UC.
This is sketched in Section 4.1 and rigorously shown in Section 6.1. We only need XORs of two
payloads and the protocol could be fixed and generally known. Hence this is a rather strong result.
We also discuss why one might nevertheless not be satisfied with the “certain natural way”, and thus
be interested in the later results also (Section 4.2).

– If we assume a Dolev-Yao model with XOR and signatures, and a realization where payloads are
arbitrary and used in their original form, then soundness in the sense of BRSIM/UC implies that
the Dolev-Yao model can compute actual signatures according to the real algorithms used in the
assumed cryptographic realization. Informally this contradicts the assumption that the given system
is a Dolev-Yao model. More precisely, we present a reduction proof showing that under the given
assumptions, the (supposed) Dolev-Yao model can be used to build a signing algorithm with minimal
additional operations. This is sketched in Section 4.3 and rigorously shown in Section 6.2.

– The same result holds even if the payloads may be encoded in the real system before being used in
XORs, but with low or well-structured redundancy such as type tags (Section 7.1). To the best of
our knowledge, all current implementations of XOR fall into this class or the previous class.

– The same result holds with more complex counterexamples if we no longer assume that arbitrary
usage of the Dolev-Yao model is allowed, but only assume that certain useful-looking protocols can
be built on top of it. For our main counterexample in this case we additionally assume that public-key
encryption with the standard secrecy features is available in the Dolev-Yao model (Section 7.2).

– Even if there are no payloads at all, a similar result holds where the system that should be a Dolev-
Yao model must at least be able to test signatures. I.e., we now make a reduction proof that yields
an approximate test algorithm, a notion that we first define rigorously (Section 7.3).

The basic underlying problem in all these cases is when an honest participant receives an XOR from an
active adversary, and the simulator of the BRSIM/UC definition cannot know how to parse it, and will
thus either parse it wrong with high probability, or leave real work to the supposed Dolev-Yao model.

4

Positive BRSIM/UC result for passive attacks. In Section 8, we show BRSIM/UC soundness for an
extension of the Dolev-Yao model from [7] and its realization, where both restrict the adversary to passive
attacks. The adversary capabilities in the Dolev-Yao model are extended compared with standard models
as necessary according to the result on XOR-parsing need. Additionally, we need a restriction that the
users, i.e., typically the protocols that use the Dolev-Yao systems, only request correct type conversions
from XORs back to underlying term types. The condition is of a class that can be verified formally for
the protocols. A third slightly unusual feature, but natural in the context, is that we allow nonce types
of different lengths, so that the corresponding real nonces can be used to hide terms of arbitrary length.

2 The Need for Special XOR Parsing by the Dolev-Yao Adversary

We first show why every XOR abstraction that is sound with respect to secrecy, i.e., messages that are
symbolically secret in the Dolev-Yao model are also cryptographically secret in the realization, must be
different from the standard Dolev-Yao XOR in the literature. Thus this negative result is broader than
only for the strong BRSIM/UC notion of soundness. However, it only concerns the standard Dolev-Yao
models of XOR, and can be circumvented by adding a feature to these Dolev-Yao models which we
consider well within the spirit of Dolev-Yao models. Thus we do not call it an impossibility result. In
particular, our passively sound model in Section 8 has this additional feature.

As far as we know, all Dolev-Yao models with XOR that are used in tools or in decidability and
complexity results allow participants to XOR arbitrary terms and to convert (typically implicitly) a
result that is a term of another type back to that type. For instance, a recipient who receives a one-time
pad ciphertext c = XOR(d, k), where d is a plaintext and k a key, may ask to have c XORed with k and
to obtain the plaintext d as output. The adversary has no additional capabilities in these models. For
instance, if it receives an XOR of two terms that it both doesn’t know, and that both did not occur
in other XORs, it cannot derive these terms. For instance, an adversary not knowing k and d in the
example above cannot retrieve k or d.

Now assume that an honest participant XORs two plaintexts written in English and sends the result
to the adversary. The result can be cryptanalyzed if the texts are long enough, i.e., a real adversary can
retrieve the two plaintexts, e.g., see the section on running-key ciphers in [70]. Hence we must model
that an XOR leaks the underlying terms to the adversary unless we know that at least one of these
terms is sufficiently random. In this sense, prior Dolev-Yao models of XOR are overly optimistic. (The
pseudorandomness calculus from [41] of course recognizes that XORs are only pseudorandom if at least
one contained term is.) Even data types of significant entropy, like secret or public keys of public-key
systems, are not sufficiently uniformly distributed given only the standard cryptographic definitions to
guarantee that an XOR with them hides plaintext data or other cryptographic elements well, i.e., besides
the entropy they may contain significant redundancy.

One can deal with this imperfection—and we will do so in detail in the positive result for passive
attacks—by distinguishing a set of random types among the types of a Dolev-Yao model. Elements of a
random type are deemed sufficiently random (often pseudo-random in reality) to restrict the adversary
to the standard algebraic operations on XORs. However, if there are no unknown random elements in
an XOR, the Dolev-Yao adversary is given the capability to parse this XOR, i.e., if he learns the XOR,
then he also learns the XORed terms.

3 Blackbox Reactive Simulatability

Our remaining positive and negative results about the soundness of Dolev-Yao models with XOR concern
the soundness notion of blackbox reactive simulatability (BRSIM)/UC. Hence we start by surveying
this notion. Reactive simulatability is a general notion for comparing two systems, typically called real
and ideal system. In terms of the semantics community one might call RSIM an implementation or
refinement relation, specifically geared towards the preservation of what one might call secrecy properties
compared with functional properties. We believe that all our following results are independent of the
small differences between the definition styles of [64, 8, 11], and therefore write “BRSIM/UC”. However,
we have to use a specific formalism for the actual results, and we use that from [9]. Here one speaks
of ideal and real systems (the functionalities and protocols of UC). The ideal system is often called

5

TH for “trusted host”, see Figure 1, and the protocol machines of the real system are often called Mu,
where u is a user index. The ideal or real system interacts with arbitrary so-called honest users, often
collectively denoted by a machine H; this corresponds to potential protocols or human users to whom
the functionality is offered. Furthermore, the ideal or real system interacts with an adversary, who is
often given more power than the honest users; in particular in real systems A typically controls the
network and can manipulate messages on the bitstring level. Adversaries are often denoted by A. They
are allowed to interact directly with H; this corresponds to known-message and chosen-message attacks.

Reactive simulatability between the real and ideal system essentially means that for every attack on
the real system there exists an equivalent attack on the ideal system. More specifically, blackbox reactive
simulatability (BRSIM) states that there exists a simulator Sim that can use an arbitrary real adversary
A as a blackbox, such that arbitrary honest users H cannot distinguish whether they interact with
the real system and the real adversary, or with the ideal system and the simulator with its blackbox.
Indistinguishability of families of random variables, here applied to the two families of views of the
honest users, is a well-known cryptographic notion from [71]. As Sim is chosen before A and H, the
BRSIM definition allows A and H that communicate directly. Our first counterexample, however, will
not make use of this feature.

A

H

M
1

M
n

H

TH
ASim

...

1.

2.

3.

Fig. 1. Overview of blackbox reactive simulatability (BRSIM). A real system is on the left; an ideal system plus
simulator on the right. The views of H must be indistinguishable. The quantifiers are numbered to show their
order.

The reader may regard the machines, i.e., the individual boxes in Figure 1, as (possibly probabilistic)
I/O automata, Turing machines, CSP or pi-calculus processes etc. The only requirement on the under-
lying system model is that the notion of an execution of a system when run together with an honest
user and an adversary is well-defined. In [9], the machines are a type of probabilistic I/O automata. We
always assume that all parties are polynomial-time.

In the following, the ideal system TH will always be a Dolev-Yao model with XOR and the real
system its distributed realization with bitstring XORs. The question is whether the BRSIM relation can
be fulfilled between such systems.

4 Main Scenarios for BRSIM/UC Impossibility Results

In this section, we informally describe two scenarios that demonstrate the impossibility of BRSIM/UC
soundness for Dolev-Yao models with XOR. We start with a simple scenario, then discuss the assumptions
about the Dolev-Yao model and its realization needed in this scenario, and then provide a more complex
scenario that needs weaker assumptions. In Section 5 we make the assumptions more precise. In Section 6
we prove the impossilibity of these scenarios with the precise assumptions, and in Section 7 we sketch
further scenario extensions to broaden the impossibility results. Readers with a specific Dolev-Yao model
in mind should be able to see already in the current section how the scenarios would be expressed in
that model, and thus how the impossibility results apply there.

6

4.1 Scenario with Payload XOR

We first study the scenario in Figure 2. In all our interaction figures, we show a real scenario on the left
and an attempted simulation on the right. We write Hu for the actual user with index u, which is a part
of the global H in Figure 1.

xr xr := m
1
r m

2
r

mr = m
2
r

M
u

AH
u

TH AH
u

Sim

xu xu
xa =

XOR(?, ?)
XOR(xu, m

1
r) mr :=

xr m
1
r

xr

(m
1
r, m

2
r)

xr := m
1
r m

2
r

?

XOR(xu, m
1
r)

(m
1
r, m

2
r) (m

1
r, m

2
r) (m

1
r, m

2
r)

Fig. 2. Scenario with payload XOR.

In this scenario, the adversary and the honest user are parametrized with two payloads mr
1 and mr

2.
The superscript r denotes that these are real bitstrings, not abstract terms; we write terms without
superscript. The real adversary XORs these two bitstrings and sends the result xr to the machine Mu,
which notifies its user Hu that a message was received, and possibly that it is an XOR. We write the
representations of terms/real messages to user Hu with a superscript u; we discuss this below. The user
Hu now asks its machine Mu to XOR the received message with the payload mr

1 and to output the
resulting payload. Hence Hu obtains mr

2.
When the simulator Sim tries to simulate this with the ideal system TH, i.e., with the Dolev-Yao

model, it also obtains the real XOR xr from the real adversary, and it is supposed to send a corresponding
XOR term using the Dolev-Yao model; we denote this by xa. (The a means that this is the ideal
adversary’s representation of the term.) However, at this moment there are many possibilities of what
mr

1 and mr
2 could be, even if the simulator knows that this is an XOR of precisely two payloads. Hence

if Sim has to select some, with overwhelming probability it will select another pair mr
3 and mr

4 with
mr

3⊕mr
4 = xr. Now TH, like Mu, notifies user Hu that a message was received, and possibly that it is an

XOR. In our scenario, Hu asks TH to XOR the received message with the payload mr
1 and to output the

resulting payload. If TH acts purely symbolically on the term XOR(m3,m4), it obtains XOR(m3,m4,m1).
For indistinguishability between the real and ideal system, the actual output should, however, be mr

2.
This clearly requires that TH evaluates the real, non-algebraic XOR on the bitstrings corresponding to
the payload terms m3, m4, and m1. This is not what a standard Dolev-Yao model would do.

If the simulator, instead of inputting the term x as the XOR of two guessed payloads, can input it
as an “unknown XOR”, as indicated by the question marks in Figure 2, the simulation fails even more
clearly: Now TH has no information at all that the XOR of the terms x and m1 is equivalent to m2.

4.2 Discussion of the Scenario with Payload XOR

First note that the scenario with payload XOR in Section 4.1 is valid even if the “protocol” used on top
of the Dolev-Yao model is fixed and known to the simulator: The protocol in this case is simply that
Hu knows two payloads (or the protocol machine Hu accepts them from a “real user” H′

u, who in turn
knows them from somewhere), receives a message from the adversary, XORs it with one of the payloads
and tests that the result is the other payload. The knowledge of this does not help Sim above.

Secondly, we assumed that payloads can be random bitstrings and are used without additional re-
dundancy in real XORs. Very strong redundancy might allow Sim to parse xr uniquely into the two
payloads mr

1 and mr
2. However, this would be a highly unusual class or encoding of payloads. As long

as there exist four different payloads such that, in their encoding before the application of XOR, we
have mr

1 ⊕mr
2 = mr

3⊕mr
4, the scenario is still a valid counterexample because the simulator will still be

wrong with significant probability, unless we allow the simulator to input a term representation xa that
contains all possible parsings, and assume it is feasible to find them.

Finally, the relation between real payloads and payload terms needs a discussion. In typical Dolev-Yao
models, different payloads are a priori abstracted to atoms of the term algebra, e.g., two emails mr

1 and

7

mr
2 become two atoms m1 and m2. When we plug such a Dolev-Yao model into an overall real system,

where payloads may have complex application semantics so that we cannot simply make them atoms,
we therefore assume that the full ideal functionality TH maintains a translation table between the real
payloads that occur in a system execution and the corresponding Dolev-Yao terms. This is why we wrote
the user inputs and outputs as mr

1 and mr
2. If they were just atoms m1 and m2, the impossibility in the

scenario above would be even clearer: Either Sim would not even have the atoms m1 and m2, or with
probability at least one half it would select a wrong pair (m3,m4) of atoms, and then a later derivation
that XOR(m3,m4,m1) equals m2 is impossible.

When considering soundness in the sense of BRSIM/UC, we have an even stronger motivation for also
considering real payloads even if the core Dolev-Yao model abstracts from them: In the realization, the
real payload bitstrings from the users are encrypted, XORed, etc. Hence they must be input and output.
For indistinguishability, the inputs and outputs of the ideal system TH must be syntactically the same.
Syntactically different user interfaces would either simply prevent the same users from using alternatively
the real or the ideal system, or lead to trivial distinguishability. Hence if the Dolev-Yao model has
a different “core” representation of payloads, there must be a translation between the input/output
representation and this “core” representation. This holds for all definition variants of BRSIM/UC.

However, once we assume such a translation for real payloads, one might argue that augmenting
it from pure table lookup to performing bitstring XORs, such as of mr

3, m
r
4 and mr

1 above, is not a
huge addition and not “impossible” for Dolev-Yao models. Hence we show more complex scenarios in
the following where TH would not only have to evaluate bitstring XORs, but also real cryptographic
operations to make a simulation possible. Thus TH would even more obviously not be a Dolev-Yao
model.

4.3 Scenario with Signature Computation

The scenario in Figure 3 additionally exploits a signature operator S as a cryptographic operation that
a Dolev-Yao model should only evaluate symbolically. We assume that the honest party u already has
a pair (sks , pks) of a secret signing key and a public test key, and that the test key was published, so
that the real adversary knows the real public key pks r. We assume that payloads have no redundant
encoding.

xr

xr random

mu = mr

M
u

AH
u

TH AH
u

Sim

xu xu

xr random

XOR(xu, S(sksu, dr)) mr :=
xr Sr(sksr, dr)

xr

mu

XOR(xu, S(sksu, dr))

dr, mr sr := mr xr;
Tr(pksr, dr, sr)

dr, mr
sr := mr xr;
Tr(pksr, dr, sr)

xa =

XOR(?)

Fig. 3. Scenario with signature computation.

The real adversary sends a random string xr to the machine Mu, which notifies its user Hu that a
message xu has arrived. Then Hu asks its machine Mu to XOR the received message xu with his or her
signature on a payload dr and to output the resulting payload mr. As we assume that payloads have no
redundant encoding, the machine Mu does not recognize that mr is not an “original” payload. The user
Hu and the adversary A use the real signature test algorithm Tr to verify that the bitstring sr := mr⊕xr

is a valid signature on dr with respect to the user’s public key pks r.
For indistinguishability, in the simulation TH must also output a bitstring mr with this property.

However, this intuitively means that TH can compute a cryptographic signature and is thus not a Dolev-
Yao model. More precisely, the simulator, upon getting xr from A, can essentially only input to TH that
an unknown XOR is sent. If this is the only input, then TH does not even have enough information to
compute a correct mr (but if we assume this we could take the simpler scenario from Section 4.1). If
Sim additionally inputs the real bitstring xr somehow in the representation xa, e.g., by claiming that the
term x is the XOR of just this one payload xr, then we show by a reduction proof that it is actually

8

TH that does the main work in computing the signature sr. We will do this after making more precise
assumptions.

5 Common Assumptions for our Main Scenarios

As explained in the introduction, we want to show that it is not possible to securely implement any
Dolev-Yao model by any natural realization of XOR in the sense of BRSIM/UC. In order to turn this
informal meta-theorem into real theorems, we need assumptions on what characterizes a Dolev-Yao
model, a model of XOR in it, and a real implementation of such a model. We obviously need some such
assumptions: The notion of BRSIM/UC is reflexive. Thus, if an arbitrary Dolev-Yao model with XOR
also counted as real, we would trivially have a secure realization of the system by itself. The same would
hold if an arbitrary real cryptographic system with XOR also counted as a Dolev-Yao model. But this
is not what we want. To make our results as strong as possible, we only make minimal assumptions. We
start with the basic notions of terms, including an XOR operator.

Definition 1 (Terms of a Dolev-Yao Model with XOR). We require that we can derive definitions
of the following concepts from a Dolev-Yao model with XOR:

a. A set Terms denoting the overall set of valid terms. We speak of atoms and operators denoting the
potential leaves and inner nodes, respectively, of the terms considered as trees. The terms, atoms
and operators may be typed. There is an equivalence relation “≡” on Terms. We call (Terms ,≡) the
term algebra.3

b. An operator XOR that is commutative, associative, and where each element is an inverse
of itself. More precisely, we require XOR(t1, t2) ≡ XOR(t2, t1) and XOR(t1,XOR(t2, t3)) ≡
XOR(XOR(t1, t2), t3) and that XOR(t1, t1) is a neutral element (for XOR) for all t1, t2, t3 ∈ Terms.
(The neutral elements correspond to all-zero strings; a Dolev-Yao model might represent only one
all-zero string, or one of every possible length.)

c. A set XORable Terms ⊆ Terms of the terms that are valid operands of the operator XOR.
d. A list operator (possibly implemented by repeated pairing in the original syntax). Two lists are equiv-

alent iff all their corresponding elements are.

✸

Next we define some minimum actions that the users and the adversary can carry out on the terms,
and the results of these actions. In our context, this is the basis for showing that our impossibility
scenarios are at least executable in every Dolev-Yao model (which was hopefully intuitively clear).

We already used the notation tu for the representations of a term t for a user with index u in the
informal scenarios. While this notation is certainly more general than notions that may be familiar
to some readers, and thus can only strengthen our impossibility results, let us briefly motivate how it
relates to such notions: An important concept in Dolev-Yao models is that of terms t constructible for
some participant u or the adversary (by applying operators and cancellation rules to previously known
messages); however, the syntax for this concept varies considerably. Some high-level representations,
such as the typical arrow pictures, simply use t itself in the protocol representations, e.g., “E(pke,m)”
even when someone who does not know m forwards this encryption term. More detailed representations
typically use the concepts of variables inherent to the underlying formal protocol languages. A usual
case is to match received messages with a pattern describing the expected message format, and then
to use the pattern variables in subsequent message constructions. To the best of our knowledge, the
first explicit such protocol representation was the PROLOG message derivation in the Interrogator [72],
while pattern matching of an existing calculus was first used for CSP and FDR in [73]. The syntax of
the Dolev-Yao model with BRSIM/UC soundness in [7] uses local variables called handles and explicit
parsing of received messages. The syntax from all these models can easily be mapped to that in our
following definition.

We say that a user u “has” a term representation if it has learned or constructed it. We do not
need a full definition of how this learning and constructing is done; only the obvious parts that users

3 Clearly syntactic term equality “=” implies equivalence. Typically “≡” is constructed from cancellation rules.

9

learns received terms can XOR them. Furthermore, we define that terms can be sent and that the ideal
adversary controls the network as usual in Dolev-Yao models. Furthermore we require that users can
XOR terms.

Definition 2 (Actions on a Dolev-Yao Model with XOR). Users and the ideal adversary can
make at least the following inputs into the ideal functionality of a Dolev-Yao model with XOR, with the
described results.

a. If an honest user Hu inputs send(v, tu) for a term representation tu, this leads to an output
receive(u, v, ta) for the adversary.

b. If the adversary inputs send(u, v, ta) for a term representation ta, this leads to an output receive(u, tv)
for user v (i.e., the adversary impersonates u), and outputs of this format only occur upon such
inputs. After such an output, user v “has” the term representation tv.

c. If a user with index u (honest or the adversary represented by u = a) has term representations tu1 and
tu2 for t1, t2 ∈ XORable Terms, then it also has a representation for the term XOR(t1, t2). (Typically
this is something like the string “XOR(tu1 , t

u
2)”.)

✸

We already discussed in Section 4.2 that payloads are application data, and that the interface between
the users and the real or ideal system must be able to pass these bitstrings through so that the real
system can encrypt real bitstrings etc. We make the following minimum assumption about this setting.

Definition 3 (Payloads in Dolev-Yao Models). A Dolev-Yao model with payloads allows us to
derive a type (subset) payload in the set Terms. In every execution, every occurring payload term m
has a fixed realization mr, and mr = m′r implies m ≡ m′. For an arbitrary but fixed polynomial plen
we can assume that the range of payload realizations mr contains at least all bitstrings up to the length
plen(k), where k is the cryptographic security parameter. A real payload mr can always be used as an
input representation mu by user u, and a user u who has any payload representation mu can ask to have
the corresponding payload mr output; then this happens without outputs to other parties, in particular
the ideal adversary. ✸

A general characteristics of real systems is that they are distributed. This means that each participant
u has its own machine, here called Mu, and the machines are only connected by channels that offer well-
defined possibilities for observations and manipulations by a real adversary. Specifically for the realization
of Dolev-Yao models with XOR, we make the following (natural) minimum assumptions: Real channels
are insecure; the input to send a term t leads to the actual sending of a bitstring tr; and XOR terms are
realized by applying an actual XOR to the realization of the contained terms.

Definition 4 (Pure Realization of a Dolev-Yao Model with XOR). In a pure realization of a
Dolev-Yao model with XOR, an input send(v, tu) to a machine Mu releases a bitstring tr to the real
adversary such that within one execution of the system t ≡ t′ ⇒ tr = t′

r
for all terms t, t′. We have

(XOR(t1, t2))
r
= tr1 ⊕ tr2 for all t1, t2 ∈ XORable Terms. ✸

We wrote “pure” in this definition as Dolev-Yao model realizations profit from type tags, see [74,
7]. For readability we left this option out of the core definition, as with XORs one must be careful how
to apply type tags so that the desired algebraic properties still hold. Essentially one has to normalize
before type tagging, see Section 8.7 for a concrete version. We sketch in Section 7.1 how the impossibility
proofs extend to this case.

We did not define any ideal secrecy of XORs here, i.e., that an ideal adversary learning certain
XORs cannot derive the individual xored terms. While one would expect this for positive results, our
impossibility results do not rely on such ideal secrecy.

6 Rigorous Impossibility Proofs

In this section we reconsider the scenarios from Section 4 under the rigorous definitions. We start with
the scenario with payload XOR from Figure 2. Here we need more assumptions for proving impossibility
than the common assumptions defined in Section 5, in particular because the common assumptions
do not exclude the discussed possibility that the lookup-translation between real payloads and opaque
payload terms is augmented by an actual XOR computation in the ideal system. In contrast, the proof
for the more complex scenario with signatures will not need such additional assumptions (only a simple
assumption that the Dolev-Yao model contains a signature operator).

10

6.1 Additional Assumptions and Proof for the Scenario with Payload XOR

Intuitively, in the scenario with payload XOR in Section 4.1 we postulated that the Dolev-Yao model
performs no bitstring computations that would allow it to recognize the term x as the XOR of m1 and
m2 at the end if the ideal adversary, here the simulator, has not guessed these messages a priori. We
define this as follows.

Definition 5 (Dolev-Yao Model without Bitstring XOR). A Dolev-Yao model with XOR and
payloads is called without bitstring XOR if the following holds: If an input send(u, v, xa) by the ideal
adversary at a time T leads to an output receive(u, xv) for user Hv with a term x ≡ XOR(m1,m2) such
that m1,m2 ∈ payload and m1 6= m2, and if the terms m1 and m2 were not present by themselves or as
subterms in TH before time T , then the input representation xa explicitly contains the payloads mr

1 and
mr

2. ✸

This is quite normal for Dolev-Yao models if one has accepted that TH, in addition to the core Dolev-
Yao model, contains the translation table between real payloads and their representations: Sim might
enter terms like D(E(XOR(m1,m2))) or XOR(XOR(m1,m3),XOR(m2,m3)) instead of XOR(m1,m2), but
m1 and m2 have to occur somewhere explicitly as long as no prior terms such as t = XOR(m1,m3)
are available where a representation ta might simply be a local variable “t”. We could also extend this
definition to a multi-step interaction between the ideal adversary and TH if we allowed inputs other than
send(u, v, xa) by the ideal adversary; we omit this extension for readability.

Theorem 1. A Dolev-Yao model without bitstring XOR (Definition 5) and with payload ⊆
XORable Terms does not have a pure realization (Definition 4) that is sound in the sense of BRSIM/UC.
✷

Proof. Assume the contrary for a Dolev-Yao model TH and a realization. Definitions 1 to 4 imply that
the users and the real adversary can carry out the scenario from Figure 2 with these systems. More
precisely, the statement that A and Hu are parametrized with messages mr

1 and mr
2 means that we

consider a family of honest users Hu,mr
1
,mr

2
and adversaries Amr

1
,mr

2
, where mr

1 and mr
2 are arbitrary

payloads of a fixed length l ≥ 1 with mr
1 6= mr

2. (This is possible by Definition 3.) Furthermore, these
definitions imply that in the real system, the result from Mu for Hu,mr

1
,mr

2
is indeed mr = mr

2.
Thus for BRSIM/UC soundness, the simulator Sim has to achieve that the ideal system TH also out-

puts mu = mr = mr
2 with overwhelming probability, because every other output would be distinguishable

for Hu,mr
1
,mr

2
. The corresponding term m is derived in TH as m := XOR(x,m1). Hence mr = mr

2 implies
m2 ≡ m ≡ XOR(x,m1) with Definition 3, and thus x ≡ XOR(m1,m2) with the algebraic properties
of XOR (Definition 1). Here x is the term sent by the ideal adversary; by Definition 2 there must be
exactly one such sending action. Furthermore, mr

1 6= mr
2 implies m1 6= m2 with Definition 4. Hence by

Definition 5, the ideal adversary cannot achieve this equivalence without inputting the actual payloads
mr

1 and mr
2 within the representation xa. The definition is applicable in this scenario because no other

term containing m1 and m2 is available in TH yet.
However, Sim is fixed while we consider the family of users Hu,mr

1
,mr

2
and adversaries Amr

1
,mr

2
, and it

only obtains the input xr = mr
1 ⊕mr

2 from Amr
1
,mr

2
. Hence for every xr and security parameter k, Sim

has to choose its guess at mr
1 and mr

2 with a fixed distribution Dxr,k. For every such distribution, at
least one pair (mr

1,m
r
2) has probability at most 2−l, because by Definitions 3 and 4, all bitstrings of

length l are possible payloads. Hence there exists a pair (mr
1,m

r
2) that has probability at most 2−l ≤ 1/2

for infinitely many values of k (recall that l is a constant, and can actually be very small). Thus for
the corresponding user Hu,mr

1
,mr

2
and adversary Amr

1
,mr

2
, the probability that the simulation is correct

is at most 1/2 for infinitely many k. This is not overwhelming. Therefore BRSIM/UC soundness is not
possible.

6.2 Reduction Proof for the Scenario with Signatures

Our second scenario uses signatures. However, we do not need any cryptographic properties, but simply
exploit signing as an operator whose realization is typically of significant complexity, so that we can argue
that an ideal system TH that evaluates the realization of this operator is not a Dolev-Yao model. We

11

therefore make a minimal definition without even mentioning the test operator. For notational simplicity,
we also make this definition only for deterministic memory-less signature schemes. This is no significant
restriction in particular as our scenario needs only one signature; moreover we sketch afterwards why
the proof also holds in the general case.

Definition 6 (Minimal Signatures in a Dolev-Yao Model). A Dolev-Yao model with XOR and
a realization according to Definitions 1, 2 and 4 is called with simple signatures if it has an operator
S with two parameters where the first denotes the secret key and the second the signed term such that
(S(sks , t))

r
= Sr(sks r, tr) for the signing algorithm Sr of a secure cryptographic signature system whenever

the term S(sks , t) is well-defined. Furthermore, it must be possible to publish corresponding public keys
pks in the Dolev-Yao model such that in the realization (sks r, pks r) are a key pair of the same signature
system. ✸

By a secure cryptographic signature scheme we mean one according to the definition from [75]. For
the following theorem we only need the simplest part of this definition: Signatures correctly made with
a secret key sks r pass the test with the corresponding public key pks r; we call this “valid with respect
to pks r”. We only use the security in the complexity arguments after the theorem. We assume without
loss of generality that for a given security parameter k and a given message length l, all signatures have
a fixed length slen(k, l).

We now state precisely what we prove with the scenario from Figure 3.

Theorem 2. Let TH be a Dolev-Yao model with XOR, payloads, and simple signatures and with a
realization that is secure in the sense of BRSIM/UC (Definitions 1 to 4 and 6), and let payloads and
signatures be in the set XORable Terms. Then TH can be used to compute a real signature on an arbitrary
message of length k with respect to the signature scheme used in the given realization. The reduction
algorithm Sig that computes a signature using TH as a subprogram only needs time linear in slen(k, k),
the signature length for messages of length k. (Here we do not count the time that TH needs.) ✷

This theorem shows that a machine TH that offers the external functionality of a Dolev-Yao model
with XOR and has a secure cryptographic realization cannot be what one would intuitively call a Dolev-
Yao model. For instance, if it has any secure realization with a signature scheme where the signatures
are reasonably short, concretely where slen(k, k) is at most linear in k, but signing takes time of the order
of at least k2, then TH performs the bulk of the signature computation in the reduction. We chose the
message length k for simplicity and because typically the bulk of a signature computation only happens
on one hash value; we could argue similarly with other message lengths.

Proof. (Of Theorem 2.) Let the preconditions of the theorem be true. The definitions imply that the
honest user Hu and the real adversary A can carry out the scenario from Figure 3 with the given Dolev-
Yao model and realization, including the initial key generation and publication that is only described
in the text in Section 4.3. More precisely, we assume that Hu consists of a fixed protocol component
H′

u that receives its payload input dr of length k from a second component H∗
u (typically a higher level

protocol or a human), and that A chooses xr randomly among the bitstrings of length slen(k, k). The
definitions imply that in the real system, the bitstring sr := mr ⊕ xr (computed with the output mr of
Mu) is indeed a signature on dr valid with respect to pks r.

Thus the assumed successful simulator Sim must also achieve that TH outputs a value mr to Hu such
that the resulting value sr is a valid signature on dr with overwhelming probability, because otherwise
A and Hu together (via external communication) can distinguish the interaction with TH and Sim from
the interaction with the real machine Mu.

We now construct a machine Sig with TH as a blackbox that carries out key generation and signs
one message, i.e., Sig is our reduction algorithm. While Sig also uses the other participants of the ideal
system as blackboxes, the steps of all those have to be counted within the complexity of what Sig does
itself.

– Key generation. Initially Sig runs the honest user component H′
u and the simulator Sim for generating

a real signature key pair (sks r, pks r) and publishing pks r to A. Our machine Sig publishes this key
pks r as the key for which it will make a signature. It further generates a random string xr as A

12

would and resumes running Sim to produce the ideal version of this message that it passes to TH in
a message send(v, u, xa). By Definition 2 there must be exactly one such sending action. In response
TH gives Sig (here in the role of the user component H′

u) an output receive(v, xu).
– Computing one signature. When Sig is asked to sign a payload dr (with respect to its only keypair),

it asks TH (as H′
u would do) to XOR the term represented by xu with a signature on the payload dr

and to output the resulting payload. It waits for the output mr from TH and outputs sr := mr ⊕ xr

as its signature.

It follows immediately from the initial discussion about the result of Sim and TH that the output sr

of Sig is indeed a signature on dr valid with respect to pks r with overwhelming probability.
In the signing phase (the only phase for which we claim a highly efficient reduction), Sig does only

two things itself: First it makes the user input that requests the computation of a signature, an XOR,
and the output of the resulting payload. This is the input of a fixed small term or program-like string,
where even the representation xu is already fixed at least since the key generation. Later Sig computes a
real XOR. This needs time linear in the signature length slen(k, k), as xr was chosen of the same length
and consequently mr is also of this length.4 This finishes the reduction proof that using TH plus only
computation linear in the length of a signature, we can compute a cryptographic signature (of whatever
signature system is used in the realization).

In this proof, the signature scheme in the realization could also be probabilistic and/or with memory:
Only one signature is ever computed, and we only argue that this signature passes the test. To rigorously
cover this case, we would have to adapt Definition 6 such that the signature terms in the ideal system
have an additional tag, e.g., a counter as in [7].

7 Scenario Extensions

We have now proved, using certain scenarios as counterexamples, that under reasonable, common as-
sumptions about Dolev-Yao models and their realizations, the realizations cannot be BRSIM/UC sound.
Even if we stick to the strong BRSIM/UC soundness with its general composability, this still leaves some
options for positive results if we give up some of the assumptions. Three possibilities in particular come
to mind: First, change the XOR realization or the representation of payloads within the realization to
include some additional redundancy, at least type tags. Secondly, restrict the users H to certain protocol
classes. Thirdly, consider Dolev-Yao models without payloads, as our two main scenarios were based on
payloads, and there are protocol classes without payloads, or at least without general payloads from
large real domains. We now present extended scenarios that are still impossible after certain concrete
instantiations of these changes.

7.1 Extensions for Low Redundancy in Payloads or XORs

So far we assumed that payloads can be arbitrary bitstrings, and that they are used in the realization
in their original form, and that the XOR operator is implemented directly as the real ⊕. However, at
least type tags are not unknown in realizations of Dolev-Yao models, and there might be other forms of
structured low redundancy, such as payloads encoded in ASCII or XML.

The scenario with payload XOR (Figure 2) is essentially unaffected by such changes: In the real
system, xr has an xor tag. XORing it with m1 means that the real operation ⊕ is applied to the
untagged part of xr and the full mr

1. In general, the result would get an xor tag again, but here the result
is output as a payload, and thus without the xor tag. As to the payloads, tags in a fixed place make no
difference to the proof. The effect of redundancy in the payloads themselves was already discussed in
Section 4.2.

For the scenario with signature computation (Figure 3), we have to be more careful with redundancy,
because the real machine Mu might usually output an error ↓ instead of mr if mr is not of the correct

4 By making x
r shorter, we could achieve that Sig computes the XOR of even fewer bits, but Sig still at least

has to output the entire signature. Therefore we chose a scenario that remains valid in protocol classes that
only allow XORs of strings of equal length.

13

payload format. Nevertheless, as long as the valid payload strings are not negligible within the family of
sets of all strings of length l (where l is the index of the family), then mr is still output with not negligible
probability, because it is uniformly random (a fresh one-time pad xr XORed with a fixed string). Thus
TH can still be used in the reduction proof to compute actual signatures with not negligible probability,
which, intuitively, contradicts the Dolev-Yao property.

In some real implementations of type systems on strings, in particular XML, the overall part of a string
that is fixed by a type is of considerable length. Then the scenario with its random choice of xr no longer
works. However, a similar attack works for many realistic cases: Assume that a subset Fixbitspayload,l
of the bits of the encoded payloads is fixed (e.g., the opening and closing XML tags), and similarly
Fixbits sig,l for signatures. We can increase the latter set by only considering signatures made with one
known algorithm and with respect to the known public key pks r. Now if Fixbits sig,l ⊇ Fixbitspayload,l, the
adversary A can predetermine the necessary bits of mr in xr by XORing them with the corresponding
fixed bits of a signature.

7.2 Extensions for Protocol Restrictions

If every permitted global H (representing the entirety of all users) consists of a protocol prot from a
restricted class Prots and a user H′ of prot , then a scenario only remains a valid counterexample if there
is a protocol in Prots where one honest party acts like Hu in the scenario.

For the scenario with payload XOR (Figure 2) it is easy to see for a given class Prots whether this
is true, or can be adapted. Essentially, if XORs contain at most one payload in this protocol class, the
scenario cannot be carried out. If the protocol class allows XORs where two components are payloads,
it seems reasonable that the protocol class also allows users to subtract one payload from such an XOR
and to retrieve the remaining payload; then the scenario works.

For the scenario with signature computation (Figure 3), a simple protocol where party u acts as in the
scenario can be written as follows in the typical high-level arrow notation for simple security protocols,
and where d and sks are secrets known to parties u and v.

v → u : m⊕ S(sks , d);

u : Output m.

This protocol only makes sense for deterministic signature schemes so that party u subtracts the same
real signature that v added. As party u (both the user and the machine acting for it) cannot know
whether party v really started this protocol, it applies its protocol step whenever it gets a message xu

supposedly from v. Thus it acts as in Figure 3. If a protocol class does not allow secret signing keys
to be known to two parties, one alternative is to use a symmetric primitive instead of the signature.
For making this extension rigorous, one needs a definition of the symmetric primitive used similar to
Definition 6. Another alternative is to add an initial step where the signature is exchanged in encrypted
form; now we can also use a probabilistic signature scheme again because v reuses a signature computed
by u.

u→ v : E(pkev , S(sksu , d));

v → u : m⊕ S(sksu , d);

u : Output m.

Here pkeu denotes the public encryption key of party v and sksv the secret signing key of party u.
For making this extension rigorous, one needs a definition of of public-key encryption including the
requirement that an encrypted message is secret in the ideal system, except possibly its structure and
length. Then the ideal adversary in this extension does not learn the signature and the signed message
d. Hence nor does the simulator, and thus, when the simulator constructs xa, it is essentially in the same
position as before.

7.3 Scenario without Payloads

Finally, we consider a Dolev-Yao model without any payloads, or a realization where payloads have or
are encoded with significant redundancy, so that none of the prior scenarios works. In particular, we

14

xr

T(pksu, “du”, su)

M
u

A TH AH
u Sim

xu xu

su XOR(xu, “Nu”)
sr := xr Nr

xa

n
1
r, ..., n

2l
r dr := l

i=1
b

i
n

i
r

Nr := 2l
i=1+1

b
i
n

i
r

sr := Sr(sksr, dr)

xr := sr Nr

B

n
1
u, ..., n

2l
u

b
1
, ..., b

2l

xr

?

n
1
a, ..., n

2l
a n

1
r, ..., n

2l
rn

1
u, ..., n

2l
u

b
1
, ..., b

2l

H
u

dr := l
i=1

b
i
n

i
r

Nr := 2l
i=1+1

b
i
n

i
r

sr := Sr(sksr, dr)

xr := sr Nr

T(pksu, “du”, su)

su XOR(xu, “Nu”)

B

Fig. 4. Scenario without payloads.

can no longer cause Mu to output a significant bitstring to Hu, like the former mr. Hence we only prove
a reduction where TH essentially tests a signature instead of computing one; the reduction is also less
efficient. The scenario is shown in Figure 4. We use nonces, another typical data type in Dolev-Yao
models. They correspond to random or pseudorandom values in typical realizations. We assume that
the nonce realizations can be arbitrary bitstrings of a length l suitable to hide a signature in an XOR.
(In a tagged version the nonce tag should not extend beyond the signature tag; we now argue with an
untagged version for readability.)

In the real system, we assume that the adversary A already has a secret signature key sks r and
has published the corresponding public key pks r. Now A randomly chooses nonces nr

i for i = 1, . . . , 2l,
repeating each choice until the first l nonces are linearly independent, and so are the second l nonces.
Next A sends the nonces to the machine Mu, which notifies its user Hu with representations nu

i of
these nonces. The adversary also chooses random bits b1, . . . , b2l and computes the linear combinations
dr :=

∑l

i=1 bin
r
i and N r :=

∑2l
i=l+1 bin

r
i of the nonces. Both dr and N r are random values if one does

not know the bits bi. The adversary computes a signature sr on dr with the secret key sksr and sends
xr := sr ⊕N r to Mu, which notifies its user Hu with a representation xu of this message.

Now the adversary sends the bits b1, . . . , b2l to the user Hu outside the system, corresponding to a
chosen-message attack. User Hu asks its machine Mu to subtract the appropriate nonces from xu, i.e.,
each nu

i with i > l and bi = 1. This is abbreviated by “Nu” in Figure 4. User Hu then asks Mu to test
whether the result su is a correct signature on the message obtained by XORing the other appropriate
set of nonces, i.e., each nu

i with i ≤ l and bi = 1. This is abbreviated by “du” in Figure 4. Alternatively,
the adversary does the same with an incorrect signature s′

r
. The real machine Mu always decides this

correctly; we denote its output by a Boolean value B.
Now assume a simulator Sim correctly simulates this scenario. Thus Sim must achieve that the Dolev-

Yao model TH makes the same correct output B to Hu after the same interactions with A and Hu with
overwhelming probability.

Intuitively, we show that TH must be able to test cryptographic signatures for this. However, we
are not aware of a prior definition of what it means that an algorithm tests signatures correctly with
overwhelming probability (in contrast to always), i.e., in what probability space over messages and sig-
natures this must be true. For instance, if we input random values as potential signatures, the algorithm
may be correct with overwhelming probability by always outputting false because the signatures may
be sparse. Or if we input either a correct signature or a random value, there may be so much trivial
redundancy in the real signatures that a very simple algorithm can usually make the distinction. We deal
with this problem as follows: We allow a second, arbitrary (probabilistic polynomial-time) algorithm F

(for “fake”) that tries to fake signatures, given a public key. It must always output invalid signatures. Let
F be the set of such algorithms. Intuitively a good algorithm F makes its fakes as plausible as possible.
For instance, for RSA signatures with additional tags and a field for the signed data, it might set these
tags and the signed data correctly, and choose the rest randomly from the correct mathematical group.

Definition 7 (Signature Test Approximation). Given a signature system (Gr, Sr,Tr), a pair of algo-
rithms TA = (TA1,TA2) is a test approximation if the following holds for all signature-faking algorithms

15

F ∈ F :

Pr[b∗ 6= b :: (sks r, pks r)← Gr(1k); v r ← TA1(pks
r);

(mr, sr0)← F(pks r); sr1 ← Sr(sks r,mr);

b ∈R {0, 1}; b
∗ ← TA2(pks

r,mr, srb, v
r)]

∈ NEGL.

Here NEGL is the set of negligible functions and ∈R is the random uniform choice from a set. The
notation Pr[E :: A] means the probability of the event E in the probability space defined by the probabilistic
algorithm A. ✸

Splitting TA into two algorithms TA1 and TA2 allows us to reason separately about the complexity of
pre-computations given only the public key pks r, and of the algorithm for distinguishing a fake and a
real signature. The precomputations are done by TA1, which outputs its result as an intermediary value
v r. Later TA2 tries to distinguish a real or fake signature, using v r as an additional input.

As a reduction proof, we construct a test approximation TA with the given TH as a blackbox. It
also uses Sim as a blackbox and simulates the actions of Hu and A, but those steps count among the
additional complexity of TA. In the key distribution phase, TA1 obtains a public signature key pksr from
A and runs the actions of Sim on this key together with TH. It then runs A and Sim choosing 2l nonces
together with TH. It also computes the inverses M−1

1 and M−1
2 of the matrices M1 and M2 constructed

from the nonces n1, . . . , nl and nl+1, . . . , n2l, respectively. This will later allow for solving equations of

the form dr =
∑l

i=1 bin
r
i and N r =

∑2l
i=l+1 bin

r
i for a vector b more quickly. Finally, TA1 chooses a

random string xr and runs Sim upon receipt of xr as a message from the adversary for participant u. All
the values computed by TA1 become part of a tuple v r.

Later TA2 is given the public key pks r, a message mr, a supposed signature srb, and the tuple v r of
values precomputed by TA1. It first computes the one-time padN r that makes srb fit the previously chosen

xr from v r by setting N r := srb ⊕ xr. It then solves the equations N r =
∑2l

i=l+1 bin
r
i and mr =

∑l

i=1 bin
r
i

for a vector b using M−1
2 and M−1

1 from v r. Next, TA2 causes TH to subtract the nonce denoted by Nu

from xu: For all i ∈ {l+1, . . . , 2l} with bi = 1, it asks TH to XOR the i-th nonce to the term represented
by xu. In this situation Mu would obtain the result sr = srb. Then TA2 causes TH to construct du, i.e.,
it asks TH to XOR the i-th nonce for all i ∈ {1, . . . , l} with bi = 1. In this situation Mu would obtain
the result dr. Thus, when TA2 finally inputs the signature test command for su, then Mu would output
B = true if b = 1 and B = false if b = 0. Hence TH does the same with overwhelming probability, which
shows that TA = (TA1,TA2) is a valid test approximation.

The algorithm TA2 for testing the validity of a signature does only two things itself: First it makes the
user inputs requesting the computation of two XORs (one for subtracting the nonces from the signature,
the other for constructing the message represented as du) and the testing of a signature. This is the
input of two terms or program-like string of length linear in l. Secondly, it solves two linear equation
systems given the respective inverse matrices. This is standard matrix-vector multiplication; it can be
done in time quadratic in l, where l was the length of a signature. This reduction again seems a clear
indication that TH can test the validity of signatures and is thus not what one would intuitively call a
Dolev-Yao model. Even though the complexity of the reduction is not as convincing as for the scenario
with signature computation, we also know the exact reduction algorithm TA2. If any realization existed
where TH would not do the major part of the signature testing, then the major part of this testing
would have to be the matrix-vector multiplication of TA2. This is a very serious restriction on potential
realizations.

8 A Passively BRSIM/UC-Sound Dolev-Yao Model of XOR

The special Dolev-Yao model of XOR that we prove to be sound corresponds to passive attacks only,
together with a type consistency requirement on the protocol expressed in the Dolev-Yao model. In
other respects the result is strong: We show BRSIM/UC soundness and need no restrictions on the other
operations in the Dolev-Yao model; this distinguishes our result from those in [41, 43]. Roughly, the
benefit of the restriction to passive adversaries is that all XORs are constructed bottom-up by honest

16

parties. Thus the simulator never receives bitstrings that seem to be XORs but where the simulator does
not know how to partition the XOR into its components, as in the impossibility scenarios in the previous
sections. The need for the type consistency requirement is shown in Section 8.1.

In Sections 8.2 to 8.6, we present our Dolev-Yao version of XOR in detail, in particular the extended
adversary parsing capabilities that we need according to Section 2. As we aim at an overall, operator-rich
Dolev-Yao model with XOR, we need an underlying Dolev-Yao model with the other usual cryptographic
operators and a realization secure in the sense of BRSIM/UC. Hence we have to use the Dolev-Yao model
of [7]. Essentially we only add XOR terms and operations to this model. We also add a type for nonces
of variable length. Typically, Dolev-Yao models have only one nonce type, and realizations use random
bitstrings of a fixed length sufficient for unguessability. However, we now want to hide arbitrary other
terms by XORing them with a nonce of suitable length. To make these additions to the existing model
rigorous, we have to use the notation from [7] instead of our generic notation from Section 5. We will
mention the links between the notations.

In Section 8.7, we present the cryptographic realization of this Dolev-Yao model of XOR; in Section 8.8
we sketch that this realization is as secure as the Dolev-Yao model in the sense of BRSIM/UC if restricted
to passive adversaries and type consistency.

8.1 The Necessity of Correct Type Conversions by the Users or Protocols

The largest difficulty with XOR even in the passive case is typing. XORs can yield arbitrary bitstrings,
while otherwise it seems necessary for achieving BRSIM/UC that the Dolev-Yao model is strongly typed.
The reason is that the Dolev-Yao model must make a decision what happens if a destructor is applied to
a term that is not properly constructed, e.g., if decryption is applied to a term that is not encrypted at
all or with a different key. The only decision that seems consistently realizable with real cryptosystems
is to prescribe that the result is an error. In other words, the terms are considered typed, and many
operations (in particular destructors) yield errors when applied to wrong types. In the cryptographic
implementation, this must be realized by explicit type tags.

For XOR, however, algebraic equations like commutativity and associativity are essential, and they
apply to pure bitstrings, not to bitstrings with type tags. The main problem with this typing occurs
when converting an XOR back into the original element type. This is a standard situation when XOR
is used for explicit or implicit encryption: At some time, the subterms in an XOR cancel out except for
one; typically all the random subterms cancel out and one term of another type remains, e.g., a payload.
This subterm must be usable by its recipient according to its original type. This is easy to realize in the
Dolev-Yao model because one can retain the knowledge of the original type of the subterm. However,
in a real, distributed cryptographic system, this is not possible: When a machine XORs two bitstrings,
it cannot reliably decide whether the result is of an underlying type. This is obvious if all type tags
are removed before XORing (which is one possibility, and comes closest to typical message formats in
XORs). It is also true if we XOR base types including their type tags, e.g., data for payloads or sig for
a signature, because these tags can occur by chance when XORing arbitrary strings. Then a participant
in the cryptographic realization would get a result (e.g., a payload) that is totally unpredictable in
the Dolev-Yao model. One natural solution to circumvent this problem is to forbid wrong typecasts
on the user layer. This may sound like a strong restriction, but actually XOR is an operation that a
cryptographic library should not offer to end users (e.g., a mail program), but only to cryptographic
protocols. For a given protocol it is usually clear what types are expected in what messages, and thus,
e.g., in which step an XOR operation should yield a payload. Whether a protocol is correctly typed in
this sense can be verified on the protocol layer if we only allow passive attacks.

For simplicity, we treat the length of the resulting term in a type conversion from an XOR back to
another type in the same way, i.e., the user enters the correct length of the desired term. An advantage
of this solution is that it allows a simple realization. In particular, for the most common case of protocols
that only XOR terms of equal length, these realizations correspond to plain XORs without additional
length fields or leakages of the term structure.

8.2 Notation

We first repeat important notation from [7], and then introduce additional notation for lists and matrices.
As before, we write “:=” for deterministic and “←” for probabilistic assignment, and we write “ R←” for

17

uniform random choice from a set. By x := ++y for integer variables x, y we mean y := y+1;x := y. The
length of a message mr is denoted as len(mr), and ↓ is an error element available as an addition to the
domains and ranges of all functions and algorithms. The list operation is denoted as l := (x1, . . . , xj),
and the arguments are unambiguously retrievable as l[i], with l[i] = ↓ if i > j. A database D is a set of
functions, called entries, each over a finite domain called attributes. For an entry x ∈ D, the value at
an attribute att is written x.att . For a predicate pred involving attributes, D[pred] means the subset of
entries whose attributes fulfill pred . If D[pred] contains only one element, we use the same notation for
this element. Adding an entry x to D is abbreviated D :⇐ x.

For lists, we define operators tail, append, and sort (with any number of arguments) in the usual
way, where we assume that sort proceeds according to a given standard order < on list elements. As
inputs to sort, we allow sets and lists. Additionally, we define an operator normalize that corresponds to
the cancellation rules in an XOR, i.e., normalize first removes duplicates from the input list, leaving one
element whenever there is an odd number of equal elements, and then applies sort to the resulting list.

The elements of a matrix M ∈ Fm,n over a field F are denoted by Mi,j with i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}. By solve(M, v) we denote an algorithm that, given a matrix M ∈ Fm,n and a vector
v ∈ Fm, outputs a solution b ∈ Fn of the equation Mb = v if a solution exists, and otherwise ↓. Such
an algorithm can, e.g., be built from Gaussian elimination.

8.3 Trusted-Host Machine and Overall Parameters

The underlying system model in [7] is an I/O-automata model. Hence the overall Dolev-Yao model, with
its state, is represented as a machine TH, called trusted host, as in Figure 1. Let H = {1, . . . , n} denote
the set of honest users. As we consider passive attacks only, there are no corrupted users. For each u ∈ H,
the trusted host TH has a port inu? for inputs from Hu and a port outu ! for outputs to Hu, and it has
analogous ports ina? and outa! for the adversary. The trusted host keeps track of the length of messages
(this is needed because this length may be leaked to the adversary when honest parties send encrypted
messages) using a tuple L of length functions of abstract terms; these length functions can be arbitrary
polynomials. One function from L that we mention below is max len(k), which denotes the maximum
length of processed messages. We extend L by two functions xor len((l1, t1), . . . , (lj , tj)) for computing
the length of an abstract XOR from the lengths li and types ti of its parameters, and nonce vl len(l) for
the overall length of a nonce of variable length l (where l corresponds to the desired entropy).

8.4 States: Term Database

The main part of the state of the Dolev-Yao model, i.e., of the machine TH, is a term database D.
Each term is primarily given by its type (top-level operator) and top-level argument list. The non-
atomic arguments in this list are pointers to the respective subterms. For this, each term entry in D
contains a global index that allows us (not the participants) to refer to terms unambiguously. In addition,
the term database D contains the length of each term and handles that represent local names under
which the different participants know the term, if they do know it. In particular, the handles imply the
knowledge sets known from other Dolev-Yao models. The handles are a specific instantiation of the term
representations from Definition 2. Recall that a mapping from the database representation to a more
standard term representation is now available in [28].

In detail, the attributes of the term database D are defined as follows; the only differences to [7] due
to adding XOR are an augmented type set, the introduction of the set randomtypes , and a new attribute
parsed that we need within the treatment of the parsing of terms that contain several XORs.

– ind ∈ INDS , called index, consecutively numbers all entries in D. The set INDS is isomorphic to
N. The index is used as a primary key attribute, i.e., one can write D[i] for the selection D[ind = i].

– type ∈ typeset is the type of the entry. We add types xor and nonce vl to typeset from [7], denoting
the types for XOR and for nonces of variable length. We let the set randomtypes := {nonce, nonce vl}
denote the set of random types. We say random value to denote an element of a type in randomtypes .
Similarly, secrettypes ⊆ typeset from [7] denotes a set of secret types, whose elements must not be
put into messages.

18

n1 n2 n3 d1 d2 x1 x2

n1 0 0 0 0 0 1 0
n2 0 0 0 0 0 0 1
n3 0 0 1 0 0 1 1
d1 0 0 0 0 0 1 1
d2 0 0 0 0 0 0 1
x1 0 0 0 0 0 0 0
x2 0 0 0 0 0 0 0

Fig. 5. Example of the matrix representation of XORs. The XORs are x1 = n1⊕n3⊕d1 and x2 = n2⊕n3⊕d1⊕d2.

– x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many values ai are indices of other
entries in D and thus in INDS ; they are sometimes distinguished by a superscript “ind”.

– x.hndu ∈ HNDS ∪{↓} for u ∈ H∪{a} are handles by which a user or adversary u knows this entry.
The value ↓ means that u does not know this entry. The set HNDS is isomorphic to N. We always
use a superscript “hnd” for handles.

– x.len ∈ N0 denotes the “length” of the term. It is computed using the functions from the parameter
tuple L.

– x.parsed ∈ {1, ↓} denotes whether the ideal adversary has already parsed this term. Most entries
have no attribute parsed ; so x.parsed = ↓.

Initially, D is empty. As additional state parts, TH has a counter size ∈ INDS for the current size of
D, and counters curhndu (current handle) for u ∈ H ∪ {a}, denoting the most recent handle number
assigned for u. These counters are all initialized with 0. Moreover, TH maintains explicit counters and
message bounds for each port in order to ensure polynomial runtime; see [7] for the details.

The algorithm ihnd ← ind2hndu(i) for i ∈ INDS (with side effect) denotes that TH determines a
handle ihnd for user u to the database entry (term) D[i]: If ihnd := D[i].hndu 6= ↓, it returns that, else
it sets and returns ihnd := D[i].hndu := ++curhndu . The algorithm is extended for i 6∈ INDS by the
identity function. The algorithm ind2hnd∗u for lists applies ind2hndu to each element of its input list.

8.5 Derived Matrices for XORs

For the linear algebra resulting from XORs, we define several matrices over GF(2) representing released
XORs, i.e., XORs that the adversary learned. The rows and columns correspond to indices in the term
database D. Roughly, coefficient 1 in row i and column j indicates that the i-th term in D is a top-level
XOR-component in the j-th term and that the adversary has learned the j-th term. We also make
such matrix entries for each released individual random value. The matrix A indicates the non-random
components in each released XOR, while R(l) for each l ∈ N indicates the random components of length
at least l, and R̄(l) those of length less than l. These matrices and lists are derived from a given term
database D, but as D will always be clear from the context we do not write it as a parameter.

More precisely, we define three matrices A, R(l), and R̄(l) in GF(2)size,size . Here Ai,j = 1 iff D[i].type 6∈

randomtypes and D[j].type = xor and D[j].parsed = 1 and i ∈ D[j].arg . Similarly, R
(l)
i,j = 1 iff D[i].type ∈

randomtypes and D[i].len ≥ l and D[j].type = xor and either D[j].type = xor and i ∈ D[j].arg, or
D[j].type ∈ randomtypes and i = j. The same formula, except with “D[i].len < l”, defines R̄(l). The
condition D[i].parsed = 1 reflects that an XOR only gets a column when it has been parsed. (Recall that
we will need this for treating terms with several, possibly nested, XORs.)

Figure 5 gives an example of this matrix representation: The terms in D are three nonces ni of length
l, two payloads di, and two XORs xi. The adversary has learned and parsed the two XORs and the third
nonce. The matrix in the figure is the OR of A and R(l): The matrix R(l) has the depicted rows for the
nonces, but only zeroes in the rows for payloads, and vice versa for A. The matrix R̄(l) contains only
zeroes.

19

8.6 New Inputs and their Evaluation

Operations are triggered by so-called input commands from users or the adversary into TH. In these
commands, the users refer to the terms by the handles defined in Section 8.4. The normal cryptographic
operations are called basic commands. They are accepted at each input port inu? with u ∈ H ∪ {a} and
have only local effects, i.e., only an output at outu? occurs and only handles for u are involved. The
additional term-handling capabilities of the adversary are called local adversary commands. They are
only accepted at ina?. Finally, send commands model the transfer of terms to other users. In our case
with passive adversaries only, we only use the command for sending a term in an authentic way. Its effect
is that the adversary immediately gets a handle to the sent term, and if the channel is later scheduled,
the intended recipient also gets a handle to the sent term.

The notation j ← op(i) means that TH is scheduled with an input op(i) at some port inu? (where
we always use u as the index of that port) and returns j at outu !. Handle arguments are tacitly required
to be in HNDS and existing, i.e., ≤ curhndu , at the time of the command execution; else the command
execution immediately aborts.

The XOR operation immediately normalizes its arguments into one list, i.e., if some of its inputs
are already terms of type xor, it joins their argument lists, adds the other inputs to this list, and then
removes duplicates in the list. If the list is now empty, the entry corresponds to the all-zero string of the
respective length. We also define a command to convert an XOR back into another type; this conversion
succeeds only if the XOR has only one argument of this type and the desired length. Furthermore, we
define a command that creates a nonce of variable length.

Definition 8. (Basic commands for XOR and for nonces of variable length) The trusted host TH ex-
tended by XOR and nonces of variable length accepts the following additional commands at every port
inu?.

– Generate XOR: xhnd ← xor(mhnd
1 , . . . ,mhnd

j) for 0 ≤ j ≤ max len(k).

For i = 1, . . . , j, let mi := D[hndu = mhnd
i].ind and li := D[mi].len and ti := D[mi].type. Let

l := xor len((l1, t1), . . . , (lj , tj)). If l > max len(k) or ti ∈ secrettypes for some i ∈ {1, . . . , j}, then
return ↓.
For i = 1, . . . , j, let argi := D[mi].arg if ti = xor, else argi := (mi). Let x arg :=
normalize(append(arg1, . . . , argj)). Set x

hnd := ++curhndu and make a new entry in the term database
as D :⇐ (ind := ++size, type := xor, arg := x arg, hndu := xhnd, len := l).

– Type conversion of XOR: mhnd ← conv xor to type(xhnd, l) with type ∈ typeset \ ({xor}∪ secrettypes)
and 0 ≤ l ≤ max len(k).
Let x := D[hndu = xhnd ∧ type = xor].ind, (x1, . . . , xj) := D[x].arg, and t := D[x1].type. If j 6= 1 or
t 6= type or D[x1].len 6= l then return ↓, else return mhnd := ind2hndu(x1).

– Generate variable-length nonce: nhnd ← gen nonce vl(l) for nonce len(k) ≤ l ≤ max len(k).
Let l∗ := nonce vl len(l). If l∗ > max len(k) then return ↓. Else set nhnd := ++curhnd and make a new
entry in the term database as D :⇐ (ind := ++size, type := nonce vl, arg := (), hndu := nhnd, len :=
l∗). ✸

As we have excluded active attacks and any specific vulnerabilities they might add even to the Dolev-
Yao model, we do not need to introduce new local adversary commands. We only extend the command
adv parse, which allows the ideal adversary to retrieve the arguments of an obtained term (represented
by a handle) depending on whether the top-level operation of this term should ideally be invertible by
the adversary. For an XOR term, the basic idea is to determine whether the part consisting of random
values is linearly independent from the corresponding parts in previously released XORs and individually
released nonces. If yes, we consider this part to hide the other components of the XOR. Otherwise, we
obey the XOR-parsing need from Section 2 by giving the ideal adversary the non-random arguments of
the linear combination of the new XOR and previous XORs whose random elements cancel each other.

There are two small complications: First, as we have terms of arbitrary length, we introduced nonces
of arbitrary length, and we now have to be careful that the nonces are indeed of sufficient length. In
most protocols, all the nonces in one XOR are simply of the same length. In general, we consider the
length l of the longest non-random element in the XOR that is not yet known to the ideal adversary. For
simplicity, if the ideal adversary can cancel all the nonces of length at least l by a linear combination,

20

we let the ideal adversary learn not only the non-random elements, but also the shorter nonces in that
linear combination. This leaves room for improvements, e.g., by only granting the ideal adversary the
XOR of those nonces, but at the cost of a more complicated proof that only serves a very rare class of
protocols. Secondly, when considering one XOR we only use those other XORs that have already been
parsed.

Whenever the adversary learns a term of a random type, we also determine whether it is linearly
dependent from XORs and nonces released earlier. This concerns the new type nonce vl and the old type
nonce.

Definition 9. (Adversary parameter retrieval for XOR and nonces of variable length) The execution of
the existing command (type, arg) ← adv parse(mhnd) always starts by setting m := D[hnda = mhnd].ind
and type := D[m].type, while the output arg depends on the type. We add the definition for type ∈
{xor, nonce vl} and extend the definition for type = nonce.

– If type = xor: Set D[m].parsed := 1. Let (x1, . . . , xh) := D[m].arg and l :=
max({D[xi].len | D[xi].type 6∈ randomtypes∧D[xi].hnda = ↓}). Let a, r(l), and r̄(l) denote the vectors
that this newly parsed XOR will add (as columns) to the matrices A, R(l), and R̄(l), respectively. Let
b← solve(R(l), r(l)). If b = ↓, return arg := (independent, D[m].len). Otherwise, let d := Ab⊕ a and
r′ := R̄(l)b ⊕ r̄(l).5 Let B := {ind2hnda(i) | bi = 1} and D := {ind2hnda(i) | di = 1 ∨ r′i = 1} and
arg := (dependent,B,D, D[m].len).

– If type = nonce vl: Set D[m].parsed := 1. Let l := D[m].len. Let r(l) denote the vector that this
newly parsed nonce will add to the matrix R(l). Let b ← solve(R(l), r(l)). If b = ↓, return arg :=
(independent, l). Else derive a result arg := (dependent,B,D, l) exactly as for the type xor.

– If type = nonce: Set D[m].parsed := 1 and similarly define arg := (independent) or derive a result
arg = (dependent,B,D) as for the type nonce vl; the parameter l is not needed since elements of type
nonce have a fixed length. (In the system without XOR, the result for nonces was simply arg = ().)✸

In the example from Figure 5, if the adversary next learns a term x3 = n1 ⊕ d2, then the random
part is n1, which is the XOR of the random parts of the previously released terms n3 and x1. Thus the
result of adv parse for this new term x3 is is of the form (xor, (dependent,B,D, l)) where B is derived
from b = 0010010; the XOR where these random parts cancel out is d = n3 ⊕ x1 ⊕ x3 = d1 ⊕ d2, and
thus D consists of the adversary handles of d1 and d2.

8.7 Realization of this Dolev-Yao Model of XOR

We now present the core parts of the concrete realization of the Dolev-Yao model of XOR presented in
the previous section. As in Figure 1, every user u has its own machine called Mu. This machine contains
the cryptographic objects that user u knows. It offers its user the same interface as the Dolev-Yao model,
i.e., it has ports inu? and outu ! and accepts the same commands there, in particular xor, gen nonce vl,
and conv xor to type with the same parameters as in Definition 8. In the real system, sending a term on
an authentic channel (recall that we consider only passive attacks) releases the actual bitstring to the
adversary, and once the channel is scheduled, also to the intended recipient machine Mv.

As a specialization of the underlying system from [7] we assume that all the real type tags are, when
the abstract syntax is encoded into bitstrings, of equal length tlen and attached at the left side of the
bitstring. As abstract syntax we still write lists and use a larger alphabet, e.g., we write (nonce, 1100111)
for a tagged nonce where nonce is the type tag.

As the most important part of the realization, we present the functional parts of the basic com-
mands, i.e., the core operations on bitstrings (with type tags etc.) without the state-keeping part of
the commands. These operations are quite natural given the prior discussions about typing and lengths:
Whenever several typed bitstrings are XORed, we remove their type tags, pad the remainders with zeros
on the left to the maximum occurring length, XOR them, and finally add an XOR tag to the resulting

5 These are the same linear combination of XORs, including the new one, for which we just saw that the random
components of at least length l cancel out. Hence we let the ideal adversary learn the non-random elements
designated by the vector d and the short random parts designated by r

′, as well as which previously learned
terms are used in this linear combination.

21

string. In the conversion back from an XOR to a base type, the XOR tag is replaced by the target tag
and padding is removed according to the target length input by the user. This target length is the overall
length with the type tag. In contrast, for the nonce constructor we assume that the input length desig-
nates the number of real random bits. In the notation of the impossibility sections, all these bitstrings
would get a superscript r. We omit this superscript in the following to stay close to the notation of the
underlying system from [7].

Definition 10. (Functional part of the realization of the basic commands for XOR and nonces of variable
length)

– XOR constructor: x← make xor(m1, . . . ,mj) for j ∈ N and mi ∈ {0, 1}+ for i := 1, . . . , j.
Parse each parameter as mi = (type,m′

i) with type ∈ typeset and m′
i ∈ {0, 1}

+. Then if
type = xor, let m′′

i equal m′
i without the right-most nonce len(k) bits, else m′′

i := m′
i. Let

l := max({len(m′′
1), . . . , len(m

′′
j)}) and xi := 0l−len(m′′

i
)||m′′

i for i = 1, . . . , j. Let r R← {0, 1}nonce len(k)

and x := (xor, x1 ⊕ · · · ⊕ xj || r).
– Type conversion from XOR: m← func conv xor to type(x, l) for x ∈ {0, 1}+ and l ∈ N.

Parse x as x = (xor, x′ || r) with len(r) = nonce len(k) and let x∗ be the l− tlen rightmost bits of x′.
(When this conversion is called, there will indeed always be at least l− tlen bits, and the deleted bits
on the left will be former zero-paddings added by the XOR constructor.) Return m := (type, x∗).

– Variable-length nonce constructor: n ← make nonce vl(l) for l ∈ N.
Let n ′ R← {0, 1}l and n := (nonce vl, n′). ✸

The non-functional parts of the commands add length and type tests corresponding to those in TH,
assign new handles where needed, and store new words in a database of Mu.

8.8 Soundness Theorem

Our security claim is that the Dolev-Yao model with XOR defined in Sections 8.2 to 8.6 is soundly
implemented by the realization sketched in Section 8.7 in the sense of BRSIM/UC, provided that the
surrounding protocol ensures that an XOR is only converted to another type if the XOR has only one
argument, and the type and length of this argument equal the target type and length of the conversion.We
call this precondition correct XOR conversion, or short CorrXOR. We have already built a restriction to
passive attacks into the definitions of the real and ideal system by only allowing uncorrupted participants
and authentic channels. The soundness proof would still work if we relaxed the authenticity restriction
by allowing message re-ordering, re-routing, and duplication, i.e., if we solely required that the adversary
only sends messages that were constructed by the correct machines.

To formally capture the property CorrXOR, we need additional notation. The underlying system
model from [9] has a well-defined notion of traces that applies to the combination of our trusted host
TH, honest users H, and an ideal adversary A. Essentially, a trace is a sequence of events that occur
when the given machines interact. The t-th step of a trace r is written rt; we speak of the step at time
t. By p?m ∈ rt we mean that message m is input at port p? in step rt, and rt : D denotes the contents
of the term database D in step rt. The formula in the following definition can be read as follows: If a
term i is converted to type x , and the term really is an XOR, then it is an XOR of only one argument
j, and this argument is of the correct type and length.

Definition 11. (Correct XOR Conversion) A trace r is contained in CorrXOR if and only if for all
t ∈ N, u ∈ H, x ∈ typeset, l ∈ N, and i ∈ INDS , and with ihnd := rt : D[i].hndu, we have

inu?conv xor to x(ihnd, l) ∈ rt ∧ rt : D[i].type = xor

⇒ ∃j ∈ INDS : (rt : D[i].arg = (j)

∧ rt : D[j].type = x ∧ rt : D[j].len = l).

✸

We finally define the notion of blackbox reactive simulatability restricted to those users that guarantee
the property CorrXOR (independent of the adversary). We repeat in the notation that we only consider
passive attacks, although this is not a restriction in the following definition, but built into the systems.

22

Definition 12. (Reactive Simulatability with Correct XOR Conversion and Passive Attacks) A user H

uses correct XOR conversion with respect to the machine TH if for all ideal adversaries A, the property
CorrXOR from Definition 11 holds for all possible traces of the machine set {TH,H,A}. We denote the
restriction of blackbox reactive simulatability for the machine TH to users with correct XOR conversion
by ≥CorrXOR

b,passive . ✸

Let RPar be the set of valid parameter tuples for the real system, consisting of the number n ∈ N of
participants, a collection S of cryptographic schemes (currently containing symmetric and asymmetric
encryption schemes, signature schemes, and MACs) that satisfy their respective security definitions
against active attacks, see [7, 12, 13], and length functions and bounds L′. For (n,S, L′) ∈ RPar , let
{M1, . . . ,Mn}n,S,L′ be the resulting realization of the Dolev-Yao model. The derivation of suitable length
functions and bounds for the Dolev-Yao model from the real parameters is given by a function L :=
R2Ipar(S, L′). This function is extended by the new length functions for XOR and nonces of variable
length. We have nonce vl len(l) := l + tlen. For defining l := xor len((l1, t1), . . . , (li, ti)), let l′j := lj −
nonce len(k) if tj = xor, else l′j := lj. Then l := max(l′1, . . . , l

′
i) + nonce len(k). Let {TH}n,L be the

Dolev-Yao model with parameters n and L.

Theorem 3. (Soundness of the Dolev-Yao Model with XOR) For all parameters (n,S, L′) ∈ RPar and
for L := R2Ipar(S, L′), we have

{M1, . . . ,Mn}n,S,L′ ≥CorrXOR
b,passive {TH}n,L.

✷

For proving BRSIM soundness for the underlying Dolev-Yao model without XOR, a simulator Sim was
defined in [7] (recall Figure 1) and the required indistinguishability between the combination of TH

and Sim, and the combination of the real machines Mu was shown. We now show how we extend this
simulator to deal with XOR, and we sketch how to extend the indistinguishability proof.

8.9 Simulator Extensions for XOR and Nonces of Variable Length

Basically Sim translates handles (which represent terms) that it receives from the Dolev-Yao model
TH into real bitstrings as the real adversary expects them and vice versa. In our case with authentic
channels only, there are no messages from the real adversary (only scheduling signals that designate when
existing messages are delivered). Hence we only need the translation from terms to bitstrings, where we
extend the existing procedure by the treatment of XORs and nonces of variable length, and modify the
treatment of normal nonces.

The state of Sim mainly consists of a database Da that stores the bitstrings the adversary knows
under the adversary handles; these attributes are denoted by hnda and word (similar to the databases
Du in the real machines).

A sent term is indicated by TH to the ideal adversary, and thus here to the simulator, in the form
(u, v, a,mhnd), meaning that user u is sending the term corresponding to handle mhnd to user v over an
authentic channel. If Sim already has a bitstring m for mhnd in Da, i.e., this message is already known
to the adversary, then Sim immediately outputs m to A at the corresponding network port netu,v ,a.
Otherwise, it first constructs such a bitstring m with a recursive algorithm id2real(mhnd). This algorithm
decomposes the abstract term using the adversary command adv parse and basic commands. At the same
time, id2real builds up a corresponding real bitstring using real cryptographic operations and enters all
subterms and corresponding bitstrings into Da.

Each execution of id2real with an input mhnd starts with a call (type, arg) ← adv parse(mhnd). If
this call yields type = XOR, then either arg = (independent, l) with l ∈ N or arg = (dependent,B,D, l)
where B and D are sets of handles (by Definition 9) and l ∈ N. In the first case, where the new XOR
is linearly independent from previously known terms, id2real chooses a random bitstring m′ of length
l − tlen and returns m := (xor,m′, r) with r R← {0, 1}n. In the second case, the generic part of id2real
from [7] makes recursive calls to ensure that bitstrings are constructed and entered in the database Da

for all new handles (subterms) in B and D. Recall that B are the handles of prior XORs and random
values such that, when they are XORed together with the new term designated by mhnd, all random

23

elements of sufficient length cancel out, and that D contains the handles of all non-random elements
and too-short random values in the resulting XOR. Hence id2real simply XORs all the corresponding
bitstrings to obtain the desired, correctly simulated bitstring for the new term: Let {m1, . . . ,ms} denote
the set of strings in Da that correspond to the handles in B ∪ D. Then m := make xor(m1, . . . ,ms).

If type = nonce vl, we also have arg = (independent, l) or (dependent,B,D, l). In the first case, id2real
chooses a random bitstring m′ of length l − tlen and adds the type tag as m := (nonce vl,m′). In the
second case, it constructs the XOR corresponding to the linear combination B and the learned values D
as for the type xor; let us call this result m′ instead of m now. Then it converts this back to a nonce of
variable length as m← func conv xor to nonce vl(m′, l).

For the type nonce, the procedure is similar, except that the random bitstring m′ in the first case is
chosen with the fixed length for these standard nonces.

8.10 Proof of Indistinguishability (Sketch)

The proof of the extended Dolev-Yao model, now including XOR but restricted to passive attacks, is an
add-on to the proof from [7]. The basic structure of this proof is that a combined system C is defined that
essentially contains all aspects of both the real and the ideal system, and then bisimulations are proved
between C and the combination of the real machines, and between CH and the combination of the trusted
host and the simulator. A bisimulation, however, cannot deal with computational indistinguishability.
Hence at the beginning of the proof, the real asymmetric encryptions were replaced by simulated ones
as made in the simulator. These aspects of the proof remain unchanged for our inclusion of XOR.
It remains to be shown how the bisimulations are extended for XOR. This is done by considering
each input in corresponding states of the three systems: One shows that it leads to equally distributed
outputs in the three systems, retains certain invariants, and leads to corresponding states again. The
essential parts of these proofs for the different input are the following: For the XOR command, one shows
that the normalization in the ideal system is correct. For the type conversion of XOR, one shows that
the padding and padding removal are consistent. For the construction of variable-length nonces, only
standard technical details need to be shown. (Furthermore, as in some other operations, the bisimulation
can fail here if nonces happen to collide, but there is a standard error set mechanism by which one shows
at the end that this only happens with negligible probability.) Sending an XOR is the operation where
the correctness of the matrix operations in the ideal system is proved, i.e., essentially that if the ideal
system does not let the ideal adversary learn arguments of an XOR, then the real adversary obtains
no Shannon information from about these arguments. The same kind of arguments apply to sending a
nonce of constant or variable length. Receiving messages from the network needs no special consideration
because of the restriction to passive attacks.

9 Conclusion and Outlook

We have shown that Dolev-Yao models augmented by XOR, the simplest operation with algebraic
equations in many formal methods and automated tools for cryptographic protocol proofs, cannot be
realized by actual cryptographic libraries in a way that is at the same time natural, secure, and usable
without restrictions. Our first result shows that typical Dolev-Yao models with XOR are not sound with
respect to any secrecy definition; we only assume that the Dolev-Yao model contains at least a payload
type and allows XORs of payloads.

The intuitive goal of our more complex results is to show that no Dolev-Yao model with the usual
cryptographic operations and XOR can be securely implemented in the sense of BRSIM/UC, i.e., in the
sense that the realization can be safely plugged in for the abstraction in arbitrary environments and if
arbitrary security goals may be required. As there was no prior formal definition of what is and isn’t a
Dolev-Yao model, we have approached this intuitive goal by a set of concrete impossibility results under
different precise assumptions about Dolev-Yao models and about the implementation of XORs.

On the positive side, we presented a Dolev-Yao model with XOR that has a cryptographic realization
secure against passive attacks if the surrounding protocol additionally guarantees that no incorrect
conversion of XORs back into other types are attempted. Except for the restrictions to passive attacks and
correct type conversions, this result is strong: It uses a BRSIM/UC-style definition, allows a broad range

24

of other operations in the Dolev-Yao model, and correctly handles situations where some components in
an XOR are uniformly random and others are not.

As future work, we expect that there are possibilities for positive results also under active attacks
by strong restrictions on the protocol class or the security properties required, and when the Dolev-Yao
model is extended compared with typical ones at least as in our passive result. However, we believe
that our impossibility results pose severe limits on the applicability of formal methods for XOR and
cryptography when ultimately a cryptographically sound implementation is desired. The results certainly
also prove that one cannot simply add operations with algebraic properties to a Dolev-Yao model if one
aims at general secure realizations, even if the operation on its own seems simple and well characterized
by its algebraic properties, as XOR is. We actually believe that the difficulties we had with XOR are
not an exception, but the norm. However, this remains future work, except that the results trivially
generalize to the Abelian groups Z2l , into which bitstrings can be bijectively mapped.

Acknowledgments. We thank the anonymous reviewers and Mart́ın Abadi, Véronique Cortier, Anupam
Datta, Ante Derek, Jonathan Herzog, Cathy Meadows, John Mitchell, Andre Scedrov, Michael Waidner,
and Bogdan Warinschi for interesting discussions.

References

1. Michael Backes and Birgit Pfitzmann. Limits of the cryptographic realization of Dolev-Yao-style XOR. In
Proceedings of 10th European Symposium on Research in Computer Security (ESORICS), volume 3679 of
Lecture Notes in Computer Science, pages 178–196. Springer, 2005.

2. Michael Backes and Birgit Pfitzmann. Limits of the BRSIM/UC soundness of Dolev-Yao-style xor. Inter-
national Journal of Information Security, 7(1):33–54, 2008.

3. Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

4. Jonathan K. Millen. The interrogator model. In Proc. 16th IEEE Symposium on Security & Privacy, pages
251–260, 1995.

5. Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Turuani. An NP decision procedure
for protocol insecurity with XOR. In Proc. 18th Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 261–270, 2003.

6. Hubert Comon-Lundh and Vitaly Shmatikov. Intruder deductions, constraint solving and insecurity decision
in presence of exclusive or. In Proc. 18th Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 271–280, 2003.

7. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic library with nested
operations (extended abstract). In Proc. 10th ACM Conference on Computer and Communications Security,
pages 220–230, 2003. Full version in IACR Cryptology ePrint Archive 2003/015, Jan. 2003, http://eprint.
iacr.org/.

8. Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure reactive systems. In
Proc. 7th ACM Conference on Computer and Communications Security, pages 245–254, 2000. Extended ver-
sion (with Matthias Schunter) IBM Research Report RZ 3206, May 2000, http://www.semper.org/sirene/
publ/PfSW1_00ReactSimulIBM.ps.gz.

9. Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its application
to secure message transmission. In Proc. 22nd IEEE Symposium on Security & Privacy, pages 184–200,
2001. Extended version of the model (with Michael Backes) IACR Cryptology ePrint Archive 2004/082,
http://eprint.iacr.org/.

10. Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive simulatability framework for asyn-
chronous systems. Information and Computation, pages 1685–1720, 2007.

11. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proc. 42nd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–145, 2001. Extended version in
Cryptology ePrint Archive, Report 2000/67, http://eprint.iacr.org/.

12. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Symmetric authentication within a simulatable
cryptographic library. In Proc. 8th European Symposium on Research in Computer Security (ESORICS),
volume 2808 of LNCS, pages 271–290. Springer, 2003.

13. Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic
library. In Proc. 17th IEEE Computer Security Foundations Workshop (CSFW), pages 204–218, 2004.

25

14. Michael Backes, Birgit Pfitzmann, and Andre Scedrov. Key-dependent message security under active attacks
- BRSIM/UC-soundness of symbolic encryption with key cycles. In Proceedings of 20th IEEE Computer
Security Foundation Symposium (CSF), 2007. Preprint on IACR ePrint 2005/421.

15. Michael Backes and Birgit Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-
Lowe public-key protocol. In Proc. 23rd Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 1–12, 2003. Full version in IACR Cryptology ePrint Archive 2003/121,
Jun. 2003, http://eprint.iacr.org/.

16. Michael Backes. A cryptographically sound dolev-yao style security proof of the Otway-Rees protocol. In
Proceedings of 9th European Symposium on Research in Computer Security (ESORICS), volume 3193 of
Lecture Notes in Computer Science, pages 89–108. Springer, 2004.

17. Michael Backes and Markus Duermuth. A cryptographically sound Dolev-Yao style security proof of an
electronic payment system. In Proceedings of 18th IEEE Computer Security Foundations Workshop (CSFW),
pages 78–93, 2005.

18. Michael Backes and Birgit Pfitzmann. On the cryptographic key secrecy of the strengthened Yahalom
protocol. In Proceedings of 21st IFIP International Information Security Conference (SEC), pages 233–245,
2006.

19. Michael Backes, Sebastian Moedersheim, Birgit Pfitzmann, and Luca Vigano. Symbolic and cryptographic
analysis of the secure WS-ReliableMessaging Scenario. In Proceedings of Foundations of Software Science and
Computational Structures (FOSSACS), volume 3921 of Lecture Notes in Computer Science, pages 428–445.
Springer, 2006.

20. Michael Backes, Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and Joe-Kai Tsay. Cryptographically
sound security proofs for basic and public-key kerberos. In Proceedings of 11th European Symposium on
Research in Computer Security(ESORICS), volume 4189 of Lecture Notes in Computer Science, pages 362–
383. Springer, 2006. Preprint on IACR ePrint 2006/219.

21. Michael Backes and Birgit Pfitzmann. Computational probabilistic non-interference. In Proceedings of
7th European Symposium on Research in Computer Security (ESORICS), volume 2502 of Lecture Notes in
Computer Science, pages 1–23. Springer, 2002.

22. Michael Backes and Christian Jacobi. Cryptographically sound and machine-assisted verification of security
protocols. In Proc. 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume
2607 of LNCS, pages 675–686. Springer, 2003.

23. Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polynomial fairness and liveness.
In Proceedings of 15th IEEE Computer Security Foundations Workshop (CSFW), pages 160–174, 2002.

24. Michael Backes and Birgit Pfitzmann. Intransitive non-interference for cryptographic purposes. In Proc.
24th IEEE Symposium on Security & Privacy, pages 140–152, 2003.

25. Michael Backes. Quantifying probabilistic information flow in computational reactive systems. In Proceedings
of 10th European Symposium on Research in Computer Security (ESORICS), volume 3679 of Lecture Notes
in Computer Science, pages 336–354. Springer, 2005.

26. Michael Backes and Birgit Pfitzmann. Relating symbolic and cryptographic secrecy. IEEE Transactions on
Dependable and Secure Computing (TDSC), 2(2):109–123, 2005.

27. Peeter Laud. Secrecy types for a simulatable cryptographic library. In Proc. 12th ACM Conference on
Computer and Communications Security, pages 26–35, 2005.

28. Christoph Sprenger, Michael Backes, David Basin, Birgit Pfitzmann, and Michael Waidner. Cryptographi-
cally sound theorem proving. In Proc. 19th IEEE Computer Security Foundations Workshop (CSFW), pages
153–166, 2006.

29. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography: The computational soundness
of formal encryption. In Proc. 1st IFIP International Conference on Theoretical Computer Science, volume
1872 of LNCS, pages 3–22. Springer, 2000.

30. Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computational interpretation. In Proc. 4th
International Symposium on Theoretical Aspects of Computer Software (TACS), pages 82–94, 2001.

31. Peeter Laud. Semantics and program analysis of computationally secure information flow. In Proc. 10th
European Symposium on Programming (ESOP), pages 77–91, 2001.

32. Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the presence of active ad-
versaries. In Proc. 1st Theory of Cryptography Conference (TCC), volume 2951 of LNCS, pages 133–151.
Springer, 2004.

33. Peeter Laud. Symmetric encryption in automatic analyses for confidentiality against active adversaries. In
Proc. 25th IEEE Symposium on Security & Privacy, pages 71–85, 2004.

34. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of mutual authentication and
key exchange protocols. In Proc. 3rd Theory of Cryptography Conference (TCC), volume 3876 of LNCS,
pages 380–403. Springer, 2006.

26

35. Michael Backes, Christian Jacobi, and Birgit Pfitzmann. Deriving cryptographically sound implementations
using composition and formally verified bisimulation. In Proceedings of 11th International Symposium on
Formal Methods Europe (FME), volume 2391 of Lecture Notes in Computer Science, pages 310–329. Springer,
2002.

36. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Low-level ideal signatures and general integrity
idealization. In Proceedings of 7th Information Security Conference (ISC), volume 3225 of Lecture Notes in
Computer Science, pages 39–51. Springer, 2004.

37. Michael Backes, Markus Duermuth, Dennis Hofheinz, and Ralf Kuesters. Conditional reactive simulatability.
In Proceedings of 11th European Symposium on Research in Computer Security (ESORICS), volume 4189 of
Lecture Notes in Computer Science, pages 424–443. Springer, 2006. Preprint on IACR ePrint 2006/132.

38. Michael Backes and Peeter Laud. Computationally sound secrecy proofs by mechanized flow analysis. In
Proceedings of 13th ACM Conference on Computer and Communications Security (CCS), pages 370–379,
2006.

39. Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina. Caspa: Causality-based abstraction for
security protocol analysis. In Proceedings of 20th International Conference on Computer Aided Verification
(CAV), 2008.

40. Michael Backes, Dennis Hofheinz, and Dominique Unruh. Cosp: a general framework for computational
soundness proofs. In Proceedings of the 16th ACM conference on Computer and communications security
(CCS), pages 66–78, New York, NY, USA, 2009. ACM.

41. Peeter Laud. Computationally Secure Information Flow. PhD thesis, Universität des Saarlandes, 2002.
http://www.cs.ut.ee/~peeter_l/research/csif/lqpp.ps.gz.

42. Peeter Laud. Pseudorandom permutations and equivalence of formal expressions (abstract). In 14th Nordic
Workshop on Programming Theory, pages 63–65, 2002.

43. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equational theories against
passive adversaries. In Proc. 32nd International Colloquium on Automata, Languages and Programming
(ICALP), volume 3580 of LNCS, pages 652–663. Springer, 2005.

44. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Limits of the reactive simulatability/UC of Dolev-
Yao models with hashes. In Proceedings of 11th European Symposium on Research in Computer Secu-
rity(ESORICS), volume 4189 of Lecture Notes in Computer Science, pages 404–423. Springer, 2006.

45. Hugo Krawczyk. LFSR-based hashing and authentication. In Advances in Crptology: CRYPTO ’94, volume
839 of LNCS, pages 129–139. Springer, 1994.

46. Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New methods for message authentication
using finite pseudorandom functions. In Advances in Cryptology: CRYPTO ’95, volume 963 of LNCS, pages
15–28. Springer, 1995.

47. Alan T. Sherman and David A. McGrew. Key establishment in large dynamic groups using one-way function
trees. IEEE Transactions on Software Engineering, 29(5):444–458, 2003.

48. Catherine Meadows. Using narrowing in the analysis of key management protocols. In Proc. 10th IEEE
Symposium on Security & Privacy, pages 138–147, 1989.

49. Catherine Meadows. A model of computation for the NRL protocol analyzer. In Proc. 7th IEEE Computer
Security Foundations Workshop (CSFW), pages 84–89, 1994.

50. Jonathan Millen. CAPSL: Common Authentication Protocol Specification Language. Technical Report MP
97B48, The MITRE Corporation, 1997.

51. Lawrence Paulson. The inductive approach to verifying cryptographic protocols. Journal of Cryptology,
6(1):85–128, 1998.

52. David Basin, Sebastian Mödersheim, and Luca Viganò. OFMC: A symbolic model checker for security
protocols. International Journal of Information Security, 2004.

53. Hubert Comon-Lundh and R. Treinen. Easy intruder deductions. Research Report LSV-03-8, Laboratoire
Spécification et Vérification, ENS Cachan, France, April 2003.

54. Stéphanie Delaune and Florent Jacquemard. Narrowing-based constraint solving for the verification of
security protocols. Research Report LSV-04-8, Laboratoire Spécification et Vérification, ENS Cachan, France,
April 2004.

55. Mart́ın Abadi and Véronique Cortier. Deciding knowledge in security protocols under equational theories.
In Proc. 31st International Colloquium on Automata, Languages and Programming (ICALP), volume 3124
of LNCS, pages 46–58. Springer, 2004.

56. Jon Millen and Vitaly Shmatikov. Symbolic protocol analysis with products and Diffie-Hellman exponenti-
ation. In Proc. 16th IEEE Computer Security Foundations Workshop (CSFW), pages 47–61, 2003.

57. Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Turuani. Deciding the security of proto-
cols with Diffie-Hellman exponentiation and products in exponents. In Proc. 23rd Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), pages 124–135, 2003.

27

58. Vitaly Shmatikov. Decidable analysis of cryptographic protocols with products and modular exponentiation.
In Proc. 13th European Symposium on Programming (ESOP), volume 2986 of LNCS, pages 355–369. Springer,
2004.

59. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game – or – a completeness
theorem for protocols with honest majority. In Proc. 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 218–229, 1987.

60. Shafi Goldwasser and Leonid Levin. Fair computation of general functions in presence of immoral majority.
In Advances in Cryptology: CRYPTO ’90, volume 537 of LNCS, pages 77–93. Springer, 1990.

61. Donald Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating a faulty minority.
Journal of Cryptology, 4(2):75–122, 1991.

62. Silvio Micali and Phillip Rogaway. Secure computation. In Advances in Cryptology: CRYPTO ’91, volume
576 of LNCS, pages 392–404. Springer, 1991.

63. Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
3(1):143–202, 2000.

64. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol
analysis. In Proc. 5th ACM Conference on Computer and Communications Security, pages 112–121, 1998.

65. J. Mitchell, M. Mitchell, and A. Scedrov. A linguistic characterization of bounded oracle computation and
probabilistic polynomial time. In Proc. 39th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 725–733, 1998.

66. John Mitchell, Mark Mitchell, Andre Scedrov, and Vanessa Teague. A probabilistic polynominal-time pro-
cess calculus for analysis of cryptographic protocols (preliminary report). Electronic Notes in Theoretical
Computer Science, 47:1–31, 2001.

67. Russell Impagliazzo and Bruce M. Kapron. Logics for reasoning about cryptographic constructions. In Proc.
44th IEEE Symposium on Foundations of Computer Science (FOCS), pages 372–381, 2003.

68. Anupam Datta, Ante Derek, John Mitchell, Vitalij Shmatikov, and Matthieu Turuani. Probabilistic
polynomial-time semantics for a protocol security logic. In Proc. 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP), volume 3580 of LNCS, pages 16–29. Springer, 2005.

69. Bruno Blanchet. A computationally sound mechanized prover for security protocols. In Proc. 27th IEEE
Symposium on Security & Privacy, pages 140–154, 2006.

70. Dorothy Denning. Cryptography and Data Security. Addison-Wesley, 1982.
71. Andrew C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium on Foun-

dations of Computer Science (FOCS), pages 80–91, 1982.
72. Jonathan K. Millen. The interrogator: A tool for cryptographic protocol security. In Proc. 5th IEEE

Symposium on Security & Privacy, pages 134–141, 1984.
73. A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In Proc. 8th IEEE

Computer Security Foundations Workshop (CSFW), pages 98–107, 1995.
74. James Heather, Gavin Lowe, and Steve Schneider. How to prevent type flaw attacks on security protocols.

In Proc. 13th IEEE Computer Security Foundations Workshop (CSFW), pages 255–268, 2000.
75. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive

chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

28

