
Technical Report: Reactively Secure Signature Schemes
(Long Version)⋆

Michael Backes, Birgit Pfitzmann, and Michael Waidner

IBM Research, Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

{mbc,bpf,wmi}@zurich.ibm.com

November 11, 2005

Abstract. Protocols for problems like Byzantine agreement, clock synchroniza-
tion or contract signing often use digital signatures as theonly cryptographic
operation. Proofs of such protocols are frequently based onan idealizing “black-
box” model of signatures. We show that the standard cryptographic security def-
inition for digital signatures is not sufficient to ensure that such proofs are still
valid if the idealized signatures are implemented with real, provably secure sig-
natures.
We propose a definition of signature security suitable for general reactive, asyn-
chronous environments, calledreactively secure signature schemes, and prove
that for signature schemes where signing just depends on a counter as state the
standard security definition implies our definition.
We further propose an idealization of digital signatures which can be used in a
reactive and composable fashion, and we show that reactively secure signature
schemes constitute a secure implementation of our idealization.

1 Introduction

Protocols for problems like Byzantine agreement, clock synchronization or con-
tract signing often use digital signatures as the only cryptographic operation.
Proofs of such protocols typically use a “black-box” model of signatures: they
just assume that signatures are unforgeable, i.e., they abstract from all crypto-
graphic details like asymptotic security and error probabilities. Still one should
expect that protocols proven secure in this abstract model are also secure if im-
plemented with a real, cryptographically secure signaturescheme.

Unfortunately this is not true: Consider an arbitrary signature schemeSig
that satisfies the standard GMR-definition of secure signature schemes [40]: A
signature scheme issecureif no polynomial-time (ink, a security parameter)
adversary can produce a forged signature with not negligible probability. The
adversary has exclusive access to a signature oracle, and any signature under

⋆ Parts of this work have been published at the6th and7th Information Security Conference
(ISC) [15, 18].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a message for which the oracle was not queried counts as a forgery. We now
transform the schemeSig into a new schemeSig strange which, when signing a
messagem, attaches to the signature onm all previouslysigned messages and
their signatures. This is certainly a strange scheme, but itis easy to see that it
is secure under the GMR-definition provided the original schemeSig is secure,
since if the adversary asks for thei-th signature, it has seen all signatures up
to the(i − 1)-st anyway; thus our new scheme is not easier to break than the
original one.

Now consider a trivial protocol for fair contract signing: We have two po-
tentially malicious partiesA, B and a trusted third partyT . Both main parties
have inputsc, the contract, and binary valuesdX , for X = A,B, which tell
them whether they should sign (dX = 1) or reject (dX = 0) the contract. The
contract should be signed only if each honest partyX starts withdX = 1. The
protocol roughly works like this: BothA andB sign c, yielding signaturessA
andsB. If dA = 0 thenA stops, and otherwise it sendssA to T , and similarly
B. If T receives both signatures it sends(sA, sB) back toA andB, and the
contract is considered signed. IfT does not receive both signatures (which in
an asynchronous network might mean thatT non-deterministically decides to
terminate) thenT stops and the contract is not signed, which means that nobody
should get hold of the pair(sA, sB). Intuitively this protocol is secure, and one
can even prove this in the black-box model. But clearly if theprotocol is exe-
cuted multiple times with our new signature schemeSigstrange then from each
successful run one can construct valid contracts for all previous runs, even for
those that did not produce a valid contract.

In Section 2 we introduce a general security definition of digital signature
schemes that resolves these problems and can be used in general asynchronous,
reactive environments. The term “reactive” means that the system interacts with
its users multiple times, e.g., in many concurrent protocolruns. In Sections 3 and
4 we show that for certain signature schemes security under the GMR-definition
implies security under this definition. As our example has shown, this cannot be
true in general; thus we limit ourselves to schemes where signing needs just a
counter as state. This is sufficient for many provably securesignature schemes.
For instance, in [40] the signer computes a tree and associates each signature
with one of the leaves in this tree. Thus it is sufficient for the signing machine
to keep track of which leaves are already used, and this can easily be encoded
as a counter. Similar arguments apply, e.g., to the schemes in [57, 31, 32, 35].

In Section 5 we propose an idealization of digital signatures that can be used
in the aforementioned black-box way, i.e., which, at a low level of abstraction,
offers the functionality of a signature scheme in a reactiveand composable fash-
ion. More precisely, we show that reactively secure signature schemes constitute

2

a secure implementation of our idealization. By “low level”we mean that the
interface of the idealization is not yet abstract in the sense needed for current
automatic tools but still contains signatures as real cryptographic objects. This
is in contrast to, e.g., Dolev-Yao-style models [34], wherecryptographic objects
are represented symbolically without being evaluated to bitstrings. For encryp-
tion, such low-level ideal functionalities were introduced in [43]. For signatures,
formalizing and proving an ideal version is actually easierbecause their security
property is an integrity property. It was known since [52, 53] that such proper-
ties can be formulated abstractly, e.g., in temporal logic.A similar formulation
for authentication is known from [58], but without cryptographic proofs with re-
spect to it. In essence, a low-level ideal system for signatures combines the real
signature functionality with a system-internal verification whether the desired
integrity property is still fulfilled. Such an idealizationwas first made in [44]
for symmetric authentication. A somewhat similar ideal signature system was
presented in [26], with variations in [29, 30]. In contrast to our abstraction, the
precise approach taken in [26] cannot be used to construct nested abstract terms
without revealing all signatures contained in these terms even if the signatures
are appropriately encrypted, i.e., while an abstract termE(pke, S(pks,m)), de-
noting the encryption of a signature of a messagem, in reality keepsm secret
from the adversary even if sent over an insecure connection,its mere construc-
tion by an honest participant would givem to the adversary if one used the ideal
functionality for signing from [26]. This aspect was not changed in [29, 30, 27].

In Section 6, we finally describe several variants of our idealization such
as memory-less signature schemes and schemes restricted tofixed-length mes-
sages.

Further Related Work.Problems in reactive environments have already been
identified for other cryptographic primitives, e.g., oblivious transfer [22] and
public-key encryption [23].1 For signatures, already the standard definition from
[40] is in a reactive setting, but signatures are delivered to the adversary in the
same order as they are generated. In a general asynchronous setting these orders
may be different, which greatly complicates security proofs. In [56] signatures
are used in an encrypted way within secure channels, but the specific usage
avoids the general problems. Moreover, our work is closely related to the cur-
rently highly active line of research on computational soundness, see e.g., [1,
16, 9, 14, 20, 2, 10, 51, 12, 11, 4].

1 More generally, achieving security under system composition is widely known to be difficult
to achieve in general, see e.g., [46, 42, 47–49, 45, 33, 3, 17,5, 18, 10].

3

2 Definitions and Notation

2.1 Notation

Let Σ denote a finite alphabet, and letΣ+ denote the set of non-empty strings
overΣ. We write “:=” for deterministic and “←” for probabilistic assignment,
and “ R←” for uniform random choice from a set.↓ is a distinguished error el-
ement available as an addition to the domains and ranges of all functions and
algorithms. A functiong : N→ R≥0 is called negligible iff for all positive poly-
nomialsQ, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k).

The fundamental data structures in our definitions and proofs are arrays that
store tuples of strings. For each arrayD, the tuples have a predefined structure,
e.g., each tuple stores a message with a signature. To elegantly capture the se-
lection of tuple elements, we adopt some database notation:Elements of a tuple
are calledattributes , e.g., we could have two attributesmsg andsig denoting
the message and the signature element of each tuple. For a tuple x ∈ D, the
value of its attributeatt is writtenx.att . If the values of one distinguished at-
tributeatt are unique among all tuples inD, i.e., the attribute gives a one-to-one
correspondence to the tuples in the array, we callatt a primary key attribute. We
use this to select elements of a tuple, i.e., if a primary key attribute att exists
in D andatt2 is another attribute inD, andD is clear from the context, we
simply write att2[a] instead ofx.att2 , wherex denotes the unique tuple with
x.att = a. If no such tuple exists, we defineatt2[a] := ↓.

2.2 Non-Reactive Definitions

Signature schemes often have memory. As explained in the introduction, sig-
nature schemes that divulge the history of the messages signed earlier are not
suited for use in a general asynchronous reactive environment. In the following
definition, we therefore do not allow a signature scheme to use arbitrary memory
for signing a message, but we model its memory by a counter.

Definition 1 (Counter-based Signature Schemes).A counter-based signature
schemeis a triple (gen, sign, test) of polynomial-time algorithms, wheregen
andsign are probabilistic. The algorithmgen takes an input(1k, 1s) with k, s ∈
N, wheres denotes the desired maximum number of signatures andk a security
parameter, and outputs a pair(sk , pk) of a secret signing key and a public test
key inΣ+. The algorithmsign takes such a secret key, a counterc ∈ {1, . . . , s},
and a messagem ∈ Σ+ as inputs and produces a signature inΣ+. We write
this sig ← signsk ,c(m). Similarly, we write verification asb := testpk (m, sig)
with b ∈ {true, false}. If the result istrue, we say that the signature isvalid

4

for m. For a correctly generated key pair, a correctly generated signature for a
messagem must always be valid form.

When we speak about a signature scheme in the following, we always mean
a counter-based signature scheme in the sense of Definition 1.

Security of a signature scheme is defined against existential forgery under
adaptive chosen-message attacks (CMA-security). The definition corresponds
to the GMR-definition [40] restricted to counter-based signature schemes.

Definition 2 (CMA-security for Counter-based Signature Schemes).Given
a signature scheme(gen, sign, test) and a polynomials ∈ N[x], theGMR sig-
nature oracleSigs, or shortsignature oracle, is defined as follows: It has vari-
ables sk , pk and a counterc initialized with 0, and the following transition
rules:

– First generate a key pair(sk , pk)← gen(1k, 1s(k)) and outputpk .
– On input(sign,m) withm ∈ Σ+, and ifc < s(k), setc := c+1 and return

sig ← signsk ,c(m).

The signature scheme is calledCMA-secureif for every polynomials and every
probabilistic polynomial-time machineAsig that interacts withSigs and finally
outputs two valuesm and sig (meant as a forged signature for the message
m), the probability is negligible (ink) that testpk (m, sig) = true andm is not
among the messages previously signed by the signature oracle.

We further state a variant of Definition 2, which we callskipping security.
It is slightly stronger than the original definition by allowing the adversary to
choose the counter value, but only in a strictly monotonic increasing sequence,
i.e., he can only skip counter values. This variant is usefulin later proofs.

Definition 3 (Skipping Security). Given a signature scheme(gen, sign, test)
and a polynomials ∈ N[x], the skipping signature oracleSkipSigs is defined
as follows: It has variablessk , pk and a counterc initialized with 0, and the
following transition rules:

– First generate a key pair(sk , pk)← gen(1k, 1s(k)) and outputpk .
– On input(sign,m, c∗) with m ∈ Σ+, and ifc < c∗ ≤ s(k), setc := c∗ and

return sig ← signsk ,c∗(m).

The signature scheme is calledskipping secureif for every polynomials and ev-
ery probabilistic polynomial-time machineAskipsig that interacts withSkipSigs
and finally outputs two valuesm and sig (meant as a forged signature for the
messagem), the probability is negligible (ink) that testpk (m, sig) = true and
m is not among the messages previously signed by the signatureoracle.

5

Lemma 1 (Skipping Signatures).A signature schemeSig is CMA-secure if
and only if it is skipping secure. This holds with essentially unchanged concrete
security, except that a CMA adversary may need up tos(k) oracle calls even if
the skipping adversary uses less.

Proof. The right-to-left direction is clear as an adversaryAskipsig may ask for a
signature for every counter value, i.e., CMA-security is a special case of skip-
ping security.

For the opposite direction, assume that an adversaryAskipsig successfully
attacks the skipping signature oracleSkipSigs with not negligible probability.
We then construct an adversaryAsig against the signature oracleSigs as follows.
It usesAskipsig as a blackbox submachine (also called oracle).Asig first selects
a messagem∗ R← Σk. Whenever the adversaryAskipsig outputs a command
(sign,m, c∗) with c < c∗ ≤ s(k) for the current counter valuec of Sigs, then
Asig inputs (sign,m∗) to Sigs for c∗ − c − 1 times, thus bringing the counter
of Sigs to the valuec∗ − 1. ThenAsig inputs(sign,m) to Sigs and forwards the
responsesig to Askipsig. It is easy to see thatAsig together withSigs correctly
simulates the skipping signature oracleSkipSigs becauseSigs computessig as
sig ← signsk ,c∗(m) just asSkipSigs would. Hence the adversaryAskipsig outputs
a successful forgery(m′, sig ′) with its usual, not negligible probability in this
scenario. This is also a valid forgery forAsig unlessm′ = m∗. However, no
information aboutm∗ in the Shannon sense leaks toAskipsig; hence this only
happens with exponentially small probability. Hence the success probability of
Asig is still not negligible. As to concrete security, the success probability is even
almost unchanged. The oracle calls byAsig are bounded bys(k), and its runtime
is typically dominated by that ofAskipsig.

2.3 A New Reactive Definition

To obtain a security definition that is sufficient in a reactive environment, we
have to extend the capabilities of the adversary when interacting with the signa-
ture oracle. More precisely, we still have to allow for signing arbitrary messages,
but the obtained signatures are stored within the signatureoracle and only out-
put upon request of the adversary. Now a signature is considered a forgery for
a messagem if the signature is valid form and if no signature for this message
has been revealed. This is captured in the following definition.

Definition 4 (Reactive Signature Security).Given a signature scheme(gen,
sign, test) and a polynomials ∈ N[x], the reactive signature oracleRSigs is
defined as follows: It contains variablessk , pk , a counterc initialized with0,
an initially empty setC of counter values, and an initially empty arraySIGS

6

with attributesc, m, andsig for storing tuples of counter values, messages, and
signatures. The counterc can be used as a primary key attribute; this is clear
by inspection of the transitions below. The transition rules ofRSigs are:

– First generate a key pair(sk , pk)← gen(1k, 1s(k)) and outputpk .
– On input(sign,m) withm ∈ Σ+, and ifc < s(k), setc := c+1 andsig ←

signsk ,c(m), and store(c,m, sig) in SIGS .
– On input(reveal, i), and if i ≤ c, setC := C ∪ {i} and returnsig [i].

The signature scheme is calledreactively secureif for every polynomials and
every probabilistic polynomial-time machineArsig that interacts withRSigs and
finally outputs two valuesm and sig (meant as a forged signature form), the
probability thattestpk (m, sig) = true andm 6= m[i] for all i ∈ C is negligible
(in k).

We first treat a simple but common case where the definitions are equivalent
with essentially the same concrete security.

Lemma 2 (Memory-less Schemes).Let Sig denote a memory-less signature
scheme, i.e., the functionsign does not even depend on a counter. ThenSig is
CMA-secure if and only if it is reactively secure. This holdswith essentially
unchanged concrete security.

Proof. The right-to-left direction is clear (or see the proof of Theorem 1). If
an adversaryArsig breaksSig in the reactive scenario of Definition 4, we can
easily construct an adversaryAsig that has the same success probability against
the same signature scheme in the non-reactive scenario of Definition 2: Asig

simply defers each signature request of the original adversary (which it uses as
a blackbox submachine), i.e., each input(sign,m), until Arsig first requests the
corresponding signature. As signing is memory-less, making the signatures in
the wrong order makes no difference. ThusAsig together withSigs simulates
RSigs correctly. Moreover, every forged signature byArsig is also a suitable
forgery forAsig. Moreover, for the concrete security,Asig uses at most as many
oracle calls thanArsig and its runtime is dominated by that ofArsig.

3 Reduction Proof for Unchanged Signature Schemes

In this section, we show that a counter-based, CMA-secure signature scheme is
already reactively secure. Hence signature schemes that only maintain a counter
as their local state can safely be used in an asynchronous reactive environment
without having to bother about the problem sketched in the introduction. As a
drawback, however, we will see that the concrete security gets worse.

7

Theorem 1 (Reactive Security of Unchanged Signature Schemes). A
counter-based signature schemeSig is reactively secure if and only if it is CMA-
secure. In the concrete security, we essentially lose a factor of s, the maximum
number of signatures, in the adversary’s success probability when proving re-
active security from CMA security.

Proof. The proof of the left-to-right direction is straightforward, since a reac-
tively secure system is in particular secure for an adversary requesting all signed
messages immediately when they have been made.

We now prove the opposite direction. From Lemma 1 we know thatSig is
skipping secure. Hence we only need to show that if there exists a successful
adversaryArsig against reactive security, there also exists a successful adversary
Askipsig against skipping security, i.e., against the oracleSkipSigs. The adversary
Askipsig uses the adversaryArsig as a blackbox; we call the rest of it thesimulator
Sim. This is shown in Figure 1.

Definition of the simulator.Like RSigs, the simulatorSim maintains a counter
c initialized with 0 and an initially empty arraySIGS with attributesc, m, and
sig for storing tuples of counter values, messages, and signatures, wherec is
used as a primary key attribute. Additionally, it chooses a counter valuec∗ R←
{0, . . . , s(k)} where it will cheat. Intuitively,c∗ is a guess whetherArsig will
forge a signature on a totally new message (c∗ = 0) or on a signed message
whose signature was not revealed; herec∗ denotes the corresponding counter
value. Cheating means that the simulator does not input thec∗-th sign query
from Arsig to the machineSkipSigs. If the messagem∗ from this query is ever
signed again later, the simulator skips it again. Ifc∗ = 0, thenSim does not cheat
at all. This is important, since an adversaryArsig that requests all signatures
would otherwise always catch our simulator cheating. The variablem∗ ∈ Σ+

is initialized with↓. The transitions ofSim are sketched in Figure 1 and defined
as follows:

– First, upon receiving a public keypk from SkipSigs, choosec∗ R←
{0, 1, . . . , s(k)} and outputpk toArsig.

– On input(sign,m) from Arsig with m ∈ Σ+: If c < s(k), setc := c + 1,
otherwise abort, i.e., stop the current transition withoutfurther action. We
distinguish two cases:
• (No cheating): Ifc < c∗ or (c > c∗ ∧m 6= m∗), output(sign,m, c) to

SkipSigs and obtain a signaturesig . Store(c,m, sig) in SIGS .
• (Cheating): Ifc = c∗ or (c > c∗ ∧m = m∗), setm∗ := m and store

(c,m∗, ↓) in SIGS .

8

pk

pk

(sign,m)

sig

Store (c, m, sig)

(reveal,i)

(i, m, sig) stored?

If not, give up;

if yes:
sig

SkipSig
s

(Skipping Signature

Oracle)

Sim

A
rsig

A
skipsig

(m’,sig’)

c* {0,…,s(k)}

If c=c* or

 (c>c* and m=m*)

then

 store m*:=m

else:
(sign,m,c)

sig sign
sk,c

(m)

(m’,sig’)

Fig. 1. Overview of the reduction proof for unchanged signature schemes.

– On input(reveal, i) from Arsig: If i > c abort. If sig := sig [i] = ↓, give up
the simulation. (Arsig has requested a signature that the simulator skipped.)
Otherwise outputsig to Arsig.

– On input(m′, sig ′) from Arsig, i.e., a supposed forgery: Output(m′, sig ′).

Proof of correct simulation for correct guess.In the original attack ofArsig

against the reactive signature oracleRSigs, let the random variableq over
{0, . . . , s(k), not valid} denote the index of the first sign query that contained
the forgery messagem′, with q = 0 if m′ never occurred in a sign query, and
q = not valid if the forgery thatArsig outputs is not valid. We show that the
simulation is perfect in the casec∗ = q. More precisely,m′ andq are functions
of the pairr = (rA, skr) of the randomnessrA for Arsig and the randomnessskr
for the signature system, containing the secret key and randomness for signing
for each counter valuec. We show that if the samer is used in the simulated
scenario and ifc∗ = q := q(r), thenArsig obtains the same view in the simu-
lated scenario. In particular,m′ is thus also the forgery message in that scenario
andq the index of the first sign query form′.

For c∗ = 0 perfect simulation is clear since the simulator never cheats and
uses the skipping oracle to sign all messages in the correct order.

Now let c∗ ∈ {1, . . . , s(k)}. Here the proof is in principle an induction
over the interaction length. Before thec∗-th sign query the simulation is again

9

clearly perfect. Thus thec∗-th sign query contains the messagem′ (for the first
time), and hencem∗ = m′. Sign queries for messagesm 6= m′ are simulated
perfectly also after thec∗-th sign query, in particular becauseSim increments the
counterc correctly in all sign queries until it reachess(k) and never modifies it
elsewhere; this also implies thatSkipSigs returns a signature for all calls bySim.
For sign queries for messagem′, the new tuple inSIGS is wrong, but neither
Sim norRSigs make an output and thus the view ofArsig is unchanged. Now we
consider a query(reveal, i). If i > c for the current value ofc, thenSim outputs
nothing, and so wouldRSigs. Otherwise, we know thatm[i] 6= m′ because so
farArsig acts as in the scenario withRSigs, and there(m′, sig ′) is a valid reactive
forgery (becauseq 6= not valid), and a reveal query for the same message would
have made it invalid. This impliessig [i] 6= ↓, and thusSim does not give up the
simulation. Furthermore,sig [i] was thus stored during one of the sign queries
that were simulated perfectly, and hence the output of this reveal query is also
correct. Altogether this shows that at least forc∗ = q the simulation results in
the correct view ofArsig.

Moreover, the signaturesig ′ is a valid forgery form′ also againstSkipSigs
in the casec∗ = q since by constructionSim never asksSkipSigs to signm′.

Success probability.By the definition of the random variableq, the probability
thatArsig successfully attacksRSigs is

PArsig
(k) =

s(k)∑

i=0

Pr[q = i].

The simulatorSim choosesc∗ uniformly from{0, . . . , s(k)} and independently
of the randomnessr that determinesq. We also showed above thatAskipsig is
always successful forc∗ = q. Hence for its success probabilityPAskipsig

we obtain

PAskipsig
(k) ≥ Pr[c∗ = q] =

s(k)∑

i=0

Pr[c∗ = i ∧ q = i]

=

s(k)∑

i=0

Pr[c∗ = i] · Pr[q = i] =
1

s(k) + 1
PArsig

(k).

SincePArsig
(k) is not negligible by assumption ands is a polynomial, the suc-

cess probability ofAskipsig is not negligible. However, we lost a factor of about
s(k)−1 in the error probability for concrete security. Otherwise the concrete se-
curity is good:Askipsig uses at most as many oracle calls asArsig and its runtime
is typically dominated by that ofArsig. Furthermore, Lemma 1 essentially re-
tained the success probabilities and runtime, and we easilysee that over both
proofs the adversaryAsig does not make more oracle calls thanArsig.

10

4 Stronger Reactively Secure Signature Schemes by
Randomization

In this section, we use additional randomization to transform a counter-based
CMA-secure signature scheme into a reactively secure scheme with almost the
same concrete security. We assume that an efficient encodingof tuples intoΣ+

is given.

Definition 5 (Message Randomization of Signature Schemes).Let Sig =
(gen, sign, test) be a signature scheme. Then we define thecorresponding
message-randomized signature schemeSig∗ = (gen, sign∗, test∗) as fol-
lows: Let sign∗sk,c(m) := (r, signsk,c((m, r))) for r R← {0, 1}k , and
test∗pk(m, sig∗) := testpk((m, r), sig) if sig∗ is of the form(r, sig), and false
otherwise.

Theorem 2 (Security of Message Randomization).Let Sig be a CMA-
secure signature scheme. Then the corresponding message-randomized signa-
ture schemeSig∗ is reactively secure with essentially the same concrete secu-
rity.

Proof. We show that if there exists a successful adversaryA∗
rsig against the sig-

nature schemeSig∗ in a reactive scenario, there also exists a successful adver-
saryAsig against the schemeSig in the CMA scenario, i.e., against the corre-
sponding oracleSigs. The adversaryAsig usesA∗

rsig as a blackbox, and we call
the rest of it the simulatorSim; see Figure 2. LetSig = (gen, sign, test) and
Sig∗ = (gen, sign∗, test∗).

Definition of the Simulator.The simulatorSim maintains a counterc initialized
with 0, an initially empty setC of counter values corresponding to revealed
signatures, and an initially empty arraySIGS with attributesc, m, r, andsig
for storing tuples of a counter values, messages, random values, and signatures,
wherec is used as the primary key attribute. The transitions ofSim are sketched
in Figure 2 and defined as follows:

– First, upon receiving a public keypk from Sigs, outputpk toA∗
rsig.

– On input(sign,m) fromA∗
rsig with m ∈ Σ+: If c < s(k), setc := c+1 and

r R← {0, 1}k and output(sign, (m, r)) to Sigs and obtain a signaturesig .
Store(c,m, r, sig) in SIGS .

– On input (reveal, i) from A∗
rsig: If SIGS [i] = ↓ abort. Otherwise let

(i,m, r, sig) := SIGS [i], setC := C ∪ {i} and output(r, sig) toA∗
rsig.

– On input(m, sig∗) from A∗
rsig wheresig∗ = (r, sig), i.e.,sig∗ is supposed

to be a forgery form: Output((m, r), sig), i.e.,sig should be a forgery for
(m, r).

11

pk
pk

(sign,m)
(sign,(m,r))

sig sign
sk,c

((m,r))
sig

r {0,1}k

Store

(c, m, r, sig)

(reveal,i)

If (i, m, r, sig)

stored: (r,sig)Sig
s

(Signature Oracle

for Sig)

Sim

A
rsig

A
sig

(m,sig*)

((m,r),sig)
*

(r,sig) := sig*

Fig. 2. Overview of the reduction proof for randomized signature schemes.

Correct Simulation and Successful Forgeries.It is easy to see thatSim together
with Sigs perfectly simulatesRSig∗s, the reactive signature oracle forSig∗. The
setsC are always equal in the two scenarios.

Now assume thatA∗
rsig’s output (m, sig∗) is a valid forgery. We want to

show thatAsig’s output ((m, r), sig) is also a valid forgery except in a cer-
tain rare case. The precondition means thatm 6= m[c] for all c ∈ C and
test∗pk(m, sig∗) = true. Hencesig∗ is a pair(r, sig) andtestpk((m, r), sig) =
true. ThusAsig makes an output, and the output is at least a valid signature.

HenceAsig’s output is indeed a successful forgery if the message(m, r) has
never been signed bySigs, i.e., if no tuple(c,m, r, sig) with the givenm andr
exists inSIGS of Sim.

If a tuple (c,m, r, sig) occurs inSIGS , thenc 6∈ C because of the precon-
dition m 6= m[c] for all c ∈ C. Intuitively this means thatA∗

rsig has guessed the
unknown random valuer correctly. The inputs(r[i], sig [i]) thatA∗

rsig obtained
do not depend onr[c] because the random values are chosen independently and
the signatures of a counter-based signature scheme only depend on the current
counter and input, and the random valuer[c] does not influence this counter.

Success Probability.Due to the perfect simulation,A∗
rsig outputs a successful

forgery in the simulated scenario with the same probabilityPA∗

rsig
(k) as in in-

teraction withRSig∗s. For each such output, we have just shown that the output
of Asig is also a successful forgery unless one of the at mosts(k) unrevealed,
independent random valuesr[c] equals the valuer in A∗

rsig’s output. HenceAsig

12

has almost the same success probability

PAsig
(k) = (1−

s(k)

2k
)PA∗

rsig
(k).

It also makes the same number of oracle queries asA∗
rsig, and its runtime is

typically dominated by that ofA∗
rsig because the runtime ofSim is essentially

given by generatings(k) random values and makings(k) lookups in a sorted
array of lengths(k).

5 A Low-level Ideal Signature System and its Realization

In this section, we present an ideal system which, at a low level of abstraction,
offers the functionality of a secure signature scheme in a reactive and compos-
able fashion. Essentially, it stores which keys belong to honest users and which
messages the users signed with these keys, and it never accepts signatures that
are supposedly made with one of these keys on different messages, i.e., forg-
eries. We then show that a canonical realization is as secureas this low-level
ideal system in the sense of reactive simulatability.

5.1 The Low-level Ideal System

The ideal system is represented by one centralized machine with the overall
functionality, while the realization consists of one machine per participant. Its
honest users are, without loss of generality, numbered{1, ..., n}. We distinguish
the in- and outputs from and to different users by making themat so-called ports
insig,u? andoutsig,u ! for u ∈ {1, ..., n}.

Definition 6 (Low-level Ideal Signature Machine).Let a signature scheme
Sig = (gen, sign, test) and parametersn ∈ N and s ∈ N[x] be given. Then
we define thecorresponding low-level ideal signature machineSiglow id,n,s. It
maintains two initially empty arrays,KEYS with attributesuser , sk , pk , andc
for the user who “owns” the key pair, the secret and public key, and the current
counter for this key, andSIGNED with attributespk andm for a public key and
a message. The transitions are defined as follows. Letu be the index of the port
insig,u? where the current input occurs; the resulting output goes tooutsig,u !.

– On input(generate): Set(sk , pk) ← gen(1k, 1s(k)), store(u, sk , pk , 0) in
KEYS , and outputpk .

– On input(sign, pk ,m): Retrieve a tuple(u, sk , pk , c) ∈ KEYS with the
givenu andpk . If none or more than one exists or ifc = s(k), output the
error symbol↓. Else setc := c + 1 in this tuple inKEYS . Then setsig ←
signsk ,c(m), store(pk ,m) in SIGNED , and outputsig .

13

– On input(test, pk ,m, sig): Retrieve a tuple(v, sk , pk , c) ∈ KEYS with
the givenpk . If none or more than one exists, outputtestpk (m, sig). Else if
(pk ,m) ∈ SIGNED , outputtestpk (m, sig), elsefalse.

Other inputs are ignored.

The low-level ideal machine never outputs secret keys. For signing, useru in-
puts the public key to designate the desired private key, andthe machine verifies
that the key tuple belongs tou. The test function is a normal signature test for
unknown public keys (typically keys generated by the adversary). For known
public keys, the low-level ideal machine first verifies that the message was in-
deed signed with this key, and then it additionally verifies that the signature
presented is valid.

The main difference to the signature functionality in [26] is that the adver-
sary learns nothing about what honest users sign. The low-level ideal machine
further formally depends on the given signature schemeSig , like the first sim-
ilar low-level idealizations in [44]. This could be alleviated by the technique
from [28] of letting the adversary choose the algorithms, sothat the overall low-
level ideal functionality comprises all possible instantiations. However, in all
use cases known to us it is not necessary: One can either assume given algo-
rithms because the low-level idealization is only used to prove a larger system,
or a really abstract idealization fits better because arguing about the evaluation
of an arbitrary algorithm input by an adversary is far beyondthe kind of theo-
ries implemented in current automated proof tools. In particular, cryptographic
objects that would be output by such arbitrary algorithms can be addressed by
handles (names, pointers) in such an abstraction, as in [14].

5.2 Cryptographic Realization

The cryptographic realization of the low-level ideal signature functionality is
the natural use of digital signatures in a distributed system, i.e., it consists of a
separate machineSigu for each useru, and each machine signs and tests in the
normal way. Together, these machines offer the same ports and accept the same
inputs as the ideal machine.

Definition 7 (Real Low-level Signature Machines).Let a signature scheme
Sig = (gen, sign, test) and parametersu ∈ N ands ∈ N[x] be given. Then we
define thecorresponding low-level real signature machineSigu,s for useru. It
has portsinsig,u? andoutsig,u ! and maintains an initially empty arrayKEYSu

with attributessk , pk , andc for a secret and public key and the current counter
for this key pair. The transitions are defined as follows.

14

– On input (generate): Set (sk , pk) ← gen(1k, 1s(k)), store (sk , pk , 0) in
KEYSu, and outputpk .

– On input (sign, pk ,m): Retrieve a tuple(sk , pk , c) ∈ KEYSu with the
given pk . If none or more than one exist or ifc = s(k), return ↓. Else
setc := c+ 1 in this tuple inKEYSu and outputsig ← signsk ,c(m).

– On input(test, pk ,m, sig), outputtestpk (m, sig).

Other inputs are ignored. We denote the set of these machinesfor n users by
Sigreal,n,s := {Sigu,s|u ∈ {1, . . . , n}}.

We claim that this real system is as secure as the low-level ideal system in the
sense of reactive simulatability.

5.3 Reactive Simulatability

The notion ofreactive simulatabilitycaptures the idea of refinement that pre-
serves not only integrity properties, but also confidentiality properties. Intu-
itively it can be stated as follows, when applied to the relation between a real
and an ideal system. Everything that can happen to users of the real system in
the presence of arbitrary adversaries can also happen to thesame users with
the ideal system, where attack capabilities are usually much more restricted. In
particular, this comprises confidentiality because the notion of what happens to
users not only includes their in- and outputs to the system, but also their com-
munication with the adversary. This includes whether the adversary can guess
secrets of the users or partial information about them.

The formal definition of reactive simulatability relies on the framework of
secure reactive systems in asynchronous networks by Backes, Pfitzmann, and
Waidner [56]. We give a brief overview of those parts of the framework that are
necessary to state the definition of reactive simulatability.

A systemconsists of several possiblestructures. A structure consists of a set
M̂ of connected machines and a subsetS of the freeports that the honest users
connect to. Amachineis a probabilistic IO automaton (extended finite-state ma-
chine) in a slightly refined model to allow complexity considerations. For these
machines Turing-machine realizations are defined, and the complexity of those
is tyically measured in terms of a common security parameterk, given as the
initial work-tape content of every machine. Each structureis complemented to a
configurationby an arbitraryusermachineH andadversarymachineA, where
H connects only to ports inS andA to the rest, and they may interact. The set
of configurations of a systemSys is calledConf(Sys). The general scheduling
model in [56] gives each connectionc (from an output portc! to an input port
c?) a buffer, and the machine with the corresponding clock portc⊳! can schedule

15

H

M
1

M
2

A
1

S

H

TH

A
2

S

Fig. 3. Simulatability: The two views ofH must be indistinguishable.

a message there when it makes a transition. In real asynchronous cryptographic
systems, network connections are typically scheduled byA. A configuration is
a runnable system, i.e., for eachk one gets a well-defined probability space of
runs. The view of a machine in a run is the restriction to all in- and outputs
this machine sees and its internal states. Formally, the view viewconf (M) of a
machineM in a configurationconf is a family of random variableswith one
element for each security parameter valuek.

Now reactive simulatability for a real systemSys real and an ideal system
Sys id is captured as follows [56]: For every structure(M̂1,S) ∈ Sys real, every
polynomial-time userH, and every polynomial-time adversaryA1, there exists
a polynomial-time adversaryA2 on a corresponding ideal structure(M̂2,S) ∈
Sys id such that the view ofH is computationally indistinguishable in the two
configurations. This is illustrated in Figure 3. Indistinguishability is a well-
known cryptographic notion from [60].

Definition 8 (Computational Indistinguishability). Two families(vark)k∈N
and (var′k)k∈N of random variables on common domainsDk are computation-
ally indistinguishable(“≈”) iff for every algorithmDis (the distinguisher) that
is probabilistic polynomial-time in its first input,

|P (Dis(1k, vark) = 1)− P (Dis(1k, var′k) = 1)| ∈ NEGL,

whereNEGL denotes the set of all negligible functions.

Intuitively, given the security parameter and an element chosen according to
eithervark or var′k, Dis tries to guess which distribution the element came from.

Definition 9 (Reactive Simulatability). For two systemsSys real and Sys id,
one saysSys real ≥ Sys id (at least as secure as) iff for every polynomial-time con-
figurationconf 1 = (M̂1,S ,H,A1) ∈ Conf(Sys real), there exists a polynomial-
time configurationconf 2 = (M̂2,S ,H,A2) ∈ Conf(Sys id) (with the sameH)
such thatviewconf

1
(H) ≈ viewconf

2
(H).

16

For the signature systems presented above, this is even shown withA2 = A1; we
call this strong version computational observational equivalence following [43].
Composition and preservation theorems for reactive simulatability [56, 13, 7, 6,
8] show that it has the properties expected from a refinement notion: First, if we
design a larger system based on a specification of a subsystem, and later plug
the implementation of the subsystem in, the entire implementation of the larger
systems is as secure as its design in the same sense of reactive simulatability.
Secondly, if we prove specific security properties for the specification, they also
hold for the implementation.

Simulatability was first sketched for secure multi-party function evaluation,
i.e., the computation of one output tuple from one tuple containing one secret
input from each participant in [59] and defined (with different degrees of gen-
erality and rigorosity) in [39, 21, 50, 25]. Problems such asthe separation of
users and adversaries, or defining runtime restrictions in the face of continuous
external inputs, do not occur in this case. The idea of simulatability was sub-
sequently also used for specific reactive problems, e.g., [36, 24, 28], without a
detailed or general definition. In a similar way it was used for the construction
of generic solutions for large classes of reactive problems[38, 37, 41] (usually
yielding inefficient solutions and assuming that all parties take part in all subpro-
tocols). Computational observational equivalence was introduced in [43]. The
first general reactive definition of simulatability was proposed (after some ear-
lier sketches, in particular in [38, 54, 25]) in [55] for a synchronous version of
our underlying general reactive model. The definition was extended to asyn-
chronous scenarios in [56, 26].

5.4 Simulatability Proof

We claim that the low-level real signature machines for a setof users are as
secure as the corresponding low-level ideal system if the underlying signature
scheme is secure.2 More precisely, our setsSigreal,n,s and {Siglow id,n,s}, to-
gether with the set of all free ports, are each the only structure of a system. We
identify Sigreal,n,s andSiglow id,n,s with these systems and write the simulatabil-
ity claim as follows.

Theorem 3 (Security of the Low-level Real Signature System). Given a se-
cure signature scheme according to Definition 2, we have for all n ∈ N and

2 We defined both these systems for counter-based signature schemes, and Theorem 1 implies
that any CMA-secure counter-based signature scheme is already reactively secure. Both sys-
tems and the proof can easily be generalized to CMA-secure signature schemes with arbitrary
memory. However, then even the ideal system suffers from theproblems mentioned in the
introduction.

17

s ∈ N[x]:
Sigreal,n,s ≥ Siglow id,n,s.

This holds even in the strong sense of computational observational equivalence.

Proof. We show that for an arbitrary polynomial-time overall user machine in-
teracting with either of our systems, the views are indistinguishable. (As an
adversary has no special ports here, we need not distinguishusers and adver-
saries.) The proof is in principle an induction over the number of inputs so far,
showing equality of the views except in one case, followed bya reduction proof
that this case is rare.

The proof uses and shows the following invariant: at all times and for every
u ∈ {1, . . . , n}, the arrayKEYSu of a real machineSigu,s can be derived from
KEYS of the ideal machine by restrictingKEYS to tuples withuser = u and
then deleting the attributeuser . All tuples inKEYS are covered in this way.

We now consider the three acceptable inputs at a portinsig,u?.

– On input(generate), both machines generate a key pair and outputpk in the
same way. The way they store the keys inKEYSu andKEYS retains the
invariant.

– On input (sign, pk ,m), both machines first look for an appropriate secret
key. By the invariant,Sigu,s finds exactly one tuple(sk , pk , c) ∈ KEYSu if
and only ifSiglow id,n,s finds exactly one tuple(u, sk , pk , c) ∈ KEYS and
the tuples then have the samesk andc. Both output↓ if none or more than
one tuple is found, or ifc = s(k). Else both increment the counterc, thus
retaining the invariant. Then both output a signaturesig generated in the
same way. OnlySiglow id,n,s additionally stores(pk ,m) in SIGNED .

– On input(test, pk ,m, sig) and ifpk does not exist exactly once inKEYS ,
both machines simply test the signature. Else both machinesalso outputtrue
only if the signature passes the cryptographic test, butSiglow id,n,s addition-
ally requires that(pk ,m) occurs inSIGNED . However, this sole difference
in the views corresponds to signature forgery and has therefore negligible
probability.

In more detail, the last step is proved in the following standard way: Let
a probabilistic polynomial-time user machineH obtain distinguishable views
when interacting with the two systems. By our considerations of all possi-
ble inputs,H achieves at least one different signature test output (in a run of
the configuration) with not negligible probability (over the possible runs). Let
max keys be a polynomial bounding the number of inputs(generate) made by
H. We construct an adversaryAsig against the signature oracleSigs: It chooses
i R← {1, . . . ,max keys(k)} and starts simulatingH and all machinesSigu,s

18

andSiglow id,n,s, using the same keys and signatures in both scenarios. When
H makes thei-th input(generate), thenAsig uses the keypk from the signature
oracle instead of generating a key pair. The elementsk in the resulting tuple
(u, sk , pk , 0) ∈ KEYS is set to↓, and similarly inKEYSu. From then on,
Asig uses the signature oracle when signing with respect to this key tuple. Thus
for each messagem signed by the oracle there is a pair(pk ,m) in the array
SIGNED . Hence whenH makes an input(test, pk ,m′, sig ′) wheresig ′ is valid
but(pk ,m′) 6∈ SIGNED , thenAsig can output(m′, sig ′) as a successful forgery
in the sense of Definition 2. As the simulation is perfect, this happens with not
negligible probability. This contradicts the signature security. Hence the views
of H in the two systems are indeed indistinguishable.

6 Variants of the Low-level Ideal System

We now describe some possible variants of the low-level ideal system.

Memory-less version.If we only want to consider memoryless signatures, we
can omit the parameters and the counters from Definitions 6 and 7 and the
proof. This is simple text extraction.

Fixed-length schemes.In reactive scenarios where surrounding protocols may
employ encryption, length information about encrypted messages may leak. To
make this manageable for encrypted message parts like signatures and public
keys, it is useful to assume that for given parametersk and s, the length of
signatures and public keys is fixed. This can be modeled by length functions
sig len(k, s) andpks len(k) for the underlying signature scheme as in [14].

Polynomial time.The machines described are only weakly polynomial-time, i.e.,
polynomial-time in the overall length of inputs they received, and not strictly
polynomial-time, i.e., in the security parameterk alone. In their typical intended
application this does not matter. However, all machines canbe made strictly
polynomial-time by equipping them with (arbitrary polynomial-time) bounds
on the length and number of accepted inputs at each port.

Scheduling.As the systems are currently described, both in- and outputswould
be scheduled by the users. Instead, one can give the machinesclock ports where
they immediately schedule each of their outputs. This is advantageous to keep
the state space small in higher-level proofs if signature-related operations are
only used as local subroutines. If the systems were to be usedremotely and in a
larger scenario where users and adversaries have to be distinguished again, one
could also take all the clock ports out of the setS of ports for the users.

Joint semi-real machine.If one intends to use a low-level idealization only once
for proving a completely real implementation of a larger system with respect

19

to a higher-level idealization as in [14], it may be simpler for the overall proof
to also write the low-level real system as one machine, because the fact that
the overall real system can be rewritten with such a low-level system implies
that the latter is real enough for the given purpose. We call this a semi-real
system. This would correspond more closely to the treatmentof encryption in
[14]. Conversely, that encryption functionality could be rewritten from a semi-
real version (one machine) to a real version if one omits the global key counter
from the low-level ideal version.

7 Conclusion

We have considered signature schemes in a reactive scenario. Our first obser-
vation was that in many protocols, not all signatures becomeknown to the ad-
versary, and a usual assumption in protocol design is that anadversary cannot
forge signatures that have been made but not revealed to him.We called se-
curity for this scenario “reactive security” and explored its relation to normal
security against chosen-message attacks. It turned out that while general signa-
ture schemes can be insecure reactively, schemes whose memory (besides a key
pair) is at most a counter are always reactively secure. For memory-less schemes
this holds with almost unchanged concrete security, while for the general case
with counters, we either lose a factor ofs, the maximum number of signatures,
in the success probability of an adversary in the reduction proof, or we have to
additionally randomize the signature scheme.

We further introduced an idealization of signature schemesin the sense of
reactive simulatability, which, at a low level of abstraction, makes the func-
tionality of signature schemes usable in frameworks offering composition and
property preservation theorems. In contrast to prior low-level idealizations, ours
retains the property that the adversary cannot learn signatures that are not ex-
plicitly revealed to him from an underlying counter-based signature scheme.

Acknowledgments

We thank an anonymous reviewer for pointing out an improvement of the proof
of Theorem 1 that allowed for a tighter reduction.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption).Journal of Cryptology, 15(2):103–127, 2002.

20

2. M. Backes. A cryptographically sound dolev-yao style security proof of the Otway-Rees
protocol. InProceedings of 9th European Symposium on Research in Computer Security
(ESORICS), volume 3193 ofLecture Notes in Computer Science, pages 89–108. Springer,
2004.

3. M. Backes. Unifying simulatability definitions in cryptographic systems under different tim-
ing assumptions.Journal of Logic and Algebraic Programming (JLAP), 2:157–188, 2005.

4. M. Backes and M. Duermuth. A cryptographically sound Dolev-Yao style security proof of
an electronic payment system. InProceedings of 18th IEEE Computer Security Foundations
Workshop (CSFW), pages 78–93, 2005.

5. M. Backes and D. Hofheinz. How to break and repair a universally composable signature
functionality. InProceedings of 7th Information Security Conference (ISC), volume 3225 of
Lecture Notes in Computer Science, pages 61–72. Springer, 2004. Preprint on IACR ePrint
2003/240.

6. M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verification of se-
curity protocols. InProc. 20th Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), volume 2607 ofLecture Notes in Computer Science, pages 675–686. Springer,
2003.

7. M. Backes and B. Pfitzmann. Computational probabilistic non-interference. InProc. 7th Eu-
ropean Symposium on Research in Computer Security (ESORICS), volume 2502 ofLecture
Notes in Computer Science, pages 1–23. Springer, 2002.

8. M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic purposes. In
Proc. 24th IEEE Symposium on Security & Privacy, pages 140–152, 2003.

9. M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-
Schroeder-Lowe public-key protocol.IEEE Journal on Selected Areas of Computing (JSAC),
22(10):2075–2086, 2004.

10. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable dolev-yao style cryp-
tographic library. InProceedings of 17th IEEE Computer Security Foundations Workshop
(CSFW), pages 204–218, 2004. Preprint on IACR ePrint 2004/059.

11. M. Backes and B. Pfitzmann. Limits of the cryptographic realization of Dolev-Yao-style
XOR. In Proceedings of 10th European Symposium on Research in Computer Security
(ESORICS), volume 3679 ofLecture Notes in Computer Science, pages 178–196. Springer,
2005.

12. M. Backes and B. Pfitzmann. Relating cryptographic und symbolic secrecy.IEEE Transac-
tions on Dependable and Secure Computing (TDSC), 2(2):109–123, 2005.

13. M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Polynomial fairness and liveness. In
Proc. 15th IEEE Computer Security Foundations Workshop (CSFW), pages 160–174, 2002.

14. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations (extended abstract). InProc. 10th ACM Conference on Computer and Communi-
cations Security, pages 220–230, 2003.

15. M. Backes, B. Pfitzmann, and M. Waidner. Reactively secure signature schemes. InProc.
6th Information Security Conference (ISC), pages 84–95, 2003.

16. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic library.
IACR Cryptology ePrint Archive, 2003:15, 2003.

17. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reac-
tive system. InProceedings of 1st Theory of Cryptography Conference (TCC), volume 2951
of Lecture Notes in Computer Science, pages 336–354. Springer, 2004.

18. M. Backes, B. Pfitzmann, and M. Waidner. Low-level ideal signatures and general integrity
idealization. InProceedings of 7th Information Security Conference (ISC), volume 3225 of
Lecture Notes in Computer Science, pages 39–51. Springer, 2004.

21

19. M. Backes, B. Pfitzmann, and M. Waidner. Reactively secure signature schemes.Interna-
tional Journal of Information Security (IJIS), 4(4):242–252, 2005.

20. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable
cryptographic library.International Journal of Information Security (IJIS), 4(3):135–154,
2005.

21. D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, 4(2):75–122, 1991.

22. D. Beaver. How to break a ”secure” oblivious transfer protocol. In Advances in Cryptol-
ogy: EUROCRYPT ’92, volume 658 ofLecture Notes in Computer Science, pages 285–296.
Springer, 1992.

23. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting:
Security proofs and improvements. InAdvances in Cryptology: EUROCRYPT 2000, volume
1807 ofLecture Notes in Computer Science, pages 259–274. Springer, 2000.

24. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis
of authentication and key exchange protocols. InProc. 30th Annual ACM Symposium on
Theory of Computing (STOC), pages 419–428, 1998.

25. R. Canetti. Security and composition of multiparty cryptographic protocols.Journal of
Cryptology, 3(1):143–202, 2000.

26. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–
145, 2001. Extended version in Cryptology ePrint Archive, Report 2000/67,http://
eprint.iacr.org/.

27. R. Canetti. On universally composable notions of security for signature, certification and
authorization. InProc. 17th IEEE Computer Security Foundations Workshop (CSFW), 2004.
Extended version in Cryptology ePrint Archive, Report 2003/239, http://eprint.
iacr.org/.

28. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. InAdvances in Cryptology: EUROCRYPT ’99, volume
1592 ofLecture Notes in Computer Science, pages 90–106. Springer, 1999.

29. R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure
channels (extended abstract). InAdvances in Cryptology: EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 337–351. Springer, 2002. Extended version in
IACR Cryptology ePrint Archive 2002/059,http://eprint.iacr.org/.

30. R. Canetti and T. Rabin. Universal composition with joint state. InAdvances in Cryptol-
ogy: CRYPTO 2003, volume 2729 ofLecture Notes in Computer Science, pages 265–281.
Springer, 2003.

31. R. Cramer and I. Damgård. Secure signature schemes based on interactive protocols. In
Advances in Cryptology: CRYPTO ’95, volume 963 ofLecture Notes in Computer Science,
pages 297–310. Springer, 1995.

32. R. Cramer and I. Damgård. New generation of secure and practical RSA-based signatures. In
Advances in Cryptology: CRYPTO ’96, volume 1109 ofLecture Notes in Computer Science,
pages 173–185. Springer, 1996.

33. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition (extended
abstract). InProc. 1st ACM Workshop on Formal Methods in Security Engineering (FMSE),
pages 11–23, 2003.

34. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

35. C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and its
applications.Journal of Cryptology, 11(3):187–208, 1998.

22

36. R. Gennaro and S. Micali. Verifiable secret sharing as secure computation. InAdvances in
Cryptology: EUROCRYPT ’95, volume 921 ofLecture Notes in Computer Science, pages
168–182. Springer, 1995.

37. O. Goldreich. Secure multi-party computation. Department of Computer Science and Ap-
plied Mathematics, The Weizmann Institute of Science, June1998, revised Version 1.4 Octo-
ber 2002, 1998.http://www.wisdom.weizmann.ac.il/users/oded/pp.htm.

38. O. Goldreich, S. Micali, and A. Wigderson. How to play anymental game – or – a complete-
ness theorem for protocols with honest majority. InProc. 19th Annual ACM Symposium on
Theory of Computing (STOC), pages 218–229, 1987.

39. S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral
majority. In Advances in Cryptology: CRYPTO ’90, volume 537 ofLecture Notes in Com-
puter Science, pages 77–93. Springer, 1990.

40. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adap-
tive chosen-message attacks.SIAM Journal on Computing, 17(2):281–308, 1988.

41. M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect multi-
party computation.Journal of Cryptology, 13(1):31–60, 2000.

42. D. M. Johnson and F. Javier Thayer. Security and the composition of machines. InProc. 1st
IEEE Computer Security Foundations Workshop (CSFW), pages 72–89, 1988.

43. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework
for protocol analysis. InProc. 5th ACM Conference on Computer and Communications
Security, pages 112–121, 1998.

44. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-time equiv-
alence and security analysis. InProc. 8th Symposium on Formal Methods Europe (FME
1999), volume 1708 ofLecture Notes in Computer Science, pages 776–793. Springer, 1999.

45. H. Mantel. On the composition of secure systems. InProc. 23rd IEEE Symposium on
Security & Privacy, pages 88–101, 2002.

46. D. McCullough. Specifications for multi-level securityand a hook-up property. InProc. 8th
IEEE Symposium on Security & Privacy, pages 161–166, 1987.

47. D. McCullough. A hookup theorem for multilevel security. IEEE Transactions on Software
Engineering, 16(6):563–568, 1990.

48. J. McLean. A general theory of composition for trace setsclosed under selective interleaving
functions. InProc. 15th IEEE Symposium on Security & Privacy, pages 79–93, 1994.

49. J. McLean. A general theory of composition for a class of ”possibilistic” security properties.
IEEE Transactions on Software Engineering, 22(1):53–67, 1996.

50. S. Micali and P. Rogaway. Secure computation. InAdvances in Cryptology: CRYPTO ’91,
volume 576 ofLecture Notes in Computer Science, pages 392–404. Springer, 1991.

51. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. InProc. 1st Theory of Cryptography Conference (TCC), volume 2951 ofLecture
Notes in Computer Science, pages 133–151. Springer, 2004.

52. B. Pfitzmann. Sorting out signature schemes. InProc. 1st ACM Conference on Computer
and Communications Security, pages 74–85, 1993.

53. B. Pfitzmann.Digital Signature Schemes – General Framework and Fail-Stop Signatures,
volume 1100 ofLecture Notes in Computer Science. Springer, 1996.

54. B. Pfitzmann and M. Waidner. A general framework for formal notions of “secure” systems.
Research Report 11/94, University of Hildesheim, Apr. 1994. http://www.semper.
org/sirene/lit/abstr94.html#PfWa_94.

55. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reac-
tive systems. InProc. 7th ACM Conference on Computer and Communications Secu-
rity, pages 245–254, 2000. Extended version (with Matthias Schunter) IBM Research
Report RZ 3206, May 2000,http://www.semper.org/sirene/publ/PfSW1_
00ReactSimulIBM.ps.gz.

23

56. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its applica-
tion to secure message transmission. InProc. 22nd IEEE Symposium on Security & Privacy,
pages 184–200, 2001. Extended version of the model (with Michael Backes) IACR Cryptol-
ogy ePrint Archive 2004/082,http://eprint.iacr.org/.

57. J. Rompel. One-way functions are necessary and sufficient for secure signatures. InProc.
22nd Annual ACM Symposium on Theory of Computing (STOC), pages 387–394, 1990.

58. P. Syverson and C. Meadows. A logical language for specifying cryptographic protocol
requirements. InProc. 14th IEEE Symposium on Security & Privacy, pages 165–177, 2003.

59. A. C. Yao. Protocols for secure computations. InProc. 23rd IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 160–164, 1982.

60. A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium
on Foundations of Computer Science (FOCS), pages 80–91, 1982.

24

