-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Acronym

Cryptographically Sound Analysis of
Security Protocols

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultét |
der Universitat des Saarlandes

Eingereicht von Michael Backes

Gutachter:
Prof. Dr. Birgit Pfitzmann
Prof. Dr. Harald Ganzinger

Dekan:
Prof. Dr. Philipp Slusallek

Kolloquium:

Saarbriicken, April 2002

https://core.ac.uk/display/196651236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this thesis, we show how formal methods can be used for the cryptographically
sound verification of concrete implementations of security protocols in order to obtain
trustworthy and meaningful proofs, and to eliminate human inaccuracies.

First, we show how to derive secure concrete implementations of a given abstract
specification. The security proofs are essentially based on the well-established ap-
proach of bisimulation which can be formally verified yielding rigorous proofs. As an
example, we present both a specification and a secure implementation of secure mes-
sage transmission with ordered channels. Moreover, the example comprises a general
methodology how secure implementation of arbitrary specifications can be obtained.

Thereafter, we concentrate on the actual goals the protocol should fulfill. Thus, we
define integrity properties in our underlying model and we show that logic derivations
among them carry over from the specification to the concrete implementation, which
makes them accessible for tool-assisted verification. As an example, we formally verify
one concrete protocol using the theorem prover PVS vyielding the first machine-aided
and sound proof of a cryptographic protocol.

As additional properties of security protocols, we consider liveness and non-
interference. The standard definition of these properties is not suited to cope with pro-
tocols involving real cryptographic primitives, so we introduce new definitions which
are restricted to polynomial runs and include error probabilities. We show that both
properties carry over from the specification to the concrete implementation, and we
present two examples, one for each property, which we prove to fulfill our definitions.

Kurzzusammenfassung

Diese Arbeit behandelt formale Verifikation von Sicherheitsprotokollen mit dem Ziel,
maschinell verifizierte Beweise zu erm’oglichen, die die kryptographische Semantik
respektieren, d.h., deren Aussagen bzgl. der zugrundeliegenden Kryptographie und den
kryptographischen Sicherheitsdefinitionen g ultig sind (engl. cryptographically sound
proofs).

Als erstes zeigen wir, wie formale Methoden benutzt werden k’dnnen, um sichere
konkrete Implementationen anhand einer gegebenen abstrakten Spezifikation herzulei-
ten. Wir geben daftr eine allgemeing Gltige Methologie an, die auf formal verifizierten
Bisimulationen basiert, was uns rigorose und glaubhafte Sicherheitsbeweise liefert. Als
Beispiel geben wir eine Spezifikation und eine konkrete Implementation fur sichere
geordnete Nachrichten ubertragung an. Die im Sicherheitsbeispiel der Implementation
auftretende Bisimulation verifizieren wir mit Hilfe des Theorembeweisers PVS.

Als zweites konzentrieren wir uns auf die Ziele, die ein Sicherheitsprotokoll
erfllen soll. Wir definieren Integritatseigenschaften in unserem zugrundeliegenden
Modell, und wir beweisen, dass sich logische Schlussfolgerungen bzgl. dieser Eigen-
schaften von der Spezifikation auf die Implementation “Ubertragen, was eine essentielle
Voraussetzung f'ar maschinelle Verifikation darstellt. Als Beispiel verifizieren wir ein
konkretes Protokoll mit Hilfe des Theorembeweisers PVS, was uns den ersten Be-
weis eines Sicherheitsprotokolls liefert, der sowohl maschinell verifiziert ist als auch
der kryptographischen Semantik “treu” bleibt, d.h., der wirklich ein Beweis gegen die
kryptographischen Primitive und deren kryptographische Sicherheitsdefinitionen ist.

Als zus-atzliche Eigenschaften von Sicherheitsprotokollen betrachten wir Leben-
digkeit (engl. liveness) und Unbeeinflussbarkeit (engl. non-interference). Da sich die
Standarddefinition dieser wichtigen Eigenschaften als ungeeignet f'tr echte Kryptogra-
phie herausstellt, f'Ghren wir allgemeinere Definitionen ein, die auf polynomielle L "ange
beschr-ankt sind und Fehlerwahrscheinlichkeiten ber ucksichtigen. Wir zeigen, dass sich
diese Eigenschaften von der Spezifikation auf die Implementation “Ubertragen, was wie-
derum den Bezug zu formalen Methoden herstellt. Wir pr-asentieren zwei Beispiele, je
eines f0r jede Eigenschaft, von denen wir beweisen, dass sie die entsprechende Defini-
tion erf'ullen.

Zusammenfassung

Kryptographische Protokolle besitzen in unserer heutigen Zeit einen zunehmend gr'6i3e-
ren Stellenwert. Viele von ihnen werden bereits t"aglich von Millionen von Menschen
anhand des Internets benutzt, wie z.B. Online-Banking oder Protokolle zum sicheren
Austausch von Geld und Ware. Offensichtlich ist die Sicherheit solcher Protokolle eine
zentrale Anforderung, um von den Menschen akzeptiert und benutzt zu werden. Leider
beruht die Sicherheit vieler Protokolle lediglich auf der Tatsache, das bis jetzt kein An-
griff darauf gefunden wurde, bzw. alle bis jetzt gefundenen Sicherheitsl ucken wurden
ausgemerzt. Die stetig steigenden Verluste von Banken durch Hackerangriffe zeigen
deutlich, dass ein solcher Ansatz keinerlei wirkliche Sicherheit bietet. Protokolle brau-
chen einen Beweis ihrer Sicherheit, um akzeptiert werden zu k’6nnen. Desweiteren soll-
te ein solcher Beweis maschinell verifiziert sein, um menschliche Fehler weitestgehend
auszuschlief3en.

Obwohl das Problem der formalen Verifikation von Protokollen bereits seit 1"ange-
rem von vielen Wissenschaftlern behandelt wird, konnten bis jetzt nur stark idealisierte
Protokolle bewiesen werden, die keinerlei Entsprechung mehr in der realen Welt be-
salRen. Demzufolge sind die bewiesenen Sicherheitsaussagen zumindest von zweifel-
hafter Bedeutung f'Ur die reale Welt. In solchen stark idealisierten Protokollen wird so-
genannte ’perfekte Kryptographie’ angenommen—gem al dem Ansatz von Dolev und
Yao [17]—was den Bezug zur realen Welt zerst'ort. Perfekte Kryptographie heift im
allgemeinen, dass kryptographische Operationen als Term-Algebra aufgefasst werden
in der lediglich vordefinierte Gleichungen und Krzungsregeln gelten. Im Falle von
z.B. asymmetrischer Verschl usselung betrachtet man zwei Operatoren Ex und Dy,
die ein Schl usselpaar fur einen Teilnehmer X reprasentieren sollen. Die Gleichung
Dx(Ex(t)) = t gilt per Definition f'ur alle Terme ¢. Will man nun beweisen, dass
ein betrachtetes Ereignis (z.B. “die Nachricht ¢ geht irgendwann im Klartext “Uber das
Netz”) nicht gelten kann, so berechnet man den Abschluss der Term-Algebra und zeigt,
dass das Ereignis in diesem Abschluss nicht enthalten ist. Offensichtlich ist eine Art
\ollst andigkeitsaussage n"6tig, um sinnvolle Ergebnisse zu erhalten, d.h., man will eine
Aussage der Form, dass eine Gleichung nur gelten kann, wenn sie syntaktisch anhand
der gegebenen Gleichungen hergeleitet werden kann.

Betrachtet man nun allerdings echte kryptographische Primitive und ihre Sicher-
heitsdefinitionen, so sieht man im Gegensatz zu obiger Aussage, dass kryptographische
Sicherheitsdefinitionen keinerlei Aussagen “Uber alle Gleichungen treffen. Die Defini-
tion der Sicherheit von asymmetrischer Verschl usselung bei aktiven Angriffen besagt
beispielsweise nur, dass der Angreifer durch seine Angriffe keinerlei partielle Infor-
mationen “uber den Klartext herausbekommen kann. Allerdings ist es nicht verboten,
dass er z.B. Beziehungen zwischen Schl usseltexten findet. Man kann Beispiele kon-
struieren, in denen Beweise die mit perfekter Kryptographie arbeiten, schiefgehen, ob-
wohl die verwendeten kryptographischen Primitive sicher sind im kryptographischen
Sinn [47].

Leider ist ein gewisses Mal% an Abstraktion unvermeidbar, da der in der Kryptogra-
phie auftretende Probabilismus fur formale Methoden (bis jetzt) nicht zug anglich ist.
Allerdings werden wir in dieser Arbeit zeigen, dass man anstelle der perfekten Kryp-
tographie sogenannte ’treue’ Abstraktionen betrachten kann, die den Bezug zur Kryp-
tographie nicht zerst’oren und trotzdem maschinelle Verifikation erm’églichen. Alles in
allem stellen wir in dieser Arbeit eine allgemeine Methologie vor, wie maschinell veri-
fizierte Beweise f'ur konkrete Protokolle der realen Welt durchgef thrt werden kénnen,
so dass die Semantik der Kryptographie erhalten bleibt, d.h. der Beweis ist g ultig bzgl.

der zugrundeliegenden kryptographischen Primitive und deren kryptographischen Si-
cherheitsdefinitionen.

Uberblick und Ergebnisse

Bevor wir uns in dieser Arbeit der eigentlichen Verifikation zuwenden, f'Ghren wir unser
formales Modell f'ur asynchrone reaktive Systeme ein. Das Modell selbst wurde von
Pfitzmann und Waidner entwickelt und in [49] erstmalig publiziert, und ist demzufolge
kein Verdienst dieser Arbeit.

Im Anschluss daran betrachten wir einige Modellvarianten, die wir als "aquivalent
zum Standardmodell beweisen, was den Aufwand k- Unftiger Beweise erheblich redu-
ziert, da wir immer die Variante annehmen k’dnnen, die f'ir das betrachtete Problem
am geeignetsten ist. Danach befassen wir uns kurz mit dem synchronen Modell von
Pfitzmann, Schunter und Waidner [47], das als Vorganger des hier betrachteten asyn-
chronen Modells angesehen werden kann. Da viele Protokolle in der Praxis synchron,
d.h. in Runden ablaufen, ist dieses Modell immer noch essentiell f'ur viele praxisrele-
vante Protokolle. Demzufolge wollen wir zweigleisig fahren, aber ohne jedes Theorem
und jedes Lemma f'Ur beide Modelle zu beweisen. Dieses Problem k’dnnte umgangen
werden, indem man zeigt, dass es sich bei dem synchronen Modell lediglich um einen
Spezialfall des asynchronen handelt, der nicht gesondert betrachtet werden muss. Diese
Arbeit vollzieht den ersten, essentiellen Schritt dieses Ansatzes: Wir zeigen dass sich
die Menge der synchronen System in die Menge der asynchrone Systeme einbetten las-
sen, so dass die Beziehung zwischen Spezifikation und Implementation erhalten bleibt,
d.h. dass sich Sicherheitseigenschaften der asynchronen Einbettung auf das synchrone
Modell “ubertragen.

Nach diesen modellspezifischen Beweisen wendet wir uns der eigentlichen maschi-
nellen Verifikation von Sicherheitsprotokollen zu. Wir werden maschinelle Verifikation
zu zwei unterschiedlichen Zielen verwenden:

Als erstes zeigen wir, wie formale Methoden benutzt werden k'6nnen, um zu ei-
ner gegebenen abstrakten Spezifikation eine sichere Implementierung herzuleiten. Der
Beweis der Sicherheit der Implementierung umfasst eine allgemeine Methologie wie
Protokollverifikation in Zukunft aussehen k“énnte (und unserer Meinung nach auch soll-
te). Die Methologie basiert auf formal verifizierten Bisimulationen, was uns rigorose
und glaubhafte Beweise liefert. Exemplarisch stellen wir eine abstrakte Spezifikati-
on und eine konkrete Implementation von geordneter sicherer Nachrichtentbertragung
vor. Den dabei auftretenden Bisimulationsbeweis haben wir formal mit Hilfe des Theo-
rembeweisers PVS [44] verifiziert.

Als zweites betrachten wir die Ziele, die ein Protokoll erf ullen soll. Wir zeigen wie
sich Integrit'atseigenschaften in unserem zugrundeliegenden Modell ausdr icken las-
sen, und wir zeigen, dass sich Integrit atseigenschaften von abstrakten Spezifikationen
auf die konkreten Implementationen “Ubertragen. Desweiteren zeigen wir, dass logische
Schlussfolgerungen bzgl. Integrit atseigenschaften f'ur die konkrete Implementierung
g’ultig sind im kryptographischen Sinn. Diese beiden Punkte ermdglichen es uns, die
abstrakte Spezifikation anstelle der konkreten Implemantation maschinell zu verifizie-
ren. Der Vorteil ist, dass Spezifikationen im allgemeinen deterministisch und somit
zug-anglich f'ur formale Beweissysteme sind, w"ahrend der Probabilismus der konkre-
ten Implementationen fGr formale Beweissysteme (bis jetzt) noch nicht zug anglich ist.
Der Beweis der Spezifikation “Ubertr'agt sich dann automatisch auf die konkrete Imple-
mentierung. Exemplarisch verifizieren wir unsere abstrakte Spezifikation f'ur geordnete
sichere NachrichtenUbertragung mit Hilfe des Theorembeweiser PVS, d.h. wir bewei-

sen, dass eine Umordnung der Nachrichten oder ein Replayangriff von unserem System
verhindert wird.

Als weitere Ziele betrachten wir Fairness, Liveness und Non-Interference (Un-
beeinflussbarkeit). Wir werden sehen, dass die Standarddefinitionen dieser wichtigen
Eigenschaften ungeeignet f'Ur echte Kryptographie sind, da sie auf unendlichen Pro-
grammabl-aufen beruhen, wahrend kryptographische Protokolle nach polynomiell, al-
so endlich, vielen Schritten abbrechen. Desweiteren bertcksichtigen unsere Definitio-
nen Fehlerwahrscheinlichkeiten, was einen wichtigen Bezug zur Kryptographie her-
stellt. Analog zu Integrit atseigenschaften zeigen wir, dass sich diese Eigenschaften von
der abstrakten Spezifikation auf die konkrete Implementation “Ubertragen. Um unsere
Liveness-Definition anhand eines realen Systems zu illustrieren, geben wir eine Spezi-
fikation und eine Implementation fGr Nachrichten ‘ubertragung mit verf-ugbaren Kan“alen
an, und wir zeigen, dass beide unsere Definition erftllen. Um unsere Non-Interference-
Definition zu veranschaulichen, geben wir eine kryptographische Firewall an, die zwei
ehrliche Benutzer sicher miteinander kommunizieren 1asst und sie vom Rest der Welt
abschirmt, d.h. sie k’6nnen nicht von anderen Benutzeren oder vom Angreifer beein-
flusst werden. Die Firewall 1"asst sich problemlos auf mehrere, disjunkte Parteien er-
weitern, was dem typischen Konzept mehrerer Firewalls im Internet entspricht.

Vi

Acknowlegdements

First of all, I am profoundly grateful to my main adviser Birgit Pfitzmann, who gave
me the opportunity to work in security and cryptography, and proposed the topic of this
work. Whenever | encountered a problem which | had problems to solve on my own,
she took the time to sit together until we finally found a solution. Without her ongoing
support this work would have undoubtedly impossible.

I thank my co-adviser Harald Ganzinger for his interest in my work and for several
valuable comments which helped to increase the quality of the thesis.

| thank J'org Siekmann for general advice in several non-technical questions which
arose during the last year.

I’m indebted to Christian Jacobi for being a qualified co-author of the papers which
form the tool-assisted basis of this thesis. Moreover, he suffered for me and proof-
read several parts of this work. Thanks a lot! | would like to thank Michael Steiner
and Michael Waidner for producing new ideas and useful comments about polynomial
fairness and liveness; furthermore, | thank Heiko Mantel for many valuable comments
about non-interference.

| thank the former and current members of our group at Saarland University: Ammar
Alkassar, Alexander Geraldy, André Adelsbach, Ahmad-Reza Sadeghi, Chris St'uble,
Matthias Schunter, Michael Steiner, Petra Maschke, and Sandra Steinbrecher for pro-
viding an inspiring environment which helped me a lot finishing this work. In particu-
lar, | thank Sandra Steinbrecher for being a congenial room mate who had to bear with
me during the last year.

This work was supported by the Graduate Studies Program “Quality Guarantees for
Computer Systems” founded by the DFG. Thanks a lot, mainly for the financial sup-
port :-)

Last, but certainly not least, | am grateful to my parents who always supported me. | am
grateful to my girlfriend Isabell Schu for a wonderful last year, and to all my friends,
especially Swen Jacobs, Sabine Schwierczek, David Mendzigall, Christian Marbert,
and Dirk Leinenbach who always had to be appreciative of my overdrawn eagerness to
finish this work, and who reminded me that there are much more important things than
university.

Contents

Zusammenfassung
1 Introduction and Overview

2 Asynchronous Reactive Systems
2.1 General SystemModel
2.1.1 Security-specific System Model
2.1.2 Simulatability oo
2.1.3 SomeUsefulLemmas
2.2 Special Casesand Composition.
2.2.1 Standard Cryptographic Systems with Static Adversaries . . .
2.2.2 Composition
2.3 The System for Secure Message Transmission
23.1 Theldeal System
232 TheReal System

3 Some Variants of the Model
3.1 OneA-HConnection
3.1.1 Definitions
3.1.2 Proofof Equivalence
3.2 S-Simulatability
3.2.1 Definitions
3.2.2 Proofof Equivalence
3.2.3 Combining both Variants of Simulatability
3.3 Guessing Outputs of the Adversary
3.3.1 Definitions
3.3.2 Proofof Equivalence L.
3.4 Relation to Synchronous Systems
3.4.1 A Brief Review of the Synchronous Model
3.4.2 Definitiononthe Embedding
3.4.3 Preliminary Work for the Embedding Theorems
3.4.4 The Embedding Theorems
3.45 Anapplication o

4 Deriving Secure Implementations
4.1 Secure Message Transmission in Correct Order
4.1.1 The Abstract Specification
412 TheSplitldeal System

vii

CONTENTS

413 TheRealSystem
4.2 Proving Security of the Real Ordered System
4.3 Formal Verification of the Bisimulation
4.3.1 Defining the MachinesinPVS
4.3.2 Provingthe Bisimulation
4.3.3 \VerificationEffort
44 SUMMANY . . . o

5 Sound Verification of Integrity Properties
5.1 Integrity Requirements
5.2 ThePreservation Theorem
5.3 \Validation of the Ordered Channel Specification
53.1 TheIntegrity Property
5.3.2 \erificationEffort
54 Conclusion

6 Polynomial Fairness and Liveness
6.1 Introduction and Related Literature
6.2 Expressing Polynomial Fairness and Liveness
6.2.1 Polynomial Fairness
6.2.2 Polynomial Liveness
6.3 Preservation of Polynomial Liveness under Simulatability
6.4 An Example: Secure Message Transmission with Reliable Channels .
6.4.1 Theldeal System
6.4.2 TheReal System
6.4.3 ProofoflLiveness
6.5 Conclusion

7 Computational Probabilistic Non-Interference
7.1 Introduction and Related Literature
7.2 Expressing Non-Interference
7.2.1 FlowPolicies
7.2.2 Definition of Non-Interference
7.3 Preservation of Non-Interference Requirements under Simulatability .
7.4 ACryptographicFirewall
741 Theldeal System
742 TheReal System,
7.4.3 Non-InterferenceProof
7.5 Conclusion

8 Conclusion and Outlook

A Postponed Proofs
Al FromSection3.1
A.2 FromSection3.2
A3 FromSection3.4
A4 FromSection53 e

Bibliography

Index

viii

65
65
69
69
72
74
74

75
75
76
78
78
82
83

84
84
86
86
87
90
93
93
96
98
101

102
102
104
104
105
110
111
112
117
118
122

123

126
126
129
133
137

147

151

Chapter 1

| ntroduction and Overview

Nowadays, cryptographic protocols are getting more and more attention in both theory
and practice. As common examples, we may think of online banking, fair exchange
over the internet, or the even more sensitive topic of electronic elections. In the early
days of security research, these protocols were designed using a simple iterative pro-
cess: someone proposed a protocol, someone else found an attack, the bug was fixed,
and so on, until no further attacks were found. Today, it is commonly accepted that this
approach does not give any security guarantee at all, since many simple and apparently
secure protocols have been found incorrect over the years. Moreover, important proto-
cols like fair contract signing, electronic auctions or payments are just too complex for
this approach. Secure protocols—or more generally, secure reactive systems—need a
proof of security before being acceptable.

Some years ago, this field of research only focused on certain cryptographic prim-
itives such as encryption and digital signature schemes. In current research, larger
systems like secure channels or fair exchange protocols are to be verified. The main
goal researchers are ultimately aiming at is to verify really large systems like whole
e-commerce architectures.

If we turn our attention to what has already been done, we can distinguish be-
tween two main approaches that unfortunately seem to be rather disjoint. One approach
mainly considers the cryptographic aspects of protocols aiming at complete and math-
ematically rigorous proofs with respect to cryptographic definitions. The other one
involves formal methods, so protocols should be verified using formal proof systems,
or these proofs should even be generated automatically by theorem provers. Usually,
these proofs are much trustworthier than hand-made proofs, especially if we consider
large protocols using many single steps. The main problem of this approach lies in the
necessary abstraction of cryptographic details. This abstraction cannot be completely
avoided, since formal methods cannot handle probabilistic behaviours by now, so usu-
ally perfect cryptography is assumed—following the approach of Dolev and Yao [17]—
in order to make machine-aided verification possible.! As we will see, these abstrac-
tions are unfaithful in the sense that they cannot be securely implemented, i.e., there is
no guarantee that a formally proven protocol is actually secure if implemented with a
cryptographically secure primitive [47, 4].

Comparing both approaches, we can see that cryptographic proofs are more mean-

1At the moment, we are working on a probabilistic calculus which should be able to automatically deduct
whether two given probabilistic machines are computationally bisimilar, i.e., whether they are bisimilar up
to avery small error probability [6]. This may help to avoid some of those abstractions.

CHAPTER 1. INTRODUCTION AND OVERVIEW 2

ingful in the sense of security but they also have one main disadvantage: cryptographic
proofs are usually very long, sketchy, and error-prone even for very small examples
like encryption schemes, and moreover have to be done by hand so far. Hence, it seems
rather impossible to verify whole e-commerce architectures by now.

Our goal is to link both approaches to get the best overall result: proofs that allow
abstraction and the use of formal methods, but retain a sound cryptographic semantics.
Being more precise, we want to formally verify abstract goals of abstract protocols us-
ing formal proof tools, and we want these proofs to carry over to the concrete goals of
the concrete protocols, enabling both trustworthy and cryptographically sound proofs
of arbitrary protocols. We will now describe our approach in more detail while ad-
dressing the problems of common verification techniques.

Abstract Models

In the formal-methods community, one tries to use established specification techniques
to specify requirements and actual protocols unambiguously and with a clear seman-
tics. In order to make this possible, abstractions must get rid of probabilism yielding
the already mentioned notion of perfect cryptography. In order to achieve this, crypto-
graphic operations are treated as an infinite term algebra where only predefined equa-
tions hold (in other terminology, the initial model of an abstract data type) as introduced
in [17]. For instance, there are a two operators Ex and Dx for asymmetric en- and
decryption representing a key pair of a participant X. Twofold encryption of a message
m from a basic message space M does not yield another message from A, but the term
Ex(Ex(m)). The equation Dx (Ex (t)) = ¢ for all terms ¢ is defined to hold, and the
proofs rely on the abstraction that no equations hold unless they can be derived syntac-
tically from the given ones. Early work using this approach for tool-supported proofs
was rather specific with respect to the considered issue and formalism, e.g., [41, 39];
nowadays most work is based on standard languages and general-purpose verification
tools, as initiated, e.g., in [52, 31, 2].

Unfortunately, these models lack a link between the chosen abstractions and the
real cryptographic primitives as defined and proven in cryptography. The main prob-
lem of these models is not even that one somehow has to weaken the statements to
polynomial-time adversaries and allow error probabilities; the problem is that proofs
based on formal methods prove a property to hold by showing that the negation of the
property is not contained in the closure of the term algebra. Obviously, there has to be
some kind of completeness in order to obtain meaningful results. In contrast to that,
the definitions in cryptography say nothing about all equations. For instance, the ac-
cepted cryptographic definition of secure asymmetric encryption only requires that an
adversary in a strong type of attack cannot find out anything about the message (see
[9, 14]), but nothing is asserted about possible relations on the ciphertexts. One can
construct examples, at least artificial ones, where proofs made with these abstractions
go wrong with encryption schemes provably secure in the cryptographic sense [47].

Faithful Abstractions

The problem can be approached from both sides: cryptography can try to offer stronger
primitives closer to the typical abstractions, or formal methods can be applied based on
weaker abstractions which are easier to fulfill by actual cryptography. Our approach
belongs to the second way. Both approaches presuppose that one defines what it means
that some abstraction is implemented in a cryptographic sense. Both also need proofs

CHAPTER 1. INTRODUCTION AND OVERVIEW 3

Abstract | _uses | Abstract | fulfilsy | Abstract
primitives [~ protocol Z| goals

. replace X) cryptographic
abstraction primitives | abstraction semantics
1
uses_| Concrete _fl_.llf_i|3_> Concrete
protocol goals

Concrete
primitives

<

Figure 1.1: Goals of faithful abstraction. Bold arrows should be defined once and for
all, normal arrows once per protocol. It should be proven that dashed arrows follow
automatically.

that working with the abstractions leads to meaningful results in the real cryptographic
sense, i.e., the abstractions should be faithful. This is illustrated in Figure 1.1.

The lower layer of the figure represents the real world, involving concrete sys-
tems using concrete cryptographic primitives. The task is to show that they fulfill
certain concrete goals. Our approach now starts by defining what faithful abstractions
of concrete primitives in fact are. This corresponds to the left part of the figure, and
has already been defined in [49] using the concept of simulatability modern cryptog-
raphy often uses. These abstractions should provide non-probabilistic, deterministic
interfaces hiding all cryptographic details, hence they can be formally validated using
existing formal methods. Now, we would like to obtain an abstraction of the overall
protocol by suitably combining the abstract primitives. In [49], it has already been
shown that this abstraction in fact retains the soundness of the system. Moreover, it
introduces composition of systems and it contains a composition theorem which states
that a protocol can be refined step-wise by replacing the abstract primitives yielding a
concrete protocol again which uses concrete primitives. This corresponds to the mid-
dle part of Figure 1.1. The final task of the approach is to relate abstract and concrete
goals of the overall protocol, and to show that fulfillment in the abstract system implies
fulfillment in the concrete system with respect to the cryptographic semantics, which
is shown in this thesis. This corresponds to the right side of Figure 1.1.

Thus, all bold arrows in Figure 1.1 have been defined and all dashed arrows have been
proven. Now, abstract goals of abstract protocols can be formally verified by formal
proof systems and the proofs automatically carry over to the concrete goals of the
concrete system, enabling both trustworthy and cryptographically sound proofs of ar-
bitrary protocols.

Although the task of finding these abstract primitives and proving them to be faithful
turns out to be labour-intensive, it has to be done only once for every considered prim-
itive. Since common protocols are usually based on only very few, basic primitives
like secure channels and commitments, the work is well spent. By now, only faithful
abstractions of secure message transmission [49], fair exchange protocols [56], and se-
cure group key exchange [59] have been shown. We will review the scheme for secure
message transmission in Section 2.3, since it serves as the foundation for many exam-
ples in this work. We only briefly state here that there is current work at our group
at Saarland University and IBM Zurich on designing a cryptographic library involving
additional primitives, nonces, timestamps and so on.

Moreover, we will see that abstract specifications usually are monolithic, i.e., they
consist of only one machine, so they have to be split in proper parts before they can

CHAPTER 1. INTRODUCTION AND OVERVIEW 4

eventually be refined. This corresponds to the upper-left arrow of Figure 1.1, i.e., we
have to show which abstract primitives are used by the abstract protocol. We will
show in this work that formal methods are well-suited for formally proving that the
split system has the same functional behaviour as the original, monolithic system using
the well-established approach of bisimulation. In combination with the composition
theorem, these formally verified bisimulations are a powerful linkage between concrete
systems and their abstract counterparts.

The Actual Goals

As actual goals of a cryptographic protocol, we consider integrity properties, fairness
and liveness, and absence of information flow in this work. At first, we concentrate
on integrity properties, and we prove that they in fact carry over to the concrete im-
plementation. Moreover, we show that logic derivations among them are valid for
the implementation in the cryptographic sense, which makes them accessible for the-
orem provers. After that, we focus on the common concept of fairness and liveness.
Unfortunately, the standard definition of fairness and liveness is not suited for most
cryptographic protocols since it is based on infinite runs whereas the runs of such pro-
tocols are restricted to polynomial length, i.e., they are finite. In order to circumvent
this problem and to cope with real cryptography, we introduce the notion of polynomial
fairness and polynomial liveness which handles the restriction of the runs to polyno-
mial length and moreover allows error probabilities. Similar to integrity properties, we
show that liveness properties carry over to the concrete implementation under some
reasonable assumptions (we do not have to show this for fairness, since fairness is a
property of a scheduler, not of a system). Finally, we show how to express the very
complex approach of information flow using the well-established concept of proba-
bilistic non-interference. The common definitions of probabilistic non-interference do
not include computational details like error probabilities which would be essential to
cope with systems involving real cryptography, so we introduce the notion of compu-
tational probabilistic non-interference. Just as we did with the preceeding properties,
we show that non-interference properties carry over to the concrete implementation.

Related Literature

Verification of cryptographic protocols is a large field of research, and lots of things still
have to be done. As already stated above, one main goal is to retain a sound crypto-
graphic semantics and nevertheless apply machine-aided verification in order to obtain
formally verified proofs. This goal is pursued by several researchers: our approach is
based on the model of Pfitzmann and Waidner recently introduced in [49], which we
believe to be really close to this goal. Other possible ways to achieve this goal have
been presented in [29, 30]: actual cryptography and security is directly expressed and
verified using a formal language (7-calculus), but their approach does neither offer any
abstractions nor abstract interfaces that enable tool support. [33] has quite a similar
motivation to our underlying model, but it is restricted to the usual equational speci-
fications (following the approach of [17], the so-called “Dolev-Yao model”), and the
semantics is not probabilistic. Moreover, [33] only considers passive adversaries and
only one class of users exists, which is referred to as “environment”. So the abstraction
from cryptography is no more faithful than abstraction in other formal methods papers
about security, e.g., [31, 55, 3, 45, 18]. They are all based on intuitive, but unfaithful

CHAPTER 1. INTRODUCTION AND OVERVIEW 5

abstractions, i.e., they cannot be securely implemented, since no cryptographic scheme
fulfills their requirements.

Thus, there has not been any proof of correctness of a cryptographic protocol so
far which both includes formal proof systems and retains the soundness of cryptogra-
phy. This thesis bridges this gap by giving the first example of a machine-aided but
nevertheless sound proof of an integrity property of a concrete cryptographic protocol.
Moreover, the example comprises a general methodology how protocol verification
might be performed in the future.

For the sake of readability we postpone the related literature of fairness, liveness,
and non-interference to their corresponding chapters.

Organization of the Thesis

Chapter 2 contains a detailed review of the reactive model of Pfitzmann and Waidner
for asynchronous systems, originally presented in [49], which we will use throughout
the thesis. We believe their model to be well-suited for analyzing cryptographic proto-
cols; moreover, we participated in the further development of the model during the last
year, so we presume to use the term “our model” in this work. The chapter concludes
with a review of the abstract and concrete system of secure message transmission [49]
which serves as a building block for designing larger examples in this work.

Starting with Chapter 3, we present original work.

Chapter 3 discusses several model variants, especially focusing on the relations be-
tween four different kinds of simulatability. We show that all four definitions are
equivalent. This significantly reduces our effort in further proofs since we can always
use the definition which is suited best for the considered problem. The second part of
the chapter is dedicated to the relationship of our underlying asynchronous model and
its synchronous predecessor [47]. In practice, lots of protocols are synchronous, i.e.,
they proceed in rounds. As commonly known examples, the reader may think of smart
cards, fair exchange protocols over the internet, etc. Thus, the synchronous model
is still essential to cope with protocols currently used in practice; hence, we want to
drive double tracked, but without proving each and every theorem for both models. A
possibility to circumvent this problem is to show that the synchronous model can be
regarded as a special case of the asynchronous model, which we do not have to con-
sider separately. This work contains the first, essential step of this task: we show that
synchronous systems can be embedded into asynchronous ones such that simulatability
is preserved by this embedding. This result serves as the foundation for carrying over
lemmas and theorems from the asynchronous case to the synchronous case.

Chapter 4 deals with the actual verification of cryptographic protocols. We present
a monolithic specification of secure message transmission with ordered channels and
a concrete, secure implementation. The way of actually deriving the implementation
comprises a general methodology how concrete implementations of abstract specifica-
tions can be found. Moreover, the methodology contains formally verified bisimula-
tions, which yields trustworthy proofs. The bisimulation that occurred in the security
proof of our example is formally verified using the theorem prover PVS [44]. Prior
to this work, there has not been any success in using the advantage of formal verifica-
tion in order to derive cryptographically sound implementations, so our methodology
is new, and it serves as our first step of bridging the gap between the rigorous proofs of

CHAPTER 1. INTRODUCTION AND OVERVIEW 6

cryptography and verification using formal proof systems.

Chapter 5 finishes building this bridge. We define what it means for a system to provide
integrity properties in a cryptographic sense. We then show that proofs of such proper-
ties made for the abstract specification also hold for the concrete implementation, and
that logic derivations among integrity properties are valid for the implementation in the
cryptographic sense, which makes them available for theorem provers. We conclude
with the formal verification of our specification of the previous section, i.e., we show
that message reordering is in fact prevented. We again use PVS to obtain a formally
verified proof. According to our results, the proof automatically carries over to the
concrete implementation which yields the first machine-aided, but nevertheless sound
proof of the concrete goals of a concrete system. Together with the result of the previ-
ous chapter, this completes the first tool-supported and cryptographically sound proof
of both the security of a concrete implementation and its actual goals.

The remaining chapters show that the important concepts of fairness, liveness, and even
the very complex notion of information flow are comprised in our model.

In Chapter 6 we show how fairness and liveness can be expressed in our model. We will
see that the standard definitions cannot be applied for most cryptographic protocols, so
we introduce the more general notion of polynomial fairness and polynomial liveness,
which makes both concepts accessible for arbitrary real cryptographic protocols for the
first time. As usual, we show that these properties carry over from the abstract system
to its concrete counterpart, and we present an example which is polynomially live with
respect to a desired property.

In Chapter 7 we show that information flow can be expressed in our model using the
well-established concept of probabilistic non-interference. We introduce the more gen-
eral notion of computational probabilistic non-interference which is essential to cope
with real cryptography. Similar to the previous chapter, we show that non-interference
properties of the abstract specification carry over to the concrete implementation. As
a practical example, we present a specification and a secure implementation of a cryp-
tographic firewall guarding two honest users from their environment. Moreover, the
specification can easily be generalized to multiple disjoint parties which comprise ar-
bitrary numbers of users.

Chapter 8 summarizes and gives an outlook to future research.

Chapter 2

Asynchronous Reactive Systems

In this chapter, we introduce our formal model of reactive systems in asynchronous
networks that we will use throughout the thesis. It should be noted once more that
this is not original work, but only a review of the model recently introduced by Pfitz-
mann and Waidner [49]. However, we have made some minor, but far-reaching changes
since then. For example, explicit master schedulers are now considered which allow to
achieve well-known properties like liveness or non-interference. In the original model,
the adversary was always forced to be the master scheduler, corresponding to an in-
tuitive, but nevertheless restricting assumption. Moreover, we extended their channel
model to reliable, non-authenticated channels which turned out to be essential for prov-
ing typical examples of non-interference, e.g., a cryptographic firewall guarding several
honest users from their environment. Finally, we helped to strengthen the model, i.e.,
to find and correct errors.

For the sake of completeness, we review the definitions in full detail. We addi-
tionally use informal descriptions of the definitions in order to illustrate how the actual
intuition of expressing a model for sound protocol verification has been put into for-
mulas step by step.

2.1 General System Model

In the following we consider a finite alphabet 3. The set of all strings over % will
be denoted by £*, e denotes the empty word and X+ := ¥* \ {e¢}. Moreover, we
consider some special symbols !, 7,7 < ¢ 3 that will be used to express different ports
of machines. For s € £* and | € Ny, we define s[; to be the {-bit prefix of s.

Our machine model is probabilistic state-transition machines, similar to probabilis-
tic 1/0 automata as sketched by Lynch [32]. Communication between different ma-
chines is done over ports which can be divided into input and output ports. Inspired
by the CSP-Notation [26] we write output and input ports as p! and p?, respectively.
Formally, ports are defined as follows.

Definition 2.1 (Ports)

a) Aportpisatriple (q,1,d) € 3t x {¢, ©, 9} x {!,7}. We call name(p) := q its
name, label(p) := [its label, and dir(p) := d its direction. In the following these
triples are simply written as concatenations, i.e., we write q<! instead of (q,9,!)
and so on.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 8

Scheduler for

q<!| buffer q
. q=?
Sendin q-2, \ 4 ~
machinge q! > [m]]:[m:m Bufferq
q-!l 1
-~ Receiving
>19? | machine

Figure 2.1: Ports and buffers.

b) We call a port (q,,d) an input port or output port iff d = ? or d = !, respectively.
We call it a simple port, buffer port or clock port iff I = ¢,%", or <, respectively.
For a set P of ports let out(P) := {p € P | dir(p) = !} and in(P) := {p €
P | dir(p) = 7}. We use the same notation for sequences of ports, retaining the
order.

c) By p°, the (low-level) complement of a port p, we denote the port with which it
connects according to Figure 2.1, i.e., q9!I° := q97, q!° := q©*?, q1° := q?,
and vice versa. Accordingly, we define the (low-level) complement of a set or
sequence of ports.

d) For a simple port p, we define its high-level complement p© as the port con-
nected to p without counting the buffer, i.e., q!¢ := q? and vice versa.

<

Ports will later be connected by naming convention, i.e., a port p! always sends mes-
sages to p?.

After introducing ports, we can now focus on machines. If a machine is switched,
it receives an input tuple at its input ports and performs its transition function yielding
a new state and an output tuple in the deterministic case, or a finite distribution over
the set of states and possible outputs in the probabilistic case. At each switching step
of one particular machine, at most one value can arrive at every input port and the
machine can at most produce one output per port. Furthermore, each machine has a
bound on the length of the considered inputs which allows time bounds independent of
the environment.

Definition 2.2 (Machines) A machine is a tuple
M = (namewm, Portswm, Statesm, om, Im, Inim, Finm)

of a name namey € X7, a finite sequence Portsy of pairwise distinct ports, a set
Statesy C X* of states, a probabilistic state-transition function éy, a length function
Im : Statesy — (N U {oo})“"(P"”sM”, and sets Iniy, Finy C Statesy of initial
and final states. Its input set is Zy := (X*)lin(Portsw)l; the -th element of an input
tuple denotes the input at the i-th input port. Its output set is Oy := (X*)/out(Portsm)],
The empty word, €, denotes no in- or output at a port. du maps each pair (s,I) €
Statesm x Iy to afinite distribution over Statesm xOwm. If s € Finyor I = (e, . .. ,€),
then dm (s, I) = (s, (¢, - - -, €)) deterministically. Inputs are ignored beyond the length
bounds, i.e., dm(s, I) = m(s, I[1,(s)) for all I € Zy, where (IT;,(s))i := i

Im(s)i
for all <. <&

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 9

In the text, we often write “M” also for namep.

Machines usually start with one initial input, i.e., the starting state is parameterized.
Complexity is measured in terms of the length of this initial input, often a security
parameter k given in unary representation; in particular, polynomial-time is meant in
this sense.

Note that the chosen representation makes v independent of the port names. This
will also hold for runs and views, cf. Definition 2.6 and 2.7. Hence, we can rename
ports in some proofs without changing the views. The requirement for e-inputs means
that it does not matter if we switch a machine without inputs or not; we will also omit
such steps from the runs. Inputs “masked” by a length bound O are treated in the same
way. We call a machine M a black-box submachine of a machine M’ if the machine
M’ has access to the state-transition function dy of M, i.e., it can execute dy for the
current state of the machine and arbitrary inputs.*

Remark 2.1. In order to cope with specific inputs and outputs of a machine M, we
introduce some additional notation which is not contained in the original model. Let
P be a subset of the input ports of M, i.e., P C in(Portsy), and (v;)icp € (Z1)F be
given. Then I®p7ep p7—=v,, denotes the input with p? = v, for all p? € P and p'? = €
for all p'? € in(Portsm) \ P. For the sake of readability, we do not explicitly define
the set P in the following, i.e., we simply write Z, 2—,, ... p,?=v, in slight abuse of
notation, instead of defining P := {p;? | ¢ € {1,...,n}}. Inthe special case p;? = ¢
for all p;? € in(Portsm), i.e., in case of an all-empty input, we write Z.. Outputs are
defined similarly.)

The proposed machines have a natural realization as probabilistic turing machines if
the state-transition function dy is computable, where each port is represented by one
tape. Two machines that have a connected low-level input and output port share one
tape for this channel which simply allows transmitting of arbitrary outputs.

Machines can be divided into three classes depending on the ports they use. The
first two classes consist of the “usual” machines, they are dealt with in the following
definition.

Definition 2.3 (Simple Machines and Master Schedulers) A machine M is simple if
it has only simple ports and clock out-ports. A machine M is a master scheduler if it
has only simple ports and clock out-ports and the special master-clock in-port clk?.
Without loss of generality, a master scheduler makes no outputs in a transition that
enters a final state. o

If we speak of machines in another context we usually consider simple machines. The
special master scheduler is scheduled whenever a machine does not make any non-
empty output at a clockout port or the scheduled buffer cannot deliver the requested
message. Usually, the adversary is regarded as the master scheduler, but it is sometimes
useful to define an explicit master scheduler to achieve certain goals like liveness and
privacy properties.?

The third class consists of the already mentioned buffers. They will be inserted
between every pair of high-level connected ports to ensure asynchronous behaviour.

1Sometimes, the machine M’ is also allowed to “reset” the machine M, i.e., to take it back to aprior state.
However, we omit it here since we do not need it in this work.

2The origina mode of [49] forces the adversary to be the master scheduler. Hence, the mentioned
properties cannot be achieved there.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 10

Roughly speaking, buffers store the messages in transit, i.e., they represent the net in
the real world. A machine M can schedule the i-th stored message of buffer p by
sending i at p9! (provided that p9! € Portsm holds). Formally, buffers are defined as
follows.

Definition 2.4 (Buffers) For each name q € X we define a specific machine g, called
a buffer: It has three ports, q97, g ?, q©! (clock, in, and out) (see Figure 2.1). Its
internal state is a queue over X1 with random access, initially empty. Its set of final
states is empty, and all its length bounds are infinite. For each state transition, if the
input z at q*7 is non-empty, then &5 appends « to the queue. A non-empty input at q9?
is interpreted as a number i € N and the i-th element is retrieved (where 1 indicates
the oldest one), removed from the queue, and output at q**!. (This might be the element
just appended.) If there are less than ¢ elements, the output is e. <

By now, we only focused on single machines. We now consider finite sets €' of ma-
chines with pairwise different machine names and disjoint sets of ports. We will call
such a set a collection. Moreover, we define the completion [C] of €' as the union of
all machines of € and the buffers needed for every output port.

Definition 2.5 (Collections)

a) For every machine M, let ports(M) denote the set of ports in Portsm, and for a
set M of machines, let ports(M) := Uwmexr Portsm.

b) A collection € is a finite set of machines with pairwise different machine names,
disjoint sets of ports, and where all machines are simple, master schedulers,
or buffers. It is called polynomial-time if all its non-buffer machines have a
polynomial-time implementation.

c) Each set of low-level complementary ports {p, p°} C ports(C) is called a low-
level connection, and the set of them the low-level connection graph gr(C) By
free(C') we denote the free ports in this graph, i.e., ports(C) \ ports((). A set
of high-level complementary simple ports {p, p®} C ports(C) is called a high-
level connection, and the set of them the high-level connection graph Gr(().

d) A collection is closed if free(C)) = {clk??}. (Hence, there is exactly one master
scheduler, identified by having the port clk??.)

e) The completion [C‘] of a collection ¢ is the union of ¢ and the corresponding
buffer for each simple or clock out-port ¢ € ports(C).

f) 1fq,M € C and q¥! € ports(M) then we call M the scheduler for buffer § (in
0).

<

We have defined collections of machines, but we did not describe yet how they may
interact, when they are scheduled and so on. Scheduling of machines is done sequen-
tially, so we have exactly one active machine M at any time. This machine is allowed
to schedule an arbitrary buffer p for which p9! € ports(M). If p is scheduled and it
also can deliver the specified message, it implicitly schedules the receiving machine
M’ i.e., the unique machine with p? € ports(M’). If M tries to schedule multiple
buffers at a time, only one is taken, and if no buffer is scheduled (or the scheduled

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 11

buffer cannot deliver the requested message) the master scheduler is scheduled. This
yields the notion of runs (sometimes called traces or executions) of the collections.
In order to ensure that runs are well-defined, we demand the collection to be closed,
i.e., it especially must not have any free input ports. Since the machines themselves
are probabilistic, we obtain a probability space of runs, along with their corresponding
random variables.

Definition 2.6 (Runs) Given a closed collection C with master scheduler X and a
tuple ini € Inig = xyeIniv of initial states, the probability space of runs is
defined inductively by the following algorithm. It has a variable r for the resulting
run, an initially empty list, a variable Mcs (““current scheduler’”) over machine names,
initially Mcs := X, and treats each port as a variable over ¥*, initialized with e except
for clk?? := 1. Probabilistic choices only occur in Phase (1).

1. Switch current scheduler: Switch machine Mcs, i.e., set (s', 0) + dm (s, I) for
its current state s and in-port values I. Then assign e to all in-ports of Mcs.

2. Termination: If X is in a final state, the run stops. (As X made no outputs, this
only prevents repeated master clock inputs.)

3. Buffer messages: For each simple out-port p! of Mcs, in their given order, switch
buffer p with input p* 7 := p!. Then assign € to all these ports p! and p* 7.

4. Clean up scheduling: If at least one clock out-port of Mcg has a value # e, let
q?! denote the first such port and assign e to the others. Otherwise, let clk? := 1
and M¢s := X and go back to Phase (1).

5. Scheduled message: Switch q with input q9?7 := q9!, set q7 := q*’! and then
assign e to all ports of g and to q!. Let Mcs := M’ for the unique machine M’
with q7 € ports(M'). Go back to Phase (1).

Whenever a machine (this may be a buffer or even a black-box submachine) with name
namey is switched from (s, I) to (s',0), we add a step (namew, s, I',s’,O) to the
runr where I' := I[;,,(5), exceptif sisfinal or I' = (e, ..., €). This gives a family of
random variables

Tun g = (TU"é,mi)imemié-
For anumber ! € N, I-step prefixes run 4 ,,.., of runs are defined in the obvious way.
<F>or afunction/ : Ini 5, — N, this gives a family rung; = (runéimi’l(im))miemié.

Most of the time, we will not be interested in the whole run but only in its restriction
to a set of machines, i.e., to the honest user. This restriction is called the view of these
machines in this particular run.

Definition 2.7 (Views) The view of a subset M of a closed collection €' ina run r is
the restriction of r to M, i.e., the subsequence of all steps (namew, s, I, s', O) where
namep is the name of a machine M € M. This gives a family of random variables

viewé’(M) = (”iewé,mi(M))z‘melm'é;

and similarly for I-step prefixes. For a singleton M = {H} we write view 5 (H) instead
of view ({H}) for reasons of readability. &

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 12

2.1.1 Security-specific System Model

In this subsection we define specific collections for security purposes. We start by
defining the actual system part; afterwards we focus on honest users and adversaries,
which are usually referred to as the environment.

A structure is a pair (M, S), where M is a collection of simple machines, and § C
free([M), the so-called specified ports, are a subset of the free ports of [M]. Specified
ports always guarantee certain services like “send message m to A” for a message
transmission system, or “transfer amount z to B” in a payment system. The users may
only connect to a subset of these ports, the remaining free ports of the structure are
additionally available to the adversary. We will always describe specified ports by their
complements S¢, i.e., the ports honest users should have, because that is independent
of the buffer notation. If we consider a set of structures we obtain a system Sys.

Definition 2.8 (Structures and Systems)

a) A structure is a pair struc = (M, S) where MA is a collection of simple ma-
chines called correct machines, and S C free([M]) is called specified ports. If
M is clear from the context, let S := free([M]) \ S. We call forb(M, S) :=

ports(M) U S¢ the forbidden ports.

b) A system Sys is a set of structures. It is polynomial-time iff all its collections M
are polynomial-time.

O

Note that we do not demand that the adversary is forbidden to connect to ports of S.
However, a limitation of the adversary to the free ports of forb(M ,S) would not really
be a restriction. We will show this in Section 3.2.

We will later consider cryptographic systems that are described using an intended
structure for the case without attacks. The remaining structures are derived using a trust
model for both machines and channels. As an example, consider the powerset of the
set of machines as the desired trust model, so we have one structure for every possible
combination of correct and incorrect machines (i.e., of honest and dishonest users).

A structure of a system can be completed to a configuration by adding additional
machines H and A, modeling honest users and the adversary, respectively. The machine
H is restricted to the specified ports S, A connects to the remaining free ports of the
structure and both machines can interact, e.g., in order to model active attacks.

Definition 2.9 (Configurations)

a) A configuration of a system Sys is a tuple conf = (M, S,H,A) where (M, S) €
Sys is a structure, H is a simple machine without forbidden ports, i.e., ports(H)N
forb(M, S) = 0, and the completion C' := [M U {H, A}] is a closed collection.
The set of configurations is written Conf(Sys).

b) The initial state of each machine in a configuration is a common security param-
eter k in unary representation. This means that we consider the families of runs
and views of the collection C restricted to the subset Iniy, := {(1*)yc |k € N}

of Inis. We write rumn .,; and U'iewconf(M) for the families run and
Uiewé(M) restricted to Ini/,, and similar for [-step prefixes. Furthermore, we
identify Im"é with N and thus write runcons,, etc. for the individual random

variables.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 13

c) The set of configurations of Sys with polynomial-time user H and adversary A
is called Confyqyy (Sys). The index o1, is omitted if it is clear from the context.

&

In the original model of [49], the adversary is forced to be the master scheduler of every
configuration, which fits our intuition of asynchronous behaviour, i.e., the adversary
should be able to schedule the network.

However, it will sometimes be useful to consider self-scheduled systems, i.e., sys-
tems containing an explicit master scheduler for each of its structures, which allows us
to achieve goals like liveness and privacy properties, cf. Chapter 6 and 7.

2.1.2 Simulatability

The definition of security between two systems is based on the common concept of
simulatability. Simulatability essentially means that whatever might happen to an hon-
est user in an arbitrary configuration of a concrete system Sys,., can also happen in a
configuration of an ideal system Sys;y.

Being more precise, for every configuration conf; € Conf(Sys,,), there exists
a configuration conf, € Conf(Sys;y) yielding indistinguishable views of H in both
configurations. We abbreviate this by Sys,., >sec Sysiq and we say that Sys,.,, is “at
least as secure” as the system Sys;4. A typical situation is illustrated in Figure 2.2. The
notion of indistinguishability has been introduced in [65] and has asserted its position
as a fundamental concept of modern cryptography. We will give a rigorous definition
later on.

However, we do not want to compare a structure (]\?[1, S1) € Sys,., With arbitrary
structures of Sys;q, but only with certain “suitable” ones. What suitable actually means
can be defined by a mapping f from Sys .., to the powerset of Sysq, so that (MQ, Sa) €
f(My, Sy) means that (Mx, S) is such a suitable structure. The mapping f is called
valid if the mapped structures always have the same set of specified ports.

Definition 2.10 (Valid Mappings, Suitable Configurations) Let Sys; and Sys, be two
systems.

a) A valid mapping for them is a function f : Sys; — P(Sys,) with §; = S, for
all structures (My, Sy) and (M2, S2) € f(My, S1).

b) If Sy52 contains exactly one structure (MZ,SZ) with S = Sl for each
(M¥,S1) € Sys,, the canonical mapping f is defined by f(Mi,S,) =
{(M%SZ)}

c) Given f, the set Conff(Sysl) of suitable configurations contains those configu-
rations (Ml,S H,A;) € Conf(Sys,) where ports(H) N forb(Ms, §) = @ for all
(M27) € f(M17)

<

Since the definition of simulatability is based on indistinguishability of probability
distributions, i.e., the views of H in both configurations have to be indistinguishable,
we repeat the definition of indistinguishability essentially from Yao [65].

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 14

:
S Jummede- | O
ﬁ N
Mz Ay
N
Of(Mq, S)
Real configuration Ideal configuration

Figure 2.2: Example of simulatability. The view of H is compared.

Definition 2.11 (Negligible Functions) A function g : N — Ry is negligible, written
g(k) < 1/poly(k), if for all positive polynomials @, JkoVk > ko : g(k) < 1/Q(k).
The class of negligible functions is written NEGL . <

Definition 2.12 (Indistinguishability) Two families (vary)ren and (varj,)ren of ran-
dom variables (or probability distributions) on common domains Dy, are

a) perfectly indistinguishable (“‘=
var', are identical.

) if for each k, the two distributions var, and

b) statistically indistinguishable (“~ sy arz”) for aclass SMALL of functions from
Nto Ry if the distributions are discrete and their statistical distances

A(varg,vary,) : Z |P(var,, = d) — P(var, = d)| € SMALL
2 i

(as a function of k). SMALL should be closed under addition, and with a func-
tion g also contain every function g’ < g. Typical classes are EXPSMALL
containing all functions bounded by Q(k) - 2~* for a polynomial @, and the
(larger) class NEGL.

c) computationally indistinguishable (““~pa1y”") if for every algorithm Dis (the dis-
tinguisher) that is probabilistic polynomial-time in its first input,

1
P(Dis(1%,var) = 1) — P(Dis(1*%,var}) = 1)| < :
| =D oy ®)
(Intuitively, the distinguisher is given the security parameter and an element
chosen according to either vary, or varj, and he has to guess which distribution
the element came from.)

We write = if we want to treat all cases together. <

We are now ready to introduce the simulatability definition.

Definition 2.13 (Simulatability) Let systems Sys; and Sys, with a valid mapping f
be given.

a) We say Sys, >LPef Sys, (perfectly at least as secure as) if for every config-
uration conf, = (My, S,H,A,) € Conff(Sysl) there exists a configuration
confo = (M, S,H,A;) € Conf(Sys,) with (M, S) € f(Mi,S) (and the
same H) such that

View cong, (H) = view cong, (H).

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 15

b) We say Sys, >LSMALL Gys, (statistically at least as secure as) for a class
SMALL if the same as in a) holds with view cons, 1(H) RsmALL view cong,,i(H)
for all polynomials I, i.e., statistical indistinguishability of all families of /-step

prefixes of the views.

c) We say Sys, >LPoY Sys, (computationally at least as secure as) if the same

as in a) holds with configurations from Conf":o,y(Sysl) and Confyoly (Sys,) and
computational indistinguishability of the families of views.

In all cases, we call conf, an indistinguishable configuration for conf,. Where the
difference between the types of security is irrelevant, we simply write >Z _, and we

sec’

omit the indices f and sec if they are clear from the context. <

2.1.3 Some Useful Lemmas

Sometimes we have to combine several machines into one machine that should provide
the same functional behaviour as the collection of the original machines. We first intro-
duce what “combination of several machines” actually means, and afterwards present
a lemma which states that combinations are well-defined and moreover fit some neces-
sary properties.

Definition 2.14 (Combination of Machines) Let D be a collection without buffers. For
a new name np (i.e., @ name which is neither used as a machine name nor a port name
in the considered collection so far), we define the combination of D into one machine
D with this name, written comb(D) in slight abuse of notation.

A

a) Its ports are Portsp := ports(D). (Their order would be an additional parame-
ter of comb, but it never matters in the following.)

b) Its states are Statesp := X pStatesm.

c) Its transition function dp is defined by applying the transition function of each
submachine to the corresponding substates and inputs, unless D has reached a
final state (see below). In that case, p does not change the state and produces
no output.

d) Its length function Ip is defined by applying the length function of the corre-
sponding submachine for each input port.

e) Itsinitial states are Inip := X, pInim. For every k € N, we identify the state
(1%*)me p With 1% (for the conventions in configurations).

f) Ifthere is a master scheduler X € D, then Finp is the set of all states of D where
X is in a state from Finy. Otherwise, D stops as soon as all submachines have
stopped: Finp := Xy pFinm.

<

Lemma 2.1 (Combination) Let o be a collection without buffers, DcC ¢ andD :=
comb(D) with a name that is new in C. Let C* := (C \ D) U {D}.

a) D is well-defined.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 16

b) 1f[C]is a closed collection, then so is [C*].

c) If[C] is closed then the view of any set of original machines in [C*] is the same
as in [C]. This includes the views of the submachines in D, which are well-
defined functions of the view of D.

d) Combination is associative: If D = Dy U D, and Dy := comb(D;), then
comb({D;1} U Ds) = D, if one identifies Cartesian products that differ only
in the bracket structure.

e) Ifall machines in D are polynomial-time, then so is D.
m|

Using our notion of combination we can introduce a special notion of simulatability
called blackbox simulatability.

Definition 2.15 (Universal and Blackbox Simulatability) Universal simulatability
means that A, in Definition 2.13 does not depend on H (only on M, S, and A;).
Blackbox simulatability means that A, is the combination of a fixed simulator Sim,
depending at most on M, S and ports(A;), and a machine A} that differs from A,
at most in the names and labels of some ports. The partial function ¢ that defines
this renaming is tacitly assumed to be given with Sim. A; is then called a blackbox
submachine of Sim. &

Clearly, blackbox simulatability implies universal simulatability, and universal simu-
latability implies “standard” simulatability. We will finally state some lemmas that will
be used throughout the thesis.

Lemma 2.2 (Properties of Runs and Views) Let C be a closed collection.

a) Whenever a machine M is switched in a run of C, there is at most one port

A

p € ports(C) with p # €. Ifit exists, p € ports(M).

b) Views of polynomial-time machines are always of polynomial size. If Cis
polynomial-time, the runs are of polynomial size.

O

Lemma 2.3 (Valid Mappings and Suitable Configurations) Let two systems Sys, and
Sys, with a valid mapping f be given.

a) Then S¢Nforb(M;, S) = 0 fori = 1,2 for every (M;, S) € Sys,, i.e., the ports

that users are intended to use are not at the same time forbidden (not even in the
corresponding structures of the other system).

b) With regard to Sys, alone, the restriction to suitable configurations is with-
out loss of generality in the following sense: For every conf, = (J\Zfl,S,
H,A;) € Conf(Sys,)\ Conf’(Sys,), there is a configuration confgy = (M, S,
He, As1) € Conf/ (Sys,) such that view conf, , (Hf) = view cong, (H).

O

The proof of this lemma is simply done by port renaming of the considered configura-
tion. It can be found in [49].

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 17

Lemma 2.4 (Indistinguishability)

a) The statistical distance A(¢(vary), ¢(var},)) of a function ¢ of random variables
is at most A(vary, vary,).

b) Perfect indistinguishability of two families of random variables implies perfect
indistinguishability of every function ¢ of them. The same holds for statistical in-
distinguishability with any class SMA L L, and for computational indistinguisha-
bility if ¢ is polynomial-time computable and the elements of the domains D, are
of polynomial length in k.

c) Perfect indistinguishability implies statistical indistinguishability for every non-
empty class SMALL, and statistical indistinguishability for a class SMALL C
NEGL implies computational indistinguishability.

d) All three types of indistinguishability are equivalence relations.

These facts are well-known, hence we omit the easy proof, cf. [49].

Lemma 2.5 (Types of Security) If Sys, >LPef Sys,, then Sys; >LSMALL Gy,

for every non-empty class SMALL. Similarly, Sys, >LSMALL Gys, for a class
SMALL C NEGL implies Sys, >£P°Y Sys.,. O

sec

This lemma can be proven easily by applying Lemma 2.4 using that views of a
polynomial-time machine always are of polynomial size, and that the distinguisher
is a special case of the function ¢.

What we finally want is the relation >4 to be transitive which is captured by the
following lemma.

Lemma 2.6 (Transitivity) If Sys, >f1 Sys, and Sys, >/2 Sys,, then Sys; >/ Sys,,
where f3 := f, o f; is defined in a natural way as follows: f3(M1, S) is the union of
the sets fo(Ms,, S) with (M,) € f1(M;,S). This holds for perfect, statistical and
computational security, and also for universal and blackbox simulatability. O

The proof of this lemma is much more difficult than the previous ones. It can be found
in detail in the original paper [49].

2.2 Special Casesand Composition

In this section we first introduce some special cases of the model that play an important
role in security considerations. After that, we introduce composition of reactive sys-
tems and state the composition theorem, which allows us to refine a system step-wise
by replacing the abstract primitives with their already proven cryptographic counter-
parts. The theorem enables modular proofs, so that systems can be designed completely
idealized, and afterwards can be refined step by step.

As special classes of the model we consider structures in which there is exactly one
machine for each user (which are all combined to the overall user H) and its machine is
correct if and only if the user is honest. This corresponds to a usual real-life situation,
because machines of honest users are usually considered correct, i.e., the user can
regard them as trusted devices.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 18

A main distinction of the introduced classes can be made between static and adap-
tive adversaries. Throughout the thesis we will only focus on static adversaries, i.e.,
we assume that it is a priori clear which users are faulty and which users are honest. In
adaptive (or sometimes called dynamic) scenarios the set of corrupted machines may
increase over time, e.g., because there is a special master adversary who can hack into
machines in order to corrupt them [7, 12, 59]. Adaptive adversaries are more powerful
than static ones, see [12] for an example that is secure in the static case but insecure
against adaptive adversaries.

2.2.1 Standard Cryptographic Systems with Static Adversaries

As we already stated above we consider systems in which each honest user u controls
exactly one machine M,, in every structure so that the machine works correct iff the
user is honest. The system is derived using an intended structure (M*, S*) and a trust
model. The intended structure corresponds to the case where every user is honest, the
additional structures will be derived by leaving out incorrect machines (i.e., dishonest
users) according to the considered trust model, i.e., they are considered as part of the
adversary.

We define that all buffers that connect different machines are scheduled by the
adversary unless explicitly mentioned otherwise. We only allow a machine M,, to
schedule buffers that transport messages from the machine to itself, called a self-loop.
We require all those connections to be secure. This allows us to define a machine M,,
as a combination of local submachines. The case where the user in- and outputs are
also treated in the same way is called localized.

Definition 2.16 (Standard Cryptographic Structures and Trust Models) A standard
cryptographic structure is a structure (M*, S*) where M* = {My,...,M,} withn €
Nand $*¢ = {in,!,out,?|u = 1,...,n}, where in,? and out,,! are ports of machine
M,. Each machine M,, is simple, and for all names p, if p9! € ports(M,,) then p?, p! €
ports(M,,).

A localized cryptographic structure is the same except that for all w = 1,...,n,
in,, ! also belongs to $*¢ and out,, ! to ports(M,,), but out,? & ports(M,,).

A standard trust model for such a structure is a pair (ACC, x) of an access struc-
ture and a channel model. Here ACC C P({1,...,n}) is closed under insertion (of
more elements) and denotes the possible sets of correct machines. x is a mapping
X : Gr(M*) — {s,a,i}. It characterizes each high-level connection as secure (pri-
vate and authentic), authenticated (only authentic), or insecure (neither private nor
authentic). If a connection ¢ connects a machine M,, with itself, we require x(c) = s.
&

Typical examples are threshold structures ACC, := {H C {1,...,n} | [H| > t} with
t<n.

Definition 2.17 (Standard Cryptographic Systems) Given a standard (or localized)
cryptographic structure and trust model, the corresponding standard (or localized)
cryptographic system is given by

SYSeal 1= {(MHJ SH)'H € ACC}

with 8§, := {in,!,out,?lu € #}, and in, ! in the localized case, and My :=
{My, 7 |u € H}, where M,, 4 is derived from M,, as follows:

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 19

e The portsin, ? and out,! and all clock ports are unchanged.

e Consider a simple port p € ports(M,) \ {in,?,out,!}, where p¢ € ports(M,)
with v € H, i.e., ¢ = {p,p®} is a high-level connection between two correct
machines:

— If x(¢) = s (secure), p is unchanged.

— If x(¢) = a (authenticated) and p is an output port, M,, 3, gets an addi-
tional new port p? (i.e., a port with a new name), where it duplicates the
outputs at p. This can be done by a trivial blackbox construction. We as-
sume without loss of generality that there is a systematic naming scheme
for such new ports (e.g., appending) that does not clash with prior names.
The new port automatically remains free, and thus the adversary connects
to it. If p is an input port, it is unchanged.

— If x(¢) =i (insecure) and p is an input port, p is replaced by a new port
p®. (Thus, the adversary can get the outputs from p© and make the inputs
to p® and thus completely control the connection.) If p is an output port, it
is unchanged.

e Consider a simple port p € ports(M,,) \ {in,?, out,!}, where p© ¢ ports(M,,)
forall v € H:

If p is an output port, it is unchanged. If it is an input port, it is renamed into p®.
(In both cases the adversary can connect to it.)

For localized systems, the same definition holds with the obvious modifications: the
ports in, ! with w € H also belong to S§,, and p is only chosen in ports(M,,) \
{in,?,out,!, out, '})

Obviously, all channel types presented above do not guarantee anything about the relia-
bility of the channels. However, if we consider common concepts like non-interference
or liveness properties, we need channels that guarantee that a message will eventually
be scheduled. Moreover, it often fits our intuition to additionally make the channel
accessible for the adversary which yields so-called non-authenticated reliable chan-
nels. However, we will postpone the formal definition to Chapter 6 where we present
additional motivation for this channel type.

Definition 2.18 (Standard Ideal Systems) A standard (or localized) ideal system is of
the form
Sysig = {({TH«}, Su)|[H € ACC}

for an access structure ACC C {1,...,n} for some n € N and the same sets of
specified ports as in corresponding real systems, i.e., S5, := {in,!, out,?, (in,“!)|u €
H}. o

One then compares a standard or localized real system with a standard or localized ideal
system with the same access structure, using the canonical mapping (Definition 2.10).

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 20

Sysspec

Figure 2.3: Overview over the composition theorem and its use in a modular proof.
The left and middle part show the statement of Theorem 2.1, the right side is handled
by Corollary 2.1.

2.2.2 Composition

In this section we introduce composition of reactive systems and state the composition
theorem of [49]. We start outlining the basic idea. Assume that we have already proven
asystem Sys, to be at least as secure as another system Sysy, (typically an ideal system
used as a specification), so we would like to use Sys, as a secure replacement for Sys,
i.e., we want to replace the specification with its implementation. Replacement means
that we have another system Sys; that uses Sys,; we call this composition Sys*, see
Figure 2.3.

Inside of Sys™ we want to replace Sys, with Sys, yielding a system Sys™. Usually,
Sys™ is completely real whereas Sys* is at least partly ideal. The situation is shown in
the left and middle part of Figure 2.3. Intuitively, Sys# > Sys* should hold which
captures the statement of the composition theorem.

So far, we did not examine the right side of the figure. As we already stated above
Sys™ may be only partly ideal. However, system design usually starts with a com-
pletely abstract specification Sys***¢ which fulfills the desired goals by construction.
Moreover, such a specification is usually monolithic, so it has to be split in proper parts
before it can eventually be refined using the composition theorem.

Corollary 2.1 will state that the real system Sys¥ is at least as secure as the ideal
specification Sys®¢ under the precondition that Sys™ >¢c Sys** has already been
proven. In Chapter 4 we present a practical example which shows that formally verified
bisimulations are well-suited for proving this relation.

We now define composition for every number n of systems Sys,, ..., Sys,,.

Definition 2.19 (Composition) The composition of structures and of systems is defined
as follows:

a) Structures (M, S1), . .., (M,, S,) are composable if ports(M;) N forb(M;, S;)
= and S; N free([M;]) = S; N free([M;]) for all i # j. Their composition
is then (M1, $1)||. .. [|(Mx, Sp) == (M,S) with M = M U ... U M, and
S = (5 U...US,) N free([M]).

b) A system Sys is a composition of Sys,, ..., Sys,, written Sys € Sys; x --- x
Sys,,, if each structure (M, S) € Sys has a unique representation (M, S) =
(M1, $1)|| - ||(My, Sp) with composable structures (M;, S;) € Sys; for 4
1,...,n.

c) We then call (1;, S;) the restriction of (M, 5) to Sys; and write (M;, S;) =
(M7 S) |_Sysi-

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 21

&

The first condition for composability makes one structure a valid user of another. The
second one excludes ambiguities for .S, specifically the case where p € free([Mi]) N
free([]\?_fj]) (e.g., a clock port for a high-level connection between these structures) and
pE Sbutp & 5;.

We are now ready to state the composition theorem. Throughout the theorem the
notation of Figure 2.3 is used.

Theorem 2.1 (Secure Two-system Composition) Let Sys,, Sysg, Sys; be systems
and Sys, >/ Sysy, for a valid mapping fo.

Let Sys™ € Sys, x Sys, and Sys* € Sys{, x Sys, be compositions that fulfill
the following structural conditions: For every structure (M#, $) € Sys* with restric-
tions (M;, S;) = (M*#,59) [sys, and every (M}, S0) € fo(My,So), the composition
(Mg, 8o)||(My, 8) exists, lies in Sys*, and fulfills ports(M]) N S¢ = ports(Mp) N S¢.
Let f# denote the function that maps each (M#, S) to the set of these compositions.
Then we have

Sys* >F* Sys*.

This holds for perfect, statistical and, if Sys, is polynomial-time, for computational
security, and also for the universal and blackbox definitions. O

The proof can be found in [49]. However, we briefly sketch the proof technique because
we will perform similar proofs throughout the thesis. The proof can be illustrated by
Figure 2.4.

conf# conf,
-
N R
B I
N H VA
VIR A# —> (0| 'wmy Ao
My Define —q-! = AH
I— A Ho: Ao TL'i
Mo | I_ Mo
Sys, 20 Sys'
conf* conf', i’ 0 0
| H T
St mmdmmde = - T
mel [HE A <«— |Ho| im, A
_ A 1 My
My =AYy I/:\)efine : —= 0
|— ~ M, ax S0 FT‘_'L
Mo | Mg

Figure 2.4: Configurations in the composition theorem. Dashed machines are internal
submachines. (The connections drawn inside Hq are not dashed because the combina-
tion does not hide them.)

In the beginning an arbitrary configuration conf# € Conff#(Sys#) is given. In
the first step, the machines belonging to Sys, are combined with the honest user H
yielding a new honest user Hq. After defining a new adversary Ao (which equals the
old one A# in this case) this gives a new configuration conf, € Conf(Sys,), and we

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 22

show that this new configuration yields identical views for the original honest user H
as the original configuration conf#. After showing that conf is suitable, the pre-
condition Sys, >sec Sysgy can be applied yielding an indistinguishable configuration
confy € Conf(Sys,). The user Ho is now split into its original machines again, fi-
nally yielding the desired indistinguishable configuration conf* € Conff*(Sys*) for
a newly defined adversary A* (which equals Aj). The claim now follows from the
transitivity of indistinguishability of views.

Combining machines and the honest user to a new user is an essential proof tech-
nique that will be used again later on, so the reader is well advised to become familiar
with that. Finally, we have the following corollary.

Corollary 2.1 Consider five systems satisfying the preconditions of Theorem 2.1, and a
sixth one, Sys*¢, with Sys* >/1 Sys*. Then Sys™ >/ Sys*P where f := fi o f#
as in the transitivity lemma. m|

2.3 The System for Secure Message Transmission

In this section, we review both the ideal and real system for secure message transmis-
sion in asynchronous networks [49]. It serves as a building block for many upcoming
examples of this work.

2.3.1 The Ideal System

We start with an informal description of the ideal system for secure message trans-
mission. The system is of the typical form Sys;y = {({TH#}, Sx)|H € ACC} and
ACC is the powerset of {1,...,n}. The system is illustrated in Figure 2.5. The ideal
machine THy models initialization and sending and receiving of messages. A user u
can initialize communications with other users by inputting a command of the form
(snd_init) to the port in,? of THy. In real systems initialization corresponds to key
generation and authenticated key exchange. Sending of a message to a user v is trig-
gered by a command (send, m,v). If v is honest, the message is stored in an internal
array of TH4, and a command (send_blindly, 4,1, v) is output to the adversary, where
[and 7 denote the length of the message m and its position in the array, respectively.
This models that the adversary will see that a message has been sent and he might also
be able to know the length of that message. We speak of tolerable imperfections that
are explicitly granted to the adversary. Because of the underlying asynchronous timing
model, TH4 has to wait for a special term (receive_blindly, v,) or (rec_init, w) sent by
the adversary signaling that the i-th stored message sent by u to v should be delivered
or that a connection between « and v should be initialized, respectively. The user v
will receive outputs of the form (receive, u,m) and (rec_init, u), respectively. If v is
dishonest, TH4« will simply output (send, m, v) to the adversary. Finally, the adversary
can send a message m to a user u by sending a command (receive, v, m) to the port
from_adv,,? of THy, for a corrupted user v, and he can also stop the machine of any
user by sending a command (stop) to a corresponding port of TH4; which corresponds
to exceeding the machine’s runtime bounds in the real world.

Scheme 2.1 (Ideal System for Secure Message Transmission) Let n € N, a finite
index set X, and a polynomial L € N[z] be given. L(k) bounds the length of the
messages (denoted as len(m)) for the security parameter k. Let M := {1,...,n}

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 23

\Lclk“?

in | H ? = S
in//! out, Il
) :
in,? out,!
THg,
to_adv, ! from_adv,,? to_ady, ! from_adv, ?
T Fee o] R v
S
lv..’.
N
d

Figure 2.5: A Configuration of the Ideal System Sys;, for Secure Message Transmis-
sion. Normal arrows denote simple ports, dashed arrows denote clock-out ports.

denote the set of possible participants, and let the access structure ACC be the powerset
of M. Our specification for secure message transmission is now a localized ideal
system

Sysig = {({THx}, Su) | H € ACC},

with 85, = {in,!,out,?,in,”! | v € H}. The machine THy is defined as
follows. When # is clear from the context, let A := M \ H denote the in-
dices of dishonest users. The ports of TH4, are {in,?,out,!,out,"! | u € H} U
{from_adv,,?, to_adv,,!, to_adv,,*! | u € H} (cf. Figure 2.5).

TH3, maintains arrays (init}, ,,)u,vesm and (stopped,).c over {0,1}, both ini-
tialized with 0 everywhere, and an array (delivery, ,,)u,ve# Of lists, all initially empty.
The state-transition function of TH4, is defined by the following rules, written in a
pseudo-code language. For the sake of readability, we exemplarily annotate the first
transition of the definition, the “Send initialization” transition, i.e., key generation in
the real world.

Initialization.

e Send initialization:

Assume that the user » wants to generate its encryption and signature keys and
distribute the corresponding public keys over authenticated channels. He can
do so by sending a command (snd_init) to TH4,. Now, the system checks that
the user’s machine itself has not reached its runtime bound (i.e., it has not been
stopped), and that no key generation of this user has already occurred in the past.
These two checks correspond to stopped;, = 0 and inity, , = 0, respectively.
If both checks hold, the keys are distributed over authenticated channels, mod-
eled by an output (snd_init) to the adversary. After receiving this command,
the adversary can decide whether it schedules the keys immediately, later on, or
even leave them on the channels forever. In our pseudo-code language this is
expressed as follows:

On input (snd-init) atin,?: If stopped,, = 0 and init;, , = 0, set init}, , == 1,
and output (snd_init) at to_adv,,!, and 1 at to_adv,,!.

The following parts should now be understood similarly:

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 24

\Lclk<]?

<
in,! H out,? - >
A
(L L] A
A net, ,
= -
M“ <\‘r>mt<
aut,, ,, A M, '_‘
auty, , 7

Figure 2.6: A Configuration of the Real System Sys
sion.

for Secure Message Transmis-

real

e Receive initialization. On input (rec_init,u) at from_adv,? withu € M,v €
H: If stopped, = 0 and init,, , = 0 and [u € H = inity, , = 1], setinit}, , :=
1 and output (rec_init, u) at out,!, 1 at out,,“!.

Sending and receiving messages.

e Send. On input (send,m,v) atin,? withm € ¥+, [:= len(m) < L(k), and
v € M\ {u}: If stopped;, = 0, init;, , = 1, and init; , = 1.
If v € A then { output (send, m,v) at to_adv,!, 1 at to_adv, ! } else {i :=
size(deliver,) + 1;* deliver}, ,[i] := m, and output (send_blindly,,1,v) at
to_adv,,!, 1 at to_adv,,“!. }.

e Receive from honest party u. On input (receive_blindly, u,) at from_adv,?
with w,v € H: If stopped, = 0, init,, = 1, init,, = 1, and m :=
deliver, , [i] # |, then output (receive, u, m) at out,!, 1 at out,“!.

e Receive from dishonest party u. On input (receive, u, m) at from_adv,? with
u€ A meXt len(m) < L(k), and v € H: If stopped, = 0, init;, , = 1 and
init,, , = 1, then output (receive, u,m) at out,!, 1 at out, .

e Stop. On input (stop) at from_adv/,? with u € H, set stopped;, = 1 and output
(stop) at out,!, 1 at out, .

<

2.3.2 The Real System

After presenting the abstract specification, we now briefly sketch a concrete implemen-
tation for secure message transmission. For understanding it is sufficient to give a brief
review of Sys,,,. The system is a standard cryptographic system of the form

rea
SYSreat = {(Myy, Sy1) | H € ACC}.

ACC is the powerset of M, i.e., any subset of participants may be dishonest. It uses
asymmetric encryption and digital signatures as cryptographic primitives. A user u
can let his machine create signature and encryption keys that are sent to other users

3The function size denotes the size of the considered list, i.e., the number of contained elements.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 25

over authenticated channels aut,,,,,. Furthermore, messages sent from user u to user v
will be signed and encrypted by M,, and sent to M, over an insecure channel net,, ,,
representing the net in the real world (cf. Figure 2.6). The adversary is able to schedule
the communication between the users, and he can furthermore send arbitrary messages
m to arbitrary users u for a dishonest sender v. In [49], it has already been shown that
Sysreal de’gmy Sysid

holds for the canonical mapping f, i.e., the concrete implementation is computationally
at least as secure as the specification.

Chapter 3

Some Variants of the M odd

The content of this chapter can be split into two parts. In the first part, we introduce
three variants of simulatability, and prove them to be equivalent to our standard defini-
tion. If we consider these variants on their own they do not really seem to be significant
by now, but they greatly facilitate further proofs since we can always use the definition
which is suited best for the considered problem. The second part is dedicated to the
relationship between our underlying asynchronous model and its synchronous prede-
cessor [47]. In practice, lots of protocols are synchronous, i.e., they proceed in rounds.
Thus, the synchronous model is still essential to cope with these protocols. Hence,
we want to drive double tracked, but without proving each and every theorem for both
models. A possibility to circumvent this problem is to show that the synchronous
model can be regarded as a special case of the asynchronous model, which we do not
have to consider separately. This chapter contains the first, essential step of this task:
we show that synchronous systems can be embedded into asynchronous ones such that
simulatability is preserved by this embedding. This allows as to carry over most of the
lemmas from the asynchronous to the synchronous case without proving them twice.
As an example, we will show that the asynchronous version of the transitivity lemma
implies in the synchronous version. However, in order to carry over lemmas dealing
with composition of systems, additional work is still needed which we will only con-
sider as future research here since we would digress too far from our actual goal of
sound protocol verification.

Finally, we briefly state that this chapter contains several tedious and technical
proofs, so if the reader is not really familiar with the underlying model or mainly inter-
ested in the overall results, we advise him (at least for the first reading) to move on to
the next chapter and use this chapter as a reference only.

3.1 OneA-H Connection

In this section we show that without loss of generality we can restrict our attention to
configurations with only one “self-scheduled duplex” connection between the honest
user and the adversary. This means that each of the two machines can communicate
over exactly one input and one self-scheduled output port connected to the other ma-
chine. We will speak of one-A-H-configurations in this case. Moreover, the restriction
to these configurations yields a new variant of simulatability, which we call one-A-H-
simulatability, denoted by >a_ . We will show that every configuration which does

26

CHAPTER 3. SOME VARIANTS OF THE MODEL 27

not fulfill this precondition can be modified by replacing both the honest user and the
adversary so that the following holds.

e There is only one self-scheduled duplex connection between the new user and
the new adversary.

e Both the honest user and the adversary use the original user and adversary as a
blackbox submachine, respectively, so that the views of the original machines
are identical in both configurations.

Furthermore, we will also be able to reverse our construction after applying simulatabil-
ity to restore an indistinguishable configuration for the original honest user. This serves
as the main part for proving our newly defined simulatability variant to be equivalent
to the standard definition. Thus, for proving simulatability between two systems, it is
sufficient to restrict our attention to one-A-H-configurations.

3.1.1 Definitions
We now formally state how our new definitions are derived from the original ones.

Definition 3.1 (One-A-H-Configurations) A one-A-H-configuration is a usual config-
uration conf = (M, S, H, A) where additionally the following properties hold:

1. We have
[{p! | p! € ports(H) A p? € ports(A)}| =1
and
p! € ports(H) A p? € ports(A) = p! € ports(H),

i.e., we have exactly one output port from H to A and the corresponding clockout
port.

2. Similarly, we have
[{p!| p! € ports(A) Ap? € ports(H)}| =1

and
p! € ports(A) A p? € ports(H) = p?! € ports(A),

so we have exactly one output port from A to H and the corresponding clockout
port yielding the desired duplex channel.

We will in the following denote the ports of the duplex channel by pa_n?, pual, pra“!
€ ports(H) and pu.a?,pan!,pan! € ports(A).r The set of these configurations
is denoted by Confa n(Sys), the set of polynomial-time one-A-H-configurations by
Confa_n,poly(Sys). For a valid mapping f, suitable one-A-H-configurations are de-
fined as usual. <

1Thisisjust anotation convention. We assume that these ports are new ports of every confi guration, i.e.,
the ports are not used inside of the system itself. Otherwise, we can always achieve the desired situation by
simply renaming the ports of the system before completing a structure to a confi guration.

CHAPTER 3. SOME VARIANTS OF THE MODEL 28

Remark 3.1. In the following we will often provide H and A with an additional index,
here a_y, if we consider specific configurations, i.e., we may write (M, S,Han,Aan)
instead of (M, S,H,A). We hope that this measure improves readability because it
decreases the chance of getting lost in the very long proofs. To maintain this notational
convention we will often have to rename certain machines, e.g., H to Ha_u, even if they
are left unchanged in the constructed configuration. Such a step should obviously result
in identical views of H and Ha _y, So in this particular context renaming always means
that we imagine H as a blackbox submachine of Ha_y so that Ha_y has exactly the same
ports, and that it only forwards in- and outputs to H. Alternatively, we could rename
the whole 6-tuple representing the machine. This would allow us to avoid changing the
machine name which would immediately result in different views (cf. Definition 2.6).
]

We now introduce the notion of one-A-H-simulatability, denoted by >a . Itis derived
from the standard one by restricting the set of considered configurations to one-A-H-
configurations.

Definition 3.2 (One-A-H-Simulatability) Let two systems Sys, and Sys,, with a valid
mapping f be given.

a) We say Sys; Zﬁﬁgec Sys, (perfectly at least as A_H-secure as) if for every
configuration confay; = (My,S,Han,Aan1) € Confl ,(Sys), there ex-
ists a configuration conf yy » = (My, S, Han,Aan2) € Confan(Sys,) with
(M, 8) € f(My, S) such that

view confam 1 (HA—H) = view confap, o (HA—H) :

b) We say Sys, >L7ime "~ Sys, (statistically at least as A_H-secure as) for a

class SMALL if the same as in &) holds with view cong, ,, ,.i(Ha.n) RsmaLL
VieWw cong, ,, ,,1(Ha_n) for all polynomials , i.e., statistical indistinguishability of
all families of [-step prefixes of the views.

c) We say Sys; Zf\’_‘,’f'syec Sys, (computationally at least as A_H-secure as) if

the same as in a) holds with configurations from Conf/’:_H,pmy(SySJ and
Confa n,poly (Sys,) and computational indistinguishability of the families of
views.

As in the standard definition, we call conf » 4 » an indistinguishable configura-
tion for conf p ;-

We will in the following explicitly state which definition indistinguishability
refers to if it is not immediately clear from the context. Where the difference
between the types of security is irrelevant, we write Zﬁ_H’sec as usual, and we
omit the indices f and sec if they are clear from the context.

O

3.1.2 Proof of Equivalence

Before we turn our attention to the actual proof of equivalence, we state the following
two essential lemmas.

CHAPTER 3. SOME VARIANTS OF THE MODEL 29

Lemma 3.1 Let an arbitrary system Sys and an arbitrary configuration conf =
(M,S,H,A) € Conf(Sys) be given. Then, we can define a new honest user Ha y
and a new adversary Aa_y that use the original machines H and A as black-box sub-
machines, respectively, such that the following holds:

1. The configuration confay := (M, S,Han,Aan) is a one-A-H-configuration,
i.e., confan € Confay(Sys).

2. The view of H is identical in both configurations, i.e., we have
view cong (H) = view cong, , (H).
3. confa_n is polynomial-time iff conf is polynomial-time.

O

Proof (sketch). Since the full proof is technical, and quite tedious, we postpone it to
Appendix A.1. Instead, we only give a brief sketch here. Given the configuration conf
we first define a new user Ha_y according to Figure 3.1. Informally speaking, every
simple port of H which has been connected to A (i.e., input ports and output ports) is
replaced by a self-loop channel. Moreover, Ha_y has additional ports for the desired
duplex channel. The main idea is that the buffers of these self-loops correspond to the
original buffers between H and A. If one of these buffers p is scheduled (it does not
depend by which machine), the user Ha delivers the message to its recipient.> More
precisely, it simply outputs the message if it is intended for a machine of the considered
structure. If the recipient is the adversary, it encodes the message m and the port name
p? and sends it over the duplex channel. The new adversary Aa_y will decompose the
message and use its blackbox-submachine A with input m at p?. The main problem is
that the original adversary A might output nonempty values at multiple ports connected
to H in one transition, i.e., multiple buffers have to be “filled”. In confa_n, this is
modeled iteratively, i.e., the adversary Aa_y outputs the first such message to Ha_n
which outputs it to the corresponding buffer. After that, Ha_y explicitly gives back
control to Aa_y which can now send the second message and so on, until all message
are finally written into their corresponding buffer. Obviously, neither the original user
H nor the original adversary A can notice this iteration since they are not switched
during the iteration, which finally yields identical views. |

Lemma 3.2 Let an arbitrary system Sys and an arbitrary configuration conf =
(M,S,H,A) € Conf(Sys) be given. Moreover, let confan = (M,S,HA_H,AA_H) €
Confa_n(Sys) denote the configuration which we obtain if we apply Lemma 3.1 to
conf. Then for every configuration confa_n . of the form confa y . = (M, S,Han,Ar)
(i.e., the configuration confa_u, but with an arbitrary adversary A,), there exists a con-
figuration conf, = (]\ZI, S,H,As) with

view confyy, . (H) = view cong, (H).

Moreover, conf, is polynomial-time iff confa_n . is polynomial-time. Informally, this
means that we can ’reverse’ our construction of Lemma 3.1 for arbitrary adversaries
A;, and restore an indistinguishable configuration for H. O

2At first glance, this looks like “standard multiplexing”, and the most natural idea might be to store
messages symmetrically, i.e., both H and A store their own messages. However, this will not yield the
desired result, since only the honest user will remain unchanged at simulatability, so nothing can be states
about the messages stored by the adversary.

CHAPTER 3. SOME VARIANTS OF THE MODEL 30

p1,out —> p1,0ut Pm,out
. C P1,in Ha H
s @/ 1 7T 1 -
H Pm,out > /\ . i H : PH ALY >
L]

P1in€ ! Y| —
e«] e

p : C pt,in

t,in [€&———
Pis Pos P1s Pn,s

Figure 3.1: Modification of the honest user in Lemma 3.1: Ports connected to speci-
fied ports remain unchanged, simple ports connected the adversary become self-loops.
Clockout ports are omitted for readability, they also remain unchanged. Finally, special
ports pu_al, pya<! and pa_n? are added.

Proof (sketch). Similar to the previous lemma, we postpone the full proof to Appendix
A.1 and only sketch its idea. At first, we reverse our construction on the honest user
yielding the original machine H again. The adversary A- has the original adversary A,
as a blackbox submachine. The main problem is to take care of the ’iteration’ between
Ha_n and the adversary (cf. the proof of Lemma 3.1). Roughly speaking, Ha_y will
give the control back after it has been switched by the adversary A4, but the user H does
not. Hence, in order to obtain indistinguishability, the machine A, models this *giving
back of control’ by clocked self-loops. More precisely, Ha_n would clock the machine
A; back again at the input port py_a?, S0 the new adversary imitates this behaviour, i.e.,
it clocks its internal submachine A at precisely this port py_a? using the same value.
This finally yields indistinguishable view for both the original adversary A; and the
original honest user H. L]

Theorem 3.1 (Equivalence of standard simulatability and one-A-H-simulatability)
Let two arbitrary systems Sys,, Sys, and a valid mapping f be given. Then Sys, >f
Sys, iff Sys, Zﬁ_H Sys,. This holds for the perfect, statistical and computational
case. m|

Proof. We start with the easy direction of the proof:

2f¢2};_H: Let a suitable one-A-H-configuration conf j; = (My, 8, Ham, Aas)
€ Conf,{_H(Sysl) be given. conf,y, is a valid configuration for standard
simulatability, so our precondition Sys; > Sys, yields a configuration
CO’rLfA_H,Q = (M, S,Han,Ananz2) € Conf(Sysy) with (Ms, S) € f(M,S)
and viewcoan_H,l(HA_H) = viewcoan_H,z(HA_H). We only have to show that
coan_H’z is in fact a one-A-H-configuration, i.e., that exactly the ports of Aa .1,
which were connected to Ha y in conf A_H,1, &re NOW ports of Aa_H,2 connected
to Ha n. By definition, conf , 4 ; has to be a closed collection, so every port of
Ha_n has to be connected either to Ha g itself, to a specified port of the structure
or to the adversary.®

3The remaining ports are unspecifi ed ports of the system which users are forbidden to connect to. This

CHAPTER 3. SOME VARIANTS OF THE MODEL 31

By definition, Ha 1 remains unchanged after applying simulatability, conf a y »
has to be closed again, and the sets of specified ports are equal in both configu-
rations since f is a valid mapping.

Thus, ports of the user connected to itself or to specified ports remain connected
in the same way, so it may only have a connection to Aa n,2 using the ports
pan?, pHAlL pHAY. We now finally have to show {pua?,pan!,pan} C
ports(Aa_n.2).

First of all, assume py_a? € ports(Ha_n), S0 the connection has to be a self-loop
in conf 5 . However, the user has not been changed using simulatability, so the
connection also was a self-loop in the first configuration which yields py a? €
ports(Han) in conf, ;. This immediately yields the desired contradiction
because pu_a? € ports(Aa_n,1) holds by precondition.

Similarly, pya? € ports(Mz) cannot hold because we demanded the name py_a
to be new in every structure of the system, i.e., that the structure does not have
any port to connect to it (more precisely, we have to demand that the name does
not occur in any considered system, which can easily be achieved by port renam-
ing).

Hence, pua? € ports(Aan,2) must hold. This can be proven analogously for
pa_n! and pa 19!, so we obtain {pu.a?, pan!, pan?!} C ports(Aan o) yielding
the desired duplex channel. Putting it all together, we have found an indistin-
guishable one-A-H-configuration of conf 4, ; which finishes the proof of this
direction.

> ,=>7: This direction turns out to be much more complicated; however, the main
work has already been anticipated by the two preceding lemmas. The proof is
done in four steps illustrated in Figure 3.2.

e Step 1: Let a suitable configuration conf, = (My,S,H,A;) €
Conff(Sysl) be given. We apply Lemma 3.1 which yields a configura-
tion confpyyy = (My, S, Han, Aan,1). Especially, we have conf n yy , €
Confan(Sysy), i.e., conf o i, is a one-A-H-configuration, and the views
of the honest user H are identical in both configurations, i.e.,

view cong, (H) = viewcony, ,, , (H).

e Step 2: We have to show that conf,y, is a suitable one-A-H-
configuration. Using Lemma 2.3, we can assume conf , y; to be suit-
able without loss of generality, i.e., we can transform conf , 1 into a
suitable configuration by simple port renaming which results in a one-
A-H-configuration again. Moreover, Lemma 3.1 states that conf, y ; Is
polynomial-time in the computational case, since conf; is polynomial-time
by precondition in this case. Now, our precondition Sys, Zﬁ_H Sys, can
be applied yielding a configuration conf o y » = (Ms, S, Han,Aan,2) €
Confan(Sys,) with (M, S) € f(Mi, S), s0 that view cony, ,, , (Han) ~
View cong , ,, , (Han) holds. As a special case we obtain

VIEW conf, 4, (H) =~ view confams (H)

by part a) of Lemma 2.4.

property is guaranteed by the defi nition of confi gurations.

CHAPTER 3. SOME VARIANTS OF THE MODEL 32

conf confp 1
H YOH
!
—_ HA_H
At | Define] An 1
y Ha 1A 11 x
M, M,
\ty S12p 1 SYs;
conf, confy 2
" z TR
_____ <« |---a----t
| botnea, L Pan A
efine —
1An h2! 2 | | AH.2
A I \ ~
M, (I— M,

Figure 3.2: One-A-H-Simulatability implies Standard Simulatability.

e Step 3: In order to derive a configuration for the original honest user H,
we apply Lemma 3.2 to conf , 14 .. This yields a configuration conf, =

(Ms, S,H,Ay) € Conf(Sys,) such that
View confyy ,(H) = view cons, (H).

Moreover, conf , is polynomial-time iff conf 4 , is polynomial-time.
e Step 4: Putting it all together, we have proven

view con, (H) = viewcony, , , (H),
VI€W conf , (H) VI€W conf o 4 (H),

vieW cons, . ,(H) = viewcons, (H).

Q

Using Lemma 2.4 we can conclude view cons, (H) ~ view cong,(H), SO
conf, is an indistinguishable configuration for conf, with respect to our
standard definition of simulatability. Since conf, has been chosen arbi-
trary, Sys, >7 Sys, holds, which finishes our proof.

3.2 S Smulatability

In this section we present another modified definition of simulatability which we again
prove to be equivalent to the standard definition 2.13. Essentially, the definition only
considers configurations where the adversary does not connect to any specified port.

CHAPTER 3. SOME VARIANTS OF THE MODEL 33

These configurations will be called s-configurations, and their corresponding simulata-
bility definition will be called s-simulatability. Recall that the definition of configu-
rations explicitly excludes the case that a user connects to an unspecified port of the
system; on the other hand we did not exclude the case that the adversary connects to
some of the specified ports. There are good reasons for this, just imagine a person in
real life that does not only act as the adversary but also as a regular user, e.g., for using
services of the system in an “honest way”. Such guaranteed services are usually only
provided at the specified ports.

However, we will show in the following that the restriction to configurations where
the honest user connects to all specified ports of the structure is without loss of gen-
erality. As in the previous section, we will show that every configuration which does
not fulfill the preconditions of s-configurations can be modified by replacing both the
honest user and the adversary so that the following holds.

e The newly defined honest user connects to all specified ports of the structure.

e The new honest user has the original user as a blackbox submachine, and the
view of the original user is identical in both configurations.

Similar to the previous section, we will again be able to reverse our construction af-
ter applying s-simulatability, and to restore an indistinguishable configuration for the
original honest user.

3.2.1 Definitions

We now state the new definitions.

Definition 3.3 (S-Configurations) An s-configuration of a system Sys is a usual con-
figuration conf = (M, S,H,A) where additionally $¢ C ports(H) must hold. The
set of these configurations is denoted by Confs(Sys). The set of polynomial-time
s-configurations is denoted by Confs po1, (Sys). For a valid mapping f, suitable s-
configurations are defined as usual. <&

According to Remark 3.1, we will provide both the honest user and the adversary with
an additional index s, writing (M, S, Hs, As) instead of (M, S,H,A).

Definition 3.4 (S-Simulatability) Let two systems Sys, and Sys, with a valid mapping
f be given.
a) We say Sys, 2_{ et Sys, (perfectly at least as s-secure as) if for every configu-
ration conf,; = (M, S, Hs,As1) € Conf{(Sys,), there exists a configuration
confq 5 = (Mo, S, Hs, As 2) € Confs(Sys,) with (Mz, S) € f(My, S) such that

View conf, , (Hs) = view cony, , (Hs).

b) We say Sys, >IZMALL Sys, (statistically at least as s-secure as) for a
class SMALL if the same as in a) holds with wview cons, ,,1(Hs) Rsmarr
view cong, ,,1(Hs) for all polynomials /, i.e., statistical indistinguishability of all

families of [-step prefixes of the views.

CHAPTER 3. SOME VARIANTS OF THE MODEL 34

c) Wesay Sys; >£2% Sys, (computationally at least as s-secure as) if the same as

Z s,sec
in @) holds with configurations from Conff,poly(Sysl) and Conf; po1y (Sys,) and
computational indistinguishability of the families of views.
conf, is called an indistinguishable configuration for conf, with respect to s-
simulatability and we will as usual omit the indices f and sec if they are clear

from the context.
O

Before we turn our attention to the compulsory proof of equivalence we additionally
define the restriction of runs to a set of ports. Although this will not be needed in the
main proof, it allows us to state and prove a more general lemma which will become
very useful in Chapter 5 where we consider integrity properties.

Definition 3.5 (Restriction of Runs to Ports) Let a closed collection C be given. The
restriction of a run r to a set S C ports(C') (written r[s) is defined by the following
algorithm that modifies every step (namew, s,Z, s, O) of the run as follows.

e If ports(M) NS = (), delete the step from the run.

o If Siy := in(ports(M)) NS # @ and S,y := out(ports(M)) NS = O, replace
the step of the run by |, +cs, 1,2 {P:? : Ii} where I; is the input of M at port
p;?. In case of an empty set, i.e., I; = € for all p;? € S;,, delete the step from
the run.

o If S, := in(ports(M)) NS = P and S,y := out(ports(M)) NS # O, replace
the step of the run by U, \css,., 0, {Ps! : Oi} where O; is the output of M at
port p;!. In case of an empty set, delete the step from the run.

o If Si, := in(ports(M)) NS # 0 and S,y := out(ports(M)) NS # 0, re-
place the step of the run by both steps of the previous two parts, i.e., by the
union of Up,-?es,-n,l,-;ée{pi? : I;} where I; is the input of M at port p;? and
Up,v,!esau,,oi;ée{pi! : 0;} where O; is the output of M at port p;!. As in the above
steps, empty sets are deleted.

As in definition 2.7, we obtain a family of random variables
Tun & |—S= (run@"imj [S)iniEI'nié

and similarly for i-step prefixes (i.e., we first take the restriction of the run to the set S
of ports, and then consider the [-step prefix of that restriction). If we consider a config-
uration conf we write runcons i [s for the individual random variables according to
Definition 2.9. <

3.2.2 Proof of Equivalence

After introducing the new definitions we are now ready to turn our attention to the
actual proof of equivalence. In order to make the proof more readable, we first present
another lemma which captures the first of the four usual steps of the proof. As we
already mentioned above, it will additionally play an important role in later parts of the
thesis.

CHAPTER 3. SOME VARIANTS OF THE MODEL 35

g

U
Y

§ ---Jqz-==-- FF-- § ——Jd-——--- FF——

<>
Y
<>

Y

Figure 3.3: Sketch of the proof of Lemma 3.3

Lemma 3.3 Let a system Sys be given. For every configuration conf = (M, S,
H,A) € Conf(Sys), there is a new honest user Hs using H as a blackbox submachine
and a new adversary A such that the following holds:

1. conf, := (M, S,Hs, As) € Confs(Sys).

2. view qong(H) = view cong, (H) Where the view of H in confs is given as a subma-
chine of Hs.

3. confs is polynomial-time iff conf is polynomial-time.

4. The probability of the runs restricted to the set S of specified ports is identical in
both configurations, i.e., run conf [s= TN cons, [s-

O

Proof (sketch). Since the full proof is quite technical and tedious, we postpone it to the
Appendix. We only give a brief sketch how the proof is performed. We will define a
new machine H; which is inserted between the system and the adversary, so that Hy
now exactly uses the specified ports formerly connected to A (cf. Figure 3.3). This
machine will mainly forward messages, so it will not change the probability of the runs
at the specified ports. Combination of H; and the original H will yield the intended
user Hs. The adversary Ag will be mainly derived by port renaming of A with the only
difference that clockout ports of A have to be simulated by A in a different way, mainly
by additional output ports. This will give us a configuration conf; € Confs(Sys) as
shown in the right side of Figure 3.3. However, the main diffic