
Cryptographically Sound Analysis of
Security Protocols

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

Eingereicht von Michael Backes

Gutachter:
Prof. Dr. Birgit Pfitzmann

Prof. Dr. Harald Ganzinger

Dekan:
Prof. Dr. Philipp Slusallek

Kolloquium:

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Saarbrücken, April 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

In this thesis, we show how formal methods can be used for the cryptographically
sound verification of concrete implementations of security protocols in order to obtain
trustworthy and meaningful proofs, and to eliminate human inaccuracies.

First, we show how to derive secure concrete implementations of a given abstract
specification. The security proofs are essentially based on the well-established ap-
proach of bisimulation which can be formally verified yielding rigorous proofs. As an
example, we present both a specification and a secure implementation of secure mes-
sage transmission with ordered channels. Moreover, the example comprises a general
methodology how secure implementation of arbitrary specifications can be obtained.

Thereafter, we concentrate on the actual goals the protocol should fulfill. Thus, we
define integrity properties in our underlying model and we show that logic derivations
among them carry over from the specification to the concrete implementation, which
makes them accessible for tool-assisted verification. As an example, we formally verify
one concrete protocol using the theorem prover PVS yielding the first machine-aided
and sound proof of a cryptographic protocol.

As additional properties of security protocols, we consider liveness and non-
interference. The standard definition of these properties is not suited to cope with pro-
tocols involving real cryptographic primitives, so we introduce new definitions which
are restricted to polynomial runs and include error probabilities. We show that both
properties carry over from the specification to the concrete implementation, and we
present two examples, one for each property, which we prove to fulfill our definitions.

ii

Kurzzusammenfassung

Diese Arbeit behandelt formale Verifikation von Sicherheitsprotokollen mit dem Ziel,
maschinell verifizierte Beweise zu erm öglichen, die die kryptographische Semantik
respektieren, d.h., deren Aussagen bzgl. der zugrundeliegenden Kryptographie und den
kryptographischen Sicherheitsdefinitionen g ültig sind (engl. cryptographically sound
proofs).

Als erstes zeigen wir, wie formale Methoden benutzt werden k önnen, um sichere
konkrete Implementationen anhand einer gegebenen abstrakten Spezifikation herzulei-
ten. Wir geben daf ür eine allgemeing ültige Methologie an, die auf formal verifizierten
Bisimulationen basiert, was uns rigorose und glaubhafte Sicherheitsbeweise liefert. Als
Beispiel geben wir eine Spezifikation und eine konkrete Implementation f ür sichere
geordnete Nachrichten übertragung an. Die im Sicherheitsbeispiel der Implementation
auftretende Bisimulation verifizieren wir mit Hilfe des Theorembeweisers PVS.

Als zweites konzentrieren wir uns auf die Ziele, die ein Sicherheitsprotokoll
erf üllen soll. Wir definieren Integrit ätseigenschaften in unserem zugrundeliegenden
Modell, und wir beweisen, dass sich logische Schlussfolgerungen bzgl. dieser Eigen-
schaften von der Spezifikation auf die Implementation übertragen, was eine essentielle
Voraussetzung f ür maschinelle Verifikation darstellt. Als Beispiel verifizieren wir ein
konkretes Protokoll mit Hilfe des Theorembeweisers PVS, was uns den ersten Be-
weis eines Sicherheitsprotokolls liefert, der sowohl maschinell verifiziert ist als auch
der kryptographischen Semantik “treu” bleibt, d.h., der wirklich ein Beweis gegen die
kryptographischen Primitive und deren kryptographische Sicherheitsdefinitionen ist.

Als zus ätzliche Eigenschaften von Sicherheitsprotokollen betrachten wir Leben-
digkeit (engl. liveness) und Unbeeinflussbarkeit (engl. non-interference). Da sich die
Standarddefinition dieser wichtigen Eigenschaften als ungeeignet f ür echte Kryptogra-
phie herausstellt, f ühren wir allgemeinere Definitionen ein, die auf polynomielle L änge
beschr änkt sind und Fehlerwahrscheinlichkeiten ber ücksichtigen. Wir zeigen, dass sich
diese Eigenschaften von der Spezifikation auf die Implementation übertragen, was wie-
derum den Bezug zu formalen Methoden herstellt. Wir pr äsentieren zwei Beispiele, je
eines f ür jede Eigenschaft, von denen wir beweisen, dass sie die entsprechende Defini-
tion erf üllen.

iii

Zusammenfassung

Kryptographische Protokolle besitzen in unserer heutigen Zeit einen zunehmend gr öße-
ren Stellenwert. Viele von ihnen werden bereits t äglich von Millionen von Menschen
anhand des Internets benutzt, wie z.B. Online-Banking oder Protokolle zum sicheren
Austausch von Geld und Ware. Offensichtlich ist die Sicherheit solcher Protokolle eine
zentrale Anforderung, um von den Menschen akzeptiert und benutzt zu werden. Leider
beruht die Sicherheit vieler Protokolle lediglich auf der Tatsache, das bis jetzt kein An-
griff darauf gefunden wurde, bzw. alle bis jetzt gefundenen Sicherheitsl ücken wurden
ausgemerzt. Die stetig steigenden Verluste von Banken durch Hackerangriffe zeigen
deutlich, dass ein solcher Ansatz keinerlei wirkliche Sicherheit bietet. Protokolle brau-
chen einen Beweis ihrer Sicherheit, um akzeptiert werden zu k önnen. Desweiteren soll-
te ein solcher Beweis maschinell verifiziert sein, um menschliche Fehler weitestgehend
auszuschließen.

Obwohl das Problem der formalen Verifikation von Protokollen bereits seit l änge-
rem von vielen Wissenschaftlern behandelt wird, konnten bis jetzt nur stark idealisierte
Protokolle bewiesen werden, die keinerlei Entsprechung mehr in der realen Welt be-
saßen. Demzufolge sind die bewiesenen Sicherheitsaussagen zumindest von zweifel-
hafter Bedeutung f ür die reale Welt. In solchen stark idealisierten Protokollen wird so-
genannte ’perfekte Kryptographie’ angenommen—gem äß dem Ansatz von Dolev und
Yao [17]—was den Bezug zur realen Welt zerst ört. Perfekte Kryptographie heißt im
allgemeinen, dass kryptographische Operationen als Term-Algebra aufgefasst werden
in der lediglich vordefinierte Gleichungen und K ürzungsregeln gelten. Im Falle von
z.B. asymmetrischer Verschl üsselung betrachtet man zwei Operatoren

���
und � � ,

die ein Schl üsselpaar f ür einen Teilnehmer � repr äsentieren sollen. Die Gleichung
� �������	��
������

gilt per Definition f ür alle Terme

. Will man nun beweisen, dass

ein betrachtetes Ereignis (z.B. “die Nachricht

geht irgendwann im Klartext über das
Netz”) nicht gelten kann, so berechnet man den Abschluss der Term-Algebra und zeigt,
dass das Ereignis in diesem Abschluss nicht enthalten ist. Offensichtlich ist eine Art
Vollst ändigkeitsaussage n ötig, um sinnvolle Ergebnisse zu erhalten, d.h., man will eine
Aussage der Form, dass eine Gleichung nur gelten kann, wenn sie syntaktisch anhand
der gegebenen Gleichungen hergeleitet werden kann.

Betrachtet man nun allerdings echte kryptographische Primitive und ihre Sicher-
heitsdefinitionen, so sieht man im Gegensatz zu obiger Aussage, dass kryptographische
Sicherheitsdefinitionen keinerlei Aussagen über alle Gleichungen treffen. Die Defini-
tion der Sicherheit von asymmetrischer Verschl üsselung bei aktiven Angriffen besagt
beispielsweise nur, dass der Angreifer durch seine Angriffe keinerlei partielle Infor-
mationen über den Klartext herausbekommen kann. Allerdings ist es nicht verboten,
dass er z.B. Beziehungen zwischen Schl üsseltexten findet. Man kann Beispiele kon-
struieren, in denen Beweise die mit perfekter Kryptographie arbeiten, schiefgehen, ob-
wohl die verwendeten kryptographischen Primitive sicher sind im kryptographischen
Sinn [47].

Leider ist ein gewisses Maß an Abstraktion unvermeidbar, da der in der Kryptogra-
phie auftretende Probabilismus f ür formale Methoden (bis jetzt) nicht zug änglich ist.
Allerdings werden wir in dieser Arbeit zeigen, dass man anstelle der perfekten Kryp-
tographie sogenannte ’treue’ Abstraktionen betrachten kann, die den Bezug zur Kryp-
tographie nicht zerst ören und trotzdem maschinelle Verifikation erm öglichen. Alles in
allem stellen wir in dieser Arbeit eine allgemeine Methologie vor, wie maschinell veri-
fizierte Beweise f ür konkrete Protokolle der realen Welt durchgef ührt werden k önnen,
so dass die Semantik der Kryptographie erhalten bleibt, d.h. der Beweis ist g ültig bzgl.

iv

der zugrundeliegenden kryptographischen Primitive und deren kryptographischen Si-
cherheitsdefinitionen.

Überblick und Ergebnisse

Bevor wir uns in dieser Arbeit der eigentlichen Verifikation zuwenden, f ühren wir unser
formales Modell f ür asynchrone reaktive Systeme ein. Das Modell selbst wurde von
Pfitzmann und Waidner entwickelt und in [49] erstmalig publiziert, und ist demzufolge
kein Verdienst dieser Arbeit.

Im Anschluss daran betrachten wir einige Modellvarianten, die wir als äquivalent
zum Standardmodell beweisen, was den Aufwand k ünftiger Beweise erheblich redu-
ziert, da wir immer die Variante annehmen k önnen, die f ür das betrachtete Problem
am geeignetsten ist. Danach befassen wir uns kurz mit dem synchronen Modell von
Pfitzmann, Schunter und Waidner [47], das als Vorg änger des hier betrachteten asyn-
chronen Modells angesehen werden kann. Da viele Protokolle in der Praxis synchron,
d.h. in Runden ablaufen, ist dieses Modell immer noch essentiell f ür viele praxisrele-
vante Protokolle. Demzufolge wollen wir zweigleisig fahren, aber ohne jedes Theorem
und jedes Lemma f ür beide Modelle zu beweisen. Dieses Problem k önnte umgangen
werden, indem man zeigt, dass es sich bei dem synchronen Modell lediglich um einen
Spezialfall des asynchronen handelt, der nicht gesondert betrachtet werden muss. Diese
Arbeit vollzieht den ersten, essentiellen Schritt dieses Ansatzes: Wir zeigen dass sich
die Menge der synchronen System in die Menge der asynchrone Systeme einbetten las-
sen, so dass die Beziehung zwischen Spezifikation und Implementation erhalten bleibt,
d.h. dass sich Sicherheitseigenschaften der asynchronen Einbettung auf das synchrone
Modell übertragen.

Nach diesen modellspezifischen Beweisen wendet wir uns der eigentlichen maschi-
nellen Verifikation von Sicherheitsprotokollen zu. Wir werden maschinelle Verifikation
zu zwei unterschiedlichen Zielen verwenden:

Als erstes zeigen wir, wie formale Methoden benutzt werden k önnen, um zu ei-
ner gegebenen abstrakten Spezifikation eine sichere Implementierung herzuleiten. Der
Beweis der Sicherheit der Implementierung umfasst eine allgemeine Methologie wie
Protokollverifikation in Zukunft aussehen k önnte (und unserer Meinung nach auch soll-
te). Die Methologie basiert auf formal verifizierten Bisimulationen, was uns rigorose
und glaubhafte Beweise liefert. Exemplarisch stellen wir eine abstrakte Spezifikati-
on und eine konkrete Implementation von geordneter sicherer Nachrichten übertragung
vor. Den dabei auftretenden Bisimulationsbeweis haben wir formal mit Hilfe des Theo-
rembeweisers PVS [44] verifiziert.

Als zweites betrachten wir die Ziele, die ein Protokoll erf üllen soll. Wir zeigen wie
sich Integrit ätseigenschaften in unserem zugrundeliegenden Modell ausdr ücken las-
sen, und wir zeigen, dass sich Integrit ätseigenschaften von abstrakten Spezifikationen
auf die konkreten Implementationen übertragen. Desweiteren zeigen wir, dass logische
Schlussfolgerungen bzgl. Integrit ätseigenschaften f ür die konkrete Implementierung
g ültig sind im kryptographischen Sinn. Diese beiden Punkte erm öglichen es uns, die
abstrakte Spezifikation anstelle der konkreten Implemantation maschinell zu verifizie-
ren. Der Vorteil ist, dass Spezifikationen im allgemeinen deterministisch und somit
zug änglich f ür formale Beweissysteme sind, w ährend der Probabilismus der konkre-
ten Implementationen f ür formale Beweissysteme (bis jetzt) noch nicht zug änglich ist.
Der Beweis der Spezifikation übertr ägt sich dann automatisch auf die konkrete Imple-
mentierung. Exemplarisch verifizieren wir unsere abstrakte Spezifikation f ür geordnete
sichere Nachrichten übertragung mit Hilfe des Theorembeweiser PVS, d.h. wir bewei-

v

sen, dass eine Umordnung der Nachrichten oder ein Replayangriff von unserem System
verhindert wird.

Als weitere Ziele betrachten wir Fairness, Liveness und Non-Interference (Un-
beeinflussbarkeit). Wir werden sehen, dass die Standarddefinitionen dieser wichtigen
Eigenschaften ungeeignet f ür echte Kryptographie sind, da sie auf unendlichen Pro-
grammabl äufen beruhen, w ährend kryptographische Protokolle nach polynomiell, al-
so endlich, vielen Schritten abbrechen. Desweiteren ber ücksichtigen unsere Definitio-
nen Fehlerwahrscheinlichkeiten, was einen wichtigen Bezug zur Kryptographie her-
stellt. Analog zu Integrit ätseigenschaften zeigen wir, dass sich diese Eigenschaften von
der abstrakten Spezifikation auf die konkrete Implementation übertragen. Um unsere
Liveness-Definition anhand eines realen Systems zu illustrieren, geben wir eine Spezi-
fikation und eine Implementation f ür Nachrichten übertragungmit verf ügbaren Kan älen
an, und wir zeigen, dass beide unsere Definition erf üllen. Um unsere Non-Interference-
Definition zu veranschaulichen, geben wir eine kryptographische Firewall an, die zwei
ehrliche Benutzer sicher miteinander kommunizieren l ässt und sie vom Rest der Welt
abschirmt, d.h. sie k önnen nicht von anderen Benutzeren oder vom Angreifer beein-
flusst werden. Die Firewall l ässt sich problemlos auf mehrere, disjunkte Parteien er-
weitern, was dem typischen Konzept mehrerer Firewalls im Internet entspricht.

vi

Acknowlegdements

First of all, I am profoundly grateful to my main adviser Birgit Pfitzmann, who gave
me the opportunity to work in security and cryptography, and proposed the topic of this
work. Whenever I encountered a problem which I had problems to solve on my own,
she took the time to sit together until we finally found a solution. Without her ongoing
support this work would have undoubtedly impossible.

I thank my co-adviser Harald Ganzinger for his interest in my work and for several
valuable comments which helped to increase the quality of the thesis.

I thank J örg Siekmann for general advice in several non-technical questions which
arose during the last year.

I’m indebted to Christian Jacobi for being a qualified co-author of the papers which
form the tool-assisted basis of this thesis. Moreover, he suffered for me and proof-
read several parts of this work. Thanks a lot! I would like to thank Michael Steiner
and Michael Waidner for producing new ideas and useful comments about polynomial
fairness and liveness; furthermore, I thank Heiko Mantel for many valuable comments
about non-interference.

I thank the former and current members of our group at Saarland University: Ammar
Alkassar, Alexander Geraldy, Andr �e Adelsbach, Ahmad-Reza Sadeghi, Chris St üble,
Matthias Schunter, Michael Steiner, Petra Maschke, and Sandra Steinbrecher for pro-
viding an inspiring environment which helped me a lot finishing this work. In particu-
lar, I thank Sandra Steinbrecher for being a congenial room mate who had to bear with
me during the last year.

This work was supported by the Graduate Studies Program “Quality Guarantees for
Computer Systems” founded by the DFG. Thanks a lot, mainly for the financial sup-
port :-)

Last, but certainly not least, I am grateful to my parents who always supported me. I am
grateful to my girlfriend Isabell Schu for a wonderful last year, and to all my friends,
especially Swen Jacobs, Sabine Schwierczek, David Mendzigall, Christian Marbert,
and Dirk Leinenbach who always had to be appreciative of my overdrawn eagerness to
finish this work, and who reminded me that there are much more important things than
university.

Contents

Zusammenfassung iii

1 Introduction and Overview 1

2 Asynchronous Reactive Systems 7
2.1 General System Model . 7

2.1.1 Security-specific System Model 12
2.1.2 Simulatability . 13
2.1.3 Some Useful Lemmas . 15

2.2 Special Cases and Composition . 17
2.2.1 Standard Cryptographic Systems with Static Adversaries . . . 18
2.2.2 Composition . 20

2.3 The System for Secure Message Transmission 22
2.3.1 The Ideal System . 22
2.3.2 The Real System . 24

3 Some Variants of the Model 26
3.1 One

�
- � Connection . 26

3.1.1 Definitions . 27
3.1.2 Proof of Equivalence . 28

3.2 S-Simulatability . 32
3.2.1 Definitions . 33
3.2.2 Proof of Equivalence . 34
3.2.3 Combining both Variants of Simulatability 37

3.3 Guessing Outputs of the Adversary 38
3.3.1 Definitions . 39
3.3.2 Proof of Equivalence . 41

3.4 Relation to Synchronous Systems 43
3.4.1 A Brief Review of the Synchronous Model 45
3.4.2 Definition on the Embedding 46
3.4.3 Preliminary Work for the Embedding Theorems 48
3.4.4 The Embedding Theorems 54
3.4.5 An application . 58

4 Deriving Secure Implementations 59
4.1 Secure Message Transmission in Correct Order 59

4.1.1 The Abstract Specification 59
4.1.2 The Split Ideal System . 63

vii

CONTENTS viii

4.1.3 The Real System . 65
4.2 Proving Security of the Real Ordered System 65
4.3 Formal Verification of the Bisimulation 69

4.3.1 Defining the Machines in PVS 69
4.3.2 Proving the Bisimulation . 72
4.3.3 Verification Effort . 74

4.4 Summary . 74

5 Sound Verification of Integrity Properties 75
5.1 Integrity Requirements . 75
5.2 The Preservation Theorem . 76
5.3 Validation of the Ordered Channel Specification 78

5.3.1 The Integrity Property . 78
5.3.2 Verification Effort . 82

5.4 Conclusion . 83

6 Polynomial Fairness and Liveness 84
6.1 Introduction and Related Literature 84
6.2 Expressing Polynomial Fairness and Liveness 86

6.2.1 Polynomial Fairness . 86
6.2.2 Polynomial Liveness . 87

6.3 Preservation of Polynomial Liveness under Simulatability 90
6.4 An Example: Secure Message Transmission with Reliable Channels . 93

6.4.1 The Ideal System . 93
6.4.2 The Real System . 96
6.4.3 Proof of Liveness . 98

6.5 Conclusion . 101

7 Computational Probabilistic Non-Interference 102
7.1 Introduction and Related Literature 102
7.2 Expressing Non-Interference . 104

7.2.1 Flow Policies . 104
7.2.2 Definition of Non-Interference 105

7.3 Preservation of Non-Interference Requirements under Simulatability . 110
7.4 A Cryptographic Firewall . 111

7.4.1 The Ideal System . 112
7.4.2 The Real System . 117
7.4.3 Non-Interference Proof . 118

7.5 Conclusion . 122

8 Conclusion and Outlook 123

A Postponed Proofs 126
A.1 From Section 3.1 . 126
A.2 From Section 3.2 . 129
A.3 From Section 3.4 . 133
A.4 From Section 5.3 . 137

Bibliography 147

Index 151

Chapter 1

Introduction and Overview

Nowadays, cryptographic protocols are getting more and more attention in both theory
and practice. As common examples, we may think of online banking, fair exchange
over the internet, or the even more sensitive topic of electronic elections. In the early
days of security research, these protocols were designed using a simple iterative pro-
cess: someone proposed a protocol, someone else found an attack, the bug was fixed,
and so on, until no further attacks were found. Today, it is commonly accepted that this
approach does not give any security guarantee at all, since many simple and apparently
secure protocols have been found incorrect over the years. Moreover, important proto-
cols like fair contract signing, electronic auctions or payments are just too complex for
this approach. Secure protocols—or more generally, secure reactive systems—need a
proof of security before being acceptable.

Some years ago, this field of research only focused on certain cryptographic prim-
itives such as encryption and digital signature schemes. In current research, larger
systems like secure channels or fair exchange protocols are to be verified. The main
goal researchers are ultimately aiming at is to verify really large systems like whole
e-commerce architectures.

If we turn our attention to what has already been done, we can distinguish be-
tween two main approaches that unfortunately seem to be rather disjoint. One approach
mainly considers the cryptographic aspects of protocols aiming at complete and math-
ematically rigorous proofs with respect to cryptographic definitions. The other one
involves formal methods, so protocols should be verified using formal proof systems,
or these proofs should even be generated automatically by theorem provers. Usually,
these proofs are much trustworthier than hand-made proofs, especially if we consider
large protocols using many single steps. The main problem of this approach lies in the
necessary abstraction of cryptographic details. This abstraction cannot be completely
avoided, since formal methods cannot handle probabilistic behaviours by now, so usu-
ally perfect cryptography is assumed—following the approach of Dolev and Yao [17]—
in order to make machine-aided verification possible.1 As we will see, these abstrac-
tions are unfaithful in the sense that they cannot be securely implemented, i.e., there is
no guarantee that a formally proven protocol is actually secure if implemented with a
cryptographically secure primitive [47, 4].

Comparing both approaches, we can see that cryptographic proofs are more mean-

1At the moment, we are working on a probabilistic calculus which should be able to automatically deduct
whether two given probabilistic machines are computationally bisimilar, i.e., whether they are bisimilar up
to a very small error probability [6]. This may help to avoid some of those abstractions.

1

CHAPTER 1. INTRODUCTION AND OVERVIEW 2

ingful in the sense of security but they also have one main disadvantage: cryptographic
proofs are usually very long, sketchy, and error-prone even for very small examples
like encryption schemes, and moreover have to be done by hand so far. Hence, it seems
rather impossible to verify whole e-commerce architectures by now.

Our goal is to link both approaches to get the best overall result: proofs that allow
abstraction and the use of formal methods, but retain a sound cryptographic semantics.
Being more precise, we want to formally verify abstract goals of abstract protocols us-
ing formal proof tools, and we want these proofs to carry over to the concrete goals of
the concrete protocols, enabling both trustworthy and cryptographically sound proofs
of arbitrary protocols. We will now describe our approach in more detail while ad-
dressing the problems of common verification techniques.

Abstract Models

In the formal-methods community, one tries to use established specification techniques
to specify requirements and actual protocols unambiguously and with a clear seman-
tics. In order to make this possible, abstractions must get rid of probabilism yielding
the already mentioned notion of perfect cryptography. In order to achieve this, crypto-
graphic operations are treated as an infinite term algebra where only predefined equa-
tions hold (in other terminology, the initial model of an abstract data type) as introduced
in [17]. For instance, there are a two operators

� �
and � � for asymmetric en- and

decryption representing a key pair of a participant � . Twofold encryption of a message
� from a basic message space

�
does not yield another message from

�
, but the term��� � ���	� � ���

. The equation � � � � � �
�� �

for all terms

is defined to hold, and the

proofs rely on the abstraction that no equations hold unless they can be derived syntac-
tically from the given ones. Early work using this approach for tool-supported proofs
was rather specific with respect to the considered issue and formalism, e.g., [41, 39];
nowadays most work is based on standard languages and general-purpose verification
tools, as initiated, e.g., in [52, 31, 2].

Unfortunately, these models lack a link between the chosen abstractions and the
real cryptographic primitives as defined and proven in cryptography. The main prob-
lem of these models is not even that one somehow has to weaken the statements to
polynomial-time adversaries and allow error probabilities; the problem is that proofs
based on formal methods prove a property to hold by showing that the negation of the
property is not contained in the closure of the term algebra. Obviously, there has to be
some kind of completeness in order to obtain meaningful results. In contrast to that,
the definitions in cryptography say nothing about all equations. For instance, the ac-
cepted cryptographic definition of secure asymmetric encryption only requires that an
adversary in a strong type of attack cannot find out anything about the message (see
[9, 14]), but nothing is asserted about possible relations on the ciphertexts. One can
construct examples, at least artificial ones, where proofs made with these abstractions
go wrong with encryption schemes provably secure in the cryptographic sense [47].

Faithful Abstractions

The problem can be approached from both sides: cryptography can try to offer stronger
primitives closer to the typical abstractions, or formal methods can be applied based on
weaker abstractions which are easier to fulfill by actual cryptography. Our approach
belongs to the second way. Both approaches presuppose that one defines what it means
that some abstraction is implemented in a cryptographic sense. Both also need proofs

CHAPTER 1. INTRODUCTION AND OVERVIEW 3

Abstract
protocol

Abstract
primitives

Concrete
primitives

Concrete
protocol

Abstract
goals

Concrete
goals

uses

abstraction
replace
primitives

cryptographic
semantics

uses

fulfils

fulfils

abstraction

Figure 1.1: Goals of faithful abstraction. Bold arrows should be defined once and for
all, normal arrows once per protocol. It should be proven that dashed arrows follow
automatically.

that working with the abstractions leads to meaningful results in the real cryptographic
sense, i.e., the abstractions should be faithful. This is illustrated in Figure 1.1.

The lower layer of the figure represents the real world, involving concrete sys-
tems using concrete cryptographic primitives. The task is to show that they fulfill
certain concrete goals. Our approach now starts by defining what faithful abstractions
of concrete primitives in fact are. This corresponds to the left part of the figure, and
has already been defined in [49] using the concept of simulatability modern cryptog-
raphy often uses. These abstractions should provide non-probabilistic, deterministic
interfaces hiding all cryptographic details, hence they can be formally validated using
existing formal methods. Now, we would like to obtain an abstraction of the overall
protocol by suitably combining the abstract primitives. In [49], it has already been
shown that this abstraction in fact retains the soundness of the system. Moreover, it
introduces composition of systems and it contains a composition theorem which states
that a protocol can be refined step-wise by replacing the abstract primitives yielding a
concrete protocol again which uses concrete primitives. This corresponds to the mid-
dle part of Figure 1.1. The final task of the approach is to relate abstract and concrete
goals of the overall protocol, and to show that fulfillment in the abstract system implies
fulfillment in the concrete system with respect to the cryptographic semantics, which
is shown in this thesis. This corresponds to the right side of Figure 1.1.

Thus, all bold arrows in Figure 1.1 have been defined and all dashed arrows have been
proven. Now, abstract goals of abstract protocols can be formally verified by formal
proof systems and the proofs automatically carry over to the concrete goals of the
concrete system, enabling both trustworthy and cryptographically sound proofs of ar-
bitrary protocols.

Although the task of finding these abstract primitives and proving them to be faithful
turns out to be labour-intensive, it has to be done only once for every considered prim-
itive. Since common protocols are usually based on only very few, basic primitives
like secure channels and commitments, the work is well spent. By now, only faithful
abstractions of secure message transmission [49], fair exchange protocols [56], and se-
cure group key exchange [59] have been shown. We will review the scheme for secure
message transmission in Section 2.3, since it serves as the foundation for many exam-
ples in this work. We only briefly state here that there is current work at our group
at Saarland University and IBM Zurich on designing a cryptographic library involving
additional primitives, nonces, timestamps and so on.

Moreover, we will see that abstract specifications usually are monolithic, i.e., they
consist of only one machine, so they have to be split in proper parts before they can

CHAPTER 1. INTRODUCTION AND OVERVIEW 4

eventually be refined. This corresponds to the upper-left arrow of Figure 1.1, i.e., we
have to show which abstract primitives are used by the abstract protocol. We will
show in this work that formal methods are well-suited for formally proving that the
split system has the same functional behaviour as the original, monolithic system using
the well-established approach of bisimulation. In combination with the composition
theorem, these formally verified bisimulations are a powerful linkage between concrete
systems and their abstract counterparts.

The Actual Goals

As actual goals of a cryptographic protocol, we consider integrity properties, fairness
and liveness, and absence of information flow in this work. At first, we concentrate
on integrity properties, and we prove that they in fact carry over to the concrete im-
plementation. Moreover, we show that logic derivations among them are valid for
the implementation in the cryptographic sense, which makes them accessible for the-
orem provers. After that, we focus on the common concept of fairness and liveness.
Unfortunately, the standard definition of fairness and liveness is not suited for most
cryptographic protocols since it is based on infinite runs whereas the runs of such pro-
tocols are restricted to polynomial length, i.e., they are finite. In order to circumvent
this problem and to cope with real cryptography, we introduce the notion of polynomial
fairness and polynomial liveness which handles the restriction of the runs to polyno-
mial length and moreover allows error probabilities. Similar to integrity properties, we
show that liveness properties carry over to the concrete implementation under some
reasonable assumptions (we do not have to show this for fairness, since fairness is a
property of a scheduler, not of a system). Finally, we show how to express the very
complex approach of information flow using the well-established concept of proba-
bilistic non-interference. The common definitions of probabilistic non-interference do
not include computational details like error probabilities which would be essential to
cope with systems involving real cryptography, so we introduce the notion of compu-
tational probabilistic non-interference. Just as we did with the preceeding properties,
we show that non-interference properties carry over to the concrete implementation.

Related Literature

Verification of cryptographic protocols is a large field of research, and lots of things still
have to be done. As already stated above, one main goal is to retain a sound crypto-
graphic semantics and nevertheless apply machine-aided verification in order to obtain
formally verified proofs. This goal is pursued by several researchers: our approach is
based on the model of Pfitzmann and Waidner recently introduced in [49], which we
believe to be really close to this goal. Other possible ways to achieve this goal have
been presented in [29, 30]: actual cryptography and security is directly expressed and
verified using a formal language (� -calculus), but their approach does neither offer any
abstractions nor abstract interfaces that enable tool support. [33] has quite a similar
motivation to our underlying model, but it is restricted to the usual equational speci-
fications (following the approach of [17], the so-called “Dolev-Yao model”), and the
semantics is not probabilistic. Moreover, [33] only considers passive adversaries and
only one class of users exists, which is referred to as “environment”. So the abstraction
from cryptography is no more faithful than abstraction in other formal methods papers
about security, e.g., [31, 55, 3, 45, 18]. They are all based on intuitive, but unfaithful

CHAPTER 1. INTRODUCTION AND OVERVIEW 5

abstractions, i.e., they cannot be securely implemented, since no cryptographic scheme
fulfills their requirements.

Thus, there has not been any proof of correctness of a cryptographic protocol so
far which both includes formal proof systems and retains the soundness of cryptogra-
phy. This thesis bridges this gap by giving the first example of a machine-aided but
nevertheless sound proof of an integrity property of a concrete cryptographic protocol.
Moreover, the example comprises a general methodology how protocol verification
might be performed in the future.

For the sake of readability we postpone the related literature of fairness, liveness,
and non-interference to their corresponding chapters.

Organization of the Thesis

Chapter 2 contains a detailed review of the reactive model of Pfitzmann and Waidner
for asynchronous systems, originally presented in [49], which we will use throughout
the thesis. We believe their model to be well-suited for analyzing cryptographic proto-
cols; moreover, we participated in the further development of the model during the last
year, so we presume to use the term “our model” in this work. The chapter concludes
with a review of the abstract and concrete system of secure message transmission [49]
which serves as a building block for designing larger examples in this work.

Starting with Chapter 3, we present original work.

Chapter 3 discusses several model variants, especially focusing on the relations be-
tween four different kinds of simulatability. We show that all four definitions are
equivalent. This significantly reduces our effort in further proofs since we can always
use the definition which is suited best for the considered problem. The second part of
the chapter is dedicated to the relationship of our underlying asynchronous model and
its synchronous predecessor [47]. In practice, lots of protocols are synchronous, i.e.,
they proceed in rounds. As commonly known examples, the reader may think of smart
cards, fair exchange protocols over the internet, etc. Thus, the synchronous model
is still essential to cope with protocols currently used in practice; hence, we want to
drive double tracked, but without proving each and every theorem for both models. A
possibility to circumvent this problem is to show that the synchronous model can be
regarded as a special case of the asynchronous model, which we do not have to con-
sider separately. This work contains the first, essential step of this task: we show that
synchronous systems can be embedded into asynchronous ones such that simulatability
is preserved by this embedding. This result serves as the foundation for carrying over
lemmas and theorems from the asynchronous case to the synchronous case.

Chapter 4 deals with the actual verification of cryptographic protocols. We present
a monolithic specification of secure message transmission with ordered channels and
a concrete, secure implementation. The way of actually deriving the implementation
comprises a general methodology how concrete implementations of abstract specifica-
tions can be found. Moreover, the methodology contains formally verified bisimula-
tions, which yields trustworthy proofs. The bisimulation that occurred in the security
proof of our example is formally verified using the theorem prover PVS [44]. Prior
to this work, there has not been any success in using the advantage of formal verifica-
tion in order to derive cryptographically sound implementations, so our methodology
is new, and it serves as our first step of bridging the gap between the rigorous proofs of

CHAPTER 1. INTRODUCTION AND OVERVIEW 6

cryptography and verification using formal proof systems.

Chapter 5 finishes building this bridge. We define what it means for a system to provide
integrity properties in a cryptographic sense. We then show that proofs of such proper-
ties made for the abstract specification also hold for the concrete implementation, and
that logic derivations among integrity properties are valid for the implementation in the
cryptographic sense, which makes them available for theorem provers. We conclude
with the formal verification of our specification of the previous section, i.e., we show
that message reordering is in fact prevented. We again use PVS to obtain a formally
verified proof. According to our results, the proof automatically carries over to the
concrete implementation which yields the first machine-aided, but nevertheless sound
proof of the concrete goals of a concrete system. Together with the result of the previ-
ous chapter, this completes the first tool-supported and cryptographically sound proof
of both the security of a concrete implementation and its actual goals.

The remaining chapters show that the important concepts of fairness, liveness, and even
the very complex notion of information flow are comprised in our model.

In Chapter 6 we show how fairness and liveness can be expressed in our model. We will
see that the standard definitions cannot be applied for most cryptographic protocols, so
we introduce the more general notion of polynomial fairness and polynomial liveness,
which makes both concepts accessible for arbitrary real cryptographic protocols for the
first time. As usual, we show that these properties carry over from the abstract system
to its concrete counterpart, and we present an example which is polynomially live with
respect to a desired property.

In Chapter 7 we show that information flow can be expressed in our model using the
well-established concept of probabilistic non-interference. We introduce the more gen-
eral notion of computational probabilistic non-interference which is essential to cope
with real cryptography. Similar to the previous chapter, we show that non-interference
properties of the abstract specification carry over to the concrete implementation. As
a practical example, we present a specification and a secure implementation of a cryp-
tographic firewall guarding two honest users from their environment. Moreover, the
specification can easily be generalized to multiple disjoint parties which comprise ar-
bitrary numbers of users.

Chapter 8 summarizes and gives an outlook to future research.

Chapter 2

Asynchronous Reactive Systems

In this chapter, we introduce our formal model of reactive systems in asynchronous
networks that we will use throughout the thesis. It should be noted once more that
this is not original work, but only a review of the model recently introduced by Pfitz-
mann and Waidner [49]. However, we have made some minor, but far-reaching changes
since then. For example, explicit master schedulers are now considered which allow to
achieve well-known properties like liveness or non-interference. In the original model,
the adversary was always forced to be the master scheduler, corresponding to an in-
tuitive, but nevertheless restricting assumption. Moreover, we extended their channel
model to reliable, non-authenticated channels which turned out to be essential for prov-
ing typical examples of non-interference, e.g., a cryptographic firewall guarding several
honest users from their environment. Finally, we helped to strengthen the model, i.e.,
to find and correct errors.

For the sake of completeness, we review the definitions in full detail. We addi-
tionally use informal descriptions of the definitions in order to illustrate how the actual
intuition of expressing a model for sound protocol verification has been put into for-
mulas step by step.

2.1 General System Model

In the following we consider a finite alphabet
�

. The set of all strings over
�

will
be denoted by

���
, � denotes the empty word and

����� �����
	�� �� . Moreover, we
consider some special symbols ����������� ���� �

that will be used to express different ports
of machines. For � � � � and � ���! , we define �#"%$ to be the � -bit prefix of � .

Our machine model is probabilistic state-transition machines, similar to probabilis-
tic I/O automata as sketched by Lynch [32]. Communication between different ma-
chines is done over ports which can be divided into input and output ports. Inspired
by the CSP-Notation [26] we write output and input ports as &'� and &(� , respectively.
Formally, ports are defined as follows.

Definition 2.1 (Ports)

a) A port) is a triple
�+* �,�-�/. � � � �10 � �2�2���2�� 0 � �3�/�4 . We call 5,6'7�8 �) �9� �:*

its
name, ; 6'<(84; �) �9� � � its label, and =?>A@ �) �9� � . its direction. In the following these
triples are simply written as concatenations, i.e., we write

* ��� instead of
�+* � �B��� �

and so on.

7

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 8

Receiving
machine

Sending
machine

Scheduler for
buffer q~

q!

q !

q?

Buffer q
~

q ?

q↔!

q↔?

1

Figure 2.1: Ports and buffers.

b) We call a port
�+* � � � . � an input port or output port iff . � � or . � � , respectively.

We call it a simple port, buffer port or clock port iff � � �2�A� , or � , respectively.
For a set

�
of ports let ����� ��� ��� � �) � �	� =?>A@ �) � � �A and >A5 ��� � � ���) ��
� = >A@ �) � � �4 . We use the same notation for sequences of ports, retaining the

order.

c) By)�� , the (low-level) complement of a port) , we denote the port with which it
connects according to Figure 2.1, i.e.,

* ��� � � � * �,� , * � � � � * � � , * � � � � � * � ,
and vice versa. Accordingly, we define the (low-level) complement of a set or
sequence of ports.

d) For a simple port) , we define its high-level complement)� as the port con-
nected to) without counting the buffer, i.e.,

* � � � * � and vice versa. �

Ports will later be connected by naming convention, i.e., a port &'� always sends mes-
sages to &,� .

After introducing ports, we can now focus on machines. If a machine is switched,
it receives an input tuple at its input ports and performs its transition function yielding
a new state and an output tuple in the deterministic case, or a finite distribution over
the set of states and possible outputs in the probabilistic case. At each switching step
of one particular machine, at most one value can arrive at every input port and the
machine can at most produce one output per port. Furthermore, each machine has a
bound on the length of the considered inputs which allows time bounds independent of
the environment.

Definition 2.2 (Machines) A machine is a tuple
� � ����������� � ����� �"!�� �$# �������$!�� �&% � � � � �(' ��)(� � *)+�,� �

of a name
������� � � � �

, a finite sequence
����� �"! �

of pairwise distinct ports, a set# �-���-�$! �/. � �
of states, a probabilistic state-transition function % � , a length function

� � � # �������$! �10 � �32 ��4 �$5 6 7(8:9�;�<-=?>&@BAC5 , and sets ' ��) � �D*)+� �E. # �-���-� ! � of initial
and final states. Its input set is F � � � � � � �G5 6 7 8:9H;�<C=?>�@�AC5

; the I -th element of an input
tuple denotes the input at the I -th input port. Its output set is J � � � � � � �G5 K(LNMO8:9H;�<C=?>�@�AC5

.
The empty word, � , denotes no in- or output at a port. % � maps each pair

� ���&P � �# �-���-�$!�� 0 F �
to a finite distribution over # �-���-�$!�� 0 J �

. If � � *)+�Q�
or P � � ����RGR�R � � � ,

then % � � ���(P � � � ��� � �2��RGRGR�� � �� deterministically. Inputs are ignored beyond the length
bounds, i.e., % � � ���(P � � % � � ���&P " $ @ 8TS-A � for all P � F �

, where
� P " $ @ 8TSCA �CU � � P U " $ @ 8TSCA:V

for all I .
�

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 9

In the text, we often write “
�

” also for
������� �

.
Machines usually start with one initial input, i.e., the starting state is parameterized.

Complexity is measured in terms of the length of this initial input, often a security
parameter � given in unary representation; in particular, polynomial-time is meant in
this sense.

Note that the chosen representation makes % � independent of the port names. This
will also hold for runs and views, cf. Definition 2.6 and 2.7. Hence, we can rename
ports in some proofs without changing the views. The requirement for � -inputs means
that it does not matter if we switch a machine without inputs or not; we will also omit
such steps from the runs. Inputs “masked” by a length bound � are treated in the same
way. We call a machine

�
a black-box submachine of a machine

���
if the machine� �

has access to the state-transition function % � of
�

, i.e., it can execute % � for the
current state of the machine and arbitrary inputs.1

Remark 2.1. In order to cope with specific inputs and outputs of a machine
�

, we
introduce some additional notation which is not contained in the original model. Let�

be a subset of the input ports of
�

, i.e.,
� . >A5 �N����� �"! � �

, and
���BU �CU�� 9 � � � � � 9

be
given. Then F	��
�����������	�
�� denotes the input with &(� ��� ��� for all &,� � �

and & � � � �
for all & � � � >A5 ������� �O! � �!	 �

. For the sake of readability, we do not explicitly define
the set

�
in the following, i.e., we simply write F �������	�����! ! ! � ��"����#��" in slight abuse of

notation, instead of defining
� � � � &%$ � � I � �'& ��RGRGR �)(4 R In the special case &%$ � � �

for all &*$ � � >A5 ������� �O!B� �
, i.e., in case of an all-empty input, we write F,+ . Outputs are

defined similarly. -
The proposed machines have a natural realization as probabilistic turing machines if
the state-transition function % � is computable, where each port is represented by one
tape. Two machines that have a connected low-level input and output port share one
tape for this channel which simply allows transmitting of arbitrary outputs.

Machines can be divided into three classes depending on the ports they use. The
first two classes consist of the “usual” machines, they are dealt with in the following
definition.

Definition 2.3 (Simple Machines and Master Schedulers) A machine
�

is simple if
it has only simple ports and clock out-ports. A machine

�
is a master scheduler if it

has only simple ports and clock out-ports and the special master-clock in-port .,;!/ � � .
Without loss of generality, a master scheduler makes no outputs in a transition that
enters a final state.

�

If we speak of machines in another context we usually consider simple machines. The
special master scheduler is scheduled whenever a machine does not make any non-
empty output at a clockout port or the scheduled buffer cannot deliver the requested
message. Usually, the adversary is regarded as the master scheduler, but it is sometimes
useful to define an explicit master scheduler to achieve certain goals like liveness and
privacy properties.2

The third class consists of the already mentioned buffers. They will be inserted
between every pair of high-level connected ports to ensure asynchronous behaviour.

1Sometimes, the machine 021 is also allowed to “reset” the machine 0 , i.e., to take it back to a prior state.
However, we omit it here since we do not need it in this work.

2The original model of [49] forces the adversary to be the master scheduler. Hence, the mentioned
properties cannot be achieved there.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 10

Roughly speaking, buffers store the messages in transit, i.e., they represent the net in
the real world. A machine

�
can schedule the I -th stored message of buffer � & by

sending I at & � � (provided that & � � � � ��� �O! �
holds). Formally, buffers are defined as

follows.

Definition 2.4 (Buffers) For each name
* � � �

we define a specific machine � * , called
a buffer: It has three ports,

* � � , * � � , * ��� (clock, in, and out) (see Figure 2.1). Its
internal state is a queue over

� �
with random access, initially empty. Its set of final

states is empty, and all its length bounds are infinite. For each state transition, if the
input � at

* � � is non-empty, then %�� � appends � to the queue. A non-empty input at
* �,�

is interpreted as a number I � �
and the I -th element is retrieved (where

&
indicates

the oldest one), removed from the queue, and output at
* ��� . (This might be the element

just appended.) If there are less than I elements, the output is � .
�

By now, we only focused on single machines. We now consider finite sets
��

of ma-
chines with pairwise different machine names and disjoint sets of ports. We will call
such a set a collection. Moreover, we define the completion � ��	� of

��
as the union of

all machines of
��

and the buffers needed for every output port.

Definition 2.5 (Collections)

a) For every machine
�

, let &��?@ ��
 � � � denote the set of ports in
����� �"! �

, and for a
set

��
of machines, let &��?@ ��
 � �� ��� �� ������ ����� �O!��

.

b) A collection
��

is a finite set of machines with pairwise different machine names,
disjoint sets of ports, and where all machines are simple, master schedulers,
or buffers. It is called polynomial-time if all its non-buffer machines have a
polynomial-time implementation.

c) Each set of low-level complementary ports
�) �) � . &��?@T��
 � �� � is called a low-

level connection, and the set of them the low-level connection graph � @ � �� � . By� @38�8 � �� � we denote the free ports in this graph, i.e., &��?@ ��
 � �� � 	 &��?@ ��
 � �� � � . A set
of high-level complementary simple ports

�) �+)� . &��?@ ��
 � �� � is called a high-
level connection, and the set of them the high-level connection graph �B@ � �� � .

d) A collection is closed if
� @38�8 � �� � � � .,;!/ � �(. (Hence, there is exactly one master

scheduler, identified by having the port .(;!/ � � .)
e) The completion � ��	� of a collection

��
is the union of

��
and the corresponding

buffer for each simple or clock out-port � � &��?@T��
 � �� � .
f) If � * � � � ��

and
* ��� � &��?@T��
 � � � then we call

�
the scheduler for buffer � * (in��

). �

We have defined collections of machines, but we did not describe yet how they may
interact, when they are scheduled and so on. Scheduling of machines is done sequen-
tially, so we have exactly one active machine

�
at any time. This machine is allowed

to schedule an arbitrary buffer � & for which & ��� � &��?@ ��
 � � � . If � & is scheduled and it
also can deliver the specified message, it implicitly schedules the receiving machine� �

, i.e., the unique machine with &,� � &��?@T��
 � � � �
. If

�
tries to schedule multiple

buffers at a time, only one is taken, and if no buffer is scheduled (or the scheduled

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 11

buffer cannot deliver the requested message) the master scheduler is scheduled. This
yields the notion of runs (sometimes called traces or executions) of the collections.
In order to ensure that runs are well-defined, we demand the collection to be closed,
i.e., it especially must not have any free input ports. Since the machines themselves
are probabilistic, we obtain a probability space of runs, along with their corresponding
random variables.

Definition 2.6 (Runs) Given a closed collection
��

with master scheduler � and a
tuple

)+�H) � ' ��) �� � � 0 ��� �� ' �H) � of initial states, the probability space of runs is
defined inductively by the following algorithm. It has a variable � for the resulting
run, an initially empty list, a variable

�����
(“current scheduler”) over machine names,

initially
����� � � � , and treats each port as a variable over

� �
, initialized with � except

for .(;!/ � � � � &
. Probabilistic choices only occur in Phase (1).

1. Switch current scheduler: Switch machine
� ���

, i.e., set
� � � �	� ��
 % ���� � ���(P � for

its current state � and in-port values P . Then assign � to all in-ports of
� ���

.

2. Termination: If � is in a final state, the run stops. (As � made no outputs, this
only prevents repeated master clock inputs.)

3. Buffer messages: For each simple out-port &?� of
�����

, in their given order, switch
buffer � & with input &(� � � � &'� . Then assign � to all these ports &?� and &4� � .

4. Clean up scheduling: If at least one clock out-port of
� ���

has a value �� � , let* � � denote the first such port and assign � to the others. Otherwise, let .,;!/ � � � � &
and

� ��� � � � and go back to Phase (1).

5. Scheduled message: Switch � * with input
* �,� � ��* ��� , set

* � � � * ��� and then
assign � to all ports of � * and to

* �'� . Let
� ��� � � � �

for the unique machine
� �

with
* � � &��?@ ��
 � � � �

. Go back to Phase (1).

Whenever a machine (this may be a buffer or even a black-box submachine) with name����� � �
is switched from

� ���(P � to
� � � �	� � , we add a step

������� � � �����&P � ��� � �	� � to the
run � where P � � � P " $ @ 8TS-A , except if � is final or P � � � �2�GR�RGR �/� � . This gives a family of
random variables ��� � �� � �C��� � �� � $�� $ � $�� $ ��� � $��� R
For a number � � �

, � -step prefixes
��� � �� � $�� $ � $ of runs are defined in the obvious way.

For a function � � ' ��) �� 0 �
, this gives a family

��� � �� � $ � �C��� � �� � $�� $ � $ 8 $�� $ A � $�� $ ��� � $ �� .
�

Most of the time, we will not be interested in the whole run but only in its restriction
to a set of machines, i.e., to the honest user. This restriction is called the view of these
machines in this particular run.

Definition 2.7 (Views) The view of a subset
��

of a closed collection
��

in a run � is
the restriction of � to

��
, i.e., the subsequence of all steps

��������� � �����&P �/� � ��� � where����� � �
is the name of a machine

� � ��
. This gives a family of random variables

�)"��� �� � �� � � � �)"��� �� � $�� $ �
�� ��� $�� $ ��� � $ �� �

and similarly for � -step prefixes. For a singleton
�� � � � we write �)"��� �� � � � instead

of �)"��� �� �-� � � for reasons of readability.

�

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 12

2.1.1 Security-specific System Model

In this subsection we define specific collections for security purposes. We start by
defining the actual system part; afterwards we focus on honest users and adversaries,
which are usually referred to as the environment.

A structure is a pair
� �� �G# � , where

��
is a collection of simple machines, and # .

� @ 8 8 � � �� � � , the so-called specified ports, are a subset of the free ports of � �� � . Specified
ports always guarantee certain services like “send message � to � ” for a message
transmission system, or “transfer amount � to � ” in a payment system. The users may
only connect to a subset of these ports, the remaining free ports of the structure are
additionally available to the adversary. We will always describe specified ports by their
complements # � , i.e., the ports honest users should have, because that is independent
of the buffer notation. If we consider a set of structures we obtain a system #�� ! .

Definition 2.8 (Structures and Systems)

a) A structure is a pair
! �N����� � � �� �$# � where

��
is a collection of simple ma-

chines called correct machines, and # . � @38�8 � � �� � � is called specified ports. If��
is clear from the context, let �# � � � @ 8 8 � � �� � � 	 # . We call

� �?@ < � �� �$# � � �
&��?@ ��
 � �� � 2 �# � the forbidden ports.

b) A system #�� ! is a set of structures. It is polynomial-time iff all its collections
��

are polynomial-time. �

Note that we do not demand that the adversary is forbidden to connect to ports of # .
However, a limitation of the adversary to the free ports of

� �?@ < � �� �G# � would not really
be a restriction. We will show this in Section 3.2.

We will later consider cryptographic systems that are described using an intended
structure for the case without attacks. The remaining structures are derived using a trust
model for both machines and channels. As an example, consider the powerset of the
set of machines as the desired trust model, so we have one structure for every possible
combination of correct and incorrect machines (i.e., of honest and dishonest users).

A structure of a system can be completed to a configuration by adding additional
machines � and

�
, modeling honest users and the adversary, respectively. The machine

� is restricted to the specified ports # ,
�

connects to the remaining free ports of the
structure and both machines can interact, e.g., in order to model active attacks.

Definition 2.9 (Configurations)

a) A configuration of a system #�� ! is a tuple
�D���	� � � �� �$# � � � � �

where
� �� �$# � �#�� ! is a structure, � is a simple machine without forbidden ports, i.e., &��?@T��
 � � ��
� �?@ < � �� �$# � ��

, and the completion
�� � � � �� 2 � � � � � is a closed collection.

The set of configurations is written � � 5 � � #�� ! � .
b) The initial state of each machine in a configuration is a common security param-

eter � in unary representation. This means that we consider the families of runs
and views of the collection

��
restricted to the subset ' �H) � �� � � � ����� � ��� �� � � � �

of ' ��) �� . We write
��� ��� ; ��� and �)"����� ; ��� � �� �

for the families
��� � �� and�)"��� �� � �� �

restricted to ' ��) � �� , and similar for � -step prefixes. Furthermore, we
identify ' ��) � �� with � and thus write

��� � � ; ��� � � etc. for the individual random
variables.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 13

c) The set of configurations of #�� ! with polynomial-time user � and adversary
�

is called � � 5 � � K�� � � #�� ! � . The index � K�� � is omitted if it is clear from the context. �

In the original model of [49], the adversary is forced to be the master scheduler of every
configuration, which fits our intuition of asynchronous behaviour, i.e., the adversary
should be able to schedule the network.

However, it will sometimes be useful to consider self-scheduled systems, i.e., sys-
tems containing an explicit master scheduler for each of its structures, which allows us
to achieve goals like liveness and privacy properties, cf. Chapter 6 and 7.

2.1.2 Simulatability

The definition of security between two systems is based on the common concept of
simulatability. Simulatability essentially means that whatever might happen to an hon-
est user in an arbitrary configuration of a concrete system #�� !�� ��� � can also happen in a
configuration of an ideal system #�� ! 6 � .

Being more precise, for every configuration
�D�����
	 � ��� 5 � � #�� !�� ��� � � , there exists

a configuration
�D���	�� � � � 5 � � #�� ! 6 � � yielding indistinguishable views of � in both

configurations. We abbreviate this by #�� ! � ��� ����� ��� #�� ! 6 � and we say that #�� ! � ��� � is “at
least as secure” as the system #�� ! 6 � . A typical situation is illustrated in Figure 2.2. The
notion of indistinguishability has been introduced in [65] and has asserted its position
as a fundamental concept of modern cryptography. We will give a rigorous definition
later on.

However, we do not want to compare a structure
� �� 	 �$# 	 � � #�� ! � ��� � with arbitrary

structures of #�� ! 6 � , but only with certain “suitable” ones. What suitable actually means
can be defined by a mapping � from #�� !�� ��� � to the powerset of #�� ! 6 � , so that

� �� � �$# � � �
� � �� 	 �$# 	 � means that

� �� � �$# � � is such a suitable structure. The mapping � is called
valid if the mapped structures always have the same set of specified ports.

Definition 2.10 (Valid Mappings, Suitable Configurations) Let #�� !�	 and #�� !�� be two
systems.

a) A valid mapping for them is a function � � #�� !�	 0�� � #�� !�� � with # 	 � # � for
all structures

� �� 	 �$# 	 � and
� �� � �$# � � � � � �� 	 �G# 	 � .

b) If #�� ! � contains exactly one structure
� �� � �$# � � with # � � # 	 for each� �� 	 �G# 	 � � #�� !�	 , the canonical mapping � is defined by � � �� 	 �$# 	 ���

� � �� � �$# � � .
c) Given � , the set � � 5 ��� � #�� !�	 � of suitable configurations contains those configu-

rations
� �� 	 �G# � � � � 	 � � ��� 5 � � #�� ! 	 � where &��?@ ��
 � � ��
 � �?@ < � �� � �G# � � �

for all� �� � �G# � � � � �� 	 �G# � . �

Since the definition of simulatability is based on indistinguishability of probability
distributions, i.e., the views of � in both configurations have to be indistinguishable,
we repeat the definition of indistinguishability essentially from Yao [65].

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 14

HH

A2

A1

S S

Mu Mv THM3

∀ ∀
∃

Real configuration Ideal configuration

M1
^

∈ f(M1, S)
^

M2
^

Figure 2.2: Example of simulatability. The view of � is compared.

Definition 2.11 (Negligible Functions) A function � � � 0���� is negligible, written� � � ��� &�� &�� ; 	 � � � , if for all positive polynomials
 , � � � � � � � � � � ��� &��
 � � � .
The class of negligible functions is written ������� .

�

Definition 2.12 (Indistinguishability) Two families
��� 6(@ � � � ��� and

��� 64@ � � � � ��� of ran-
dom variables (or probability distributions) on common domains � � are

a) perfectly indistinguishable (“=”) if for each � , the two distributions
� 6(@ � and� 64@ � � are identical.

b) statistically indistinguishable (“ ��� ��� �!� ”) for a class # �#" � � of functions from�
to
� �

if the distributions are discrete and their statistical distances

$ ��� 6(@ � � � 64@ � � �9� � &%'&(�*),+ � - ��� 64@ � � . �/.0- ��� 64@ � � � . �G� � # �#" �1�
(as a function of �). # �#" � � should be closed under addition, and with a func-
tion � also contain every function � � � � . Typical classes are �/2 � # �#" �1�
containing all functions bounded by
 � � �43 %65 � for a polynomial
 , and the
(larger) class �7�7�8� .

c) computationally indistinguishable (“ � � K�� � ”) if for every algorithm 9B>
 (the dis-
tinguisher) that is probabilistic polynomial-time in its first input,

� - � 9B>
 ��� � � � 64@ � � � & �:.0- � 9B>
 � � � � � 64@ � � � � & �G�;� &
&�� ; 	 � � � R

(Intuitively, the distinguisher is given the security parameter and an element
chosen according to either

� 6(@ � or
� 6(@ � � and he has to guess which distribution

the element came from.)

We write � if we want to treat all cases together.

�

We are now ready to introduce the simulatability definition.

Definition 2.13 (Simulatability) Let systems #�� !�	 and #�� !�� with a valid mapping �
be given.

a) We say #�� !�	 � � � �
� � <

� ��� #�� !�� (perfectly at least as secure as) if for every config-
uration

�D���	� 	 � � �� 	 �G# � � � � 	 � � ��� 5 ��� � #�� ! 	 � , there exists a configuration�(���	��� � � �� � �$# � � � � � � � � � 5 � � #�� ! � � with
� �� � �$# � � � � �� 	 �$# � (and the

same �) such that �)"��� � ; ��� � � � � � �)"��� � ; ���>= � � � R

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 15

b) We say #�� ! 	 � � � � ��� �!�� ��� #�� ! � (statistically at least as secure as) for a class# �#" � � if the same as in a) holds with �)"��� � ; ��� � � $ � � � � � ��� �!� �)"��� � ; ��� = � $ � � �
for all polynomials � , i.e., statistical indistinguishability of all families of � -step
prefixes of the views.

c) We say #�� ! 	 � � � � K�� �� ��� #�� ! � (computationally at least as secure as) if the same
as in a) holds with configurations from � � 5 � � � K�� � � #�� ! 	 � and � � 5 � � K�� � � #�� ! � � and
computational indistinguishability of the families of views.

In all cases, we call
�D���	���

an indistinguishable configuration for
�D�����
	

. Where the
difference between the types of security is irrelevant, we simply write � �� ��� , and we
omit the indices � and
 8 . if they are clear from the context.

�

2.1.3 Some Useful Lemmas

Sometimes we have to combine several machines into one machine that should provide
the same functional behaviour as the collection of the original machines. We first intro-
duce what “combination of several machines” actually means, and afterwards present
a lemma which states that combinations are well-defined and moreover fit some neces-
sary properties.

Definition 2.14 (Combination of Machines) Let
��

be a collection without buffers. For
a new name 5�� (i.e., a name which is neither used as a machine name nor a port name
in the considered collection so far), we define the combination of

��
into one machine9 with this name, written .G� 71< � �� � in slight abuse of notation.

a) Its ports are
����� �"!

�
� � &��?@ ��
 � �� � . (Their order would be an additional parame-

ter of .$� 71< , but it never matters in the following.)

b) Its states are # �������$! � � � 0 ��� �) # �-���-� !�� .

c) Its transition function %�� is defined by applying the transition function of each
submachine to the corresponding substates and inputs, unless 9 has reached a
final state (see below). In that case, %�� does not change the state and produces
no output.

d) Its length function ��� is defined by applying the length function of the corre-
sponding submachine for each input port.

e) Its initial states are ' ��) � � � 0 ��� �) ' ��)&� . For every � � � , we identify the state� � � � ��� �) with
� �

(for the conventions in configurations).

f) If there is a master scheduler � � ��
, then *)+�

� is the set of all states of 9 where
� is in a state from *)+���

. Otherwise, 9 stops as soon as all submachines have
stopped: *)+�

�
� � 0 ��� �) *)+�Q�

. �

Lemma 2.1 (Combination) Let
��

be a collection without buffers,
�� . ��

, and 9 � �
.$� 71< � �� � with a name that is new in

��
. Let

�� � � � � �� 	 �� � 2 � 9 .
a) 9 is well-defined.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 16

b) If � �� � is a closed collection, then so is � �� � � .
c) If � �� � is closed then the view of any set of original machines in � �� � � is the same

as in � �� � . This includes the views of the submachines in 9 , which are well-
defined functions of the view of 9 .

d) Combination is associative: If
�� � �� 	 2 �� �

and 9 	 � � .G� 71< � �� 	 � , then
.$� 7 < � � 9 	 2 �� � � � 9 , if one identifies Cartesian products that differ only
in the bracket structure.

e) If all machines in
��

are polynomial-time, then so is 9 .

�

Using our notion of combination we can introduce a special notion of simulatability
called blackbox simulatability.

Definition 2.15 (Universal and Blackbox Simulatability) Universal simulatability
means that

� �
in Definition 2.13 does not depend on � (only on

�� 	
, # , and

� 	
).

Blackbox simulatability means that
� �

is the combination of a fixed simulator � >A7 ,
depending at most on

�� 	
, # and &��?@T��
 � � 	 �

, and a machine
� � 	

that differs from
� 	

at most in the names and labels of some ports. The partial function � that defines
this renaming is tacitly assumed to be given with � >A7 .

� 	
is then called a blackbox

submachine of � >A7 .

�

Clearly, blackbox simulatability implies universal simulatability, and universal simu-
latability implies “standard” simulatability. We will finally state some lemmas that will
be used throughout the thesis.

Lemma 2.2 (Properties of Runs and Views) Let
��

be a closed collection.

a) Whenever a machine
�

is switched in a run of
��
, there is at most one port

) � &��?@T��
 � �� � with) �� � . If it exists,) � &��?@T��
 � � � .
b) Views of polynomial-time machines are always of polynomial size. If

��
is

polynomial-time, the runs are of polynomial size.
�

Lemma 2.3 (Valid Mappings and Suitable Configurations) Let two systems #�� ! 	 and#�� ! � with a valid mapping � be given.

a) Then # �
 � �?@ < � �� U �$# � � �
for I � & � % for every

� �� U �G# � � #�� ! U , i.e., the ports
that users are intended to use are not at the same time forbidden (not even in the
corresponding structures of the other system).

b) With regard to #�� ! 	 alone, the restriction to suitable configurations is with-
out loss of generality in the following sense: For every

�D���	� 	 � � �� 	 �$# �
� � � 	 � � � � 5 � � #�� ! 	 �(� � 5 ��� � #�� ! 	 � , there is a configuration

�D����� < � 	 � � �� 	 �$# �
�
< � � < � 	 � � � � 5 � � � #�� !�	 � such that �)"��� � ; ������� � � �

< � � �)"��� � ; ��� � � � � .
�

The proof of this lemma is simply done by port renaming of the considered configura-
tion. It can be found in [49].

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 17

Lemma 2.4 (Indistinguishability)

a) The statistical distance
$ ��� ��� 64@ � � � � ��� 6(@ � � �� of a function

�
of random variables

is at most
$ ��� 6(@ � � � 6(@ � � � .

b) Perfect indistinguishability of two families of random variables implies perfect
indistinguishability of every function

�
of them. The same holds for statistical in-

distinguishability with any class # �#" � � , and for computational indistinguisha-
bility if

�
is polynomial-time computable and the elements of the domains � � are

of polynomial length in � .

c) Perfect indistinguishability implies statistical indistinguishability for every non-
empty class # � " �1� , and statistical indistinguishability for a class # �#" �1� .
���7�8� implies computational indistinguishability.

d) All three types of indistinguishability are equivalence relations.

�

These facts are well-known, hence we omit the easy proof, cf. [49].

Lemma 2.5 (Types of Security) If #�� ! 	 � � � �
� � <

� ��� #�� ! � , then #�� !�	 � � � � ��� �!�� ��� #�� ! �
for every non-empty class # � " �1� . Similarly, #�� !�	 � � � � ��� � �� ��� #�� !�� for a class# �#" �1� . ���7�8� implies #�� ! 	 � � � � K�� �� ��� #�� ! � . �

This lemma can be proven easily by applying Lemma 2.4 using that views of a
polynomial-time machine always are of polynomial size, and that the distinguisher
is a special case of the function

�
.

What we finally want is the relation � � ��� to be transitive which is captured by the
following lemma.

Lemma 2.6 (Transitivity) If #�� ! 	 � � � #�� ! � and #�� ! � � � = #�� !�� , then #�� ! 	 � ��� #�� !�� ,
where � � � � � � -�� 	 is defined in a natural way as follows: � � � �� 	 �G# � is the union of
the sets � � � �� � �$# � with

� �� � �$# � � � 	 � �� 	 �$# � . This holds for perfect, statistical and
computational security, and also for universal and blackbox simulatability.

�

The proof of this lemma is much more difficult than the previous ones. It can be found
in detail in the original paper [49].

2.2 Special Cases and Composition

In this section we first introduce some special cases of the model that play an important
role in security considerations. After that, we introduce composition of reactive sys-
tems and state the composition theorem, which allows us to refine a system step-wise
by replacing the abstract primitives with their already proven cryptographic counter-
parts. The theorem enables modular proofs, so that systems can be designed completely
idealized, and afterwards can be refined step by step.

As special classes of the model we consider structures in which there is exactly one
machine for each user (which are all combined to the overall user �) and its machine is
correct if and only if the user is honest. This corresponds to a usual real-life situation,
because machines of honest users are usually considered correct, i.e., the user can
regard them as trusted devices.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 18

A main distinction of the introduced classes can be made between static and adap-
tive adversaries. Throughout the thesis we will only focus on static adversaries, i.e.,
we assume that it is a priori clear which users are faulty and which users are honest. In
adaptive (or sometimes called dynamic) scenarios the set of corrupted machines may
increase over time, e.g., because there is a special master adversary who can hack into
machines in order to corrupt them [7, 12, 59]. Adaptive adversaries are more powerful
than static ones, see [12] for an example that is secure in the static case but insecure
against adaptive adversaries.

2.2.1 Standard Cryptographic Systems with Static Adversaries

As we already stated above we consider systems in which each honest user � controls
exactly one machine

���
in every structure so that the machine works correct iff the

user is honest. The system is derived using an intended structure
� �� � �G# � � and a trust

model. The intended structure corresponds to the case where every user is honest, the
additional structures will be derived by leaving out incorrect machines (i.e., dishonest
users) according to the considered trust model, i.e., they are considered as part of the
adversary.

We define that all buffers that connect different machines are scheduled by the
adversary unless explicitly mentioned otherwise. We only allow a machine

���
to

schedule buffers that transport messages from the machine to itself, called a self-loop.
We require all those connections to be secure. This allows us to define a machine

� �
as a combination of local submachines. The case where the user in- and outputs are
also treated in the same way is called localized.

Definition 2.16 (Standard Cryptographic Structures and Trust Models) A standard
cryptographic structure is a structure

� �� � �$# � � where
�� � � � � 	 ��RGRGR�� ��� with (�

�
and # � � � � >A5�� ���&� � ���?� � � � & ��RGR�R ��(, where >A5�� � and � � ��� � are ports of machine���
. Each machine

���
is simple, and for all names) , if 	 �?� � &��?@T��
 � �
� � then 	 �'��	!� �

&��?@T��
 � ��� � .
A localized cryptographic structure is the same except that for all � � & �GR�RGR �)(,

>A5�� � � also belongs to # � � and � � ������� to &��?@T��
 � �
� � , but ������� ���� &��?@ ��
 � ��� � .
A standard trust model for such a structure is a pair

������ ��� � of an access struc-
ture and a channel model. Here

���� . � � �%& �GR�RGR �)(� is closed under insertion (of
more elements) and denotes the possible sets of correct machines. � is a mapping
� � �B@ � �� � � 0 �
�� 6?��>A . It characterizes each high-level connection as secure (pri-
vate and authentic), authenticated (only authentic), or insecure (neither private nor
authentic). If a connection � connects a machine

� �
with itself, we require � � � � �
 .�

Typical examples are threshold structures
�������� � ��� . �%& �GRGR�R ��(� � � � �
 with
�� (.

Definition 2.17 (Standard Cryptographic Systems) Given a standard (or localized)
cryptographic structure and trust model, the corresponding standard (or localized)
cryptographic system is given by

#�� ! � ��� � � � � � ���� �G# � ��� � � ����
with # �� � � � >A5�� �3���������?� � � � � , and >A5�� � � in the localized case, and

���� � �
� ��� � � � � � � '� where

��� � � is derived from
���

as follows:

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 19

� The ports >A5 � � and ����� � � and all clock ports are unchanged.

� Consider a simple port) � &��?@T��
 � � � �!	 � >A5 � �4�&� � � � �� , where)� � &��?@ ��
 � � � �
with

� � �
, i.e., � � �) �)� is a high-level connection between two correct

machines:

– If � � � � �
 (secure),) is unchanged.

– If � � � �	� 6 (authenticated) and) is an output port,
� � � � gets an addi-

tional new port) ((i.e., a port with a new name), where it duplicates the
outputs at) . This can be done by a trivial blackbox construction. We as-
sume without loss of generality that there is a systematic naming scheme
for such new ports (e.g., appending

(
) that does not clash with prior names.

The new port automatically remains free, and thus the adversary connects
to it. If) is an input port, it is unchanged.

– If � � � � � > (insecure) and) is an input port,) is replaced by a new port
) � . (Thus, the adversary can get the outputs from)� and make the inputs
to) � and thus completely control the connection.) If) is an output port, it
is unchanged.

� Consider a simple port) � &��?@T��
 � ��� �!	 � >A5��?�4�&� � ��� �� , where)� �� &��?@ ��
 � � � �
for all

� � �
:

If) is an output port, it is unchanged. If it is an input port, it is renamed into) � .
(In both cases the adversary can connect to it.)

For localized systems, the same definition holds with the obvious modifications: the
ports >A5 � � � with � � �

also belong to # �� , and) is only chosen in &��?@ ��
 � ��� ��	� >A5��?����������� �3�����������'�� .
�

Obviously, all channel types presented above do not guarantee anything about the relia-
bility of the channels. However, if we consider common concepts like non-interference
or liveness properties, we need channels that guarantee that a message will eventually
be scheduled. Moreover, it often fits our intuition to additionally make the channel
accessible for the adversary which yields so-called non-authenticated reliable chan-
nels. However, we will postpone the formal definition to Chapter 6 where we present
additional motivation for this channel type.

Definition 2.18 (Standard Ideal Systems) A standard (or localized) ideal system is of
the form #�� ! 6 � � � � ��� � � ��$# � �G� � � ����
for an access structure

���� . �%& �GRGR�R ��(for some (� �
and the same sets of

specified ports as in corresponding real systems, i.e., # �� � � � >A5 � �3���������?��� � >A5�� � � �G� � �
� .

�

One then compares a standard or localized real system with a standard or localized ideal
system with the same access structure, using the canonical mapping (Definition 2.10).

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 20

≥f
#

Sys
1

Sys
#

Sys'
0

Sys
1

Sys*

≥f
1

≥f
0

≥f

Sys
0

Sys
spec

Figure 2.3: Overview over the composition theorem and its use in a modular proof.
The left and middle part show the statement of Theorem 2.1, the right side is handled
by Corollary 2.1.

2.2.2 Composition

In this section we introduce composition of reactive systems and state the composition
theorem of [49]. We start outlining the basic idea. Assume that we have already proven
a system #�� ! to be at least as secure as another system #�� ! � (typically an ideal system
used as a specification), so we would like to use #�� ! as a secure replacement for #�� ! � ,
i.e., we want to replace the specification with its implementation. Replacement means
that we have another system #�� ! 	 that uses #�� ! � ; we call this composition #�� ! � , see
Figure 2.3.

Inside of #�� ! � we want to replace #�� ! � with #�� ! yielding a system #�� !�� . Usually,#�� !�� is completely real whereas #�� ! � is at least partly ideal. The situation is shown in
the left and middle part of Figure 2.3. Intuitively, #�� ! � ��� ��� #�� ! � should hold which
captures the statement of the composition theorem.

So far, we did not examine the right side of the figure. As we already stated above#�� ! � may be only partly ideal. However, system design usually starts with a com-
pletely abstract specification #�� ! � �

���
which fulfills the desired goals by construction.

Moreover, such a specification is usually monolithic, so it has to be split in proper parts
before it can eventually be refined using the composition theorem.

Corollary 2.1 will state that the real system #�� !�� is at least as secure as the ideal
specification #�� ! � �

���
under the precondition that #�� ! � � � ��� #�� ! � �

���
has already been

proven. In Chapter 4 we present a practical example which shows that formally verified
bisimulations are well-suited for proving this relation.

We now define composition for every number (of systems #�� !�	 �GRGR�R �G#�� ! � .

Definition 2.19 (Composition) The composition of structures and of systems is defined
as follows:

a) Structures
� �� 	 �G# 	 � �GR�RGR � � ���� �G# � � are composable if &��?@T��
 � �� U �
 � �?@ < � ���� �$# � �� �

and # U
 � @38�8 � � �� � � � � # �
 � @ 8 8 � � ���U � �
for all I�����

. Their composition
is then

� �� 	 �$# 	 �G�T� R�RGR �T� � �� � �$# � � � � � �� �G# � with
�� � �� 	 2 RGRGR 2 �� �

and# � � # 	 2 RGRGR 2 # � �
 � @38�8 � � �� � � .
b) A system #�� ! is a composition of #�� !�	 �GR�RGR��$#�� ! � , written #�� ! � #�� ! 	 0 3 3>3 0

#�� ! � , if each structure
� �� �G# � � #�� ! has a unique representation

� �� �$# � �� �� 	 �G# 	 ��� � RGR�R �T� � �� � �$# � � with composable structures
� �� U �$# U � � #�� ! U for I �& �GR�RGR �)(.

c) We then call
� �� U �$# U�� the restriction of

� �� �$# � to #�� ! U and write
� ���U �$# U�� �� �� �$# � " ��� > V .

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 21

�

The first condition for composability makes one structure a valid user of another. The
second one excludes ambiguities for # , specifically the case where) � � @ 8 8 � � �� U � �

� @ 8 8 � � �� � � � (e.g., a clock port for a high-level connection between these structures) and
) � # U but) �� # � .

We are now ready to state the composition theorem. Throughout the theorem the
notation of Figure 2.3 is used.

Theorem 2.1 (Secure Two-system Composition) Let #�� ! , #�� ! � , #�� !�	 be systems
and #�� ! � � � #�� ! � for a valid mapping � .

Let #�� ! � � #�� ! 0 #�� ! 	 and #�� ! � � #�� ! � 0 #�� !�	 be compositions that fulfill
the following structural conditions: For every structure

� �� � �G# � � #�� ! � with restric-
tions

� �� U �$# U�� � � �� � �G# � " ��� > V and every
� �� � �$# � � � � �� �$# � , the composition� �� � �$# �G�T� � �� 	 �G# 	 � exists, lies in #�� ! � , and fulfills &��?@ ��
 � �� � ��
 # �	 � &��?@ ��
 � �� ��
 # �	 .

Let � � denote the function that maps each
� �� � �G# � to the set of these compositions.

Then we have #�� ! � � ��� #�� ! � R
This holds for perfect, statistical and, if #�� ! 	 is polynomial-time, for computational
security, and also for the universal and blackbox definitions.

�

The proof can be found in [49]. However, we briefly sketch the proof technique because
we will perform similar proofs throughout the thesis. The proof can be illustrated by
Figure 2.4.

A0

= A#

M0

A*
= A'0

M'0

M1
^ A#

M0

H0
Define
H0, A0

Sys0 ≥f0 Sys'0

Define
M1
^H0

H

M#^

M*
^

conf #

conf*

conf0

conf'0

M1
^

H

M1
^

A'0

M'0

H

H

S'0

S*

^ ^

^ ^
^
M*, A*

Figure 2.4: Configurations in the composition theorem. Dashed machines are internal
submachines. (The connections drawn inside � are not dashed because the combina-
tion does not hide them.)

In the beginning an arbitrary configuration
�D���	� � � ��� 5 � ��� � #�� !�� � is given. In

the first step, the machines belonging to #�� !�	 are combined with the honest user �
yielding a new honest user � . After defining a new adversary

� (which equals the
old one

� �
in this case) this gives a new configuration

�D���	� � � � 5 � � #�� ! � , and we

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 22

show that this new configuration yields identical views for the original honest user �
as the original configuration

�D���	� �
. After showing that

�D����� is suitable, the pre-
condition #�� ! ��� ��� #�� ! � can be applied yielding an indistinguishable configuration�D����� � � � � 5 � � #�� ! � . The user � is now split into its original machines again, fi-
nally yielding the desired indistinguishable configuration

�(���	� � � � � 5 ����� � #�� ! � � for
a newly defined adversary

� �
(which equals

� �). The claim now follows from the
transitivity of indistinguishability of views.

Combining machines and the honest user to a new user is an essential proof tech-
nique that will be used again later on, so the reader is well advised to become familiar
with that. Finally, we have the following corollary.

Corollary 2.1 Consider five systems satisfying the preconditions of Theorem 2.1, and a
sixth one, #�� ! � �

���
, with #�� ! � � � � #�� ! � �

���
. Then #�� ! � � � #�� ! � �

���
where � � � � 	 - � �

as in the transitivity lemma.
�

2.3 The System for Secure Message Transmission

In this section, we review both the ideal and real system for secure message transmis-
sion in asynchronous networks [49]. It serves as a building block for many upcoming
examples of this work.

2.3.1 The Ideal System

We start with an informal description of the ideal system for secure message trans-
mission. The system is of the typical form #�� ! 6 � � � � ��� � � ��G# � �G� � � ���� and����

is the powerset of
�'& ��RGRGR �)(. The system is illustrated in Figure 2.5. The ideal

machine
� � � models initialization and sending and receiving of messages. A user �

can initialize communications with other users by inputting a command of the form�
 5 = >A54> � � to the port >A5��?� of
� � � . In real systems initialization corresponds to key

generation and authenticated key exchange. Sending of a message to a user
�

is trig-
gered by a command

�
 845 = � � � � � . If
�

is honest, the message is stored in an internal
array of

� � � and a command
�
 845 = <'; >A5 = ; 	 ��I�� � � � � is output to the adversary, where

� and I denote the length of the message � and its position in the array, respectively.
This models that the adversary will see that a message has been sent and he might also
be able to know the length of that message. We speak of tolerable imperfections that
are explicitly granted to the adversary. Because of the underlying asynchronous timing
model,

� � � has to wait for a special term
� @38 . 8,> � 8 <�; >A5,= ; 	 � � �&I � or

� @ 8 . >A54> ��� � � sent by
the adversary signaling that the I -th stored message sent by � to � should be delivered
or that a connection between � and

�
should be initialized, respectively. The user

�
will receive outputs of the form

� @38 . 8 > � 84� � � � �
and

� @ 8 . >A5(> � � � � , respectively. If
�

is
dishonest,

� � � will simply output
�
 845 = � � � � � to the adversary. Finally, the adversary

can send a message � to a user � by sending a command
� @38 . 8,> � 8'� � � � �

to the port� @ � 7 6,= � � � of
� � � for a corrupted user

�
, and he can also stop the machine of any

user by sending a command
�
C�C� & � to a corresponding port of

� � � which corresponds
to exceeding the machine’s runtime bounds in the real world.

Scheme 2.1 (Ideal System for Secure Message Transmission) Let (� � , a finite
index set

�
, and a polynomial

� � � � � � be given.
� � � � bounds the length of the

messages (denoted as ; 8(5 � � �
) for the security parameter � . Let � � � �'& ��RGRGR ��(

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 23

H
in

u
! out

v
?

TH
H

to_adv
u

!

clk ?

A
��� A

to_adv
v
!from_adv

u
? from_adv

v
?

���

in
u
? out

v
!

Figure 2.5: A Configuration of the Ideal System #�� ! 6 � for Secure Message Transmis-
sion. Normal arrows denote simple ports, dashed arrows denote clock-out ports.

denote the set of possible participants, and let the access structure
����

be the powerset
of � . Our specification for secure message transmission is now a localized ideal
system #�� ! 6 � � � �-� � � � '�$# � � ��� � ���� ��
with # �� � � >A5 � �3���������?��� >A5 � � � � � � � . The machine

� � � is defined as
follows. When

�
is clear from the context, let

 � � � 	 �
denote the in-

dices of dishonest users. The ports of
� � � are

� >A5 � �4�&� � � � ���&� � � � ��� � � � � 2
� � @ � 7 6,= � � ���C�C� 6,= � � �����C� 6,= � � � � � � � � (cf. Figure 2.5).

� � � maintains arrays
�C)+�H)+� �� � � ��� � � ��� and

�-! �-� 	�	 ��� �� ��� � � over
� � � & , both ini-

tialized with � everywhere, and an array
�������) � �G� �� � � ��� � � � � of lists, all initially empty.

The state-transition function of
� � � is defined by the following rules, written in a

pseudo-code language. For the sake of readability, we exemplarily annotate the first
transition of the definition, the “Send initialization” transition, i.e., key generation in
the real world.

Initialization.
� Send initialization:

Assume that the user
�

wants to generate its encryption and signature keys and
distribute the corresponding public keys over authenticated channels. He can
do so by sending a command (
 5,= >A54> �) to

� � � . Now, the system checks that
the user’s machine itself has not reached its runtime bound (i.e., it has not been
stopped), and that no key generation of this user has already occurred in the past.
These two checks correspond to

! �-� 	 	 ��� �� � � and
)+��)+� �� � � � � , respectively.

If both checks hold, the keys are distributed over authenticated channels, mod-
eled by an output

�
 5 = >A5(> � � to the adversary. After receiving this command,
the adversary can decide whether it schedules the keys immediately, later on, or
even leave them on the channels forever. In our pseudo-code language this is
expressed as follows:

On input
�
 5,= >A5(> � � at >A5 � � : If

! ��� 	�	 ��� �� � � and
)+�H)+� �� � � � � , set

)+��)+� �� � � � � &
,

and output
�
 5,= >A5(> � � at �C� 6,= � � � , and

&
at �C� 6,= � � � � .

The following parts should now be understood similarly:

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 24

net
u,v

net
u,v

a

aut
u,v

,

aut
u,v

d

H

clk ?

A

M
v

M
u

in
u
! out

v
?

���

Figure 2.6: A Configuration of the Real System #�� ! � ��� � for Secure Message Transmis-
sion.

� Receive initialization. On input
� @ 8 . >A54> � ��� � at

� @ � 7 6,= ��� � with � � � � � �
�

: If
! ��� 	�	 ��� �� � � and

)+��)+� �� � � � � and � � � ���)+�H)+� �� � � � & �
, set

)+��)+� �� � � � �&
and output

� @ 8 . >A54> ��� � � at � � � � � , & at ����� � ��� .
Sending and receiving messages.

� Send. On input
�
 8(5,= � � � � � at >A5 � � with � � � �

, � � � ; 8(5 � � � � � � � � , and� � � 	�� � : If
! �-� 	�	 ��� �� � � ,

)+�H)+� �� � � � &
, and

)+��)+� �� � � � &
:

If
� �

then
�

output
�
 8(5,= � � � � � at �C� 6,= � � � , &

at �C� 6,= � � � � else
� I � �

�> � 8 ���B� �) � �$� �� � � ��� &
;3

�B� �) � �G� �� � � � I � � � � , and output
�
 8(5,= <'; >A5,= ; 	 ��I��/�-� � � at�C� 6,= � � � , & at �C� 6,= � � � � . .

� Receive from honest party � . On input
� @ 8 . 8,> � 8 <�; >A5,= ; 	?� � �&I � at

� @ � 7 6,= ��� �
with �!� � � �

: If
!D�-� 	 	 ��� �� � � ,

)+��)+� �� � � � &
,
)+��)+� �� � � � &

, and � � �
�B� �) � �G� �� � � � I � ��	�

, then output
� @38 . 8,> � 8'���!� � �

at ����� � � , & at � � � � � � .
� Receive from dishonest party � . On input

� @ 8 . 8 > � 8�� � � � �
at
� @ � 7 6,= ��� � with

� � , � � � �
, ; 8(5 � � ��� � � � � , and

� � � : If
! �-� 	 	 ��� �� � � ,

)+��)+� �� � � � &
and)+��)+� �� � � � &

, then output
� @ 8 . 8 > � 8�� � � � �

at � � � � � , & at ����� � ��� .
� Stop. On input

�
C�C� & � at
� @ � 7 6,= � � � � with � � � , set

! �-� 	 	 ��� �� � &
and output�
C�C� & � at � � ��� � , & at ������� � � . �

2.3.2 The Real System

After presenting the abstract specification, we now briefly sketch a concrete implemen-
tation for secure message transmission. For understanding it is sufficient to give a brief
review of #�� ! � ��� � . The system is a standard cryptographic system of the form

#�� ! � ��� � � � � �� � �$# � � ��� � ���� R
����

is the powerset of � , i.e., any subset of participants may be dishonest. It uses
asymmetric encryption and digital signatures as cryptographic primitives. A user �
can let his machine create signature and encryption keys that are sent to other users

3The function
�� �� denotes the size of the considered list, i.e., the number of contained elements.

CHAPTER 2. ASYNCHRONOUS REACTIVE SYSTEMS 25

over authenticated channels 6 � � � � � . Furthermore, messages sent from user � to user
�

will be signed and encrypted by
� �

and sent to
� � over an insecure channel 528G� � � � ,

representing the net in the real world (cf. Figure 2.6). The adversary is able to schedule
the communication between the users, and he can furthermore send arbitrary messages
� to arbitrary users � for a dishonest sender

�
. In [49], it has already been shown that

#�� ! � ��� � � � � � K�� �� ��� #�� ! 6 �
holds for the canonical mapping � , i.e., the concrete implementation is computationally
at least as secure as the specification.

Chapter 3

Some Variants of the Model

The content of this chapter can be split into two parts. In the first part, we introduce
three variants of simulatability, and prove them to be equivalent to our standard defini-
tion. If we consider these variants on their own they do not really seem to be significant
by now, but they greatly facilitate further proofs since we can always use the definition
which is suited best for the considered problem. The second part is dedicated to the
relationship between our underlying asynchronous model and its synchronous prede-
cessor [47]. In practice, lots of protocols are synchronous, i.e., they proceed in rounds.
Thus, the synchronous model is still essential to cope with these protocols. Hence,
we want to drive double tracked, but without proving each and every theorem for both
models. A possibility to circumvent this problem is to show that the synchronous
model can be regarded as a special case of the asynchronous model, which we do not
have to consider separately. This chapter contains the first, essential step of this task:
we show that synchronous systems can be embedded into asynchronous ones such that
simulatability is preserved by this embedding. This allows as to carry over most of the
lemmas from the asynchronous to the synchronous case without proving them twice.
As an example, we will show that the asynchronous version of the transitivity lemma
implies in the synchronous version. However, in order to carry over lemmas dealing
with composition of systems, additional work is still needed which we will only con-
sider as future research here since we would digress too far from our actual goal of
sound protocol verification.

Finally, we briefly state that this chapter contains several tedious and technical
proofs, so if the reader is not really familiar with the underlying model or mainly inter-
ested in the overall results, we advise him (at least for the first reading) to move on to
the next chapter and use this chapter as a reference only.

3.1 One � - � Connection

In this section we show that without loss of generality we can restrict our attention to
configurations with only one “self-scheduled duplex” connection between the honest
user and the adversary. This means that each of the two machines can communicate
over exactly one input and one self-scheduled output port connected to the other ma-
chine. We will speak of one-

�
- � -configurations in this case. Moreover, the restriction

to these configurations yields a new variant of simulatability, which we call one-
�

- � -
simulatability, denoted by ��� � . We will show that every configuration which does

26

CHAPTER 3. SOME VARIANTS OF THE MODEL 27

not fulfill this precondition can be modified by replacing both the honest user and the
adversary so that the following holds.

� There is only one self-scheduled duplex connection between the new user and
the new adversary.

� Both the honest user and the adversary use the original user and adversary as a
blackbox submachine, respectively, so that the views of the original machines
are identical in both configurations.

Furthermore, we will also be able to reverse our construction after applying simulatabil-
ity to restore an indistinguishable configuration for the original honest user. This serves
as the main part for proving our newly defined simulatability variant to be equivalent
to the standard definition. Thus, for proving simulatability between two systems, it is
sufficient to restrict our attention to one-

�
- � -configurations.

3.1.1 Definitions

We now formally state how our new definitions are derived from the original ones.

Definition 3.1 (One-
�

- � -Configurations) A one-
�

- � -configuration is a usual config-
uration

�D���	� � � �� �G# � � � � �
where additionally the following properties hold:

1. We have ��� &?� � &?� � &��?@T��
 � � ��� &(� � &��?@ ��
 � � � � � &

and
&?� � &��?@ ��
 � � ��� &,� � &��?@T��
 � � � � & � � � &��?@T��
 � � � �

i.e., we have exactly one output port from � to
�

and the corresponding clockout
port.

2. Similarly, we have

��� &?� � &?� � &��?@T��
 � � ��� &(� � &��?@T��
 � � � � � &

and
&?� � &��?@ ��
 � � ��� &(� � &��?@T��
 � � � � & � � � &��?@T��
 � � � �

so we have exactly one output port from
�

to � and the corresponding clockout
port yielding the desired duplex channel.

We will in the following denote the ports of the duplex channel by & � � ��� & � � �3� & � � � �� &��?@T��
 � � � and & � � ��� & � � ��� & � � �?� � &��?@ ��
 � � �
.1 The set of these configurations

is denoted by ��� 5 � � � � #�� ! � , the set of polynomial-time one-
�

- � -configurations by
� � 5 � � � � � K�� � � #�� ! � . For a valid mapping � , suitable one-

�
- � -configurations are de-

fined as usual.

�

1This is just a notation convention. We assume that these ports are new ports of every configuration, i.e.,
the ports are not used inside of the system itself. Otherwise, we can always achieve the desired situation by
simply renaming the ports of the system before completing a structure to a configuration.

CHAPTER 3. SOME VARIANTS OF THE MODEL 28

Remark 3.1. In the following we will often provide � and
�

with an additional index,
here � � , if we consider specific configurations, i.e., we may write

� �� �G# � � � � � � � � �
instead of

� �� �$# � � � � �
. We hope that this measure improves readability because it

decreases the chance of getting lost in the very long proofs. To maintain this notational
convention we will often have to rename certain machines, e.g., � to � � � , even if they
are left unchanged in the constructed configuration. Such a step should obviously result
in identical views of � and � � � , so in this particular context renaming always means
that we imagine � as a blackbox submachine of � � � so that � � � has exactly the same
ports, and that it only forwards in- and outputs to � . Alternatively, we could rename
the whole � -tuple representing the machine. This would allow us to avoid changing the
machine name which would immediately result in different views (cf. Definition 2.6).
-
We now introduce the notion of one-

�
- � -simulatability, denoted by � � � . It is derived

from the standard one by restricting the set of considered configurations to one-
�

- � -
configurations.

Definition 3.2 (One-
�

- � -Simulatability) Let two systems #�� ! 	 and #�� ! � with a valid
mapping � be given.

a) We say #�� !�	 � � � �
� � <

� � � � ��� #�� ! � (perfectly at least as
� � -secure as) if for every

configuration
�(���	� � � � 	 � � �� 	 �$# � � � � � � � � � 	 � � � � 5 � �� � � #�� ! 	 � , there ex-

ists a configuration
�D���	� � � � � � � �� � �$# � � � � � � � � � � � � ��� 5 � � � � #�� ! � � with� �� � �G# � � � � �� 	 �G# � such that

�)"��� � ; ����� � � � � � � � � � �)"��� � ; ����� � � = � � � � � R
b) We say #�� ! 	 � � � � ��� � �� � � � ��� #�� ! � (statistically at least as

� � -secure as) for a
class # �#" � � if the same as in a) holds with �)"��� � ; ��� � � � � � $ � � � � � � � ��� � ��)"��� � ; ����� � � = � $ � � � � � for all polynomials � , i.e., statistical indistinguishability of
all families of � -step prefixes of the views.

c) We say #�� ! 	 � � � � K�� �� � � � ��� #�� ! � (computationally at least as
� � -secure as) if

the same as in a) holds with configurations from � � 5 � �� � � � K�� � � #�� !�	 � and
��� 5 � � � � � K�� � � #�� ! � � and computational indistinguishability of the families of
views.

As in the standard definition, we call
�D���	� � � � � an indistinguishable configura-

tion for
�(���	� � � � 	 .

We will in the following explicitly state which definition indistinguishability
refers to if it is not immediately clear from the context. Where the difference
between the types of security is irrelevant, we write � �� � � � ��� as usual, and we
omit the indices � and
 8 . if they are clear from the context. �

3.1.2 Proof of Equivalence

Before we turn our attention to the actual proof of equivalence, we state the following
two essential lemmas.

CHAPTER 3. SOME VARIANTS OF THE MODEL 29

Lemma 3.1 Let an arbitrary system #�� ! and an arbitrary configuration
�(���	� �

� �� �$# � � � � � � � � 5 � � #�� ! � be given. Then, we can define a new honest user � � �
and a new adversary

� � � that use the original machines � and
�

as black-box sub-
machines, respectively, such that the following holds:

1. The configuration
�D���	� � � � � � �� �$# � � � � � � � � � is a one-

�
- � -configuration,

i.e.,
�D���	� � � � ��� 5 � � � � #�� ! � .

2. The view of � is identical in both configurations, i.e., we have

�)"��� � ; ��� � � � � �)"��� � ; ��� � � � � � R
3.

�D���	� � � is polynomial-time iff
�D���	�

is polynomial-time.
�

Proof (sketch). Since the full proof is technical, and quite tedious, we postpone it to
Appendix A.

&
. Instead, we only give a brief sketch here. Given the configuration

�D���	�
we first define a new user � � � according to Figure 3.1. Informally speaking, every
simple port of � which has been connected to

�
(i.e., input ports and output ports) is

replaced by a self-loop channel. Moreover, � � � has additional ports for the desired
duplex channel. The main idea is that the buffers of these self-loops correspond to the
original buffers between � and

�
. If one of these buffers � & is scheduled (it does not

depend by which machine), the user � � � delivers the message to its recipient.2 More
precisely, it simply outputs the message if it is intended for a machine of the considered
structure. If the recipient is the adversary, it encodes the message � and the port name
&(� and sends it over the duplex channel. The new adversary

� � � will decompose the
message and use its blackbox-submachine

�
with input � at &(� . The main problem is

that the original adversary
�

might output nonempty values at multiple ports connected
to � in one transition, i.e., multiple buffers have to be “filled”. In

�D���	� � � , this is
modeled iteratively, i.e., the adversary

� � � outputs the first such message to � � �
which outputs it to the corresponding buffer. After that, � � � explicitly gives back
control to

� � � which can now send the second message and so on, until all message
are finally written into their corresponding buffer. Obviously, neither the original user

� nor the original adversary
�

can notice this iteration since they are not switched
during the iteration, which finally yields identical views.

Lemma 3.2 Let an arbitrary system #�� ! and an arbitrary configuration
�(���	� �

� �� �$# � � � � � � ��� 5 � � #�� ! � be given. Moreover, let
�D���	� � � � � �� �G# � � � � � � � � � �

� � 5 � � � � #�� ! � denote the configuration which we obtain if we apply Lemma 3.1 to�D�����
. Then for every configuration

�D���	� � � � � of the form
�(���	� � � � � � � �� �$# � � � � � � 	 �

(i.e., the configuration
�D����� � � , but with an arbitrary adversary

� 	
), there exists a con-

figuration
�D���	� � � � �� �$# � � � � � �

with

�)"��� � ; ��� � � � � � � � � �)"��� � ; ��� � � � � R
Moreover,

�D����� � is polynomial-time iff
�D���	� � � � � is polynomial-time. Informally, this

means that we can ’reverse’ our construction of Lemma 3.1 for arbitrary adversaries� 	
, and restore an indistinguishable configuration for � .

�
2At first glance, this looks like “standard multiplexing”, and the most natural idea might be to store

messages symmetrically, i.e., both � and � store their own messages. However, this will not yield the
desired result, since only the honest user will remain unchanged at simulatability, so nothing can be states
about the messages stored by the adversary.

CHAPTER 3. SOME VARIANTS OF THE MODEL 30

S

p
1,S

p
n,S

p
m,out

p
1,out

p
1,in

p
t,in

H

���

�
�
�

�
�
�

S

p
1,S

p
n,S

p
m,out

p
1,out

H

���

p
H_A

���

H
A_H

�
�
�

p
1,in

p
t,in

p
A_H

Figure 3.1: Modification of the honest user in Lemma 3.1: Ports connected to speci-
fied ports remain unchanged, simple ports connected the adversary become self-loops.
Clockout ports are omitted for readability, they also remain unchanged. Finally, special
ports & � � � , & � � �'� and & � � � are added.

Proof (sketch). Similar to the previous lemma, we postpone the full proof to Appendix
A.

&
and only sketch its idea. At first, we reverse our construction on the honest user

yielding the original machine � again. The adversary
� �

has the original adversary
� 	

as a blackbox submachine. The main problem is to take care of the ’iteration’ between
� � � and the adversary (cf. the proof of Lemma 3.1). Roughly speaking, � � � will
give the control back after it has been switched by the adversary

� 	
, but the user � does

not. Hence, in order to obtain indistinguishability, the machine
� �

models this ’giving
back of control’ by clocked self-loops. More precisely, � � � would clock the machine� 	

back again at the input port & � � � , so the new adversary imitates this behaviour, i.e.,
it clocks its internal submachine

� �
at precisely this port & � � � using the same value.

This finally yields indistinguishable view for both the original adversary
� 	

and the
original honest user � .

Theorem 3.1 (Equivalence of standard simulatability and one-
�

- � -simulatability)
Let two arbitrary systems #�� ! 	 , #�� ! � and a valid mapping � be given. Then #�� ! 	 � �#�� ! � iff #�� ! 	 � �� � #�� ! � . This holds for the perfect, statistical and computational
case.

�

Proof. We start with the easy direction of the proof:

� � � � �� � : Let a suitable one-
�

- � -configuration
�(���	� � � � 	 � � �� 	 �$# � � � � � � � � � 	 �� � � 5 � �� � � #�� ! 	 � be given.

�D���	� � � � 	 is a valid configuration for standard
simulatability, so our precondition #�� !�	 � � #�� ! � yields a configuration�(���	� � � � � � � �� � �G# � � � � � � � � � � � � � � 5 � � #�� !�� � with

� �� � �G# � � � � �� 	 �$# �
and �)"��� � ; ��� � � � � � � � � � � �)"��� � ; ��� � � � = � � � � � . We only have to show that�(���	� � � � � is in fact a one-

�
- � -configuration, i.e., that exactly the ports of

� � � � 	 ,
which were connected to � � � in

�D���	� � � � 	 , are now ports of
� � � � � connected

to � � � . By definition,
�D���	� � � � 	 has to be a closed collection, so every port of

� � � has to be connected either to � � � itself, to a specified port of the structure
or to the adversary.3

3The remaining ports are unspecified ports of the system which users are forbidden to connect to. This

CHAPTER 3. SOME VARIANTS OF THE MODEL 31

By definition, � � � remains unchanged after applying simulatability,
�D���	� � � � �

has to be closed again, and the sets of specified ports are equal in both configu-
rations since � is a valid mapping.

Thus, ports of the user connected to itself or to specified ports remain connected
in the same way, so it may only have a connection to

� � � � � using the ports
& � � � , & � � � , & � � ��� . We now finally have to show

� & � � �4� & � � �3� & � � ���� .
&��?@ ��
 � � � � � � � .
First of all, assume & � � � � &��?@T��
 � � � � � , so the connection has to be a self-loop
in
�D���	� � � � � . However, the user has not been changed using simulatability, so the

connection also was a self-loop in the first configuration which yields & � � � �
&��?@ ��
 � � � � � in

�D����� � � � 	 . This immediately yields the desired contradiction
because & � � � � &��?@ ��
 � � � � � 	 � holds by precondition.

Similarly, & � � � � &��?@T��
 � �� � � cannot hold because we demanded the name & � �
to be new in every structure of the system, i.e., that the structure does not have
any port to connect to it (more precisely, we have to demand that the name does
not occur in any considered system, which can easily be achieved by port renam-
ing).

Hence, & � � � � &��?@T��
 � � � � � � � must hold. This can be proven analogously for
& � � � and & � � � � , so we obtain

� & � � ��� & � � ��� & � � � �� . &��?@T��
 � � � � � � � yielding
the desired duplex channel. Putting it all together, we have found an indistin-
guishable one-

�
- � -configuration of

�D����� � � � 	 which finishes the proof of this
direction.

� �� � � � � : This direction turns out to be much more complicated; however, the main
work has already been anticipated by the two preceding lemmas. The proof is
done in four steps illustrated in Figure 3.2.

� Step 1: Let a suitable configuration
�(���	� 	 � � �� 	 �G# � � � � 	 � �

� � 5 ��� � #�� !�	 � be given. We apply Lemma 3.1 which yields a configura-
tion

�D����� � � � 	 � � �� 	 �$# � � � � � � � � � 	 � . Especially, we have
�(���	� � � � 	 �

� � 5 � � � � #�� !�	 � , i.e.,
�(���	� � � � 	 is a one-

�
- � -configuration, and the views

of the honest user � are identical in both configurations, i.e.,

�)"��� � ; ��� � � � � � �)"��� � ; ��� � � � � � � � R
� Step 2: We have to show that

�D���	� � � � 	 is a suitable one-
�

- � -
configuration. Using Lemma 2.3, we can assume

�D���	� � � � 	 to be suit-
able without loss of generality, i.e., we can transform

�(���	� � � � 	 into a
suitable configuration by simple port renaming which results in a one-�

- � -configuration again. Moreover, Lemma 3.1 states that
�D����� � � � 	 is

polynomial-time in the computational case, since
�D���	� 	

is polynomial-time
by precondition in this case. Now, our precondition #�� ! 	 � �� � #�� ! � can
be applied yielding a configuration

�D���	� � � � �	� � �� � �G# � � � � � � � � � � � �
� � 5 � � � � #�� ! � � with

� �� � �G# � � � � �� 	 �$# � , so that �)"��� � ; ��� � � � � � � � � � ��)"��� � ; ��� � � � = � � � � � holds. As a special case we obtain

�)"��� � ; ��� � � � � � � � � �)"��� � ; ��� � � � = � � �

by part �
�

of Lemma 2.4.

property is guaranteed by the definition of configurations.

CHAPTER 3. SOME VARIANTS OF THE MODEL 32

A
1

M
1

conf
1

conf
A_H,1

conf
A_H,2

conf
2

Sys
1
 ≥Α_Η Sys

2

M
1

M
2

H
A_H

HH

H
A

2

A
A_H,1

M
2

H

Define

H
A_H

,A
A_H,1

Define A
2

H
A_H

A
A_H,2

A
A_H,2

^

^

^

^

Figure 3.2: One-
�

- � -Simulatability implies Standard Simulatability.

� Step 3: In order to derive a configuration for the original honest user � ,
we apply Lemma 3.2 to

�D����� � � � � . This yields a configuration
�D���	� � �

� �� � �$# � � � � � � � � � 5 � � #�� ! � � such that

�)"��� � ; ��� � � � �

� � � � �)"��� � ; ��� = � � � R
Moreover,

�D�������
is polynomial-time iff

�D����� � � � � is polynomial-time.
� Step 4: Putting it all together, we have proven

�)"��� � ; ��� � � � � � �)"��� � ; ��� � � � � � � � �
�)"��� � ; ����� � � � � � � � �)"��� � ; ����� � � = � � � �
�)"��� � ; ����� � � = � � � � �)"��� � ; ��� = � � � R

Using Lemma 2.4 we can conclude �)"��� � ; ��� � � � � � �)"��� � ; ��� = � � � , so�D����� �
is an indistinguishable configuration for

�D����� 	
with respect to our

standard definition of simulatability. Since
�D���	� 	

has been chosen arbi-
trary, #�� !�	 � � #�� ! � holds, which finishes our proof.

3.2 S-Simulatability

In this section we present another modified definition of simulatability which we again
prove to be equivalent to the standard definition 2.13. Essentially, the definition only
considers configurations where the adversary does not connect to any specified port.

CHAPTER 3. SOME VARIANTS OF THE MODEL 33

These configurations will be called s-configurations, and their corresponding simulata-
bility definition will be called s-simulatability. Recall that the definition of configu-
rations explicitly excludes the case that a user connects to an unspecified port of the
system; on the other hand we did not exclude the case that the adversary connects to
some of the specified ports. There are good reasons for this, just imagine a person in
real life that does not only act as the adversary but also as a regular user, e.g., for using
services of the system in an “honest way”. Such guaranteed services are usually only
provided at the specified ports.

However, we will show in the following that the restriction to configurations where
the honest user connects to all specified ports of the structure is without loss of gen-
erality. As in the previous section, we will show that every configuration which does
not fulfill the preconditions of s-configurations can be modified by replacing both the
honest user and the adversary so that the following holds.

� The newly defined honest user connects to all specified ports of the structure.

� The new honest user has the original user as a blackbox submachine, and the
view of the original user is identical in both configurations.

Similar to the previous section, we will again be able to reverse our construction af-
ter applying s-simulatability, and to restore an indistinguishable configuration for the
original honest user.

3.2.1 Definitions

We now state the new definitions.

Definition 3.3 (S-Configurations) An s-configuration of a system #�� ! is a usual con-
figuration

�D���	� � � �� �G# � � � � �
where additionally # � . &��?@T��
 � � � must hold. The

set of these configurations is denoted by � � 5 � � � #�� ! � . The set of polynomial-time
s-configurations is denoted by � � 5 � � � � K�� � � #�� ! � . For a valid mapping � , suitable s-
configurations are defined as usual.

�

According to Remark 3.1, we will provide both the honest user and the adversary with
an additional index � , writing

� �� �G# � � � � � � � instead of
� �� �$# � � � � �

.

Definition 3.4 (S-Simulatability) Let two systems #�� !�	 and #�� ! � with a valid mapping
� be given.

a) We say #�� !�	 � � � � � � <� � � ��� #�� ! � (perfectly at least as
 -secure as) if for every configu-

ration
�D����� � � 	 � � �� 	 �G# � � � � � � � 	 � � ��� 5 ���� � #�� !�	 � , there exists a configuration�(���	� � � � � � �� � �$# � � � � � � � � � � ��� 5 � � � #�� ! � � with

� �� � �G# � � � � �� 	 �$# � such that

�)"��� � ; ������� � � � � � � �)"��� � ; ����� � = � � � � R
b) We say #�� !�	 � � � � ��� �!�� � � ��� #�� ! � (statistically at least as
 -secure as) for a

class # �#" �1� if the same as in a) holds with �)"��� � ; ����� � � � $ � � � � � � ��� � ��)"��� � ; ������� = � $ � � � � for all polynomials � , i.e., statistical indistinguishability of all
families of � -step prefixes of the views.

CHAPTER 3. SOME VARIANTS OF THE MODEL 34

c) We say #�� ! 	 � � � � K�� �� � � ��� #�� ! � (computationally at least as
 -secure as) if the same as

in a) holds with configurations from � � 5 � �� � � K�� � � #�� !�	 � and � � 5 � � � � K�� � � #�� ! � � and
computational indistinguishability of the families of views.�(���	���

is called an indistinguishable configuration for
�D���	� 	

with respect to s-
simulatability and we will as usual omit the indices � and
 8 . if they are clear
from the context. �

Before we turn our attention to the compulsory proof of equivalence we additionally
define the restriction of runs to a set of ports. Although this will not be needed in the
main proof, it allows us to state and prove a more general lemma which will become
very useful in Chapter 5 where we consider integrity properties.

Definition 3.5 (Restriction of Runs to Ports) Let a closed collection
��

be given. The
restriction of a run � to a set

� . &��?@T��
 � �� � (written � "��) is defined by the following
algorithm that modifies every step

��������� � ���4�NF��/� � �DJ � of the run as follows.

� If &��?@ ��
 � � �
 � � �
, delete the step from the run.

� If
� $�� � � >A5 � &��?@ ��
 � � ���
 � �� �

and
� ; � = � � � � � � &��?@ ��
 � � ���
 � � �

, replace
the step of the run by

 ��� � � � � " � � V��� + � &*$ � � P U where P U is the input of
�

at port
& $ � . In case of an empty set, i.e., P U � � for all & $ � � � $�� , delete the step from
the run.

� If
� $�� � � >A5 � &��?@ ��
 � � ���
 � � �

and
� ; � = � � � � � � &��?@ ��
 � � ���
 � �� �

, replace
the step of the run by

 ���	� � ��
��� � � V��� + � &*$ � � � U where � U
is the output of

�
at

port & $ � . In case of an empty set, delete the step from the run.

� If
� $�� � � >A5 � &��?@T��
 � � ���
 � �� �

and
� ; � = � � ����� � &��?@T��
 � � ���
 � �� �

, re-
place the step of the run by both steps of the previous two parts, i.e., by the
union of

 ��� � � � � " � � V��� + � &*$ � � P U where P U is the input of
�

at port &%$ � and � � � � �
��� � � V �� + � & $ � � � U where � U
is the output of

�
at port & $ � . As in the above

steps, empty sets are deleted.

As in definition 2.7, we obtain a family of random variables

��� � �� " � � �C��� � �� � $�� $ " � � $�� $ ��� � $ ��
and similarly for � -step prefixes (i.e., we first take the restriction of the run to the set

�

of ports, and then consider the � -step prefix of that restriction). If we consider a config-
uration

�D���	�
we write

��� � � ; ��� � � " � for the individual random variables according to
Definition 2.9.

�

3.2.2 Proof of Equivalence

After introducing the new definitions we are now ready to turn our attention to the
actual proof of equivalence. In order to make the proof more readable, we first present
another lemma which captures the first of the four usual steps of the proof. As we
already mentioned above, it will additionally play an important role in later parts of the
thesis.

CHAPTER 3. SOME VARIANTS OF THE MODEL 35

H

M

A

S

H

M

A
s

S

H
1

H
s

^ ^

Figure 3.3: Sketch of the proof of Lemma 3.3

Lemma 3.3 Let a system #�� ! be given. For every configuration
�D����� � � �� �$# �

� � � � � ��� 5 � � #�� ! � , there is a new honest user � � using � as a blackbox submachine
and a new adversary

� � such that the following holds:

1.
�D���	� � � � � �� �$# � � � � � � � � ��� 5 � � � #�� ! � .

2. �)"��� � ; ��� � � � � �)"��� � ; ��� � � � � where the view of � in
�D���	� � is given as a subma-

chine of � � .
3.

�D���	� � is polynomial-time iff
�D�����

is polynomial-time.

4. The probability of the runs restricted to the set # of specified ports is identical in
both configurations, i.e.,

��� � � ; ��� " � �
��� � � ; ��� � " � .

�

Proof (sketch). Since the full proof is quite technical and tedious, we postpone it to the
Appendix. We only give a brief sketch how the proof is performed. We will define a
new machine �

	
which is inserted between the system and the adversary, so that �

	
now exactly uses the specified ports formerly connected to

�
(cf. Figure 3.3). This

machine will mainly forward messages, so it will not change the probability of the runs
at the specified ports. Combination of �

	
and the original � will yield the intended

user � � . The adversary
� � will be mainly derived by port renaming of

�
with the only

difference that clockout ports of
�

have to be simulated by
� � in a different way, mainly

by additional output ports. This will give us a configuration
�D���	� � � ��� 5 � � � #�� ! � as

shown in the right side of Figure 3.3. However, the main difficulty of the proof (and
also the reason why we postponed it) is that it has to ensure that the new honest user

� � is polynomial-time in case of a polynomial-time configuration. This aspect requires
a thorough look at the details and significantly lengthens the size of the proof.

We are now ready to state and prove our main theorem. Using the results of the previous
lemma, its proof turns out to be quite simple.

Theorem 3.2 (Equivalence of standard simulatability and s-simulatability) Let two
arbitrary systems #�� !�	 , #�� ! � and a valid mapping � be given. Then #�� !�	 � � #�� !�� iff#�� ! 	 � �� #�� ! � . This holds for the perfect, statistical and computational case.

�

Proof. We start with the easy direction of the proof.

CHAPTER 3. SOME VARIANTS OF THE MODEL 36

A
1

M
1

conf
1

H

A
s,1

M
1

H

H
1

H
s

A
s,2

M
2

H

H
1

A
s,2

M
2

H

H
1

A
2

Define

H
1
,H

s
,A

s,1

Sys
1
 ≥

s
 Sys

2

Define A
2

H
s

conf
s,1

conf
s,2

conf
2

^ ^

^ ^

Figure 3.4: S-Simulatability implies Standard Simulatability.

� � � � �� : Assume that #�� ! 	 � � #�� ! � holds. So for every suitable configura-
tion

�D���	�	 � � �� 	 �G# � � � � 	 � � ��� 5 � � � #�� !�	 � , there exists a configuration�(���	� � � � �� � �G# � � � � � � � � � 5 � � #�� ! � � with
� �� � �$# � � � � �� 	 �$# � such that�)"��� � ; ��� � � � � � �)"��� � ; ��� = � � � holds. Since � � 5 � �� � #�� !�	 � . ��� 5 � � � #�� !�	 �

holds by definition, every suitable s-configuration
�D����� � � 	 � � �� 	 �$# � � � � � � � 	 � �

��� 5 ���� � #�� ! 	 � also has an indistinguishable configuration
�D����� � � � � 5 � � #�� ! � � .

Moreover, the honest user � � remains unchanged using simulatability and # � .
&��?@ ��
 � � � � holds by precondition in

�D���	� � � 	 , so # � . &��?@T��
 � � � � must also hold in�(���	� �
. Thus,

�(���	� � � � � 5 � � � #�� ! � � which finishes this direction of the proof.

� �� � � � : This direction will mainly be proven using Lemma 3.3. Assume that#�� !�	 � �� #�� ! � holds and let an arbitrary suitable configuration
�D���	� 	 � � �� 	 �$# �

� � � 	 � � ��� 5 � � � #�� !�	 � be given. We have to show that there is an indistin-
guishable configuration

�D������� � � � 5 � � #�� !�� � . The proof will be split in the
well-known four steps, shown in Figure 3.4.

� Step 1: We apply Lemma 3.3 on #�� ! 	 immediately yielding the desired
configuration

�D����� � � 	 � � �� 	 �G# � � � � � � � 	 � . More precisely, we apply the
proof of the lemma on

�D�����	
which yields the desired machines �

	
and� � � 	 . The lemma additionally states that the view of � does not change in

both configurations, so we have

�)"��� � ; ��� � � � � � �)"��� � ; ����� � � � � � R
Moreover, we have

�D����� � � 	 � � � 5 � � � #�� ! 	 � , and
�(���	� � � 	 is shown to be

polynomial-time iff
�(���	�
	

is polynomial-time.

CHAPTER 3. SOME VARIANTS OF THE MODEL 37

� Step 2: We have to show that
�D����� � � 	 is suitable. This again immediately

follows from Lemma 2.3, i.e. we can transform
�D����� � � 	 into a suitable

configuration by simple port renaming, so we can assume
�D���	� � � 	 to be

suitable without loss of generality, because port renaming obviously re-
sults in a s-configuration again. Hence, our precondition #�� !�	 � �� #�� ! �
yields a s-configuration

�D���	� � � � � � �� � �$# � � � � � � � � � � � � 5 � � � #�� ! � � with� �� � �$# � � � � �� 	 �G# � such that �)"��� � ; ����� � � � � � � � �)"��� � ; ������� = � � � � . As �
is a submachine of � � ,

�)"��� � ; ��� � � � � � � � �)"��� � ; ��� ��� = � � �

holds by Lemma 2.4.
� Step 3: We now split � � into � and �

	
again. This does not change the

view of � because combination does not and indistinguishability of views
is transitive.4 Now, we combine �

	
and

� � � � into a new adversary
� �

. We
obtain a configuration

�D���	� � � � �� � �$# � � � � � � � � � 5 � � #�� ! � � such that

�)"��� � ; ����� � = � � � � �)"��� � ; ��� = � � � R
In the polynomial case,

� �
has to be polynomial-time. This must hold

because
� � � � and �

	
are polynomial-time by precondition and Lemma 3.3,

respectively, so Lemma 2.1 applies.
� Step 4: Putting it all together, we have shown

�)"��� � ; ��� � � � � � �)"��� � ; ��� � � � � � � �
�)"��� � ; ��� ��� � � � � � �)"��� � ; ��� � � = � � � �
�)"��� � ; ��� ��� = � � � � �)"��� � ; ��� = � � � R

Using Lemma 2.4, we can conclude �)"��� � ; ��� � � � � � �)"��� � ; ��� = � � � , so�D����� �
is an indistinguishable configuration for

�D����� 	
with respect to stan-

dard simulatability.
�D���	�
	

has been chosen arbitrary, so #�� !�	 � � #�� ! �
holds which finishes our proof.

The notion of s-simulatability and Lemma 3.3 will play an important role in Chapter 5
where we define integrity properties for our reactive systems, and show that they are
preserved under simulatability. This proof will make exhaustive use of Lemma 3.3.

3.2.3 Combining both Variants of Simulatability

So far, we have proven that we can either restrict ourselves on configurations with
one self-scheduled duplex connection between the honest user and the adversary or on
configurations where specified ports are only used by the honest user. The remaining
question is whether a combination of both definitions of simulatability, i.e., restricting
configurations towards both preconditions is still equivalent to the original one. We can
answer this question in the affirmative, and the proof can immediately be derived from

4Otherwise, a combination of machines that is split again could result in a different view of internal
machines as in the original configuration which surely yields a contradiction, because the configuration has
not been changed.

CHAPTER 3. SOME VARIANTS OF THE MODEL 38

our previous results, especially Lemma 3.3 and parts of the previous proofs. However,
since we cannot directly apply our theorems and lemmas but have to “copy” parts of
the proofs instead, we will only sketch the proof in the following. Missing details can
be proven similarly to the previous theorems.

Proof (sketch). We denote this new definition by � � � � � . The direction � � � � �� � � �
is very simply and can be performed analogous to the previous theorems. For proving
� �� � � � � � � , assume that we have an arbitrary configuration

�D����� 	
of a system #�� ! 	 .

1. At first we can transform
�(���	�
	

to an indistinguishable s-configuration
�D����� � � 	 �

��� 5 � � � #�� ! 	 � applying Lemma 3.3.

2. Now, we apply the first step of the proof of Theorem 3.1 on
�(���	� � � 	 . If we

take a look at our construction of � � in the actual proof we can see that the
newly derived configuration

�D����� � � � � � 	 � � � 5 � � � � #�� !�	 � does not change the
connections of the honest user to the specified ports, i.e., the new honest user
connects to the same subset of specified ports as the old one (i.e., it connects to
all ports of #).

3. Thus,
�(���	� � � � � � 	 is both a s-configuration and a one-

�
- � -configuration, so

our precondition #�� ! 	 � �� � � � #�� !�� can be applied. The rest of the theorem
can now be proved as usual, i.e., we obtain an indistinguishable configuration�(���	� � � � � � � � � � 5 � � � � � � #�� !�� � .

4. The third step of the proof of Theorem 3.1 now yields an indistinguishable con-
figuration

�D���	� � � � � � � 5 � � #�� ! � � . By construction, the reversed honest user con-
nects to the same subset of specified ports, i.e., it also connects to all specified
ports. Thus,

�D����� � � � � � � 5 � � � #�� ! � � .
5. Finally, we use the third step of the proof of Theorem 3.2 yielding an indistin-

guishable configuration
�D���	� � � � � 5 � � #�� !�� � for the original honest user.

3.3 Guessing Outputs of the Adversary

In this section we built a relation of our model to a fundamental concept of cryptog-
raphy: guessing outputs of the adversary. Guessing outputs are the main concept in
many cryptographic definitions, e.g., semantic security [22] or adaptive chosen cipher-
text attack [50], and play an important role in current definitions of multi-party function
evaluation. Prior to this work, there already exists a synchronous version of simulata-
bility with guessing outputs [47]. On the one hand, this version and the actual proof
of equivalence are quite similar to the ones we present here, but on the other hand, the
occurrence of buffers in the asynchronous model significantly complicates the notion
of guessing outputs. As we proceed, we will discuss this problem in further detail.

Using the terminology of our model we consider configurations where the adver-
sary has one emphasized output port ���28

 � . Configurations with guessing outputs, i.e.,
“what an adversary sees is simulatable” mainly fit out intuition of privacy, whereas our
standard notion “what the user sees is simulatable” corresponds to integrity. However,
we will show that both definitions are equivalent in the reactive case, so we do not have
to worry about which one to choose, i.e., which one might be more general or more

CHAPTER 3. SOME VARIANTS OF THE MODEL 39

expressive. As in the last two sections we will obtain a new variant of simulatability
called guessing simulatability, denoted by ��� .

Before we can formally define guessing configurations, we are confronted with
the question what to do with the port ���28

 � . Usually, the port ���28

 � is regarded
as free, i.e., it connects to nowhere. This possibility does not fit our definition of
configurations because the corresponding completion would no longer be closed, and
hence, runs would no longer be defined. This is not an insurmountable problem since
our run algorithm could as well be applied to non-closed completions as long as there
are no free input ports and no clockout ports for delivering messages from buffers with
free output ports.5 We could then represent guesses of the adversary by restricting the
view of

�
on the port � � 8

 � .

The second possibility is to define a special machine
� � � to close the completion,

i.e.,
� � � simply has one port ���28

 � and does nothing an arbitrary inputs at this port. It

just “catches” the guessing outputs of the adversary. Now, guesses of
�

can either be
expressed by restricting runs to the port � � 8

 � or to ���28

 � . It does not matter which
one we choose because the adversary will always have the corresponding clockout port
� � 8

-�'� , so any output at � � 8

 � can as well be scheduled by the adversary. Moreover,
restricting the run to � � 8

 � can be used to fit our intuition of a final guessing output
usually used in cryptographic definitions, i.e., the adversary only has one final guess
which can easily be modeled by letting

� ��� enter final state after its first input.
We decided to choose the second probability because it will not only simplify the

following proof but it will also be more closely related to non-interference construc-
tions introduced in later parts of the thesis.

The remaining question is whether
� � � is regarded as part of the system or as part

of the user. Anticipating Chapter 6 and Chapter 7, we will now introduce so-called
multi-party configurations, which generalize standard configurations to multiple users.
The machine

� ��� will then be represented as an additional second user. Our reasons
not to include the machine in the system are quite simple. At first, the machine ought
to be unchanged using simulatability which is a typical property of the honest user.
Furthermore, it allows us to already build a bridge to future chapters of the thesis, where
privacy properties will be defined using the mentioned multi-party configurations.

3.3.1 Definitions

We first introduce the definition of multi-party configurations.

Definition 3.6 (Multi-Party Configurations) A multi-party configuration
�D������� �

of a
system #�� ! is a tuple

� �� �$# ��� � � �
where

� �� �$# � � #�� ! is a structure, � is a set of
machines called users such that &��?@ ��
 � � ��
 � �?@ < � �� �$# � � �

holds and the completion�� � � � �� 2 � 2 � � � is a closed collection.
The set of these configurations will be denoted by ��� 5 � � � � #�� ! � , those with a

polynomial-time adversary and polynomial-time users by � � 5 � � �� K�� � � #�� ! � and we will
omit the indices 71& and &�� ; 	 if they are clear from the context. For a valid mapping � ,
suitable multi-party configuration are defined as usual using the ports of � instead of
the ports of the single user � .

�

5If we take a closer look at the run algorithm we can see that the first four steps can be carried through as
usual. The last step could only be a problem if such a buffer with free output ports is scheduled, but this can-
not happen because we demanded that the corresponding clockout port is not contained in the configuration.

CHAPTER 3. SOME VARIANTS OF THE MODEL 40

Obviously, runs and views are also defined for multi-party configurations because we
demanded the completion

��
to be closed.

Remark 3.2. Note that every multi-party configuration can be regarded as a usual con-
figuration in a natural way simply by combining all machines of � into one user � . An
immediate consequence of this embedding is that the previously proven lemmas and
theorems about simulatability simply carry over to multi-party configurations since the
derived indistinguishable configuration contains the same honest user which finally
can be decomposed again. The rigorous proof is obviously very simply, so we simply
sketch it. First of all, we combine the machines of � to a new honest user, which does
not change the view of any machine of � . Now, simulatability for ’usual’ configura-
tions can be applied yielding an indistinguishable configuration of the second system
for the same honest user. Finally, we split the user into its original set of users again
yielding identical views which gives us the desired configuration. The only remaining
step is to show that the standard configuration derived after the first step is in fact suit-
able which immediately follows from the precondition &��?@T��
 � � �
 � �?@ < � �� U �G# � � �

forI � �'& � % of suitable multi-party configurations. The opposite direction of the proof,
i.e., that simulatability for multi-party configurations implies ’usual’ simulatability, is
trivial, because standard configurations are simply a special case with � � � � . -
Based on this new definition we can turn our attention to the definition of guessing
configurations which are our actual topic of this section.

Definition 3.7 (Guessing Configurations) A guessing configuration of a system #�� ! is
a usual multi-party configuration

�D�����
�
� � �� �$# � � � � � � � of the system with � � � �� � � � � ��� so that the following two properties hold.6

1. The machine
� ��� only has one input port for catching guesses of the adversary,

doing nothing on arbitrary inputs at this port. In a polynomial configuration,� ��� also has to be polynomial so we assume that it enters final state after a
polynomial number of steps, e.g., realized by an internal counter.

2. The adversary connects to the input port of
� ��� and also possesses the corre-

sponding clockout port. We will in the following denote the ports of this channel
by ���28

 , so

���28

 � � &��?@T��
 � � ��� � and
� ���28

 �3� ���28

 � �� . &��?@T��
 � � � �

must hold.7

The set of all these configurations is denoted by � � 5 � � � #�� ! � , the set of polynomial-
time configurations by � � 5 � � � � K�� � � #�� ! � . Suitable guessing configurations with respect
to a given mapping � carry over from Definition 3.6 as usual. For a given guess-
ing configuration

�(���	� � let �)"��� � ; ��� � � � � � � � 8

 � � denote the two families of random
variables derived by restricting the runs to the view of � � and the inputs of

� � �
to � � 8

 � , i.e. the first one contains every step of � � corresponding to the usual

6Here, � denotes the actual user whereas
�����

simply catches guessing outputs from the adversary, but
doing nothing by itself, i.e., it has a predefined program. According to Remark 3.1, we again provide an
additional index � for users and the adversary

7Fixing the name of the channel is without loss of generality because we can always achieve the desired
situation by simple port renaming. It is just a notation convention to make further proofs more readable.

CHAPTER 3. SOME VARIANTS OF THE MODEL 41

view, the second contains the steps of the run restricted to the port � � 8

/� accord-
ing to Definition 3.5. More formally, �)"��� � ; ��� � � � � � ���28

 � � is a family of random
variables over the cross product of the probability space of the runs, i.e., we can set�)"��� � ; ��� � � � � � � � 8

 � � � � � �)"��� � ; ��� � � � � � � ��� � � ; ��� � " � L � � � � � .

�

Definition 3.8 (Simulatability with Guessing Output) Let two systems #�� ! 	 and #�� ! �
with a valid mapping � be given.

a) We say #�� !�	 � � � �
� � <

� � � ��� #�� ! � (perfectly at least as � -secure as) if for every guess-

ing configuration
�(���	�

� � 	 � � �� 	 �$# � � � � � � � 	 � � � � 5 ���� � #�� !�	 � , there exists

a configuration
�(���	�

� � � � � �� � �$# � � � � � � � � � � � � 5 � � � #�� ! � � with
� �� � �$# � �

� � �� 	 �G# � such that

�)"��� � ; ��� � � � � � � � � � 8

/� � � �)"��� � ; ��� � � = � � � � � � 8

 � � R
b) We say #�� !�	 � � � � ��� � �� � � ��� #�� ! � (statistically at least as � -secure as) for a class# �#" � � if the same as in a) holds with �)"��� � ; ��� � � � � $ � � � � ���28

 � � � � ��� � ��)"��� � ; ��� � � = � $ � � � � � � 8

 � � for all polynomials � , i.e., statistical indistinguisha-

bility of all families of � -step prefixes of the views.

c) We say #�� !�	 � � � � K�� �� � � ��� #�� ! � (computationally at least as � -secure as) if the same as

in a) holds with configurations from � � 5 � �� � � K�� � � #�� ! 	 � and � � 5 � � � � K�� � � #�� ! � � and
computational indistinguishability of the families of views.

As in the standard definition and the prior variants, we speak of indistinguishable
configurations and omit indices as usual if they are clear from the context.

�

3.3.2 Proof of Equivalence

Theorem 3.3 (Equivalence of standard simulatability and simulatability with guessing
outputs) Let two arbitrary systems #�� ! 	 �$#�� ! � and a valid mapping � be given, then#�� ! 	 � � #�� ! � iff #�� ! 	 � �� #�� ! � . This holds for the perfect, the statistical and the
computational case.

�

Proof. The proof will be done in the four well-known steps, so we will omit the usual
proofsketch this time. Figure 3.5 shows the direction “ � � � � �� ” we will show first.
However, it may help as well to understand the opposite direction, since there are no
complicated constructions of new users and adversaries in the proof, but only simple
addings of new ports.

� � � � �� : Let an arbitrary suitable guessing configuration
�D�����

� � 	 � � �� 	 �$# �
� � � � � � 	 � � ��� 5 ���� � #�� !�	 � be given. According to Figure 3.5, we define a new
honest user � by combining the machines � � and

� � � . The adversary remains
unchanged, but in order to fit our usual notation of standard simulatability we
rename it to

� 	
which yields a configuration

�D�����
	�� � �� 	 �$# � � � � 	 �
.8

Combination does not change the view of � � and
� � � , so we have�)"��� � ; ��� � � � � � � � � � ��� � = �)"��� � ; ��� � � � � � � � � � � . The restriction to the set

8Recall, that renaming means that ��� uses � ��� � as a blackbox submachine simply forwarding in- and
outputs to and from it according to Remark 3.1.

CHAPTER 3. SOME VARIANTS OF THE MODEL 42

A
g,1M

1

conf
g,1

Sys
1
 ≥f

 Sys
2

H
g

Define H,A
1

Define A
g,2

Out

A
1
=A

g,1M
1

conf
1

H
g Out

H

A
2M

2

conf
2

H
g Out

H

M
2

conf
g,2

H
g Out

A
g,2

=A
2

^

^

^

^

Figure 3.5: Standard simulatability implies simulatability with guessing outputs

� � � 8

 �4 is a well-defined function on the view of
� � � by definition, so we

obtain �)"��� � ; ��� � � � � � � � � � 8

 � � � �)"��� � ; ��� � � � � � � � 8

/� � R
Obviously,

�(���	�	
is now a standard configuration containing one single user.

Moreover, it is suitable with respect to the mapping � because &��?@ ��
 � � � �
&��?@ ��
 �-� � � � � ��� � holds by construction and &��?@T��
 � � � � � � ��� �
 � �?@ < � �� � �G# � ��

holds by precondition for all
� �� � �G# � � � � �� 	 �G# � which immediately implies

&��?@ ��
 � � �
 � �?@ < � �� � �G# ��� �
. Thus, our precondition #�� !�	 � � #�� !�� can be

applied yielding a configuration
�D����� � � � �� � �$# � � � � � � � � � 5 � � #�� ! � � such

that �)"��� � ; ��� � � � � � �)"��� � ; ��� = � � � R
This again contains

�)"��� � ; ��� � � � � � � � 8

 � � � �)"��� � ; ��� = � � � � � � 8

 � �
as a special case.

Now, we split � into � � and
� ��� again which does not change their view. The

adversary
� � � � equals

� �
yielding a configuration

�D���	�
� � � � � �� � �$# � � � � � � � � �

with �)"��� � ; ��� = � � � � � � � � � � �)"��� � ; ��� � � = � � � � � � � �/ � .
Thus, �)"��� � ; ��� = � � � � � � 8

/� � � �)"��� � ; ��� � � = � � � � � � 8

 � �
holds as a special case and we can conclude

�)"��� � ; ��� � � � � � � � � � 8

/� � � �)"��� � ; ��� � � = � � � � � � 8

 � � R
combining the results of the previous steps.

CHAPTER 3. SOME VARIANTS OF THE MODEL 43

We finally have to show that
�(���	�

� � � is in fact a guessing configuration. Ob-
viously, it fulfills the precondition with respect to the machine

� � � because it
has not been changed during the previous steps. Moreover, ���28

 � and ���28

 � �
are in fact ports of the configuration, because � � 8

 � � &��?@T��
 � � ��� � holds by
construction and

�D�������
has to be closed by definition. This now immediately

implies
� � � 8

 ��� � � 8

-�'�A . &��?@T��
 � � � �

, because the ports of the user have not
been changed after simulatability, so either � � or

� � � would already have had
one of these ports in the original configuration

�D�����
� � 	 yielding a contradiction.

Furthermore, they cannot be ports of the system because we assume the name
� � 8

 to be new among all port names of the system. Otherwise, we can give
them new names that do not occur in the system before applying simulatability.

Thus,
�(���	�

� � � � � � 5 � � � #�� ! � � which finishes this direction of the proof.

� �� � � � : Let now an arbitrary configuration
�D�����
	 � � �� 	 �G# � � � � 	 � � ��� 5 � � � #�� !�	 �

be given. We now construct a guessing configuration
�D�����

� � 	 � � �� 	 �$# �
� � � � � � 	 � � � � 5 � � � #�� ! 	 � with � � � � � � � � � � � by adding the missing machine� ��� , the user � � equals � , i.e., it has � as a blackbox submachine and simply
forwards all messages to and from % � . The adversary

� � � 	 behaves exactly like� 	
but it has additional ports ���28

 � and ���28

 ��� . These ports will never be used

in a run of the configuration because
� � � 	 simply forwards messages to and from

its blackbox submachine
� 	

to the corresponding ports. Obviously, this yields
identical view for the original honest user in both configurations, i.e.,

�)"��� � ; ��� � � � � � �)"��� � ; ��� � � � � � � R
Moreover, the configuration is suitable because the original is, and the port name
� � 8

 is assumed to be disjoint with all port names of the system and of the honest
user, i.e., it has to connect to the adversary. Now, our precondition #�� ! 	 � ��
#�� ! � can be applied yielding a configuration

�D���	�
� � � � � �� � �G# ��� � � � � � � � �

��� 5 � � � #�� ! � � with �)"��� � ; ��� � � � � � � � � � 8

 � � � �)"��� � ; ��� � � = � � � � ���28

 � � .
As a special, case we restrict the family of random variables to the submachine

� of � � yielding �)"��� � ; ��� � � � � � � � �)"��� � ; ��� � � = � � � R
Finally, we combine

� ��� and
� � � � to a new adversary

� �
which leaves the view

of the � � unchanged. After renaming � � into � again we obtain the final con-
figuration

�D���	��� � � �� � �$# � � � � � �
with

�)"��� � ; ��� � � = � � � � �)"��� � ; ���>= � � � R
Obviously,

�D���	� � � � � 5 � � #�� ! � � holds and combining all steps we conclude that�(���	���
is an indistinguishable configuration for

�D�����
	
which finishes our proof.

3.4 Relation to Synchronous Systems

By now, we only focused on asynchronous reactive systems. However, there is also a
synchronous model introduced in [47] which can be seen as a predecessor of the asyn-
chronous one, i.e., the synchronous model is based on the same concept of machines,

CHAPTER 3. SOME VARIANTS OF THE MODEL 44

systems, configurations and so on. The main difference is that there are no clocking
ports and no buffers which have only been included to model asynchronous timing.
Instead, runs are defined using rounds which is the usual concept in synchronous sce-
narios. Every global round is again divided into (so-called subrounds, and there is a
mapping � from the set

�'& ��RGRGR ��(into the powerset of considered machines, i.e., the
machines of the structure, the user, and the adversary. �

� I � denotes which machines
switch in subround I . After finishing the (-th subround, the run starts the first subround
of the next global round. At the beginning of each subround, all messages from the pre-
vious subround are transported from the output ports to the connected input ports. After
that, each machine of �

� I � switches with its current inputs yielding a finite distribution
over the set of states and the set of possible outputs as usual.

An often asked question is whether the synchronous model is a special case of
the asynchronous one, i.e., whether synchronous systems can be embedded into asyn-
chronous ones such that simulatability is preserved. Moreover, lots of protocols in
practice are synchronous, so the synchronous model is still essential to cope with these
protocols. Hence, we want to drive double tracked, but without proving each and every
theorem for both models.

Therefore, we present such an embedding in the following, which serves as the
first, essential step of regarding the synchronous model as a special case only, which
we do not have to consider explicitly. More precisely, we will show that asynchronous
simulatability among these asynchronous representations implies synchronous simu-
latability in the computational case. Moreover, the converse implication holds in the
computational case under some additional reasonable assumptions. In the perfect and
statistical case both claims also hold if we perform one of the following three slight
modifications:

1. We bound the number of steps the adversary can perform by an arbitrary bound.
This does not really seem to be a restriction if we consider protocols in real life,
because no machine will be able to run forever. Note, that we do not require the
adversary to be polynomial-time as in the computational case, we only demand
it to be bounded by an arbitrary function.

2. We restrict our model to adversaries that cannot perform infinite successive
clocked self-loops. We speak of a clocked self-loop if the adversary schedules
a port to itself, so that the clocked buffer can in fact deliver a message. In this
case the adversary will be clocked again, so it may again perform such a (now
successive) self-loop. Obviously, such an adversary can be validly defined and it
may perform such self-loops forever, so no other machine will ever be switched
again.

3. We modify our definition of machines in the following way. We define that a ma-
chine does not have to terminate and that the transition function of a machine

�
is not restricted to finite distributions over # �������$! � 0 J �

. Putting it all together,
we define that the transition function yields a (probably infinite, e.g., discrete)
probability distribution over # �������$! � 0 J � 2 ��� , where

�
denotes diverga-

tion of the machine, i.e., the probability associated to
�

is the probability that
�

diverges. If the machine diverges the runs stops.

If we take a look at “typical” systems we do not have to worry about these modifica-
tions, since the second one will most likely be fulfilled anyway. However, we explicitly
have to consider at least one of these modifications in order to formally prove the de-
sired properties of the embedding.

CHAPTER 3. SOME VARIANTS OF THE MODEL 45

3.4.1 A Brief Review of the Synchronous Model

We now briefly sketch the differences between the synchronous model of [47] and our
asynchronous model. At first, ports, machines, and collections are defined similar to
our model, except that there are no clock ports and no buffers, i.e., corresponding ports
&(� and &'� are directly connected. The main difference is the definition of runs. Instead
of our usual run algorithm (cf. Definition 2.6), we have a clocking scheme � indicating
which machines switch in which subround.

Definition 3.9 (Clocking Scheme, Runs and Views) Given a closed collection
��
, a

clocking scheme � is a mapping from a set
�'& �GR�RGR �)(to the powerset of the set of

all machines of
��
, i.e., it assigns each number a subset of the machines. Given

��
,

� , and a tuple
)+��) � ' �H) �� � � 0 ��� �� of initial states, runs are defined as follows:

Each global round I has (subrounds. In subround � IDR � � all machines
� �

�
� � �

switch
simultaneously, i.e., each state-transition function % � is applied to

�
’s current input

yielding a new state and output (probabilistically). The output at a port &?� is available
as input at &,� until the machine with port &(� is clocked next. If several inputs arrive
until that time, they are concatenated. This gives a family of random variables

��� � �� � �C��� � �� � $�� $ � $�� $ ��� � $ �� R
More precisely, each run is a function mapping each triple

� � ��I�� � � � �� 0 � 0
�%& �GR�RGR �)(to a quadruple

� ���(P ��� � �	� � of the old state, inputs, new state, and outputs
of machine

�
in subround � I(R � � , with a symbol � if

�
is not clocked in this subround.

For a number � � �
of rounds, � -round prefixes

��� � �� � $�� $ � $ of runs are defined in
the obvious way. For a function � � ' ��) 0 �

this gives a family

��� � �� � $ � ����� � �� � $�� $ � $ 8 $�� $ A � $�� $ ��� � $ �� R
The view of a subset

��
of a closed collection

��
in a run � is the restriction of � to�� 0 � 0 �'& �GR�RGR �)(. This gives a family of random variables

�)"��� �� ��� � � � �)"��� �� � $�� $ � � �� $�� $ ��� � $��� �
and similarly for � -round prefixes.

�

Remark 3.3. Alternatively, we can consider runs as a sequence of seven-tuples� � ��I�� � �����&P �/� � ��� � for ascending values of I and
�
. More formally, we first have all

tuples
� � � & � & �/���&P �/� � �	� � for

� �
�
��& �

. The order of these tuples can be chosen ar-
bitrary since they switch simultaneously and do not influence each other. After that,
we have the steps

� � � & � % �/���&P �/� � �	� � for all
� �

�
� % �

and so on, until we finally
have steps of the form

� � � & �)(�/���&P �/� � ��� � for all
� �

�
� (� . We then continue with� � � % � & �/���&P �/� � ��� � etc. Obviously, this characterization of runs is equivalent to the

original one (we just expanded the function), but it is better suited for our upcoming
embedding proof. -
The remaining definitions of the synchronous model are analogous to its asynchronous
counterpart except for configurations, which are slightly different. Instead of arbitrary
clocking schemes as in the definition of runs of a collection, we only consider one
special clocking scheme � for runs of a configuration. This special clocking scheme

CHAPTER 3. SOME VARIANTS OF THE MODEL 46

is given by
� �� 2 � � �� � � �� � � �� � � � . Clocking the adversary between the correct

machines is the well-known model of “rushing adversaries”. In [47], it has been shown
that this clocking scheme does not restrict the possibilities of the adversary, hence we
can use it without loss of generality.

Moreover, we restrict ourselves to those configurations where the honest user and
the adversary are only connected over one duplex channel. This is indeed no restriction
to generality in the synchronous model, because out- and inputs at several ports can
simply be concatenated using a separation symbol and decomposed again, respectively.
In the following, we give these two channels fixed names & � � and & � � , i.e., & � � �
sends messages from

�
to � and vice versa.

3.4.2 Definition on the Embedding

After this brief synopsis of the synchronous model, we can turn our attention to the
actual embedding. By definition, an embedding of one set into another is an injective
function that respects a given relation on these sets. In our case, we consider the sets
of synchronous and asynchronous systems, respectively, and the relation to preserve
is simulatability. We will in the following write � � �C7 � and � � � ��7 � for simulatability in
the synchronous and the asynchronous case, respectively. We start by defining the em-
bedding function �8��� > that assigns every synchronous system #�� ! � ��7 � an asynchronous
system #�� ! � � ��7 � . We will afterwards show that this function preserves simulatability in
the following way:

��� � > � #�� ! � ��7 � � � � � � � �C7 � ����� > � #�� ! � �C7 � � � � � #�� ! � �C7 � � � � � �C7 � #�� ! � ��7 � � � R
Unfortunately, the converse direction does not hold in general, but we will state a
weaker theorem later on which is still sufficient for our purpose. Before we turn our
attention to the mapping � � � > , we will define a similar mapping �

�
on single syn-

chronous machines.

Definition 3.10 (Mapping �
�

) �
�

is a mapping on single synchronous machines that
assigns every machine

� � �C7 � an asynchronous machine
� � � ��7 � � � �

� � � � �C7 � � by the
following rules:

� The ports of
� � � ��7 � are given by &��?@ ��
 � � � � �C7 � � � &��?@ ��
 � � � ��7 � � 2 � & � � ����� �4 .

� Internally,
� � � ��7 � maintains arrays

�C)+� 	 � � ! �����&� �
� ����� � ��� � ��� � 6 7 8 � K � M � 8 � � ����� A:A over

���
initialized with � everywhere.

� � � � ��7 � has the machine
� � ��7 � as a blackbox submachine, i.e., it has its transition

function % � � ����� .
� Internally,

� � � ��7 � has exactly the states of
� � ��7 � (the names of the states). More-

over, the initial and final states of both machines are equal.

Its behaviour is defined as follows.
� On input I at &(� with &,� �� & � � ����� � : It concatenates I to the element of)+� 	 � � ! �-���&� �

� ����� � ��� . Informally, �
�

encloses a synchronous machine
�

such
that the following holds: if an arbitrary input occurs at a port &(� , it appends this
input to the array

)+� 	 � � ! �����&� ��� . Note, that the synchronous machine will only
switch in its corresponding subround whereas asynchronous machines switch
every time they are scheduled. Therefore, we have to store all inputs until the
machine

�
is eventually switched.

CHAPTER 3. SOME VARIANTS OF THE MODEL 47

� On an arbitrary input I at & � � ����� � : It applies the state transition function % � � ����� on
the contents of the arrays

)+� 	 � � ! �-���&� �
� ����� � ��� yielding a tuple

� � � �DJ � .9 � � � �C7 �
now assigns � to

)+� 	 � � !D�-���(� �
� ����� � ��� for all &,� � >A5 � &��?@ ��
 � � � �C7 � �� , switches to

the state � � and outputs the tuple J . Note, that these steps are indeed possible,
because we demanded every state of the synchronous machine to be a state of
the asynchronous machine, and ����� � &��?@T��
 � � � � ��7 � ��� � � � � � &��?@ ��
 � � � �C7 � �� holds
by construction. This case corresponds to the scheduling of the synchronous ma-
chine. Later on, the port & � � ����� � will be connected to an explicit master sched-
uler with an explicit scheduling strategy that should model the rounds of the
synchronous system.

Obviously,
� � � ��7 � is polynomial-time by construction iff

� � ��7 � is polynomial-time.
Moreover, we define the function �

�
on a set

��
of synchronous machines by

�
� � �� � � � �

� ����� ���� �
��� � � �C7 � � .

�

Based on this definition, we now formalize the desired mapping � � � > .
Definition 3.11 (Mapping � � � >) Let on arbitrary synchronous system #�� ! � ��7 � , a

clocking scheme � and a structure
� �� � ��7 � �$# � ��7 � � � #�� ! � �C7 � be given. We can now

define ��� � > � #�� ! � ��7 � � by applying �
�

to every machine of every structure, and adding
a special machine � � �C7 � � � to every structure which depends on the synchronous clock-
ing scheme � . More formally, we have #�� ! � ��7 � � � � �� � �C7 � �G# � �C7 � � �
 	'5 . � ' for a
finite index set ' and

��� � > � #�� ! � ��7 � � � � �
�
� � �� � �C7 � � 2 � � � ��7 � � � '�$# � ��7 � � �
 	'5 . � ' �R

The machine � � ��7 � � � is an explicit master scheduler that has to be added to the con-
sidered structure to model the synchronous clocking scheme � in the asynchronous
system. Its ports are given by

� � & �4� � &?� � &��?@T��
 � �� � ��7 � � : Ports for clocking all output ports of the given struc-
ture.

� � & �4� � &?� � � � @ 8 8 � �� � �C7 � � : Ports for clocking inputs of the systems (either made
by � or

�
).

� � & � � �'�3� & � � ���� : Ports for clocking the connection between
�

and � .10

� � & � �3� & � � � � � � � �� � �C7 � 2 � � � � � : Ports for clocking, i.e., giving control to
each machine.

Internally, it maintains a variable
�T�	�D� � � � �

over
�%& �GR�RGR �)(and a variable � � ���(� � � � �

over � both initialized with
&
. For the sake of readability, we describe the behaviour of

� � �C7 � � � using “for”-loops. This is just a notational convention that should be understood
as follows: every time � � ��7 � � � is scheduled, it performs the next step of the loop.

1. Schedule Current Machines: For all machines
� �

�
� � ���D� � � � � �

output� � � ���D� � � � � � �T�	�D� � � � � �
at & � � , & at & � ��� . The order of the switched machines

can be chosen arbitrary.

9Note, that these arrays naturally correspond to inputs of the state transition function because they are
enumerated by the input ports of 0����
	
� .

10Note, that � ���
	� � � is defined independent from the honest user � and the adversary � , so it cannot know
their ports. We therefore restricted the configuration to a fixed number and fixed names of ports between �
and � (cf. Section 3.4.1)

CHAPTER 3. SOME VARIANTS OF THE MODEL 48

2. Schedule Outgoing Buffers: For all
� �

�
� � �	�D� � � � � �

output
&

at every port
&2�'� with &'� � &��?@T��
 � � � . Here, the order of the switched machine can only
be chosen arbitrary with the restriction that output ports of the adversary are
scheduled first if

� �
�
� � ���D� � � � � �

.11

3. Switch to next Round: Set
� ���D� � � � � � � �T�	�D� � � � � � &

, if
� ���D� � � � ��� (, set

� � ���D� � � � � � � � � ���(� � � � � ��&
and

� ���D� � � � � � � &
. Go to Phase (1). �

Putting it all together, the master scheduler simulates the clocking scheme � by first
scheduling the machines that ought to switch in the particular subround (Step

&
) and

afterwards scheduling all buffers that could be influenced by outputs of these machines
(Step

%
). Afterwards, it switches to the next subround (Step �). Moreover, we define a

mapping �
� ; ��� on configurations by

�
� ; ��� � �� � ��7 � �$# � ��7 � � � � � � � � �

�
� � �� � ��7 � � 2 � � � �C7 � � � ��G# � �C7 � � � � � � � � � � � � �� R

We will in the following simply write � instead of �8��� > � � �
and �

� ; ��� if its meaning
is clear from the context.

3.4.3 Preliminary Work for the Embedding Theorems

We now have to prove that the function � has in fact the desired properties with respect
to simulatability. Before we turn our attention to this property we first present an
informal description how the proof of the first embedding theorem will be performed
(there will be two of them). As usual, it will consists of the four well-known steps,
illustrated in Figure 3.6.

1. Starting with a synchronous configuration
�D����� � �C7 � � � � � � 5 � � #�� ! � �C7 � � � � , we ap-

ply our embedding function �
� ; ��� which yields an asynchronous configuration�(���	� � � ��7 � � � � � � 5 � � � � � > � #�� ! � �C7 � � � �� . We now have to built a relation between

the runs in both configurations. This will be done by defining a mapping
�

on
the runs of the asynchronous system yielding runs of the synchronous system,
and we will show in Theorem 3.4 that

�)"��� � ; ��� � ����� � � � � � ��7 � � � � � �)"��� � ; ����� � ����� � � � � � � � ��7 � ����
holds.

2. We can now apply our precondition � ��� > � #�� ! � �C7 � � � � � �� � ��7 � � ��� > � #�� ! � ��7 � � � �
yielding an indistinguishable configuration

�D���	� � � ��7 � � � � ��� 5 � � � � � > � #�� ! � ��7 � � � �� ,
i.e., we obtain

�)"��� � ; ����� � ����� � � � � � � � ��7 � �� � �)"��� � ; ����� � ����� � �

�
�
� � � ��7 � ��� �

and, using Lemma 2.4,

� � �)"��� � ; ����� � ����� � � � � � � � ��7 � ���� � � � �)"��� � ; ����� � ����� � �

�
�
� � � ��7 � ���� R

11This restriction will be essential in Step � of the proof of the embedding theorem. We ensure that the
behaviour of the adversary ��� ���
	
� � � at its switching time does not depend on outputs of machines scheduled in
the same subround. We will see that this problem does not occur for arbitrary other machines by construction.

CHAPTER 3. SOME VARIANTS OF THE MODEL 49

A
sync,1

M
sync,1

conf
sync,1

conf
async,1

conf
async,2

conf
sync,2

Apply ϕ
conf

ϕ
Sys

(Sys
sync,1

) ≥f
 ϕ

Sys
(Sys

sync,2
)

Reverse ϕ
Sys

M
async,1

M
async,2

M
sync,2

ϕ(H
sync

)

ϕ(A
sync,1

)

H
sync

H
sync

H
sync

A
async,2

H
sync

Reverse ϕ
M

Define

A

sync,2

A
sync,2

ϕ(H
sync

)

^

^

^

^

Figure 3.6: Synchronous Simulatability derived by Asynchronous Simulatability.

3. We finally want to reverse our function � in order to obtain a synchronous system
again. Obviously, both the honest user �

� � � ��7 � � and all machines �
� �� � �

of the
structure can easily be converted back to � � ��7 � and

�� �
, respectively, since they

fit the special form of � . In contrast to that, we do not know anything about
the newly derived adversary

� � � �C7 � � � , i.e., it is not forced to fit such a prescribed
structure too. Therefore, we define a new adversary

� � �C7 � � � using
� � � �C7 � � � as a

black-box submachine, and we will show in Theorem 3.5 that
� � �)"����� ; ��� � � ����� � �

�
�
� � � �C7 � ���� � �)"��� � ; ��� � ����� � �

� � � ��7 � �
holds.

4. Altogether, this yields
�)"��� � ; ��� � ����� � � � � � �C7 � ��� � �)"��� � ; ��� � ����� � �

� � � �C7 � � �
so the claim follows.

We first take a look at the runs in a synchronous system #�� ! � ��7 � and in its asynchronous
counterpart #�� ! � � ��7 � � � �

� #�� ! � ��7 � � . We will afterwards define a mapping
�

on runs
such that �)"��� � ; ��� � ����� � � � ��7 � � � � � �)"��� � ; ����� � ����� � � � � � ��7 � ����
holds for every synchronous configuration

�(���	� � ��7 � and the asynchronous configuration�D����� � � ��7 � � � �
���D����� � �C7 � � (cf. Step

&
of our above proofsketch). In the following, we

will simply write # instead of # � �C7 � , because the set of specified ports is not influenced
by the mapping � .

Before we turn our attention to the actual definition of the mapping
�

, we take
a closer look at the runs of these asynchronous configurations. Thus, let an arbi-
trary synchronous system #�� ! � �C7 � with a clocking scheme � and an arbitrary con-

figuration
�D����� � �C7 � � � �� � ��7 � �$# � � � �C7 � � � � ��7 � � � � � 5 � � #�� ! � �C7 � � be given. Moreover,

CHAPTER 3. SOME VARIANTS OF THE MODEL 50

let an asynchronous configuration
�(���	� � � �C7 � be given which fits the form

�D����� � � �C7 � ��
�
� �� � ��7 � � 2 � � � ��7 � � � '�$# � � � � � �C7 � � � � � �

(i.e., �
���D����� � ��7 � � but with an arbitrary adver-

sary).
First of all, note that runs of

�D���	� � � ��7 � always have a prescribed structure induced
by the behaviour of the master scheduler � � �C7 � � � , they are built by “blocks”. The steps� � � �C7 � �&I/� � �/���OF���� � �DJ � of the machines

� � ��7 � � �� � ��7 � 2 � � � ��7 � switched in round � IDR � �
in the synchronous run are represented by the following two blocks in the asynchronous
run.

1. The first block consists of the steps induced by clocking the machines �
� � � ��7 � �

with
� � ��7 � �

�
� � �

, i.e., Step (1) in the definition of � � ��7 � � � . More precisely,
the block is built by

�
�
� � �G�

sub-blocks, one for every switched machine. Every
sub-block is built by the following steps.

� The first step of the sub-block is always given by
� � � �C7 � � � �/� 	 �OF � � ��� ��� 	 ��� � 	 �DJ � @ � ����� � � 8 U � � A � � @ � ����� � � � 	 A

for two arbitrary states � 	 �/� � 	 of � � ��7 � � � , i.e., the master scheduler schedules
the machine

� � ��7 � .
� After that, we have the two transitions of the scheduled buffer.
� We have to distinguish the following two cases:

– If
� � �C7 � �� � �

holds, there is a step
�
�
� � � ��7 � � �����OF	� @ � ����� ��� 8 U � � A �/� � �&% � � ����� �C)+� 	 � � ! �-���&� �

� �����
��

and steps for the receiving buffers.
– If

� � �C7 � � � �
holds, we have a step

� � � �/���OF	� � ��� 8 U � � A �/� � � J � R
If J �� J + we have steps for the receiving buffers. If there are
nonempty outputs at ports &'� and &,�'� (which has to be a self-loop
because there are no free clockin ports in the system), there is fur-
thermore a clocking step for this particular buffer. In this case, the
adversary is scheduled again, so this sub-point of the block is repeated
until the self-loop of the adversary either ends or it is repeated forever
in case of divergation, i.e., we obtain a step

� � � �/� � �NF � �/� � � � J � whereF � is now given by F � � � F �������
�� and so on.

2. The second block consists of the steps induced by clocking the outgoing mes-
sages of the switched machines, i.e., Step (2) in the definition of � � �C7 � � � . Now
the buffers of the output ports are switched by the master scheduler. This is done
similar as in the first part with the restriction that output ports of

� �
are clocked

first if
� � ��7 � � �

� � �
. The block again has

�
�
� � �G�

sub-blocks built by the following
steps.

� The first step of the sub-block is given by
� � � ��7 � � � ��� 	 �OF � � ��� ��� 	 �/� � 	 � J � � � � 	 �

for the first output port &'� � &��?@ ��
 � � � ��7 � � and two arbitrary states � 	 ��� � 	 of
� � �C7 � � � .

CHAPTER 3. SOME VARIANTS OF THE MODEL 51

� The step of the clocked buffer.
� In case of a nonempty output let

� �
denote the unique machine with &,� �

&��?@T��
 � � � �
. We now have to distinguish between two cases:

– If
� � �� � �

holds, there is a step

� � � �����OF � �/� � �DJ + �

where F � consists of the output of �
� � � ��7 � � at &?� .

– If
� � � � �

holds, we obtain a step

� � � �/���OF � ��� � �DJ �
where F � consists of the output of �

� � � ��7 � � at &'� . If J �� J + we have
steps for the receiving buffers. If J has a clocked self-loop (cf. the
corresponding part of the first block) there is furthermore a clocking
step for this particular buffer. In this case the adversary is scheduled
again, so this sub-point of the block is repeated until the self-loop of
the adversary either ends or it is repeated forever in case of divergation,
i.e., we obtain a step

� � � ��� � �OF � ��� � � �DJ � where F � is now given by F � � �F ���)���
 � , we again obtain steps for the buffers and so on.
� The three previous steps are repeated for every output port of every machine� � ��7 � � �

� � �
.

After this detailed description of the run, (i.e., the description of blocks) the mapping�
can be defined. Informally, it combines the blocks of all machines

� � ��7 � � �
� � �

yielding the synchronous steps of every machine
� � �C7 � .

Definition 3.12 (Mapping
�

) Let an arbitrary synchronous system #�� ! � ��7 � with a

clocking scheme � and an arbitrary configuration
�D����� � ��7 � � � �� � �C7 � �G# � � � ��7 � � � � ��7 � � �

� � 5 � � #�� ! � �C7 � � be given. For a given asynchronous configuration
�D����� � � ��7 � which fits

the form
�D����� � � ��7 � � �

�
� �� � �C7 � � 2 � � � �C7 � � � ��G# � � � � � ��7 � � � � � �

, we define the mapping
�

on the runs of
�D����� � � ��7 � by the following algorithm. The algorithm has internal arrays�C)+� 	 � �O! � � ��� � for

� � �
� �� � �C7 � � 2 �

�
� � � �C7 � � � � � and &,� � >A5 � &��?@T��
 � � ��� . It goes from

block to block modifying them as follows.

� Every step of a buffer is deleted from the run.

� The two remaining steps of the first block are modified as follows. Let the
clocked machine be �

� � � ��7 � � . If �
� � � �C7 � � �� � �

, the block is then replaced
by

� � � ��7 � ��I�� � �/���)+� 	 � �O! � � ����� ��� � �(% � � ����� ��)+� 	 � �O! � � ����� �� . If
� �

is clocked, the block
is replaced by

� � � ��I�� � �����)+� 	 � �"! � � ����� ��� � �DJ � �

�
. Here, � denotes the state of

� �
as

it it switched by � � �C7 � � � , and � � and J � � are the state and the output of the last
step of the block, respectively (In case of divergation, the algorithm for defining
the mapping

�
diverges, too.).

� The algorithm starts searching the second block doing the following. If a ma-
chine

� �
receives a message I at &,� in the second block, I is concatenated to the

array
)+� 	 � �"! � � � ��� .

� Finally, every step of the second block is deleted from the run.

CHAPTER 3. SOME VARIANTS OF THE MODEL 52

�

Note that all necessary information (e.g.,
� � �C7 � �&I/� � �/���/� � etc.) is already given by the

stored arrays and by the block. Moreover, the new blocks built by the mapping
�

in one
particular subround do not depend on the second block of this subround. The mapping�

is obviously also defined on the view of arbitrary subsets of machines, because the
step in the first block, carrying the information of the step, and the message receiving
steps in the second block will also be part of the view of the considered machine.
Furthermore, note that the mapping

�
is explicitly defined for arbitrary adversaries

� �
(not only for �

� � � �C7 � �) which we will need in Theorem 3.5. Moreover, we can state the
following lemma:

Lemma 3.4 Let an arbitrary synchronous system #�� ! � ��7 � with a clocking scheme
� be given and consider an arbitrary synchronous configuration

�D���	� � �C7 � �
� �� � ��7 � �G# � � � ��7 � � � � �C7 � � � � � 5 � � #�� ! � �C7 � � and an asynchronous configuration�D����� � � ��7 � � �

�
� �� � ��7 � � 2 � � � �C7 � � � ��$# � � � � � ��7 � � � � � �

, If we now have given� � �)"��� � ; ��� � � ����� � � � � � ��7 � ��� then we can ’reverse’ the function
�

, i.e., we can define a
function

� 5 	� on the runs of the synchronous configuration, such that

�)"��� � ; ��� � � ����� � � � � � ��7 � �� � � 5 	� � � � �)"��� � ; ��� � � ����� � � � � � ��7 � �����
holds. If

�D����� � � ��7 � is polynomial-time, then
� 5 	� is polynomial-time computable.

�

Proof. In order to prove the claim, we present an algorithm which undoes the changes
of the algorithm for deriving the mapping

�
: It has an internal list over

� �
initially

empty, which will be used to construct the desired view. For every subround
�
, it goes

through all tuples
� � � ��7 � �&I�� � �/���OF��/� � � J � �

modifying them as follows: If
� � �C7 � � � � �C7 �

for one machine of this subround, it appends
�
�
� � � ��7 � � �/���OF	� � � ����� ��� 8 U � � A ��� � �DJ � �

to its
internal list. Note that this tuple precisely matches the original asynchronous tuple
for switching the honest user �

� � � ��7 � � by the master scheduler. After that, it proceed
through all tuples of this subround in precisely the same order they have been scheduled
by the master scheduler (the algorithm is surely allowed to know the clocking scheme).
For a given tuple of the form

� � � �C7 � �&I/� � �/���OF���� � � J � �
, it checks, whether there is a non-

empty output at a port &'� in J �
with &,� � &��?@ ��
 � � � � � �C7 � ��� . In this case, the honest user

would be clocked in the second asynchronous block, so we use the state transition func-
tion %�� 8 � � ����� A on the current state � of �

� � � ��7 � � and input F ������� �
 � which yields a new
state � � and an (all-empty) output J + . We then add a step

�
�
� � � ��7 � � �/���NF ������� �
�� ��� � � J + � .

This is done for all ports of
� � �C7 � according to their order and for all machines that

switch in the consider subround. Obviously, this algorithm reverses the mapping
�

for
the honest user by construction. In case of a polynomial configuration, especially the
adversary has to be polynomial-time. This implies that there cannot be any infinite suc-
cessive clocked self-loops. Moreover, both the adversary and the honest user will reach
final state after a polynomial number of blocks, so the algorithm for

� 5 	� applied on the
view of the honest user will only makes a polynomial number of transition, each one
with a polynomial number of steps. This implies that

�
is computable polynomial-time

applied on the view of the honest user if it is used in a polynomial-time configuration.

Theorem 3.4 Let an arbitrary synchronous system #�� ! � ��7 � , a clocking scheme � ,

and an arbitrary configuration
�(���	� � �C7 � � � �� � ��7 � �G# � � � ��7 � � � � �C7 � � � ��� 5 � � #�� ! � ��7 � �

CHAPTER 3. SOME VARIANTS OF THE MODEL 53

be given. For brevity, set #�� ! � � �C7 � � �
�
� #�� ! � �C7 � � and

�D���	� � � ��7 � � �
�
� �D���	� � ��7 � � �

� � 5 � � #�� ! � � �C7 ��� . Then,

�)"��� � ; ��� � ����� � � � ��7 � � � � � �)"��� � ; ����� � ����� � � � � � ��7 � ���
holds for every

� � ��7 � � � �� � ��7 � 2 � � � ��7 � � � � �C7 � � . As a special case, we obtain

�)"��� � ; ��� � ����� � � � ��7 � � � � � �)"��� � ; ��� � � ����� A � � � � � �C7 � ���� R
Moreover,

�(���	� � � �C7 � is polynomial-time iff
�D����� � ��7 � is polynomial-time.

�

Proof. Note that the view of �
� � � �C7 � � does only contain the steps of its internal black-

box function-call after being modified by the mapping
�

. Thus, it is sufficient to show
that the inputs of the blackbox call in

�D����� � � ��7 � and the original inputs of � � ��7 � in�D����� � ��7 � are equal. It is quite easy to see that the arrays
)+� 	 � � ! �����&� �

� ����� and
)+� 	 � �"! � � �����

are always equal if the machine
� � ��7 � is switched. This can easily be proven by induc-

tion over the number of rounds. In the first round, both arrays are empty yielding a
correct start of the induction. Starting with the second round, the contents of these
arrays are totally determined by the inputs at the ports of

� � ��7 � . However, these inputs
only depend on prior outputs of other machines

�
. Moreover, these outputs have to

equal because these machines used the same input tuple in both configurations, since
we have

)+� 	 � � !D�-���(� � �)+� 	 � �O! � by induction hypothesis. Therefore, the arrays)+� 	 � �"! � � ����� and
)+� 	 � � ! �����&� �

� ����� must be equal at replacing the block by construction
of the algorithm, so % � � ����� � �4�)+� 	 � �"! � � ����� � � % � � ����� � �4�)+� 	 � � !D�-���(� �

� �����
�

also holds. We
do not have to worry about the arrangement of the blocks because of the following rea-
sons. First of all, note that we first switch all machines in a subround and schedule the
outgoing messages afterwards. Moreover, messages sent by the adversary are always
scheduled first if the adversary is scheduled in the considered subround. This prevents
that machines which should switch simultaneously in the synchronous system may in-
fluence each other in the asynchronous system in the same subround. If we would
not consider this restriction, the adversary would be able to create a message that is
scheduled in this particular subround, but nevertheless depends on inputs arriving in
this subround.

Putting it all together, the runs induced by the mapping
�

in
�D���	� � � �C7 � and the orig-

inal runs are equal by definition of
�

, so we finally obtain

�)"��� � ; ��� � ����� � � � ��7 � � � � � �)"��� � ; ��� � � ����� � � � � � ��7 � ���
for an arbitrary configuration

�D����� � ��7 � � � � 5 � � #�� ! � ��7 � � , �D����� � � ��7 � � � �
� �D���	� � ��7 � � , and

an arbitrary
� � �C7 � � � �� � ��7 � 2 � � � ��7 � � � � ��7 � � . As a special case, this implies

�)"��� � ; ��� � ����� � � � ��7 � � � � � �)"��� � ; ����� � ����� � � � � � ��7 � ����
which finishes our proof.

Remark 3.4. In case of a polynomial configuration, especially the adversary has to be
polynomial-time. This implies that there cannot be any infinite successive clocked
self-loops, so the steps of every sub-block are bounded by a polynomial in the security
parameter � . Moreover, both the adversary and the honest user will reach final state
after a polynomial number of blocks, so the algorithm for

�
applied on the view either

CHAPTER 3. SOME VARIANTS OF THE MODEL 54

of the honest user or the adversary only makes a polynomial number of transition,
each one with a polynomial number of steps.12 This implies that

�
is computable

polynomial-time applied on the view of either the honest user or the adversary if it is
used in a polynomial-time configuration. -
Note, that Theorem 3.4 captures the first step of our proofsketch. After this first
step, asynchronous simulatability can now be applied. In order to convert the derived
asynchronous configuration into a synchronous configuration again (cf. Step 3 of our
proofsketch), we present the following theorem.

Theorem 3.5 Let an arbitrary synchronous system #�� ! � ��7 � and a clocking scheme �

be given such that every machine and the honest user are clocked at most once between
two successive clockings of the adversary.13 Furthermore, let an arbitrary configura-
tion

�(���	� � � ��7 � � � � 5 � � � � #�� ! � ��7 � �� of the form
�D����� � � ��7 � � �

�
� �� � ��7 � � 2 � � � ��7 � � � '�$# �

�
� � � �C7 � � � � � � �C7 � � be given and at least one of the three modifications considered at the

start of this section should be made.
Then there is an adversary

� � ��7 � using
� � � ��7 � as a blackbox such that

�(���	� � ��7 � � �� �� � ��7 � �G# � � � ��7 � � � � �C7 � � yields

�)"��� � ; ��� � ����� � � � ��7 � � � � � �)"��� � ; ��� � � ����� � � � � � ��7 � ���
for every

� � �C7 � � � �� � ��7 � 2 � � � ��7 � � and

�)"��� � ; ��� � ����� � � � ��7 � � � � � �)"��� � ; ��� � � ����� � � � � �C7 � ���� R
As a special case, we have

�)"��� � ; ��� � ����� � � � �C7 � � � � � �)"��� � ; ����� � ����� � � � � � ��7 � ���� R
�D����� � � ��7 � is polynomial-time iff

�D����� � ��7 � is polynomial-time. �

Proof. The proof of this theorem is technical and tedious, so we postpone it to the
Appendix.

3.4.4 The Embedding Theorems

We now state our first main theorem.

Theorem 3.6 (First Embedding Theorem) Let two arbitrary synchronous systems#�� ! � ��7 � � � and #�� ! � ��7 � � � with clocking schemes �
	

and �
�

be given such that �
�

ful-
fills the property that every machine of the system and the user is clocked at most once
between two successive clockings of the adversary. Furthermore, �

� #�� ! � ��7 � � � � � �� � �C7 �
�
� #�� ! � �C7 � � � � should hold for a valid mapping � . Then

#�� ! � ��7 � � � � � �� ��7 � #�� ! � ��7 � � � �
where � � is derived from � by

� �� � �$# � � � � � � �� 	 �$# 	 �9� � �
� �� � �$# � � � � � � � �� 	 �$# 	 �� .�

12Deleting the steps of the buffers of one block needs a constant number of steps, because it is always
bounded by the number of output ports of the considered machine, replacing the block can surely be done
using a constant number of steps. Finally, searching and deleting the second block needs a polynomial
number of steps.

13Note, that the standard clocking scheme �������� �
	�� � �	�� � �
	�� � ��	�� fulfills this precondition.

CHAPTER 3. SOME VARIANTS OF THE MODEL 55

Using the result of the previous theorems, the proof will be rather simple; it is illustrated
in Figure 3.6. Since we already presented an outline of the proof at the start of the
section, we omit the usual proofsketch this time.

Proof. Let an arbitrary configuration
�(���	� � �C7 � � � � � �� � �C7 � � � �G# � � � ��7 � � � � �C7 � � � � �

� � 5 � � #�� ! � �C7 � � � � be given.

1. We apply �
� ; ��� on

�D����� � �C7 � � � yielding a configuration
�D���	� � � ��7 � � � �

�
�
� �� � �C7 � � � � 2 � � � ��7 � � �)� � � ��G# � � � � � ��7 � � � � � � � ��7 � � � �� � � � 5 � � #�� ! � � �C7 � � � � . Accord-

ing to Theorem 3.4, there is a mapping
�

on the runs of
�D���	� � � �C7 � � � such that

�)"��� � ; ��� � ����� � � � � � ��7 � � � � � �)"����� ; ��� � � ����� � � � � � � � ��7 � ����
holds. Moreover, if

�D����� � ��7 � � � is polynomial-time then
�D����� � � �C7 � � � is also

polynomial-time, and the mapping
�

is polynomial-time computable.

2. As usual, we can assume
�D����� � � �C7 � � � to be suitable without loss of generality.

Thus, the precondition �
� #�� ! � ��7 � � � � � � � �C7 � �

� #�� ! � ��7 � � � � can be applied yielding

a configuration
�D����� � � ��7 � � � � �

�
� �� � ��7 � � � � 2 � � � ��7 � � ��� � � ��G# � � � � � ��7 � � � � � � ��7 � � � � �

��� 5 � � #�� ! � � ��7 � � � � with

�)"��� � ; ��� � � ����� � � � � � � � ��7 � �� � �)"��� � ; ��� � � ����� � �

�
�
� � � ��7 � ��� R

Moreover, in the computational case,
�D����� � � ��7 � � � is polynomial-time, so the map-

ping
�

is polynomial-time computable. Using Lemma 2.4, this yields
� � �)"��� � ; ����� � ����� � � � � � � � ��7 � ���� � � � �)"��� � ; ����� � ����� � �

�
�
� � � ��7 � ���� R

3. We want to apply Theorem 3.5 to the configuration
�D����� � � ��7 � � � , so we have to

show that all preconditions are fulfilled which obviously holds for
�D���	� � � ��7 � � � .

Thus, Theorem 3.5 yields a configuration
�D���	� � ��7 � � � � � �� � ��7 � �$# � � � �C7 � � � � ��7 � � � �

with � � �)"��� � ; ����� � ����� � �

�
�
� � � ��7 � ���� � �)"��� � ; ��� � ����� � �

� � � ��7 � � R
Moreover,

�D����� � ��7 � � � is a polynomial configuration iff
�D���	� � � ��7 � � � is polynomial,

according to Theorem 3.5.

4. Putting it all together, we have

� �)"��� � ; ��� � ����� � � � � � �C7 � � � � � �)"��� � ; ����� � ����� � � � � � � � ��7 � ����
� � � �)"��� � ; ����� � ����� � � � � � � � ��7 � ���� � � � �)"��� � ; ��� � � ����� � �

�
�
� � � �C7 � ����

� � � �)"��� � ; ����� � ����� � �

�
�
� � � ��7 � ���� � �)"��� � ; ��� � ����� � �

� � � ��7 � �
Using Lemma 2.4, we obtain �)"��� � ; ��� � ����� � � � � � �C7 � � � �)"��� � ; ��� � ����� � �

� � � ��7 � � .
Hence,

�D����� � ��7 � � � is an indistinguishable configuration for
�D����� � ��7 � � � which yields

the desired result #�� ! � ��7 � � � � � ��7 � #�� ! � �C7 � � � .

Corollary 3.1 Let two arbitrary synchronous systems #�� ! � �C7 � � � and #�� ! � �C7 � � � and a
valid mapping � be given. Moreover, let �

� �
�
	 � �

�
�

be the standard clocking
scheme

� �� 2 � �B'� � � �� � � �� � � � . Then �
� #�� ! � ��7 � � � � � �� � �C7 � �

� #�� ! � �C7 � � � � implies

#�� ! � ��7 � � � � � �� ��7 � #�� ! � ��7 � � � with � � defined as in Theorem 3.6.
�

CHAPTER 3. SOME VARIANTS OF THE MODEL 56

This is a direct consequence of the previous theorem because the standard clocking
scheme obviously fulfills the requirement that no machine is clocked more than once
between two successive clockings of the adversary.

Putting it all together, we have shown so far that asynchronous simulatability
among these asynchronous representations implies synchronous simulatability in the
computational case, and in the perfect and statistical case under some reasonable as-
sumptions, i.e., we have shown

��� � > � #�� ! � ��7 � � � � � � � �C7 � ����� > � #�� ! � �C7 � � � � � #�� ! � �C7 � � � � � �C7 � #�� ! � ��7 � � � R
We already briefly stated above that the converse implication does not hold in gen-
eral. We would have to show that for an arbitrary configuration

�D����� � � �C7 � � � �
� � 5 � � ����� > � #�� ! � �C7 � � � �� there exists an indistinguishable configuration

�D���	� � � ��7 � � � �
� � 5 � � ����� > � #�� ! � �C7 � � � �� provided that #�� ! � ��7 � � � � � ��7 � #�� ! � ��7 � � � holds.

However, we cannot expect that to hold if both the honest user and the adversary
are completely unrestricted. Obviously, both machines may have clockout ports and
they can alternately schedule each other (and also the system erratically), which we
cannot capture by a synchronous clocking scheme, so we cannot exploit our assumption#�� ! � ��7 � � � ��� ��7 � #�� ! � ��7 � � � .

Anyhow, it is sufficient for our purpose to show that the claim holds for at least
those configurations where the honest user �

� � �C7 � fits the form �
� � � � ��7 � � for a syn-

chronous machine � � �C7 � . We denote this restricted version of simulatability by � � � ��7 � � �
in the following.

Definition 3.13 (� � � ��7 � � �) Let two arbitrary asynchronous systems #�� ! 	 and #�� ! � and
a valid mapping � be given. Then we say #�� !�	 � �� � �C7 � � � #�� !�� if for every configu-

ration
�D�����	 � � �� 	 �G# � �

� � ��7 � � � 	 � � � � 5 � � #�� !�	 � with �
� � ��7 � � �

� � � � ��7 � � for a
synchronous machine � � ��7 � there exists an indistinguishable configuration

�D������ �
� �� � �$# � �

� � �C7 � � � � � � � � 5 � � #�� ! � � with
� �� � �$# � � � � � �� 	 �G# 	 � .

�

Remark 3.5. Looking at the proof of the first embedding theorem 3.6, it is
immediately obvious that the theorem also holds for the weaker precondition
� � � > � #�� ! � ��7 � � � � � � � ��7 � � � � ��� > � #�� ! � ��7 � � � � , since we only need to derive an indistin-
guishable configuration for users of the special form �

� � � �C7 � � . Moreover, the user
remains unchanged at simulatability, so we obtain a configuration of the same user
again, which still fits the prescribed form. -
If we restrict our attention to this kind of simulatability, we can state the following
claim:

#�� ! � ��7 � � � � � �C7 � #�� ! � ��7 � � � � ����� > � #�� ! � �C7 � � � � � � � ��7 � � � ����� > � #�� ! � �C7 � � � � �
which captures the statement of the second embedding theorem.

Theorem 3.7 (Second Embedding Theorem) Let two arbitrary synchronous systems#�� ! � ��7 � � � and #�� ! � ��7 � � � with clocking schemes �
	

and �
�

be given such that �
	

ful-
fills the property that every machine of the system and the user is clocked at most
once between two successive clockings of the adversary. Furthermore, #�� ! � ��7 � � � � �� �C7 �#�� ! � ��7 � � � should hold for a valid mapping � . Then

�
� #�� ! � �C7 � � � � � � �� � ��7 � � � �

� #�� ! � ��7 � � � �

CHAPTER 3. SOME VARIANTS OF THE MODEL 57

where � � is derived from � by �
� �� � �G# � � � � � � � � �� 	 �$# 	 ���9� � � �� � �G# � � � � � �� 	 �$# 	 � .�

Using the result of the preliminary theorems, the proof will be rather simple. Since it
will be performed similar to the first embedding theorem, we omit the usual proofsketch
this time.

Proof. For readability, we again set #�� ! � � �C7 � � � � �
�
� #�� ! � �C7 � � � � and #�� ! � � ��7 � � � � �

�
� #�� ! � �C7 � � � � . Let now an arbitrary configuration

�D����� � � ��7 � � � � �
�
� �� � ��7 � � � � 2

� � � ��7 � � �)� � � ��$# � � � � � ��7 � � � � � � �C7 � � � � � � � 5 � � #�� ! � � �C7 � � � � be given.

1. We apply theorem 3.5 on
�D����� � � ��7 � � � which yields a synchronous configuration�(���	� � ��7 � � � � � �� � �C7 � � � �G# � � � ��7 � � � � ��7 � � � � � ��� 5 � � #�� ! � ��7 � � � � with

� � �)"��� � ; ����� � ����� � � � � � � � ��7 � ���� � �)"��� � ; ��� � ����� � � � � � ��7 � � R
Moreover, if

�D����� � � ��7 � � � is polynomial-time then
�D���	� � ��7 � � � is also polynomial-

time, and the mapping
�

is polynomial-time computable.

2. As usual, we can assume
�D���	� � ��7 � � � to be suitable without loss of generality.

Thus, the precondition #�� ! � �C7 � � � ��� ��7 � #�� ! � �C7 � � � can be applied yielding a con-

figuration
�D���	� � �C7 � � � � � �� � ��7 � � � �$# � � � �C7 � � � � ��7 � � � � � � � 5 � � #�� ! � �C7 � � � � with

�)"��� � ; ��� � ����� � � � � � ��7 � � � �)"��� � ; ��� � ����� � �

� � � �C7 � � R
Moreover, in the computational case,

�(���	� � � ��7 � � � is polynomial-time.

3. We now apply Theorem 3.4 to the configuration
�D���	� � �C7 � � � which yields a config-

uration
�D���	� � � ��7 � � � � �

�
� �� � ��7 � � � � 2 � � � �C7 � � ��� � � ��G# � � � � � ��7 � � � � � � � ��7 � � � ��� with

�)"��� � ; ��� � ����� � �

� � � �C7 � � � � � �)"��� � ; ��� � � ����� � �

�
�
� � � ��7 � ���� R

Moreover,
�D����� � � ��7 � � � is a polynomial configuration iff

�D����� � ��7 � � � is polynomial,
according to Theorem 3.4.

4. Putting it all together, we have

� � � �)"��� � ; ����� � ����� � � � � � � � ��7 � ���� � �)"��� � ; ��� � ����� � � � � � ��7 � �
� �)"��� � ; ��� � ����� � � � � � �C7 � � � �)"��� � ; ��� � ����� � �

� � � ��7 � �
� �)"��� � ; ��� � ����� � �

� � � �C7 � �� � � � �)"��� � ; ����� � ����� � �

�
�
� � � ��7 � ����

Using Lemma 2.4, we obtain

� � �)"����� ; ��� � � ����� � � � � � � � ��7 � ���� � � � �)"��� � ; ��� � � ����� � �

�
�
� � � ��7 � ���� R

We now finally apply our “reversing” function
� 5 	� (cf. Lemma 3.4) on the above

equation which yields

�)"��� � ; ��� � � ����� � � � � � � � ��7 � �� � �)"��� � ; ��� � � ����� � �

�
�
� � � ��7 � ��� R

Hence,
�(���	� � � ��7 � � � is an indistinguishable configuration for

�D����� � � �C7 � � � which
yields the desired result �

� #�� ! � �C7 � � � � � � � ��7 � � � �
� #�� ! � � ��7 � � � � .

CHAPTER 3. SOME VARIANTS OF THE MODEL 58

3.4.5 An application

Recall that our goal is to avoid proving each and every theorem and lemma for both
models. We now briefly sketch how our two embedding theorems can be used for
circumventing this problem. As an example, we will show that it would have been
sufficient to prove the asynchronous version of the transitivity lemma 2.6, because the
synchronous version automatically follows. This is captured in the following lemma.

Lemma 3.5 (Asynchronous Version of Transitivity implies Synchronous Version) As-
sume that the asynchronous version of the transitivity lemma 2.6 has already been
proven, then the synchronous version holds as well.

�

Proof. Let three arbitrary synchronous systems #�� ! 	 , #�� ! � , and #�� !�� be given such
that #�� ! 	 � � ��7 � #�� ! � and #�� ! � � � �C7 � #�� ! � . We have to show that #�� ! 	 � � ��7 � #�� ! �
holds, provided that asynchronous transitivity has already been proven. According to
our second embedding theorem, we know that

�
� #�� ! 	 � � � � ��7 � � � �

� #�� ! � �
and

�
� #�� !�� � � � � ��7 � � � �

� #�� ! � �
hold. Obviously, the asynchronous version of transitivity is applicable to the relation
� � � �C7 � � � instead of � � � ��7 � as well, since it is a special case only, and the honest user
remains unchanged at simulatability. Thus, we can apply our (already proven) asyn-
chronous version of the transitivity lemma, which yields

�
� #�� !�	 � � � � �C7 � � � �

� #�� ! � � R
Now, we use our first embedding theorem in conjunction with Remark 3.5 which yields#�� ! 	 � � ��7 � #�� ! � .

Chapter 4

Deriving Secure
Implementations

Starting with this chapter, we deal with the actual verification of cryptographic pro-
tocols. We present a monolithic specification of secure message transmission with
ordered channels and a concrete, secure implementation. The way of actually deriving
the implementation comprises a general methodology how concrete implementations
of abstract specifications can be found. Our approach for proving security is essen-
tially based on formally verified bisimulations, which yield trustworthy proofs. After
accomplishing some preparatory work for proving the security of our implementation,
we formally verified its security using the theorem prover PVS [44]. We conclude this
chapter with a brief summary of its results.

Prior to this work, there has not been any success in using the advantage of for-
mal verification in order to derive cryptographically sound implementations, so our
methodology is new, and it serves as our first step of bridging the gap between the
rigorous proofs of cryptography and verification using formal proof systems.

4.1 Secure Message Transmission in Correct Order

In this section an abstract specification for secure message transmission with ordered
channels is presented, so neither reordering the messages in transit nor replay attacks
are possible for the adversary. Furthermore, we present a real system that fulfills our
specification, so it can be regarded as a possible implementation.

The section is structured as follows. First, we present our abstract specification;
after that we split it into two submachines and apply the composition theorem yielding
a possible implementation. The security of this implementation is additionally based
on the handmade proof of Section 2.3. In the following two sections, we prove this
real system to be at least as secure as the specification. This successfully finishes our
attempt to design a verified, concrete system fulfilling our specification.

4.1.1 The Abstract Specification

Our specification is a standard ideal system #�� ! � �
��� � � � � �

� � �$# � �G� � � ���� as
described in Section 2.2.1 where any number of participants may be dishonest. We
start with some intuitive description of how the scheme works.

59

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 60

The ideal machine
� �

� �
basically acts similar to the trusted honest

� � � of the
ideal scheme for secure message transmission (cf. Scheme 2.1) with some minor, but
far-reaching changes.

As in Scheme 2.1, a user � can initialize communications with other users by in-
putting a command of the form

�
 5,= >A54> � � to the port >A5 � � of
� �

� �
, sending of mes-

sages to a user
�

is triggered by a command
�
 845 = � � � � � .

The “Send” transition of
� �

� �
is modified: if

�
is honest, the message is stored

in an internal array
�B� �) � �G� � � ���� � � of

� �
� �

together with a counter
� ! �)+� � � ���� � � indicating

the number of the message. This counter is the first essential difference between the
two systems which will allow us to identify messages which are either replayed or
out-of-order.

Just as in the original scheme, a message
�
 845 = <�; >A5,= ; 	?�&I�� �-� � � is output to the ad-

versary, where � and I denote the length of the message � and its position in the ar-
ray, respectively. Because of the underlying asynchronous timing model,

� �
� �

has to
wait for a special term

� @ 8 . 8 > � 8 <'; >A5 = ; 	 ���!��I � or
� @38 . >A54> ��� � � sent by the adversary at� @ � 7 6,= � � � , signaling that the message stored at the I th position of

�B� �) � �G� � � ���� � � should
be delivered to � or that a connection between � and

�
should be initialized, respec-

tively.
In the first case, the machine

� �
� �

has to ensure that messages will only pass
if their order has not been changed, i.e., we must prevent replay attacks and mes-
sage reordering. Thus,

� �
� �

reads
� � � � � � � �����?) � �G� � � ���� � � � I � and checks whether� ! � � � � � � ���� � � � �

holds for a message counter
� ! � � � � � � ���� � � . If this test is successful the

message is delivered and the counter is set to
� � &

. Otherwise,
� �

� �
outputs nothing.

This check and the following increasing of the counter will prevent both message re-
ordering and replay attacks. Informally, the variable

� ! � � � � � � ���� � � stores the number of
the next delivered message from � to

�
. If now a message � sent from � to

�
should be

delivered whose number
�

is less than the internal counter
� ! � � � � � � ���� � � , there has to be

a message with higher number that has already been delivered, so we either have a mes-
sage reordering or a replay attack. Thus,

� �
� �

does not output anything in this case.
The user will receive inputs of the form

� @38 . 8 > � 84� � � � �
and

� @ 8 . >A5(> � ��� � , respectively.
If
�

is dishonest,
� �

� �
will simply output

�
 8(5,= � � � � � to the adversary. Finally, the
adversary can send a message � to a user � by sending a command

� @ 8 . 8,> � 8�� � � � �
to

the port
� @ � 7 6,= � � � of

� �
� �

for a corrupted user
�
, and he can also stop the machine

of any user by sending a command
�
C�C� & � to

� �
� �

which corresponds to exceeding
the machine’s runtime bounds in the real world.

The length of each message and the number of messages each user may send and
receive are bounded by

� � � � , � 	 � � � and � � � � � , respectively, for polynomials
�

, � 	 , � � ,
and the security parameter � . We will furthermore distinguish between the standard
ordered system and the perfect ordered system. The standard ordered system only
prevents message reordering, but the adversary can still leave out messages. In the
perfect ordered system, the adversary is just able to deliver messages between honest
users in exactly the sequence they have been sent. We now give the specification of the
system.

Scheme 4.1 (Specification for Ordered Secure Message Transmission) Let (� �
and polynomials

� ��� 	 �/� � �:� � � � be given. Let � � � �'& �GR�RGR �)(denote the set of
possible participants, and let the access structure

����
be the powerset of � . Our

specification for secure message transmission with ordered channels is a standard ideal
system

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 61

H
in

u
! out

v
?

TH�
H

to_adv
u

!

clk ?

A
��� A

to_adv
v
!from_adv

u
? from_adv

v
?

���

in
u
? out

v
!

Figure 4.1: Ports in a Configuration of Secure Message Transmission with Ordered
Channels.

#�� ! � � � K
� � � � � ���� � � � S � � S = � � � ��� �

� � ��$# � � ��� . �
with the standard localized definition # �� � � � >A5�� ���&� � ��� ����>A5�� � � � � � � and

� �
� �

defined as follows. When
�

is clear from the context, let
 � � � 	 �

denote the
indices of corrupted participants.

The ports of the machine
� �

� �
are

� >A5��?�'�&� � ��� ���&� � ������� � � � � 2
� � @ � 7 6,= � � ���C�C� 6,= � � �����C� 6,= � � � � � � � � . Internally,

� �
� �

maintains seven arrays:

� �C)+��)+� � � ���� � � � � � � ��� over
� � � & for modeling initialization of users,

� �-!��)+� � � ���� � � � � � � � � ��� over
� � �GRGR�R �/� 	 � � � for counting the number of times

� �
� �

has been switched by user � using messages intended to
�

,

� �C� ! � � � � � � ���� � � � � � � � � over
� � �GR�RGR �/� � � � � for counting the number of the next

possible message, cf. our above description.

� �-!�� � � � � � ���� � � ��� ��� � � � � over
� � ��RGRGR �/� � � � � for counting the number of times

� �
� �

has been switched by the adversary for delivering a message from user
� to user

�
,

� �C� ! �)+� � � ���� � � ��� � � � � ��� over
� � �GRGR�R �/� 	 � � � for counting the number of ingoing

messages from � intended to
�

,

� �-! ��� 	�	 ��� � �
���� ��� � �

over
� � � & : This array stores whether the machine of user �

has already been stopped, i.e., it has reached its runtime bounds,

� ���B� �) � �$� � � ���� � � ��� � � � � of lists for storing the actual messages.

The first six arrays should be initialized with � everywhere, except that
� ! � � � � � � ���� � � is

initialized with
&

everywhere. The last array should be initialized with empty lists ev-
erywhere. Roughly, the five arrays

)+��)+� � � ���� � � ,
� ! � � � � � � ���� � � ,

� ! �)+� � � ���� � � ,
!D�-� 	 	 ��� � �

����
, and�B� �) � �$� � � ���� � � ensure functional correctness of the system whereas the arrays

! �)+� � � ���� � �
and

!�� � � � � � ���� � � have to be included to make the system polynomial-time. During the
run of a configuration, the arrays

!��)+� � � ���� � � and
!�� � � � � � ���� � � will be increased and the

machine
� �

� �
will check whether their values are still smaller than the given poly-

nomial bounds � 	 � � � or � � � � � , respectively. If at least one value is greater than this

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 62

bound, the machine
� �

� �
stops, i.e., it enters a final state. The length bounds of the

machine
� �

� �
for incoming messages can be chosen arbitrarily as long as they are

polynomially bounded. The state-transition function of
� �

� �
is defined by the follow-

ing rules, written in the usual pseudo-code language. For the sake of readability, we
again annotate the first part of the definition, the “Send initialization” transition, i.e.,
the key generation in the real world.

Initialization.
� Send initialization:

Assume, that the user
�

wants to generate its encryption and signature keys and
distribute the corresponding public keys over authenticated channels. He can do
so by sending a command (
 5 = >A5(> �) to

� �
� �

. Now, the system checks that the
user has not already reached his message bound (which is quite improbable in
this case unless he tried to send trash all the time), that the machine itself has not
reached its runtime bound, and that no key generation of this user has already
occurred in the past. These three checks correspond to

!��)+� � � ���� � � � � 	 � � � for all� � � ,
! ��� 	�	 ��� � �

���� � � , and
)+��)+� � � ���� � � � � , respectively. If at least the check

of the message bound (i.e.,
!��)+� � � ���� � � � � 	 � � �) holds, the counter

!��)+� � � ���� � � is
increased. If all three checks hold, the keys are additionally distributed over
authenticated channels, modeled by an output

�
 5,= >A54> � � to the adversary which
either can schedule them immediately, later or even leave them on the channels
forever. In our pseudo-code language this is expressed as follows:

On input (
 5 = >A54> �) at >A5 � � : If
!��)+� � � ���� � � � � 	 � � � for all

� � � , set
!��)+� � � ���� � � � �! �)+� � � ���� � � � &

for all
� � � , otherwise do nothing. If the test holds check!D�-� 	 	 ��� � �

���� � � and
)+��)+� � � ���� � � � � . In this case set

)+��)+� � � ���� � � � � &
and output�
 5,= >A54> � � at �C� 6,= � � � , & at �C� 6,= � � � � .

The following parts should now be understood similarly:

� Receive initialization: On input
� @ 8 . >A5(> � � � � at

� @T� 7 6,= � � � with � � � � � �
�

: If
! ��� 	�	 ��� � �

���
� � � ,

)+��)+� � � ���� � � � � , and � � � � �)+�H)+� � � ���� � � � & �
, set

)+��)+� � � ���� � � � �
&
. If

!�� � � � � � ���� � � � � � � � � set
!�� � � � � � ���� � � � � !�� � � � � � ���� � � ��&

, output
� @ 8 . >A54> � ��� � at� � � � � , & at ����� � ��� .

Sending and receiving messages.
� Send: On input

�
 8(5,= � � � � � at >A5��?� , � � � 	 � � : If
!��)+� � � ���� � � � � 	 � � �

and
!D�-� 	 	 ��� � �

���� � � , set
!��)+� � � ���� � � � �E!��)+� � � ���� � � � &

, otherwise do nothing. If
� � � � , � � � ; 8(5 � � ��� � � � � ,)+��)+� � �

���� � � � &
and

)+�H)+� � � ���� � � � &
holds:

If
� �

then
�

set
� ! �)+� � � ���� � � � � � ! �)+� � � ���� � � � &

and output�
 845 = � � � � � ! �)+� � � ���� � � � � � � at �C� 6,= � � � , &
at �C� 6,= � � � �� else

�
set I � �

�> � 8 ���B� �) � �$� � �
���� � � � � &

,
� ! �)+� � � ���� � � � � � ! �)+� � � ���� � � � &

,
�B� �) � �G� � � ���� � � � I � � �

� � � � ! �)+� � � ���� � � � and output
�
 8(5,= <'; >A5,= 	 ��I��/�-� � � at �C� 6,= � � � , & at �C� 6,= � � � �� .

� Receive from honest party
�

: On input
� @ 8 . 8,> � 8 <�; >A5,= ; 	?� � �&I � at

� @T� 7 6,= ��� �
with �!� � � �

: If
! �-� 	 	 ��� � �

���
� � � ,

)+�H)+� � � ���� � � � &
,
)+�H)+� � � ���� � � � &

,
!�� � � � � � ���� � � �

� � � � � and
� � � � ��� � �B� �) � �$� � � ���� � � � I � �� � , check

� ! � � � � � � ���� � � � �
(
� ! � � � � � � ���� � � �

�
in the perfect ordered system). If this holds set

! � � � � � � ���� � � � � !�� � � � � � ���� � � � &
,� ! � � � � � � ���� � � � � � ��&

and output
� @38 . 8 > � 84� � � � �

at � � � � � , & at ����� � �'� .

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 63

� Receive from dishonest party
�

: On input
� @38 . 8,> � 8����!� � �

at
� @ � 7 6,= � � � with

� � � � � � � � ; 845 � � �7� � � � � and
� � �

: If
! �-� 	 	 ��� � �

���
� � � ,

)+��)+� � � ���� � � � &
,)+��)+� � � ���� � � � &

and
! � � � � � � ���� � � � � � � � � , set

!�� � � � � � ���� � � � � !�� � � � � � ���� � � ��&
and output� @ 8 . 8,> � 8����!� � �

at ����� � � , & at � � � � �'� .
� Stop: On input

�
C�C� & � at
� @ � 7 6,= � � � with � � �

: If
!D�-� 	 	 ��� � �

���� � � , set!D�-� 	 	 ��� � �
���� � � &

and output
�
��C� & � at ����� � � , & at ����� � �'� .

Finally, if
� �

� �
receives an input at a port >A5 � � which is not comprised by the above

six transition (i.e., the user sends some kind of trash), it increases the counter
!��)+� � � ���� � �

for all
� � � . Similarly, if

� �
� �

receives such an input at a port
� @ � 7 6,= � � � � it

increases every counter
!�� � � � � � ���� � � for � � � .

�

Thus, at least one counter of
!��)+� � � ���� � � or

!�� � � � � � ���� � � will be increases after each tran-
sition of the machine

� �
� �

, and each transition of
� �

� �
can obviously be realized

in polynomial-time since the length functions on the ports are polynomially bounded.
There are only a finite number of counters and

� �
� �

will enter a final state if at least
one counter reaches its polynomial bounds. Thus, the machine

� �
� �

is polynomial-
time.#�� ! � � � K

� � � � � ���� � � � S � � S = is as abstract as we hoped for. It is deterministic without contain-
ing any cryptographic objects. Furthermore, its state transition function is kept simple,
so we can express it quite easily in formal languages which support our used data-
types (e.g., in PVS, cf. Section 4.3.1). In the following we simply write #�� ! � � � K

� � � � � ���
instead of #�� ! � � � K

� � � � � ���� � � � S �)� S = if the parameters (� � ��� 	 �/� � are not necessary for understand-
ing.

4.1.2 The Split Ideal System

This section contains the first step for deriving a real system that implements our
Scheme 4.1. A brief overview of how the real system will be derived can be given
in two steps:

If we take a look at Figure 2.3 on page 20, the system #�� ! � � � K
� � � � � ���

plays the role
of the monolithic specification #�� ! � �

���
. We will now “split” our specification into a

system #�� ! � , and we will show that #�� ! � � � ��� #�� ! � �
���

holds. #�� ! � will consist of
the combination of two systems #�� ! � and #�� ! 	 . Finally, we will replace #�� ! � with#�� ! using the composition theorem, and we obtain a real system that still fulfills our
requirements.

The systems #�� ! � and #�� ! are the ideal and real systems #�� ! 6 � and #�� !�� ��� � for
secure message transmission, respectively, which we introduced in Section 2.3. The
system #�� ! 	 will do the filtering of messages that are out of order.

Scheme 4.2 (#�� !) Let (� � �/� 	 �/� � � � be given as in Scheme 4.1. Furthermore, let a
polynomial

� 	 � � � � � � � � be given; the value of � � � � is explained below. #�� ! 	 is
now defined as #�� !�	�� � � �� �� �G# � � ��� . �
with

�� �� � � � �� � � � � and &��?@ ��
 � � �� � � � >A5��?� , � � ��� � , �������'�'��2 � >A5 � � � , � � � � � � , >A5 � � � �� . The set of specified ports is given by # � �
&��?@T��
 � � �� �� � �

, i.e., all ports are specified. Internally, the machine
� ��

maintains
two arrays

�C� ! �)+� 6 �� � � � � ��� ,
�-!��)+� 6 �� � � � � ��� over

� � �GR�RGR ��� 	 � � � and two arrays

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 64

�C� ! � � � �C6 �� � � � � ��� ,
�-!�� � � �C6 �� � � � � ��� over

� � �GR�RGR ��� � � � � . All four arrays are initial-

ized with � everywhere. Moreover, it contains a flag
�-! �-� 	�	 ��� 6 �� � over

� � � & ini-
tialized with � . As message space, we assume

� 2 � � 0 � � . Furthermore, we
assume that encoding of tuples has the following straightforward property with re-
spect to the function ; 845 : We demand ; 8(5 �� � � � � � �� � ; 8(5 � � � � � � � � for every� � � � � � �GR�RGR ������� � � 	 � � � �/� � � � � 4 and an arbitrary function � , i.e., ; 8(5 �C� � � � has to
be constant for a fixed security parameter � . Obviously, this condition can easily be
achieved by padding all values

� � �
to a fixed size � �

�����
� � 	 � � � �/� � � � � � . As length

bounds for incoming messages of the machine
� ��

we use the same bounds as for
the corresponding ports of the machine

� �
� �

, i.e., they are in particular polynomially
bounded. The behaviour of

� ��
is defined as follows.

Initialization.
� Send initialization: On input

�
 5,= >A5(> � � at >A5 � � : If
!��)+� 6 �� � � � � 	 � � � for every� � � , set

!��)+� 6 �� � � � � !��)+� 6 �� � � � &
for every

� � � . If
!D�-� 	 	 ��� 6 �� � � then

output
�
 5 = >A5(> � � at >A5 � � � , & at >A5 � � � � .

� Receive initialization: On input
� @ 8 . >A54> � � � � at � � � � � � : If

! �-� 	 	 ��� 6 �� � � and! � � � � 6 �� � � � � � � � � , set
! � � � � 6 �� � � � �E!�� � � � 6 �� � � � &

and output
� @38 . >A54> � � � � at� � ��� � , & at � � ���'�'� .

Sending and receiving messages.

� Send: On input
�
 845 = � � � � � at >A5 � � : If

! ��� 	�	 ��� 6 �� � � and
!��)+� 6 �� � � � � 	 � � � ,

set
!��)+� 6 �� � � � � !��)+� 6 �� � � � &

,
� ! �)+� 6 �� � � � � � ! �)+� 6 �� � � � &

and output�
 845 = � � � � � ! �)+� 6 �� � � � � � � at port >A5 � � � , & at port >A5 � � � � .
� Receive: On input

� @ 8 . 8 > � 84� � � � � �
at port � � � � � � : If

! ��� 	�	 ��� 6 �� � �
and

!�� � � �C6 �� � � � � � � � � , decompose the message � �
into

� � � � � � � . If� ! � � � �C6 �� � � � � � �
(or

� ! � � � �&6 �� � � � � � �
in the perfect ordered system), set! � � � ��6 �� � � � � !�� � � �C6 �� � � � &

,
� ! � � � �C6 �� � � � � � � � � &

and output
� @ 8 . 8,> � 8�� � � � �

at port ����� � � , & at � � � � �'� .1
� Stop: On input

�
C�C� & � at � � � � � � : If
! ��� 	�	 ��� 6 �� � � , set

! ��� 	�	 ��� 6 �� � � &
and output�
C�C� & � at � � ��� � , & at ����������� .

Finally, if
� ��

receives an input at a port >A5 � � which is not comprised by the above five
transition (i.e., the user sends some kind of trash), it increases the counter

! �)+� � � ���� � � for
all

� � � . Similarly, if
� �� receives such an input at a port ����� � � � it increases every

counter
! � � � � � � ���� � � for � � � .

�

Obviously, #�� ! � is polynomial-time because of the same reason as
� �

� �
. Before we

build the combination of #�� ! � and #�� !�	 , we rename the ports >A5�� � , ������� � and �����������
of #�� ! � into >A5 � � � , � � � � � � and ����� � � � � , respectively. Moreover, we assume

� 2 � 0 � as
message space of #�� ! � which ensures that incoming tuples can in fact be stored in the
array

�B� �) � �$� �� � � (cf. the machine description in Section 4.3.1).

1Note that also messages sent by the adversary are checked and sorted out. This is no restriction to the
adversary, because he can still send any message sequence ���
	 � 	��� by sending ����	 �������	 � 	���� for an
ascending sequence ������� 	 � 	���� of natural numbers (����� 	���� in the perfect ordered system) until the
message bound has been reached.

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 65

Sys
1

Sys�
0

Sys*

H

in
u
! out

v
?

TH
H

to_adv�
u

!

���

clk ?

A

M�
u

M�
v

���

A

to_adv�
v
!from_adv�

u
? from_adv�

v
?

���

Figure 4.2: The Split Ideal System.

If we now combine the two systems #�� ! � and #�� ! 	 in the “canonical” way, i.e., we
combine those structure with the same index

�
we obtain the system #�� ! � that we will

refer to as split ideal system (see Figure 4.2). Finally, we define the channels � � � � � � and
>A5 � � � of #�� ! � to be secure.

4.1.3 The Real System

Our real system #�� ! � is derived be replacing the ideal specification #�� ! � with the
concrete implementation #�� ! . Similar to the previous combination, we again rename
the ports >A5 � � , ����� � � , and � � � � �'� of each structure of #�� ! into >A5 � � � , ����� � � � , and � � � � � � � ,
respectively, for every � � � . Now, we build the combination of #�� ! 	 and #�� ! in
the canonical way. We obtain a new system #�� !�� that we refer to as real ordered
system. It is shown in Figure 4.3. Note that the derived system #�� ! � is in fact a
concrete implementation without containing any abstraction, since both systems #�� !
and #�� !�	 are completely real. Moreover, the system #�� !�� can be seen as a standard
cryptographic system (cf. Definition 2.17) if we combine the machine

���
and

� ��
for

every � � � and consider this combined machine as the machine of user � .

4.2 Proving Security of the Real Ordered System

After introducing the different schemes, we now focus on proving the security of the
real ordered system. We will show that the real ordered system is at least as secure as
the specification. This is captured by the following theorem.

Theorem 4.1 (Security of Real Ordered Secure Message Transmission) For all (�
� and � 	 �/� � � � � � � � � , #�� !�� � � � � K�� �� ��� #�� ! � �

���
holds for the canonical mapping � ,

provided the signature and encryption schemes are secure. This holds with blackbox
simulatability.

�

Our proof contains the already described four steps, illustrated in Figure 2.3 on page 20.
As our first step, we use the result of [49] which yields the relation #�� ! � � �� ��� #�� ! � .
Secondly, we use the composition theorem (Theorem 2.1), which yields the relation

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 66

net
u,v

net
u,v

a

aut
u,v

,

aut
u,v

d

H

clk ?

A

M
v

M
u

in
u
! out

v
?

���

M�
u

M�
v

���

Sys
1

Sys
0

Sys
#

Figure 4.3: Sketch of the Real Ordered System for Secure Message Transmission.
Clock-out ports are omitted for the sake of readability.

#�� ! � � � �� ��� #�� ! � . The only remaining task is to check that its preconditions are in
fact fulfilled, which is straightforward since the system #�� ! 	 is polynomial-time as
shown above. Assume that we have already proven #�� ! � � � �� ��� #�� ! � �

���
, then #�� !�� � �� ���#�� ! � �

���
follows from the transitivity lemma (Lemma 2.6).

Thus, we only have to prove #�� ! � � � � � � K�� �� ��� #�� ! � �
���

, but we will even prove the
perfect case #�� ! � � � � � � � � <� ��� #�� ! � �

���
.

Lemma 4.1 For all (� � and � 	 ��� � � � � � � � � , #�� ! � � � � �
� � <

� ��� #�� ! � �
���

holds for the
canonical mapping � 	 , provided the signature and encryption schemes are secure. This
holds with blackbox simulatability.

�

In order to prove this, we assume a configuration
�(���	� � K � � � ��� � � 2 �� �� �$# � � � � � �

with
�� �� � � � � � � � � � to be given which we call split-ordered configuration. We

then have to show that there exists a configuration
�D���	� � � � � � ��� �

� � ��G# � � � � � � �
,

called specification configuration, yielding indistinguishable views for the honest user.
The adversary

� �
will be constructed by two machines: a so-called simulator � >A7 � ,

that we will define in the following, and the original adversary
�

, which corresponds
to the notion of blackbox simulatability (cf. Definition 2.15). These configurations are
shown in Figure 4.4.

We will show that the runs of these configurations can be mapped together in a way
that does not change the view of an honest user � . Therefore, we define a relation

�

on the states of both systems, and we will show that the views of
�

and � are equal in
both configurations provided that the relation

�
holds during the whole run. We start

with the definition of the simulator � >A7 � ; the definition of the relation
�

is postponed
to the next section. After that, we prove its correctness using formal proof tools.

Definition of the Simulator � >A7 � . The Simulator � >A7 � will be inserted between
the trusted host

� �
� �

and the adversary, see Figure 4.4.
The ports of � >A7 � are given by

� �C� 6,= � � � , � @ � 7 6,= � � � , � @T� 7 6,= � � � � � � � � 2
� � @ � 7 6,= � � � � , �C� 6,= � �� � , �C� 6,= � � � � � � � � � . The first set contains the ports connected
to

� �
� �

, the ports of the second set are for communication with the adversary. In-
ternally, � >A7 � maintains two arrays

��)+��)+� � 6 �� � � � � � � ��� ,
�C!D�-� 	 	 ��� � 6 �� � � � �

over
� � � & , an

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 67

in
u
! out

v
?

clk ?

A
A

HH

in
u
! out

v
?

TH
H

to_adv�
u

!

���

clk ?

A

M�
u

M�
v

���

A

to_adv�
v
!from_adv�

u
? from_adv�

v
?

���

TH�
H

to_adv
u

! to_adv
v
!from_adv

u
? from_adv

v
?

���

Sim
H

���

≥
A�

Figure 4.4: Proof Overview of #�� ! � � � � � � � <� ��� #�� ! � �
���

.

array
��� ! � � � � � 6 �� � � ��� ��� � � � � over

� � �GR�RGR ��� 	 � � � , and an array
�-!�� � � � � 6 �� � � ��� ��� � � � �

over
� � �GR�RGR ��� � � � � . All four arrays are initialized with � everywhere. The arrays

match the arrays in the split ideal system, however the array
� ! � � � � � 6 �� � � will corre-

spond to
� ! � � � � 6 �� � � of

� �� for dishonest
�

only.2 As length bounds for incoming
messages � >A7 � uses the same length bounds as the original adversary

�
for both com-

munication with the system and with
�

itself. This ensures that in the polynomial case,
inputs of � >A7 � will always be of polynomial length. We now define the behaviour
of the simulator. In most cases � >A7 � simply forwards inputs to their corresponding
outputs, modifying some internal values.

Initialization.

� Send initialization: Upon input
�
 5,= >A54> � � at �C� 6,= � � � , � >A7 � sets

)+��)+� � 6 �� � � � � &
and outputs

�
 5 = >A54> � � at port �C� 6,= � � � � , & at �C� 6,= � �� � � .
� Receive initialization: Upon input

� @38 . >A54> � ��� � at
� @ � 7 6,= � �� � : If

! ��� 	�	 ��� � 6 �� �
� and

)+��)+� � 6 �� � � � � and � � � � � �)+�H)+� � 6 �� � � � & � � >A7 � sets
)+��)+� � 6 �� � � � � &

. If
additionally

! � � � � � 6 �� � � � � � � � � holds, it sets
! � � � � � 6 �� � � � � !�� � � � � 6 �� � � � &

and
outputs

� @38 . >A54> � ��� � at port
� @T� 7 6,= � � � , & at

� @T� 7 6,= � � � � .
Sending and receiving messages.

� Send: Upon input
�
 8(5,= <'; >A5 = 	?��I�� � � � � � at �C� 6,= � � � , � >A7 � determines � � � � � �

� � � � and outputs
�
 845 = <�; >A5,= 	?�&I�� �-� � � at port �C� 6,= � � � � .

Upon input
�
 845 = � � � � � at �C� 6,= � � � , � >A7 � simply forwards the input to port�C� 6,= � � � � .

� Receive from honest party � : Upon input
� @38 . 8,> � 8 <�; >A5,= ; 	 � � �&I � at

� @ � 7 6,= � �� � ,
� >A7 � forward this input to port

� @ � 7 6,= � � � .
2Note that even messages sent by dishonest users are probably sorted out in our split ideal system, but

they are simply forwarded in our specification, so these messages have to be sorted out by � � ��� .

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 68

� Receive from dishonest party � : Upon input
� @ 8 . 8 > � 8�� � � � � �

at
� @ � 7 6,= � � � �

with � �
, � >A7 � decomposes � � � � � � � � � � : If

! ��� 	�	 ��� � 6 �� � � ,
)+��)+� � 6 �� � � �&

,
)+��)+� � 6 �� � � � &

,
�T�$� � � � � � � 	 � � � , � ! � � � � � 6 �� � � �
� � �

(
� ! � � � � � 6 �� � � � � � �

in
the perfect ordered system) and

!�� � � � � 6 �� � � � � � � � � , set
� ! � � � � � 6 �� � � � � � � �

&
,
!�� � � � � 6 �� � � � � ! � � � � � 6 �� � � � &

and output
� @38 . 8 > � 8'���!� � �

at
� @ � 7 6,= � � � , &

at� @T� 7 6,= � � � � .
� Stop: On input

�
��C� & � at
� @ � 7 6,= � � � � : If

! �-� 	 	 ��� � 6 �� � � , � >A7 � sets!D�-� 	 	 ��� � 6 �� � &
and outputs

�
��C� & � at port
� @T� 7 6,= � � � , & at

� @T� 7 6,= � � � � .
What the simulator actually does is recalculating the length of message � into
; 8(5 �� � � � � � �� to achieve indistinguishability. Furthermore, it decomposes messages
sent by the adversary, maybe sorting them out, in order to achieve identical outputs in
both systems. Now, the overall adversary

� �
, cf. Figure 4.4, is defined by combining

�

and � >A7 � .
Obviously, � >A7 � only makes a polynomial number of steps at each transition.

Moreover, � >A7 � will always be scheduled either immediately before or immediately
after

�
(if it is scheduled by the system it either schedules

�
by construction, or it does

not output anything, so
�

will be scheduled as the master scheduler of the configu-
ration). Thus, the overall adversary

� �
is polynomial-time if the original adversary is

polynomial-time, since
� �

enters final state if
�

does, cf. Definition 2.14.
Now the ultimate goal is to show that both collections

�� � � � ��� � � 2 � ���� � � �
� and

�� � � ��� � � � � �
� � � � >A7 � have the same input-output behaviour, i.e., if they

obtain the same inputs they have to produce the same outputs. We will do so by proving
a classical deterministic bisimulation, i.e., we will show that the already mentioned
relation

�
is maintained during every step of every trace and that the outputs of both

systems are always equal. This is exactly the procedure we will perform using the
theorem prover PVS.

Definition 4.1 (Deterministic Bisimulation) Let two arbitrary collections
�� 	

and
�� �

of deterministic machines be given with identical sets of free ports, i.e.,
� @38�8 � � �� 	 � � �

� @ 8 8 � � �� � � � . A deterministic bisimulation between these two collections is a binary
relation

�
on the states of

�� 	
and

�� �
such that the following holds.

� The initial states of
�� 	

and
�� �

satisfy the relation
�

.

� The transition functions % 	 and % � of
�� 	

and
�� �

preserve the relation
�

and
produce identical outputs, i.e., let �

	
and �

�
denote two states of

�� 	
and

�� �
,

respectively, with
� � 	 ��� � � � �

. Then for an arbitrary assignment F of the in-
put ports of

�� 	
and

�� �
it holds

� � �	 ��� �� � � �
with

� � �	 �DJ � � � % 	 � � 	 �NF � and� � �� �DJ �9� � % 	 � � � �OF � .
We call the two collections

�� 	
and

�� �
bisimilar, if they are contained in a bisimulation.

�

Now it is quite easy to see that a deterministic bisimulation between the two collections�� � and
�� � � ��� implies perfect indistinguishability of the view of � , cf. Figure 4.4.

Assume for contradiction that the views of � are not identical. Thus, there exists a
first time, where either the view of � or the view of the original adversary

�
(which

can tell � this difference afterwards in this case) can be distinguished. Without loss
of generality, we assume that this difference occurs at the view of � . However, this
difference has to be produced by the system since the adversary

�
has still identical

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 69

views by assumption. Since we claimed it to be the first different step the prior input of
both systems had to be identical so both systems produce identical outputs because they
are contained in a deterministic bisimulation. Thus, the user obtains identical inputs.
Identical inputs cannot be distinguished yielding the desired contradiction.

The next section describes how the actual machines are expressed in the formal
syntax of PVS and partly sketches the bisimulation proof.

It is worth mentioning that we used standard paper-and-pencil proofs before we
decided to use a formal proof system to validate the desired bisimulation. However,
these proofs have turned out to be very error-prone since they are straightforward on
the one hand, but long and tedious on the other. In order to illustrate this, we now
present a brief excerpt, the “Send initialization” transition, of our original proofs (for
our still wrong machines):

Send initialization.

Upon input (
 5,= >A54> �) at >A5�� � : � ��
checks

! �-� 	�	 ��� 6 �� � � and
!��)+� 6 �� � � � � 	 � � �

for every
� � � . If all these checks are successful,

! �)+� 6 �� � � is increased for
every

� � � . Finally it outputs (
 5,= >A54> �) at >A5 � � � scheduling it immediately
by sending

&
at >A5 � � � � . � � � then checks

! �-� 	 	 ��� �� � � and
)+��)+� �� � � � � . In

case of a previous initialization or stopping signal, it does nothing. So far
� �

� �
obviously acts in the same way.

� �
� �

checks
!��)+� � � ���� � � � � 	 � � � for every

� �
� , increasing

!��)+� � � ���� � � for every
� � � . The mapping of

!��)+� 6 �� � � to
! �)+� � � ���� � �

ensures identical behaviours. After that it checks
! �-� 	 	 ��� � �

����
and

)+��)+� � � ���� � � � �
doing nothing if at least one check fails. The mapping of

! �-� 	 	 ��� �� to
!D�-� 	 	 ��� � �

����
and

)+�H)+� �� � � to
)+��)+� � � ���� � � ensures identical results again.

Now assume
)+��)+� �� � � � � (which implies

)+�H)+� � � ���� � � � �). In
�(���	� � K , after for-

warding (
 5,= >A54> �) by machine
� ��

,
� � � sets

)+��)+� �� � � � &
and outputs

�
 5,= >A54> � �
at �C� 6,= � � � � , &

at �C� 6,= � � � � � . In
�D����� � � , � �

� �
sets

)+�H)+� � � ���� � � � &
and outputs� @ 8 . >A54> � � at �C� 6,= � � � , &

at �C� 6,= � � � � . The simulator � >A7 � obtains this input
at �C� 6,= � � � and forwards it to �C� 6,= � � � � . Obviously,

� ��)+��)+� �� � � � �)+��)+� � � ���� � � and� �C!��)+� 6 �� � � � � !��)+� � � ���� � � remain satisfied and outputs of both systems are identi-
cal, so we obtain indistinguishable views with respect to the environment.

Obviously, this paper-and-pencil approach is mainly vulnerable to slow-down of con-
centration because of its straightforward but tedious manner. However, this transition
is, beside the “Stop” transition, by far the easiest case to prove. In particular, the tran-
sition of sending and receiving messages turns out to be very large and more difficult
to prove, so it is quite probable that parts of the proof are still missing or even wrong.
During our formal verification, we in fact found several errors in both our machines and
our proofs, which were quite obvious afterwards, but had not been found before. We
decided to put the whole paper-and-pencil proof in the web3, so the reader can make
up his own mind.

4.3 Formal Verification of the Bisimulation

4.3.1 Defining the Machines in PVS

In this section, we describe how the still to be proven Lemma 4.1 is formally verified in
the theorem proving system PVS [44]. As we already showed in the previous section, it

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 70

is sufficient to prove that the two considered collections
�� � and

�� � � ��� are contained in
a deterministic bisimulation. In order to do so, we first describe how the machines are
formalized in PVS. Since the formal machine descriptions are too large to be given here
completely, we use the machine

� �
� �

as an example how to formalize the machines
in PVS. The complete machine descriptions and the proof are available online3.

We denote the number of participating machines by � , and for a given subset
� �

����
, we denote the number of honest users by

� � ��� �
. As defined in Scheme 4.1,

the machine
� �

� �
has

% �
input ports

� >A5 �?� � � � � 2 � � @T� 7 6,= � � � � � � � . In
PVS, we numerate these input ports

& �GR�RGR � % �
, where we identify

& ��RGR�R � �
with the

user ports and
� � & ��RGR�R � % �

with the adversary ports. Similarly,
� �

� �
has output

ports
� ������� � � � � � 2 � �C� 6,= � � � � � � � , which also are numerated

& ��RGR�R � % �
. In

PVS, we define the following types to denote machines, honest users, and ports:

MACH: TYPE = subrange(1,N) %% machines
USERS: TYPE = subrange(1,M) %% honest users
PORTS: TYPE = subrange(1,2*M) %% port numbers

The subrange(i,j) type is a PVS built-in type denoting the integers I��GRGR�R � � . We
further define an uninterpreted type STRING to represent messages.

In Scheme 4.1, the different possible inputs to machine
� �

� �
are listed, e.g.,�
 5 = >A54> � � � � @38 . >A54> � � � � �GRGR�R In PVS, the type of input ports is defined using a PVS ab-

stract datatype [43]. The prefix m1i in the following stands for “inputs of machine 1”
and is used to distinguish between inputs and outputs of the different machines.

m1_in_port: DATATYPE
BEGIN

m1i_snd_init: m1i_snd_init?
m1i_rec_init(u: MACH): m1i_rec_init?
m1i_send(m: STRING, v: MACH): m1i_send?
m1i_receive_blindly(u: USERS, i: posnat): m1i_receive_blindly?
m1i_receive(u: MACH, m: STRING): m1i_receive?
m1i_stop: m1i_stop?

END m1_in_port

This defines an abstract datatype with constructors m1i rec init, m1i snd init
etc. For example, for given � �&I , m1i receive blindly(u,i) constructs
an instance of the above datatype, which we identify with

� @ 8 . 8,> � 8 <'; >A5 = ; 	'� � �&I � .
Given an instance) of this datatype, we can use the recognizers on the right
side of the definition to distinguish between the different forms. For example,
m1i receive blindly?(p) checks whether the instance) of the m1i in port
datatype was constructed from the m1i receive blindly constructor. If) was
constructed from m1i receive blindly(u,i) with given �!��I , the components
� and I can be restored using the accessor functions � � 3 � and I � 3 � ; for example, � �) �
returns the � component of) . The accessor functions may be overloaded for differ-
ent constructors (e.g., � is overloaded in our example, namely in m1i rec init,
m1i receive blindly and m1i receive).

The machine
� �

� �
performs a step iff exactly one of the input ports is active (cf.

Lemma 2.2). In this case, we call the input ok, otherwise garbage. The type of the
complete inputs to

� �
� �

comprising all
% �

input ports is therefore either garbage, or
the number � of the active port together with the input) on port � . This is formalized
in the following PVS datatype:

3http://www-krypt.cs.uni-sb.de/ � mbackes/PVS/FME2002/

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 71

M1_INP: DATATYPE
BEGIN
m1i_garbage: m1i_garbage?
m1i_ok(u: PORTS, p: m1_in_port): m1i_ok?

END M1_INP

Similar datatypes m1 out port and M1 OUT are defined to denote the type of indi-
vidual outputs, and the type of the complete output of

� �
� �

, respectively. We omit the
details.

Having defined the input and output types of machine
� �

� �
, it remains to define

the state type. As defined in Scheme 4.1, the state of
� �

� �
consists of seven one- or

two-dimensional arrays. In PVS, arrays are modeled as functions mapping the indices
to the contents of the array. For example [MACH,USERS -> nat] defines a
two-dimensional array of natural numbers, where the first index ranges over � , and
the second ranges over

�
. The state type of

� �
� �

is defined as a record of such arrays.
There is only one small exception: the array

�B� �) � �G� � � ���� � � stores lists of tuples
� � �&I �

(e.g., see the “Send” transition), where � is a string and I ��� . It is convenient in PVS
to decompose this array of lists of tuples into two arrays of lists, where the first array�B� �) � �$� � � ���� � � stores lists of messages � , and the second array

�B� �) �) � � ���� � � stores lists of
naturals I . Altogether, this yields a state type of eight arrays:

M1_STATE: TYPE = [# init_spec: [MACH,MACH -> bool],
sc_in_spec: [USERS,MACH -> nat],
msg_in_spec: [USERS,MACH -> nat],
msg_out_spec: [USERS,USERS -> posnat],
sc_out_spec: [MACH,USERS -> nat],
deliver_spec: [USERS,USERS -> list[STRING]],
deliv_i_spec: [USERS,USERS -> list[posnat]],
stopped_spec: [USERS -> bool] #]

The initial state m1 init is defined as a constant of type M1 STATE:

M1_init: M1_STATE = (#
init_spec := LAMBDA (w1,w2: MACH): FALSE,
...
deliv_i_spec := LAMBDA (u1,u2: USERS): null,
stopped_spec := LAMBDA (u1: USERS): FALSE #)

The constructor null denotes the empty list. In the definition of machine
� �

� �
,!��)+� � � ���� � � is incremented for all machines

�
during the “Send initialization” part. This

is encapsulated in the following PVS function:

incr_sc_in_spec(S: M1_STATE, u: USERS): M1_STATE =
S WITH [‘sc_in_spec := LAMBDA (w: USERS, v: MACH):

IF w=u THEN S‘sc_in_spec(w,v)+1 ELSE
S‘sc_in_spec(w,v) ENDIF];

The WITH construct leaves the record � unchanged except for the sc in spec com-
ponent, which is replaced by the � -expression. The machine

� �
� �

is now formalized
in PVS as a next-state/output function mapping current state and inputs to the next state
and outputs. We exemplarily give the first few lines of the PVS code:

M1_ns(S: M1_STATE, I: M1_INP): [# ns: M1_STATE, O: M1_OUT #] =
IF m1i_garbage?(I) THEN

(# ns:=S, O:=m1o_garbage #)
%% do not change the state, output garbage

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 72

ELSE
LET ua1=ua(I), p=p(I) IN

%% ua1 is the active port number,
%% p is the input on this port

IF ua1<=M AND m1i_snd_init?(p) THEN
%% we have a send-init on a user port (<=M);
IF (FORALL w1: S‘sc_in_spec(ua1,w1)<s1k) THEN

IF S‘init_spec(ua1,ua1) OR S‘stopped_spec(ua1) THEN
(# ns:=incr_sc_in_spec(S,ua1),O:=m1o_garbage #)
%% increment sc_in_spec, but do not send any output

ELSE
(# ns:=incr_sc_in_spec(S,ua1)

WITH [‘init_spec(ua1,ua1) := TRUE],
O := m1o_ok(M+ua1, m1o_snd_init) #)
%% increment sc_in_spec, set init_spec(ua1,ua1):=true
%% send m1o_snd_init to adversary port M+ua1

ENDIF
ELSE %% otherwise do nothing

(# ns:=S, O:=m1o_garbage #)
ENDIF

ELSIF ua1>M AND m1i_rec_init?(p) THEN
...

In a similar way we have formalized the machines
� � � ,

� � �� � � � � , and � >A7 � .
The

�
machines

� ��
in the left part of Figure 4.4 have been combined to a single

machine in PVS; however, this is only syntactic and does not change the semantics.
The combination of the machines

� � � and
� � �� � � � � respectively

� �
� �

and
� >A7 � is straightforward by composition of the corresponding state transition functions.

The only non-trivial choice we have made in the transliteration of the machines to
PVS is the type of the input- and output-ports. In a previous attempt, we did not use
the abstract datatype definition of M1 INP, but defined M1 INP as an array of

% �
in-

dividual input ports; in order to model non-active ports, we added an m1i inactive
form to the input port type m1i in port. An input from M1 INP was defined to
be ok iff exactly one of the ports is different from m1i inactive. This obviously
models the same valid inputs as the definition of M1 INP above. The problem with
the array definition is that extracting the active port number � involves an applica-
tion of the choice-function � in order to choose the index � of the array for which
the port is active. The application of the choice-function considerably complicates the
proofs in PVS, since the definition of � is not constructive in PVS. In contrast, in the
definition using the abstract datatype, the active port number � can be constructively
extracted from the input by applying the accessor function of the abstract datatype.
Due to constructiveness, the proofs in PVS become much simpler. This problem in the
port definition also applies to the output ports of the machines.

The rest of the transliteration of the machine definitions to PVS is easy and straight-
forward. In the following, we revert to standard mathematical notation for the sake of
brevity and readability. However, it should be noted once more that all the definitions
and claims in this section have been formalized and verified in PVS.

4.3.2 Proving the Bisimulation

In order to prove Lemma 4.1, we prove the following predicates to be invariants of the
considered collections

�� � and
�� � � ��� during every trace of every configuration.

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 73

� !D�-� 	 	 ��� � � ! �-� 	�	 ��� 6 � � ! �-� 	 	 ��� � 6 � � ! ��� 	�	 ��� � �
���

.
Note that we compare whole arrays in this predicate, i.e., we make use of
the higher-order capabilities of PVS. One could also write � � � ! �-� 	 	 ��� �� �!D�-� 	 	 ��� 6 �� � RGRGR , but the equality of the whole arrays is more concise and easier
to use in the proofs.

� ! �)+� 6 � � !��)+� � � ���
.

�)+��)+� � �)+��)+� � 6 � �
)+��)+� � � ���
.

� � ! �)+� 6 � �
� ! �)+� � � ���
.

� � �!� � � ��� ��� (,�
�� �������?) � �G� �� � � � � ��� (,�
�� ���B� �) �) �� � � � .
��� (,�
�� is the PVS function delivering the length of lists. Note that we use the
quantified form of the invariant here instead of the higher-order form, since oth-
erwise we would have to ‘lift’ the ��� (,�
�� function to arrays of lists.

� � �!� � � ��� ��� (,�
�� �������?) � �G� � � ���� � � � � ��� (,�
�� �������) �) � � ���� � � � .
� �B� �) � �G� � � �B� �) � �$� � � ��� and

�B� �) �) � � �����) �) � � ���
.

� ! � � � ��6 � � ! � � � � � � ��� .
� ��� � � � � � � ��! � � � � � 6 �

� � � � !�� � � � � � ���� � � .
Again we use the quantified form, since otherwise we had to lift “

�
” to arrays.

� ��� � � � � � � � � � � � � � � ! � � � � 6 �
� � � �
� ! � � � � � � ���� � � � and� � � � !�� � � � 6 �

� � � � � � � � � � �� ! � � � � 6 �
� � � � � ! � � � � � 6 �

� � � �

Each of the 10 invariants is formalized as a predicate
� U � � � 6 ��� � � � on the current states of

the two collections
�� � and

�� � � ��� . The conjunction of all the
� U

yields the already men-
tioned relation

�
. Let % � 6 and % � � denote the overall transition function of the considered

machine collections
�� � and

�� � � ��� , respectively. The following theorem asserts, that
the invariants indeed are invariants of the systems:

Theorem 4.2 Let � � 6 and � � � be states of the two collections
�� � and

�� � � ��� such that
all invariants

� U � � � 6 ��� � � � , & � I � & � hold. The transition functions % � 6 �&% � � preserve
the invariants, i.e., for an arbitrary assignment F of the inputs ports of

�� � and
�� � � ���

it holds

� U � � �� 6 ��� �� � � � I�� &7� I � & �
with

� � �� 6 � J � 6 � � � % � 6 � � � 6 �OF � and
� � �� � � J � � � � � % � � � � � � �OF � . Furthermore, the initial

states I (�I
 I �?� � 6 and I (�I
 I �?� � � satisfy all
& � invariants.

�

In PVS, this theorem is split into 10 lemmas, one for each invariant. Using the invari-
ants

��U
, we prove the following theorem:

Theorem 4.3 Let � � 6 and � � � be states satisfying all invariants
��U � � � 6 ��� � � � , & � I �& � , and let F be an assignment of the input ports (connected to the users and the

adversary) of the collections
�� � and

�� � � ��� . Then both collections have the same
outputs on all ports to the users and the adversary.

�

Together, Theorems 4.2 and 4.3 prove that the two systems are bisimilar, which finishes
our proof of Theorem 4.1.

CHAPTER 4. DERIVING SECURE IMPLEMENTATIONS 74

4.3.3 Verification Effort

The manual proof effort in PVS is rather small. The proofs make heavy use of the built-
in PVS strategy (grind), which expands definitions and performs automatic case-
splitting. The main effort was to figure out the correct parameters for the (grind)
command. The proof goals not resolved by (grind) were proved with little manual
assistance.

However, looking for errors and thinking about the necessary modifications of the
machines was a time-consuming task which took the bulk of our time. During our proof
attempts, we simultaneously debugged the machines until we finally found the correct
specifications of all machines. After that, the proof itself turned out to be quite easy.
Putting it all together, the formalization of the machines in PVS took 2 weeks, and the
development of the proofs took another week. A complete checking of the proof takes
about one hour on a 600 MHz Athlon processor.

4.4 Summary

We have presented the first abstract specification for secure message transmission pre-
venting message reordering. Moreover, we derived a secure, concrete implementation.
Its proof of security is based on the composition theorem 2.1, the proof of [49], and on
a bisimulation which we formally verified using the theorem prover PVS. Our approach
furthermore comprises a general strategy how to derive concrete implementations by
splitting specifications into smaller systems that can then be refined stepwise using
the composition theorem and formal proof systems, which yields trustworthy proofs.
Moreover, these implementations are secure with respect to the cryptographic defini-
tions, so we have finished the first step in combining the advantages of formal proof
systems and cryptography.

If we look back at Figure 1.1 in the introduction, we formally proved the upper-
left arrow, i.e., we showed that our specification uses the abstract primitive for secure
message transmission along with a filtering system #�� ! 	 . The remaining task is to
verify the claimed integrity property, i.e., prevention of message reordering, which
corresponds to the upper-right arrow. This task will be the topic of the next chapter.

Chapter 5

Sound Verification of Integrity
Properties

In this chapter, we consider tool-assisted verification of integrity properties of cryp-
tographic protocols. At first, we formally define what integrity properties in fact are
in our model, and what it means that a system fulfills them. After that, we show that
integrity properties are preserved under step-wise refinement, so formal verifications of
our abstractions carry over to the concrete counterparts which provides the up to now
missing link between between formal proof tools and cryptography. Moreover, we
show that logic derivations among integrity properties in asynchronous scenarios are
valid for the concrete systems in the cryptographic sense, which makes them accessible
to theorem provers.

We conclude with a formal validation of our specification of the previous section,
i.e., we show that message reordering is in fact prevented. We again use PVS to obtain
a formally verified proof. According to our results, the proof automatically carries over
to the concrete implementation which yields the first machine-aided, but nevertheless
sound proof of the concrete goals of a concrete system. Together with the result of the
previous chapter, this completes the first tool-supported and cryptographically sound
proof of both the security of a concrete implementation and its actual integrity goals.

5.1 Integrity Requirements

In this section, we show how the relation “at least as secure as” relates to properties
a system should fulfill, e.g., safety requirements expressed in temporal logic. As a
rather general version of integrity requirements, independent of the concrete formal
language, we consider those that have a linear-time semantics, i.e., that correspond to
a set of allowed traces of in- and outputs. We allow different requirements for different
sets of specified ports, since requirements of various parties in cryptography are often
made for different trust assumptions.

Definition 5.1 (Integrity Requirements) An integrity requirement � � � for a system#�� ! is a function that assigns a set of valid traces at the ports in # to each set # with� �� �$# � � #�� ! . More precisely such a trace is a sequence
��� U � U����

of values over port
names and

� �
, so that

� U
is of the form

� U � � �� �
�
�) � � � � U and

� � � U � � �
. For the

75

CHAPTER 5. SOUND VERIFICATION OF INTEGRITY PROPERTIES 76

computational and statistical case, the trace has to be finite. We say that #�� ! fulfills
� � �

a) perfectly (written #�� ! � � � � � < � � �) if for every configuration
�D���	� � � �� �$# �

� � � � � ��� 5 � � #�� ! � , the restrictions � " � of all runs of this configuration to the
specified ports # lie in � � � � # � . In formulas, � �C��� � � ; ��� � � " � � � . � � � � # � for all
� , where � 3 � denotes the carrier set of a probability distribution.

b) statistically for a class # � " �1� (#�� ! � � � ��� �!� � � �) if for every configuration�(���	� � � �� �G# � � � � � � � � 5 � � #�� ! � , the probability that � � � � # � is not fulfilled
is small, i.e., for all polynomials � (and as a function of �),

- ����� � � ; ��� � � � � 8 � A " � �� � � � � # �� � # � " �1� R
The class # �#" �1� must be closed under addition and making functions smaller.

c) computationally (#�� ! � � � K�� � � � �) if for every polynomial configuration
�D���	� �

� �� �$# � � � � � � � � 5 � � K�� � � #�� ! � , the probability that � � � � # � is not fulfilled is
negligible, i.e., - �C��� � � ; ��� � � " � �� � � � � # �� � �7�7�8� R

Note that a) is normal fulfillment. We write “
� �

” if we want to treat all three cases
together.

�

We now prove that integrity properties of abstract systems carry over to their concrete
counterparts, i.e., if the properties are valid for the abstract system and as secure as a
real system, this real system also fulfills concrete versions of these goals.

5.2 The Preservation Theorem

Theorem 5.1 (Conservation of Integrity Properties) Let a system #�� ! � be given
that fulfills an integrity requirement � � � , and let #�� !�	 � �� ��� #�� ! � for a valid map-
ping � , i.e., we only map structures with an identical set of specified ports. Then also#�� ! 	 � � � � � . This holds in the perfect and statistical sense, and in the computational
sense if membership in the set � � � � # � is decidable in polynomial time for all # .

�

Proof. � � � is well-defined on #�� ! 	 , since simulatability implies that for each� �� 	 �$# 	 � � #�� !�	 there exists
� �� � �$# � � � � � �� 	 �G# 	 � with # 	 � # � . We will now prove

that if #�� ! 	 does not fulfill the requirement, the two systems could be distinguished
yielding a contradiction.

Assume that a configuration
�(���	�
	 � � �� 	 �G# 	 � � � � 	 � � � � 5 � � #�� ! 	 � contradicts

the theorem. In order to show that this contradiction can be used to distinguish the
two systems, we need an honest user that connects to all specified ports. Otherwise,
the contradiction might stem from those specified ports which are connected to the
adversary, but those ports are not considered by simulatability.

However, recall that we already proved in Section 3.2, that standard simulatability
is equivalent to s-simulatability. Thus, we can without loss of generality restrict our
attention to those configurations where the honest user connect to all specified ports of
the considered structure. Alternatively, we can apply Lemma 3.3, i.e., there is a con-
figuration

�D����� � � 	 � � �� 	 �$# 	 � � � � � � � in which the user connects to all specified ports,

CHAPTER 5. SOUND VERIFICATION OF INTEGRITY PROPERTIES 77

with
��� ��� ; ��� � � � " � � � ��� ��� ; ��� � " � � , so

�D����� � � 	 also contradicts the theorem. Moreover,�D����� � � 	 is polynomial-time if
�D�����	

is polynomial-time.
Note that all specified ports are now connected to the honest user; thus, we can

exploit simulatability. Looking at the proof of Lemma 3.3 we see that
�D����� � � 	 is a

suitable configuration if
�D�����	

is suitable. Hence, there exists an indistinguishable
configuration

�(���	� � � � � � �� � �$# � � � � � � � � � � � 5 � � #�� ! � � , i.e., �)"��� � ; ��� � � � � � � � ��)"��� � ; ��� � � = � � � � . By our assumption, the requirement is fulfilled for this configura-
tion (perfectly, statistically, or computationally). Furthermore, the view of � � in both
configurations contains the trace at # � � # 	 � # � , i.e., the trace is a function " � of the
view.

In the perfect case, the distribution of the views is identical. This immediately con-
tradicts the assumption that � ����� � � ; ��� � � � � � " � � � �. � � � � # � while � �C��� � � ; ��� � � = � � " � � � .� � � � # � .

In the statistical case, let any polynomial � be given. The statistical distance$ � �)"��� � ; ��� � � � � � � $ 8 � A � � � � � �)"��� � ; ��� � � = � � � $ 8 � A � � � ��� is a function � � � � � # �#" �1� . We
apply Lemma 2.4 to the characteristic function

& ����� �
�����	� 8 � A on such views

�
. This

gives

� - ����� � � ; ��� � � � � � � $ 8 � A " � �� � � � � # �� . - �C��� � � ; ��� � � = � � � $ 8 � A " � �� � � � � # ���G� � � � � � R
As # �#" � � is closed under addition and under making functions smaller, this gives the
desired contradiction.

In the computational case, we define a distinguisher 9B>
C� as follows: Given the
view of machine � � , it extracts the run restricted to # and verifies whether the result
lies in � � � � # � . If yes, it outputs � , otherwise

&
. This distinguisher is polynomial-

time (in the security parameter �) because the view of � � is of polynomial length, and
membership in � � � � # � was required to be polynomial-time decidable. Its advantage
in distinguishing is

� - � 9B>
 � � � � �)"��� � ; ��� � � � � � � � & � . - � 9B>
 ��� � � �)"��� � ; ��� � � = � � � � & �G�
� � - �C��� � � ; ��� � � � � � " � �� � � � � # ��:. - �C��� � � ; ��� � � = � � " � �� � � � � # ���G� R

Since the second term is negligible by assumption, and ���7�8� is closed under addition,
the first term also has to be negligible, yielding the desired contradiction.

We now show that if integrity requirements are formulated in a logic, e.g., temporal
logic, abstract derivations in the logic are valid in the cryptographic sense.

Theorem 5.2
a) If #�� ! � � � � � 	 and � � � 	 . � � � � , then also #�� ! � � � � � � .
b) If #�� ! � � � � � 	 and #�� ! � � � � � � , then also #�� ! � � � � � 	
 � � � � .

Here “
.

” and “‘

” are interpreted pointwise, i.e., for each # . This holds in the perfect
and statistical sense, and in the computational sense if for a) membership in � � � � � # �
is decidable in polynomial time for all # .

�

Proof. Part a) is trivially fulfilled in all three cases. Part b) is trivial in the perfect case.
For the statistical case and every

�D����� � � �� �$# � � � � � � � � 5 � � #�� ! � ,- ����� � � ; ��� � � � � 8 � A " � �� � � � � 	 � # �
 � � � � � # ���� - ����� � � ; ��� � � � � 8 � A " � �� � � � 	�� # �� � - �C��� � � ; ��� � � � � 8 � A " � �� � � � � � # �� � # � " �1�

CHAPTER 5. SOUND VERIFICATION OF INTEGRITY PROPERTIES 78

because both summands are in # �#" �1� , which is closed under addition. The compu-
tational case holds analogously because ������� is closed under addition.

For applying this theorem to concrete logics, we have to show that the common deduc-
tion rules hold. As an example, we consider modus ponens, i.e., if one has derived that

� and �
0��

are valid in a given model, then
�

is also valid in this model. If � � ���
etc. denote the semantics of the formulas, i.e., the trace sets they represent, we have to
show that � #�� ! � � � � ��� � #�� ! � � � � �����	� � � #�� ! � � � � ���GR
From Theorem 5.2b, we conclude #�� ! � � � � � �
 � � � ���
� . Obviously, � � � �

� � �����	� � � � ������� . � � ��� holds, so the claim follows from Theorem 5.2a.

5.3 Validation of the Ordered Channel Specification

In this section, we formally verify the actual integrity property of our specification of
the previous chapter, i.e., we formally prove that message reordering is in fact pre-
vented. Moreover, we already presented a concrete, secure implementation in the pre-
vious chapter, so our verification automatically carries over to this concrete system
using our preservation theorem of the previous section.

5.3.1 The Integrity Property

As we have already seen above, the considered specification has been designed to fulfill
the property that the order of messages is maintained during every trace of the config-
uration. Thus, our goal is to prove that for arbitrary traces, arbitrary users �!� � � �

,
���� �

, and any point in time, the messages that
�

received so far by � via
� �

� �
are indeed a sublist of the messages which have been sent by � to

� �
� �

aimed for
forwarding to

�
. The former list is called receive-list, the latter send-list.

At first sight, the property seems to hold by construction, but experience shows that
such proofs made by “simply looking” are often flawed with hindsight. However, even
if proofs of this kind are made by hand in a rigorous way, they often turn out to be
apparently straightforward and dull which yields proofs with faults and imperfections.
In order to obtain trustworthy proofs, we again use the theorem proving system PVS
along with our machine encoding of

� �
� �

of the previous chapter, and formally verify
the integrity property. This will be described in the following. For reasons of read-
ability and brevity, we use standard mathematical notation instead of PVS syntax. The
PVS sources are available online.1

The formalization of the machine
� �

� �
in PVS has already been described in detail

in the previous chapter. Here, we assume that the machine operates on an input set P , a
state set � , and an output set � . The machine is specified by a state transition function% � P 0 � 0 � and an output function

� P 0 � 0 � .
In order to formulate the property, we need a PVS-suited, formal notation of (infi-

nite) runs of a machine, of lists, of what it means that a list � 	 is a sublist of a list � � ,
and we need formalizations of the receive-list and send-list.

Definition 5.2 (Input sequence, state-trace, output sequence) Let
�

be a machine with
input set P , state set � , output set � , transition function % , and output function . Call
� U � U � � � the initial state. An input sequence I � � 0 P for machine

�
is a function

1http://www-krypt.cs.uni-sb.de/ � mbackes/PVS/CAV2002

CHAPTER 5. SOUND VERIFICATION OF INTEGRITY PROPERTIES 79

mapping the time (modeled as the set
�) to inputs I ��
� � P . A given input sequence I

defines a sequence of states �
U � � 0 � of the machine

�
by the following recursive

construction:

�
U � � � � � � U � U � �

�
U ��
 ��& � � � % � I ��
� ��� U �
�� R

The sequence �
U

is called state-trace of
�

under I . The output sequence � U � �! 0 �
of the run is defined as � U ��
��� �

� I ��
� �/� U �
�� R
We omit the index I if the input sequence is clear from the context. For components� of the state type, we write � �
� for the content of � in � ��
� . For example, we write�B� �) � �$� � � ���� � � ��
� to denote the content at time

of the list

�����?) � �G� � � ���� � � , which is part of the
state of

� �
� �

.

�

Note that these definitions precisely match our model-intern definition of the view of
the machine

�
. In the context of

� �
� �

, the input sequence I consists of the messages
that the honest users and the adversary send to

� �
� �

.

Definition 5.3 (Lists) Lists are defined as a recursive algebraic abstract datatype in
the PVS library [43]. We restate the definition here for the sake of completeness. A list
over type T is the closure of applications of the constructor (� � � yielding an empty list,
and the constructor ��� (� � � ��� ��� ��� . � � �:I-�
 � � � � yielding a list with head � ��� and tail
� . � . It holds � � � � ��� (� ��
 � � �� �

and � . � � ��� (� �
 � � ��� � � . The predicates (�#�+� � � � � and
��� (� � � � � are used to test whether � is empty or non-empty, respectively. PVS provides
functions ��� (,�
�� � � � , �2)4)�� (. �
 � � � , and (
�� � �-��I � to measure the length of a list � , to
append an element

at the end of the list � , and to access the I ��� element of � (counted

from 0).

�

Definition 5.4 (Sublists) A list � 	 is called sublist of a list � � (written � 	 . � �) iff the
following recursive predicate is satisfied:

� 	 . � � ��� � (�#�+� � � � 	 �	�
��� (� � � � 	 � � �

� ��� � � 	 � � � � � � � � ��� � . � � � 	 � . � . � � � � �� � 	 . � .�� � � � � � R
Let � � � . The list � 	 is called sublist of the � -prefix of � � (written � 	 . � � �) iff the
following recursive predicate is satisfied:

� 	 . � � � �
� � (�#�+� � � � 	 �	�
��� (�2� � � 	 � � � � & � �

� � � � � 	 � � � ��� � � � ��� � .�� � � 	 � . � 5 	 � . � � � � �� � 	 . � 5 	 � .�� � � � � � R �

The following lemma summarizes some facts on lists and sublists:

Lemma 5.1 Let � 	 �/� � � � � be lists over some type
�

, let

 � �

, and � � � � ��� . It holds:

1. � � ��� (,�
�� � � 	 � � �
(
�� � ��)�) � (. ��
 � � 	 � � � � �

�
(
�� � � 	 � � � if � � ��� (,�
�� � � 	 �

otherwise

CHAPTER 5. SOUND VERIFICATION OF INTEGRITY PROPERTIES 80

2. � 	 . � � � � � 	 .
�2)4)�� (. �
 � � � �

3. � 	 . � � � �
��)�) � (. ��
 � � 	 � .

�2)�) � (. �
 � � � �
4. � 	 . � � � � � � 	 . �

��)�) � (. ��
 � � � �
5. � � ��� (,�
�� � � � � � � 	 . � � � � �

�2)4)�� (. � (
�� � � � � � � � � 	 � . � � 	 � � ,
that is, one may append the �

���
element (counted from 0) of � � to � 	 while pre-

serving the prefix-sublist property.

6. � � � � � � 	 . � � � � � � 	 . � � � �
7. � 	 . � � � � � � 	 . � �
8. � 	 . � � � � � . � � � � � 	 . � � �

All claims are proved by induction on the recursive structure of the lists. Exemplarily,
we give a detailed transcript of the proof of the � -th claim of the lemma, i.e., we prove
transitivity of sublists.

Proof. (Lemma 5.1.8) We prove the claim by induction over � � . The induction base is
trivial, by expanding the definition of sublists in � 	 . � � and � � . (�#�+� which implies
(�#�+� . (�#�+� .

Let us now turn to the induction step, i.e., we have � � � ��� (� ��� � �
 � � . As induction
hypothesis, we have

� . � � and � � .
 � � � .
 � �
for all lists � � � � . Moreover, we know that � 	 . � � and � � . ��� (� ��� � �
 � � . We have
to show that � 	 . ��� (� ��� � �
 � � holds. We now expand the definition of sublists in
� 	 . ��� (� ��� � �
 � � , which yields two cases:

1. � � � � � 	 � �� � �
or � 	 � (� � � . Thus, we have to show that � 	 .
 �

, or that � 	 � (� � � .
We now use our induction hypothesis with � � � � 	 and � � � � � � which yields

� 	 . � � � � � .
 � � � 	 .
 � R (5.1)

Hence, it is sufficient to show � � .
 �
. We now expand the definition of sublists

in � � . ��� (� � � � �
 � � which yields three cases again:

(a) � � � (�#�+� . We expand the definition of sublists in � 	 . � � which immedi-
ately yields � 	 � (� � � and we are done.

(b) � � � ��� (� ��� � �
 � � and
� � �� � �

and � � .
 �
. Thus, equation 5.1 yields

� 	 .
 �
and we are done.

(c) � � � ��� (� ��� � �
 � � and
� � � � �

and

 � .
 �

. We apply our induction
hypothesis again with � � � � 	 and � � � �
 �

which yields

� 	 .
 � �
 � .
 � � � 	 .
 � R (5.2)

We now expand the definition of sublists in � 	 . � � which yields � 	 .
 �
(the case � 	 � (� � � is trivial, and

� 	 � � �
cannot happen because of

� 	 �� � �
and

� � � � �
). Thus, the claim follows from equation 5.2.

CHAPTER 5. SOUND VERIFICATION OF INTEGRITY PROPERTIES 81

2. � � � � � 	 � � � �
or � 	 � (�#�+� . Thus, we have to show � .�� � � 	 � .
 �

or � 	 � (� � � .
We now expand the definition of sublists in � � . ��� (� � � � �
 � � which yields three
cases:

(a) � � � (� � � . This case is trivial again by expanding the definition of � 	 . � � .
(b) � � � ��� (� ��� � �
 � � and

� � � � �
and

 � .
 �
. We now use our induction

hypothesis with � � � � . � � � 	 � and � � � �
 �
which yields

� . � � � 	 � .
 � �
 � .
 � � � . � � � 	 � .
 � R
Thus, it is sufficient to show � . � � � 	 � .
 �

. We now use a simple lemma
about sublists, which we formally proved in PVS, but only state here for
the sake of readability:

� 	 . � � � � 	 �� (�#�+� � � � �� (� � � � � .�� � � 	 � . � .�� � � � � R
Because of � 	 �� (�#�+� and � � �� (�#�+� , the claim follows.

(c) � � � ��� (� ��� � �
 � � and
� � �� � �

and � � .
 �
. We use our induction hypoth-

esis with � � � � 	 and � � � � � � which yields

� 	 . � � � � � .
 � � � 	 .
 � R
The claim follows.

Moreover, we give the full PVS proof of transitivity of sublists in the Appendix, so
the reader is encouraged to compare the above transcript with this machine-generated
proof.

The seven remaining claims can be proven similarly, so we simply refer to our PVS
proofs on our web page again.

Definition 5.5 (Receive- and send-list) Let I be an input sequence for machine
� �

� �
,

and let � and � be the corresponding state-trace of
� �

� �
and the output sequence,

respectively. Let � � � � � . The receive-list is obtained by appending a new element �

whenever
�

receives a message
� @ 8 . 8 > � 84� � � � � from

� �
� �

. The send-list is obtained
by appending � whenever � sends a message

�
 8(5,= � � � � � to
� �

� �
. Formally, this is

captured in the following recursive definitions:

recvlist
U� � � �
� � �

����� ����
(� � � if

 � . & �
�2)4) � (. � � � recvlist

U� � � ��
 . & ��
if � U ��
� � � @ 8 . 8,> � 8'� � ��� �
at � � � � � �
 � ��R

recvlist
U� � � ��
:. & �

otherwise

sendlist
U� � � �
� � �

����� ����
(� � � if

 � . & �
�2)4) � (. � � � sendlist

U� � � �
:. & ��
if I �
� � �
 8(5,= � � � � �
at >A5�� � �
 � ��R

sendlist
U� � � �
 . & �

otherwise �

CHAPTER 5. SOUND VERIFICATION OF INTEGRITY PROPERTIES 82

We are now ready to give a precise, PVS-suited formulation of the integrity property
we are aiming to prove:

Theorem 5.3 For any
� �

� �
input sequence I , for any � � � � � , � ����

, and any point
in time

 � �
, it holds

recvlist
U� � � ��
� .

sendlist
U� � � �
� R (5.3)

�

Proof (sketch). In the following, we omit the index I . The proof is split into two parts:
we prove recvlist

� � � �
�.�& � . �B� �) � �$� � � ���� � � ��
� and
�B� �) � �$� � � ���� � � ��
� .

sendlist
� � � �
�.�& �

.
The claim of the theorem then follows from Lemma 5.1.8.

The second claim
�����) � �G� � � ���� � � ��
� .

sendlist
� � � �
 . & �

is proved by induction on

. Both induction base and step are proved in PVS by the built-in strategy (grind),

which performs automatic definition expanding and rewriting with Lemma 5.1.
The first claim recvlist

� � � �
:. & � . �B� �) � �$� � � ���� � � ��
� is more complicated. The claim
is also proved by induction on

. However, it is quite easy to see that the claim is not in-

ductive: in case of a
� @38 . 8 > � 8 <'; >A5,= ; 	?���!��I � at

� @T� 7 6,= � � � , � �
� �

outputs
� @ 8 . 8 > � 8�� � � � �

to � � � � � , where
� � � � � � � �B� �) � �$� � � ���� � � � I � , i.e., � is the I th message of the

�B� �) � �G� � � ���� � �
list (cf. scheme 4.1 on page 60). By the definition of the receive-list, the message �

is appended to recvlist
� � � . In order to prove that recvlist

� � � . �B� �) � �$� � � ���� � � is preserved
during this transition, it is necessary to know that the receive list was a sublist of the
prefix of the

�B� �) � �$� � � ���� � � list that does not reach to � . It would suffice to know that

recvlist
� � � ��
:. & � . U

�B� �) � �$� � � ���� � � ��
� R
Then the claim follows from lemma 5.1.5.

We therefore strengthen the invariant to comprise the prefix-sublist prop-
erty. However, the I in the above prefix-sublist relation stems from the input� @ 8 . 8 > � 8 <'; >A5 = ; 	 ���!��I � , and hence is not suited to state the invariant. To circumvent this
problem, we recursively construct a sequence last rcv blindly

� � � �
� which holds the
parameter I of the last valid

� @38 . 8 > � 8 <�; >A5,= ; 	?���!��I � received by
� �

� �
on
� @ � 7 6,= � � � ;

then
recvlist

� � � ��
 . & � . $ �B� �) � �G� � � ���� � � �
� with � � last rcv blindly
� � � ��
�

is an invariant of the system. We further strengthen this invariant by asserting that
last rcv blindly

� � � �
� and the
�
’s stored in the

�B� �) � �$� � � ���� � � list grow monotonically. To-
gether this yields the inductive invariant. We omit the technical details, and refer the
reader to the PVS files available online

	
.

Applying our standard definition 5.1 of integrity requirements, we can now define that
the requirement � � � holds for an arbitrary trace

 � if and only if Equation 5.3 holds for
all � � � � � , � ����

, and the input sequence I of the given trace

 � . Thus, Theorem 5.3

can be rewritten in standard notation as � �C��� � � ; ��� � � " � � � . � � � � # � for all � , i.e., we
have proven that the specification #�� ! � �

���
perfectly fulfills the integrity requirement

� � � � # � . In formulas, #�� ! � �
��� � � � � � < � � � � # � .

5.3.2 Verification Effort

Together, the development of the inductive invariant and its proof took 2 weeks, which
included some failed approaches in strengthening the invariant to become inductive.
The proof of the invariant takes 500 proof commands, i.e., steps with manual assistance.

CHAPTER 5. SOUND VERIFICATION OF INTEGRITY PROPERTIES 83

A further week and 350 proof commands were needed for the development of the
sublist theory, which can be reused in future verification projects.

The main difficulty during the verification of the invariant was finding the stronger
inductive invariant. Once the correct invariant was found, its proof was relatively easy.
Before we started the formal verification, we had a hand-written proof of theorem 5.3.
However, the proof was incomplete in the sense that we did not prove some needed
invariants; in fact, we did not even notice that we used these invariants in our hand-
made proofs, because of our intuitive understanding of the system.

5.4 Conclusion

In this chapter, we continued and succeeded in developing a general methodology how
cryptographic protocols in asynchronous reactive systems can be verified both sound
with respect to cryptographic definitions and machine-aided. As the last remaining step
we considered an actual integrity goal a protocol should fulfill on the abstract and the
concrete level. Moreover, we showed that verification of abstract goals automatically
carries over to their concrete counterparts in case of integrity properties, and we showed
that logic derivations among integrity properties are valid for the concrete systems
in the cryptographic sense, which makes them accessible to theorem provers. As an
example, we formally validated our scheme for ordered secure message transmission
of the precedent chapter using the theorem proving system PVS [44].

If we consider our approach as a whole, i.e., combining the results of [49], of Chap-
ter 4, and of this chapter, we can state the following results: we successfully finished
presenting the first approach for cryptographic protocol verification that is sound with
respect to the underlying cryptographic primitives, and that allows abstractions suit-
able for formal proof systems. These abstractions are easy to use and can be combined
to large protocols very easily; moreover these abstractions can be refined step-wise
in order to obtain concrete systems, and proofs on the abstract level carry over to the
concrete system. As an example, we presented an abstract specification and a concrete
implementation of secure message transmission with ordered channels and we formally
verified both the security of this concrete implementation and its actual goals.

Chapter 6

Polynomial Fairness and
Liveness

After introducing integrity properties in the precedent chapter, we now focus on in-
troducing what fairness and liveness for arbitrary cryptographic protocols means. Un-
fortunately, we will see that the common definitions of fairness and liveness are not
suited to cope with real cryptography, so we present new definitions which we denote
by polynomial fairness and polynomial liveness. Similar to integrity properties in the
previous chapter, we show that these liveness properties are maintained under simulata-
bility. As an example fitting our definition, we present an abstract specification and a
concrete implementation of secure message transmission with reliable channels. Here,
reliability is considered as the desired liveness property, i.e., roughly speaking, every
message sent over these channels will eventually be delivered. We conclude with a
short summary as usual.

6.1 Introduction and Related Literature

If we consider properties of arbitrary protocols, we can distinguish between liveness
and safety properties (according to the characterization of Alpern and Schneider [5]),
besides confidentiality properties. Informally, a liveness property states that something
good eventually happens. One usual problem in asynchronous scenarios is that liveness
depends on the scheduler: if the scheduler never schedules certain messages, these
messages will not proceed and nothing good will ever happen. The standard solution
(see, e.g., [32]) is to concentrate on so-called fair schedulers. Roughly, those guarantee
that every message is delivered at some point of time in every infinite run of the system.

For most cryptographic protocols, these definitions cannot be used because one
must restrict the adversary and the runs as a whole to polynomial length; hence, the
notion of infinity does not apply. Another problem in the cryptographic case is that
one typically assumes that an adversary can modify messages arbitrarily in transit. For
those cases, one can certainly not require that anything good happens (e.g., the parties
agree on a key [46]). Nevertheless, even for protocols that do consider such arbitrary
corruptions, one typically wants a guarantee of the following form: If certain messages
get through unmodified, then certain good things happen. For the other cases, e.g., the
honest participants make progress but do not get each others’ messages, one may still

84

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 85

want at least local termination (in the sense of a timeout message, or a positive reaction
to an abort by the user).

In order to cope with the above problems, we introduce the notion of polynomial
fairness and polynomial liveness. Roughly, polynomial fairness states that the master
scheduler will schedule each message after a polynomially bounded number of steps.
Now, polynomial liveness captures that something good will happen after a polynomial
number of steps of the honest user subject to the condition that the considered scheduler
is polynomially fair.

We are only aware of one paper that handles polynomial liveness properties for
security protocols: Cachin et al. presented a nice approach for a specific protocol,
asynchronous Byzantine agreement in [11]. It is shown that an adversary cannot make
the honest users (altogether) generate a super-polynomial number of messages for any
particular subprotocol run and that the protocol ensures “deadlock-freeness”, i.e., some
progress will eventually be made. However, their definition was limited to this specific
protocol, and applying the approach more generally presumes a fixed number of sub-
protocols and the use of session ID’s (so that one can say “all messages associated to
an event have been delivered”). We aim at a more general definition. Thus, the fact
that certain messages get through is defined by letting the system “run empty”, i.e.,
we consider one particular point in time, so that neither the honest user nor the adver-
sary produce any outputs after that time. From then on, the only active machines are the
scheduler and the internal machines of the system, so the scheduler can deliver all mes-
sages that have already passed through the adversary (i.e., have not been interrupted in
transit), all messages that have been sent over reliable channels etc. We speak of poly-
nomial liveness if the good event then happens in a polynomially bounded number of
steps.

To the best of our knowledge, the approach of letting the system run empty has
not been used before to prove arbitrary properties of security protocols. However, if
we prescind from the security community and take a look at verification of micropro-
cessors we will meet similar techniques. Roughly speaking, Burch and Dill showed
in [10] that certain safety properties of a pipelined microprocessor hold by letting the
pipelines run empty now and then, which they denoted as “flushing the pipeline”. In
the essence, their approach is quite similar to ours, but applied to a completely different
problem.

In this work, we only consider one run-empty phase. In principle, the user and
adversary could restart outputting messages after the good event has happened, so that
liveness would be extended to multiple good events. However, this task is tedious and
considered as future work.

Moreover, we will show that our definition of liveness behaves well under the con-
cept of simulatability which has asserted its position as a fundamental concept of cryp-
tography. Precisely, we show that liveness properties are preserved under simulatability
under certain circumstances, i.e., liveness properties proved for abstract specifications
automatically carry over to the concrete implementations in this case.

As an example fitting our definition, we present an abstract specification and a con-
crete implementation of reliable secure message transmission. The reliability is con-
sidered as the desired liveness property, i.e., roughly speaking, every message sent will
eventually be delivered. We prove this liveness property for the abstract specification
and transfer it to the implementation with the preservation theorem.

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 86

6.2 Expressing Polynomial Fairness and Liveness

In this section we introduce our definitions of polynomial fairness and polynomial
liveness in asynchronous reactive systems. At first, we concentrate on fairness.

6.2.1 Polynomial Fairness

Usually, a scheduler is called fair if it schedules every process infinitely often unless
this process is only finitely often enabled. As we already stated in the introduction, this
definition is not suited for schedulers of most cryptographic protocols, since both the
adversary and the honest user are polynomially bounded, and the runs as a whole are
restricted to polynomial length. Hence, the terminology of infinity does not apply.

What we would like to express is that an enabled process will always be sched-
uled by the master scheduler after a polynomially bounded number � � � � of the master
scheduler’s steps unless the master scheduler reaches its runtime bound. We start with
an intuitive description of how this can be formalized.

Starting from the

-th view-step of � in one particular trace

 � (denoted by � � � ���),
we search for the first future time � �

such that the first message of � & is scheduled
(denoted by

� ��� � ��� � � � � � &
). Thus, if the buffer is non-empty, a message will be

scheduled from it. Moreover, we always demand that it is the first clock-out port with
non-empty value (so it will not be ignored by the run algorithm, cf. Definition 2.6). We
denote this number of view-steps (i.e., � .

) by �B64> � ��
 �
 �,� & � � � . Moreover, in order
to cope with the final state of � , we explicitly define this number to be infinite if the
master scheduler never enters a final state, and if there exists no such output at &4�'� . If
the master scheduler enters a final state after its � -th view-step without ever outputting&

at &2�'� we define this number to be � .

.

We denote the scheduler as � -fair for a function � � � 0 � if the maximum of
these waiting times is bounded by � as a function of � .

Moreover, we demand that � does not connect to an unspecified port of the system,
i.e., we have &��?@T��
 � � �
 � �?@ < � �� �G# � � �

. This condition is essential for relating the
definition of polynomial fairness to simulatability, since the master scheduler can be
defined as part of the honest user in this case, and hence, can remain unchanged in
simulatability.

Let us now turn to the formal definition.

Definition 6.1 (Polynomial Fairness) Let an arbitrary system #�� ! be given. Then a
master scheduler � is called � -fair for a structure

� �� �$# � � #�� ! if and only if the
following holds:

� � does not connect to an unspecified port of the system, i.e., we have &��?@T��
 � � �
� �?@ < � �� �$# � � �
.

� Let � � � ��� and � � � ��� be � ’s output and state after the

-th switching of � , re-

spectively, in every considered trace

 � of the configuration. Moreover, let *)+� �

denote the set of final states of � . Now we define

�B64> � �
 �
 �,� & � � � � � 4
if for all � ��� � � � � � � � ��� � � � � �� &

and � � � � � ��� �� *)+� �
, and otherwise

�B64> � �
 �
 �,� & � � � � � 7 >A5 � ��� � � � � � � � ��� � � � � � & � � � � � � ��� � *)+� � �R

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 87

Then we require that
�B64> � �
 �
 �,� & � � ��� � � � �

holds for all traces

 � of the configuration, all

 � �
and &(�'� � &��?@ ��
 � � � .

If a master scheduler is � -fair for a polynomial � , we call it polynomially fair. In the
following, we will augment a master scheduler � by the index

< � 6 � if it is fair, i.e., we
write � < � 6 � .

�

Remark 6.1. Our definition of fairness implies the common definition of fairness based
on infinite sequences (i.e., processes which are infinitely often enabled have to be
scheduled infinitely often). By “a process or machine

�
is enabled”, we define that

an ingoing buffer � & of the machine
�

has non-empty content, and the master scheduler
could schedule this buffer at the moment (i.e., the master scheduler is switched, and
it has the corresponding clockout port &(��� for scheduling this buffer). Now according
to our definition, this buffer will always be scheduled after at most � � � � steps for a
polynomial � and the security parameter � , i.e., after a finite number of steps. More-
over, if the machine is enabled infinitely often, then the master scheduler must also be
switched infinitely often, so it will schedule the corresponding buffer, and therefore the
machine infinite times. -

6.2.2 Polynomial Liveness

After introducing the notion of polynomially fair master schedulers, we can now turn
our attention to expressing polynomial liveness. Intuitively speaking, polynomial live-
ness means that some good things will happen after a polynomial number of steps of
the honest user.

However, we cannot expect this to hold for arbitrary configurations. Imagine an
honest user and an adversary which are communicating over the system all the time,
without ever giving control to the (fair) master scheduler. In this case we cannot guar-
antee that good things happen since the fairness condition of the master scheduler is
irrelevant. Instead, we define that certain good things happen if the system is “run
empty”. More precisely, we consider situations where neither the user nor the adver-
sary produce any outputs any further from one particular point in time. We then require
that there exists a polynomial
 � such that the good event will happen in at most
 � � � �
view-steps of � , counted from that special point in time.

Thus, in order to define polynomial liveness for the overall system, we restrict
ourselves to those configurations which prevent outputs of both the user and the adver-
sary after a particular number of view-steps of � . More precisely, we let the honest
user count the number of times it has been switched. If it reaches the “critical” time
 � M K � � � � , it outputs a command

�
C�C� & � to the adversary and both machines do not pro-
duce outputs any further. We call these configurations liveness configurations.

From that special point in time, the master scheduler and the machines of the system
are the only active machines in the configuration, so the master scheduler can try to
empty the system, e.g., to deliver those messages that have already passed through the
adversary and now wait to be scheduled to their recipient, and those that have been sent
over reliable channels.

However, there is one more problem we have to take care of. Clearly, we cannot
expect the event to happen if the master scheduler or the honest user enter a final state
too early. Therefore, we assume that the master scheduler and the honest user run
sufficiently long, i.e., we augment our definition of liveness configurations with lower

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 88

bounds
 �
,
 � on the number of view-steps of the master scheduler and the honest

user.

Definition 6.2 (Liveness Configuration) Let an arbitrary system #�� ! and four func-
tions

 � MTK � � � �
 � �
 � � � 0 �
be given. Furthermore, let a configuration

�D���	� �
� �� �$# � � �B 2 � � < � 6 � '� � � � � � 5 � � #�� ! � be given where � < � 6 � is a � -fair scheduler for� �� �$# � . We call this configuration a (

 � M K � , � ,
 �
,
 �)-liveness configuration if the

following holds:

� The honest user � has special ports
! ��� 	 � � , !D�-� 	 � ��� which are connected to the

adversary, i.e.,
��! ��� 	 � ��� !D�-� 	 � ���� . &��?@T��
 � � � and

! ��� 	 � � � &��?@T��
 � � �
.

� The user � has an internal counter
�D� � �H�

over the naturals initialized with � .
The user first increases this counter every time it switches, and then checks
whether the counter equals

 � MTK � (k). In this case it outputs
�
��C� & � at

! ��� 	 � � ,&
at

! ��� 	 � � � . From now on, the user only reads its inputs, but no longer pro-
duces outputs. Similarly, if the adversary gets an input

�
��C� & � at
!D�-� 	 � � , it only

reads its inputs in the future without producing any outputs.

� The user � does not output anything at
! �-� 	 � � except in the above case.

� The number of view-steps of the master scheduler and the honest user is lower-
bounded by
 � � � � and
 � � � � , respectively, for every trace of the configuration.

Liveness configurations will be denoted by
�D����� � 6 � � � � �� �$# � � � 2 � � < � 6 � '� � � � 6 � �

, the
set of all liveness configurations of a system #�� ! by � � 5 � � 6 �

� � #�� ! � , and the set of all
polynomial-time liveness configurations by � � 5 � � 6 �

�
� K�� � � #�� ! � .

�

Thus, for a given trace
�O�

of a (

 � MTK � , � ,
 �

,
 �)-liveness configuration, we will not
have any further outputs of both the user and the adversary after the

 � M K � � � � -th switch-
ing of the user. We use this point in time to split the trace into two parts, a prefix

�O� $
and a tail

�����O� $, so that we obtain
�N� � �O� $ - �����O� $. The tail

�����O� $ is called the extended
trace or the run-empty phase.

Remark 6.2. If the user has exceeded the time

 � M K � � � � he will never be able to produce

any outputs again. In real life, the user will usually resume outputs after the good event
has happened, e.g., send reply-messages. Our definition could be modified such that
both the honest user and the adversary are “switched on” again after the good event
has happened. However, this task is tedious because it significantly complicates our
upcoming definitions and the preservation theorem of Section 6.3, so we will consider
it as future work only. -
We can now turn our attention to the actual definition of polynomial liveness.

Definition 6.3 (Polynomial Liveness Properties) A polynomial liveness property of a
structure

� �� �$# � � #�� ! consists of three components:

1. First, we have an integrity property � � � (the good event which we would like to
happen), cf. Definition 5.1, i.e., � � � is a function that assigns a set of traces at
the ports in # to each set # with

� �� �$# � � #�� ! . Informally speaking, � � � � # �
states which are the “good” traces for the given structure

� �� �G# � .

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 89

2. The second component
� & � �?����RGRGR � & � �'�A is a subset of the complement of the

specified ports of the structure, i.e.,
� & � �'�3�GRGR�R � & � �'�� . # � . It indicates which

ports have to be scheduled by the fair master scheduler such that the event � � �
will eventually happen.

3. The third component is a function

 S � � 0 �

. Intuitively, a system can only
run empty and finally fulfill the desired property if it has not yet run for too long.
In this case, it might exceed its runtime bounds during the extended trace of
the configuration before the event � � � occurs. Therefore, we have to bound the
point in time at which the extended trace may begin. Obviously, the runtime of
the system depends on the security parameter � , so this bound is represented as
a function of � too. Intuitively, the function

 S denotes that the event � � � will
happen if we restrict our attention to the set of all (

 � M K � , � ,
 �
,
 �)-liveness

configurations for

 � MTK � � � � �
 S � � � , for every polynomial � and suitable choices

for
 �
and
 � .

Finally, a liveness property of a system #�� ! is a mapping

��� � > � #�� ! 0 �) � �(� �(� 	
� �� �$# ���0 � � � �'� � & � � �3�GRGR�R � & � � ����
 S � 8 �� � � A

that assigns each structure
� �� �$# � a liveness property which is defined on

� �� �$# � .
�

After introducing what polynomial liveness properties are, we have to define what
it means that a system fulfills them. Essentially, our complete definition states that
a structure fulfills the liveness property

� � � �'� � & � �'�3�GRGR�R � & � ������
 S � if the following
holds:

If the ports
� & � �'����RGR�R � & � �'�� are scheduled by a � -fair master scheduler for an arbi-

trary polynomial � , and if we do not proceed too far in time (i.e., we only consider
(

 � MTK � , � ,

3
,
3
)-liveness configurations for

 � M K � � � � �
 S � � �) then there are polynomials
 �
,
 � such that the event � � � will happen within a polynomial number of view-steps

of the honest user.

This will be expressed by using prefixes of the whole run restricted to those ports
that connect to the honest user in the considered configuration, i.e., we write��� � � ; ��� � � � $ 8 � A " � � with # � � � � & � # � & � � &��?@T��
 � � � and a polynomial � (cf. Defi-
nition 2.7). In slight abuse of notation, we write � � � � # � � instead of � � � � # � " � � , i.e.,
we restrict the trace to the ports in # � . A system fulfills the overall liveness property if
all of its structures fulfill their liveness properties. Moreover, we will see that there are
different grades of fulfillment. We distinguish between perfect, statistical and compu-
tational fulfillment depending on whether the good event will always happen, or only
with overwhelming probability, i.e., the probability of failure should be statistically
small or negligible in polynomial-time configurations, respectively.

Definition 6.4 (Fulfillment of Polynomial Liveness Properties) Let an arbitrary
system #�� ! and a polynomial liveness property � ��� > for #�� ! be given. Then
a structure

� �� �$# � � #�� ! fulfills its polynomial liveness property �) � � � � � � �
� � � �'� � & � � ����RGRGR � &�� � �A'�
 S �B� � ����� > � �� �G# �

� perfectly (
� �� �$# � � � � � � < �) � � � � �) iff � polynomials � �
 � MTK � with

 � M K � �
 S �
polynomials
 �

,
 � such that for all (

 � M K � , � ,
 �

,
 �)-liveness configurations

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 90

�(���	� � 6 � � � � �� �G# � � � 2 � � < � 6 � '� � � � 6 � � � ��� 5 � � 6 �
� � #�� ! � with

� & � ���3�GR�RGR � & � ���� .
&��?@ ��
 � � < � 6 � � the following holds: all
 � � � � -prefixes of the restriction of the run
to the ports in # � lie in � � � � # � � . In formulas,

� ����� � � ; ����� � ��� � � � � � 8 � A " � � � � . � � � � # � �
for all � , where � 3 � denotes the carrier set of a probability distribution.

� statistically (
� �� �$# ��� � � ��� � � �) � � � � �) iff � polynomials � �
 � M K � with

 � M K � �
 S� polynomials
 �
,
 � such that for all (

 � M K � , � ,
 �
,
 �)-liveness con-

figurations
�D����� � 6 � � � � �� �$# � � �B 2 � � < � 6 � �� � � � 6 � � � ��� 5 � � 6 �

� � #�� ! � with� & � �'�3�GRGR�R � & � ���� . &��?@T��
 � � < � 6 � � the following holds: the probability that
� � � � # � � is not fulfilled after
 � � � � steps is small, i.e.,

- �C��� � � ; ��� � � ��� � � � � � 8 � A " � � �� � � � � # � ��� # � " �1� R
The class # �#" �1� must be closed under addition and making functions smaller.

� computationally (
� �� �G# � � � � K�� � �) � � � � �) iff � polynomials � �
 � M K � with
 � MTK � � � � �
 S � � � � polynomials
 �

,
 � such that for all polynomial-time (

 � M K � ,

� ,
 �
,
 �)-liveness configurations with

� & � ���3�GR�RGR � & � ���� . &��?@ ��
 � � < � 6 � � the fol-
lowing holds: the probability, that � � � � # � � is not fulfilled after
 � � � � steps is
negligible, i.e.,

- ����� � � ; ��� � � ��� � � � � � 8 � A " � � �� � � � � # � �� � ���7�8� R
We write

� �� �G# �/� � � � � �'� � & � �'�3�GRGR�R � & � ������
 S � if we want to treat all three cases
together.

Finally, a system #�� ! fulfills a liveness property � � � > perfectly, statistically, or
computationally iff each

� �� �G# � � #�� ! fulfills ��� � > � �� �$# � perfectly, statistically, or
computationally. In this case, we write #�� ! � � � � � < ����� > , etc.

�

6.3 Preservation of Polynomial Liveness under Simu-
latability

In this section we show that our definition of polynomial liveness behaves well under
simulatability under certain circumstances. Usually, defining a cryptographic system
starts with an abstract specification stating what the system should do. After that, this
specification can be refined stepwise with respect to simulatability, which finally yields
a secure implementation. At this time, we may wonder whether or not the verification
of these properties made for the ideal specification carries over to the concrete imple-
mentation. This is essential for modular proofs. We can answer this question in the
affirmative under reasonable assumptions yielding the preservation theorem presented
below.

In the following, we assume two systems #�� ! 	 , #�� ! � to be given, such that#�� ! 	 � � #�� ! � holds for a valid mapping � . Moreover, we assume that #�� ! � fulfills
an arbitrary liveness property �8��� > = . However, we cannot expect the liveness prop-
erty to automatically carry over to #�� ! 	 if both systems are completely unrestricted for

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 91

the following reason: assume that we have given a valid (

 � MTK � , 3 , 3 , 3)-liveness configu-

ration
�D����� � 6 � �	 � � � 5 � � 6 �

� � #�� ! 	 � , so there has to be an indistinguishable configuration�D����� � � ��� 5 � � #�� !�� � because of #�� !�	 � � #�� ! � . However, it is clear that
�D�������

is not
necessarily a (

 � MTK � , 3 , 3 , 3)-liveness configurations again, since the adversary is not forced
to stop outputting messages at that particular point in time; in fact, he is not forced
to do so at all. The remaining three parameters are omitted because they must remain
unchanged under simulatability since they are part of the honest user.

Hitting the spot, simulatability is not forced to map liveness configurations of
the first system to liveness configurations of the second. Thus, given an arbitrary
(

 � MTK � , 3 , 3 , 3)-liveness configuration

�D����� � 6 � �	 � � � 5 � � 6 �
� � #�� !�	 � , we cannot exploit our as-

sumption #�� !��1� �
�/��� > = by means of simulatability in order to decide whether or

not the considered liveness property holds for the first system. We therefore have to re-
strict our attention to those systems in which simulatability respects (

 � M K � , 3 , 3 , 3)-liveness
configurations, i.e., simulatability yields indistinguishable (

 � MTK � , 3 , 3 , 3)-liveness configu-
rations by construction. We speak of liveness simulatability in this case.

At first glance, this seems to be a quite severe restriction to the considered set of
possible systems. However, indistinguishable configurations are typically derived us-
ing the simulatability variant of blackbox simulatability. This means that the adversary� �

of the indistinguishable configuration is derived by the original adversary
�

and a
simulator � >A7 which is inserted between the original adversary and the system. This
does not change the communication between

�
and the honest user, so

� �
handles in-

coming
�
C�C� &)-signals just as the original adversary

�
. Moreover, the machine � >A7

usually only transmits values from the adversary to the system and vice versa; espe-
cially it does not produce any outputs alone by itself. Thus, the complete adversary� �

, i.e.,
�

and � >A7 , will not produce outputs any further if the original adversary does
not, yielding the desired liveness configuration. Our example of Section 6.4 belongs
to that kind of system. All other examples which have been proved so far, e.g., secure
channels, fair exchange protocols, and secure group key exchange, belong to that kind
of system as well. Formally, liveness simulatability is introduced as follows.

Definition 6.5 (Liveness Simulatability) Let two arbitrary systems #�� !�	 and #�� !�� be
given such that #�� ! 	 � � #�� ! � holds for a valid mapping � . We then call #�� ! 	 “at least
as secure as” #�� !�� “with respect to liveness” (written #�� !�	 � � � � 6 � � #�� !��) if the follow-
ing holds: for a given (

 � M K � , � ,
 �
,
 �)-liveness configuration

�D���	� � 6 � �	 � � �� 	 �$# 	 �� � 2 � � < � 6 � �� � 	 � � 6 � � � � � 5 � � 6 �
� � #�� ! 	 � there exists a (

 � MTK � , � ,
 �
,
 �)-liveness con-

figuration
�D����� � 6 � �� � � �� � �$# � � � � 2 � � < � 6 � '� � � ��� 6 � � � � � 5 � � 6 �

� � #�� ! � � yielding in-
distinguishable views for the honest user. As usual, we distinguish between perfect,
statistical, and computational indistinguishability.

�

We will now show that liveness properties automatically carry over in case of liveness
simulatability, if the important ports of the master scheduler for achieving liveness are
identical in both the considered ideal and real system.

Theorem 6.1 (Preservation of Polynomial Liveness) Let an arbitrary system #�� ! �
and a polynomial liveness property � � � > = be given such that #�� !��/� �

�/��� > = holds.
Furthermore, let a system #�� ! 	 be given with #�� ! 	 � � � � 6 � � #�� ! � for a mapping � with# 	 � # � whenever

� �� � �$# � � � � � �� 	 �G# 	 � . Then #�� !�	 � �
����� > � for all ����� > � with

��� � > � � �� 	 �$# 	 �9� � ����� > = � �� � �G# � � for an arbitrary structure
� �� � �G# � � � � � �� 	 �$# 	 � .

This holds in the perfect case and in the statistical case. It holds in the computa-
tional case if additionally, membership in � � � � # � is decidable in polynomial time for

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 92

all # .
�

Proof. At first, we show that � ��� > � is a well-defined liveness property for #�� !�	 . Let
an arbitrary structure

� �� 	 �$# 	 � � #�� ! 	 be given. Simulatability implies that for every
structure

� �� 	 �G# 	 � � #�� !�	 there exists
� �� � �G# � � � � � �� 	 �$# 	 � . ����� > = is a well-defined

liveness property for #�� !�� , so ��� � > = � �� � �$# � � � � � � � �'� � & � �'����RGRGR � &�� �'�A'�
 S � is a live-
ness property for

� �� � �$# � � . By precondition, we have # 	 � # � , so the integrity require-
ment � � � is well-defined on

� �� 	 �G# 	 � . Moreover, we have
� & � �?����RGR�R � &�� �'�� . # �	 if

and only if
� & � ���3�GR�RGR � & � ���� . # �� . Therefore, the liveness property �8��� > � � �� 	 �G# 	 �

is defined on the structure
� �� 	 �$# 	 � , so ����� > � is a well-defined liveness property of#�� ! 	 . We now have to show that #�� ! 	 fulfills ����� > � . The actual proof will be done by

contradiction, i.e., we will show that if #�� !�	 would not fulfill the liveness property, the
two systems could be distinguished.

Assume that #�� ! 	 does not fulfill its liveness property. Thus, there exist polyno-
mials � �
 � M K � with

 � M K � �
 S such that for every polynomials
 �
,
 � there exists a

(

 � MTK � , � ,
 �

,
 �)-liveness configuration
�D���	� � 6 � �	

so that the good event does not occur
within
 � � � � view-steps of the honest user. Because of #�� !�	 � � � � 6 � � #�� ! � there is a
(

 � MTK � , � ,
 �

,
 �)-liveness configuration
�D���	� � 6 � �� � � �� � �$# � � � �B 2 � � < � 6 � �� � � � � 6 � � �

� � 5 � � 6 �
� � #�� ! � � for

� �� � �$# � � � � � �� 	 �G# 	 � and for every polynomial
 �
and
 � such

that �)"��� � ; ��� � � ���� � � � 2 � � < � 6 � � � �)"��� � ; ��� � � ���= � � �B 2 � � < � 6 � �
holds. For the sake of readability we abbreviate

� � 2 � � < � 6 � by � �
and set # � �

# 	 � � # � . Since � is a submachine of � �
, we can apply Lemma 2.4 which yields�)"��� � ; ��� � � ���� � � � � �)"��� � ; ��� � � ���= � � � R Moreover, the view of � in both configurations con-

tains the trace at # � , i.e., the trace is a function of the view, so we finally obtain

��� � � ; ��� � � ���� " � � � ��� � � ; ��� � � ���= " � � R
As usual we have to distinguish between the perfect, statistical and computational case.
In the computational case, both configurations have to be polynomial-time.

In the perfect case we have �)"��� � ; ��� � � ���� � � � � � �)"��� � ; ��� � � ���= � � � �
because

of #�� ! 	 � � � � 6 � � � � � � < #�� ! � , i.e., the distributions of the views are identi-
cal which yields

��� � � ; ��� � � ���� " � � � ��� � � ; ��� � � ���= " � � . Because of
� �� � �$# � � � � � � � <� � � �'� � & � �?����RGRGR � & � �'�A'�
 S � , there exist two polynomials
 �� ,
 � � such that

� ����� � � ; ��� � � ���= � � � � � � 8 �$A " � � � � . � � � � # � �
holds for every (

 � MTK � , � ,
 �� ,
 � �)-liveness configuration
�D����� � 6 � ��

. Thus, for every
given (

 � MTK � , � ,
 �� ,
 � �)-liveness configuration
�D����� � 6 � �	

, we have an indistinguishable
(

 � MTK � , � ,
 �� ,
 � �)-liveness configuration

�(���	� � 6 � ��
of

� �� � �$# � � with the above prop-
erty. Assume now that

� �� 	 �$# 	 � does not fulfill
� � � � � � & � �'�3�GRGR�R � & � ������
 S � . This im-

mediately contradicts the assumption that � �C��� � � ; ��� � � ���� � � � � � � 8 � A " � � � � �. � � � � # � � while

� �C��� � � ; ��� � � ���= � � � � � � 8 � A " � � � � . � � � � # � � , since
��� � � ; ��� � � ���� " � � � ��� � � ; ��� � � ���= " � � holds.

In the statistical case, we have �)"��� � ; ��� � � ���� � � � � � � ��� � � �)"��� � ; ��� � � ���= � � � � � which
again yields

��� � � ; ��� � � ���� " � � � � ��� � � ��� � � ; ��� � � ���= " � � . Thus, the statistical distance$ �C��� � � ; ��� � � ���� � � � $ 8 � A " � � ,
��� � � ; ��� � � ���= � � � $ 8 � A " � � � is a function � � � � � # �#" �1� for all poly-

nomials � . We apply Lemma 2.4 to the characteristic function
& ��� � � �

�����	� 8 � � A on such

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 93

views
�
. This gives � - �C��� � � ; ��� � � ���� � � � $ 8 � A " � � �� � � � � # � ��. - ����� � � ; ��� � � ���= � � � $ 8 � A " � � �� � � � � # � ���G�� � � � � R

for every polynomial � . If we use the above inequality with � � �
 � � we obtain� - ����� � � ; ��� � � ���� � � � � � � 8 �$A " � � �� � � � � # � ���. - �C��� � � ; ��� � � ���= � � � � � � 8 � A " � � �� � � � � # � ����� � � � � R
As # �#" � � is closed under addition and under making functions smaller, this gives the
desired contradiction.

In the computational case, we define a distinguisher 9B>
 as follows: Given a view of
machine � , it extracts the
 � � � � � prefix of the user’s view restricted to # � and verifies
if the result lies in � � � � # � � . If yes, it outputs � , otherwise

&
. This distinguisher is

polynomial-time (in the security parameter �) because the view of � is of polynomial
length, and membership in � � � � # � (and therefore also in � � � � # � �) was required to be
polynomial-time decidable. Its advantage in distinguishing is� - � 9B>
 � � � � �)"��� � ; ��� � � ���� � � � � & �

. - � 9B>
 ��� � � �)"��� � ; ��� � � ���= � � � � & �G�
� � - �C��� � � ; ��� � � ���� � � � � � � 8 � A " � � �� � � � � # � ��. - ����� � � ; ��� � � ���= � � � � � � 8 �$A " � � �� � � � � # � ���G� R

If this difference were negligible, then the first term would have to be negligible be-
cause the second term is and �7�7�8� is closed under addition. Again this is the desired
contradiction.

6.4 An Example: Secure Message Transmission with
Reliable Channels

In the following we present a specification for secure message transmission with reli-
able channels. Here, reliability is considered as a liveness property which the system
will be proved to fulfill. Moreover, we present a secure implementation.

Both the ideal and real system are based on the systems for secure message trans-
mission which we reviewed in Section 2.3. However, we will have to modify them to
fit our requirements.

6.4.1 The Ideal System

Recall that the ideal system of secure message transmission is of the typical form

#�� ! 6 � � � �-� � � � '�$# � �G� � � ���� ��
and

����
is the powerset of

�%& �GRGR�R ��(, where (denotes the number of possible par-
ticipants. The system is illustrated at the left side of Figure 6.1.

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 94

H
in

u
! out

v
?

TH
H

to_adv
u

!

A
��� A

to_adv
v
!from_adv

u
? from_adv

v
?

���

in
u
? out

v
!

H
in

u
! out

v
?

to_adv
u

!

A
��� A

to_adv
v
!from_adv

u
? from_adv

v
?

���

in
u
? out

v
!

net
u,v

?

net
u,v

!

X
fair

TH
H

rel

rel

Figure 6.1: The left part shows the unmodified ideal system #�� ! 6 � , the right part shows
the modified system #�� !

� � �6 � . Exemplarily, we only plotted one self-loop port 528G� � � �� � � ,
and we sketched that this port is scheduled by the master scheduler � < � 6 � .

Now, we want to modify the machine
� � � such that it fulfills some kind of relia-

bility, i.e., messages which have been sent over these reliable channels will eventually
be delivered, and similarly for initialization. This can be achieved as follows.

Necessary Modification of the System. Roughly speaking, we model reliable chan-
nels by providing the trusted host with additional self-loop channels 6 � � � � �� � � and 528G� � � �� � � ,
modeling the “reliable net” in the real world. The channels 6 ��� � � �� � � will be used for key
exchange, i.e., they will be authenticated and reliable in the concrete implementation.
The channels 528G� � � �� � � will be used for message transmission, i.e., these channels will
be regarded as reliable, but non-authenticated, so they can additionally be used by the
adversary. This is illustrated at the right side of Figure 6.1.

More precisely, we assume a set F � . � �
of pairs of users where

� �!� � � � F �
states that there is a reliable channel for sending messages from user � to user

�
. If

we take a look at cryptographic applications in the real world the reader would per-
haps consider symmetry as a necessary requirement for the relation F � since reliable
channels are normally usable in both directions. However, we do not restrict ourselves
to this special case; just imagine satelliting encrypted messages or sending them over
radio channels. Intuitively speaking, those possibilities of communications would be
regarded as reliable, but communication is limited to one direction since the recipient
cannot simply send its response back via satellite.

Coming back to our specification, we model reliable channels for every pair� �!� � � � F � by providing the trusted host with additional self-loop chan-
nels

� 6 � � � � �� � � �3� 6 � �
� � �� � � �� . &��?@ ��
 � � � � � for key exchange and self-loop channels� 5 8$� � � �� � � �3� 5 8$�

� � �� � � �(. &��?@T��
 � � � � � for usual message transmission. The correspond-

ing clock ports 6 ��� � � �� � � � � and 528G� � � �� � � � � remain free at first; they will later be connected
to the fair master scheduler to achieve the desired liveness property.

If now user � sends a command
�
 5 = >A5(> � � to

� � � , i.e., it wants to generate its
keys, then

� � � additionally outputs
�
 5 = >A54> � � at 6 � � � � �� � � � for all

�
with

� �!� � � � F � .
If user � sends a message to user

�
,
� � � additionally outputs this (now blinded)

message at 5 8$� � � �� � � � if
� �!� � � � F � . In both cases, the usual output to the adversary

remains unchanged, i.e., it still obtains the initialization request and the (blinded) mes-
sage. By now, the blinded message or initialization command resides in the self-loop
channel buffer and waits to be scheduled. If it is eventually scheduled by the master
scheduler, the trusted host outputs the message to its recipient or initializes a connec-
tion, respectively. Intuitively, we can expect some kind of liveness property, since all

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 95

of these messages contained in the self-loops will eventually be delivered, at least if
the master scheduler is fair and runs sufficiently long.

After presenting the main ideas, we can now turn our attention to the actual mod-
ifications of the system. Let (� � and � � � �'& �GR�RGR �)(denote the number of
participants and the set of indices, respectively, where

����
is the powerset of � .

Throughout the following, let an arbitrary
� � ���� together with the set F � be given.

As we already stated above, the standard trusted host
� � � mainly has to be modified

in the “Send” and “Send Initialization transitions. Moreover, we have to define what
� � � does if it receives an input at one of the special new ports 6 � � � � �� � � � or 5 8$� � � �� � � �
yielding two additional transitions of the machine. However, these transitions are quite
close to the “Receive Initialization” and “Receive From Honest Party” transitions, so
we decided to combine them. Thus, we obtain the following modifications:

� If
� � � receives an input

�
 5 = >A5(> � � at port >A5��?� , it additionally outputs
�
 5 = >A5(> � �

at 6 ��� � � �� � � � for all
�

with
� �!� � � � F � . However, it still schedules the output

intended for the adversary.

� If
� � � receives an input

�
 8(5,= � � � � � at port >A5�� � , it checks whether
� �!� � � �F � . In this case it additionally outputs

�
 8(5,= <'; >A5 = ; 	?��I�� � � � � at 5 8$� � � �� � � � , but it still
schedules the output intended for the adversary.

� If
� � � receives an input

�
 5 = >A54> � � at 6 ��� � � �� � � � it does the same checks as in the
“Receive Initialization” transition, i.e., it checks that the machine of user

�
has

not been stopped so far, that the connection between � and
�

has already been
initialized and so on. If all these checks succeed, it outputs

� @38 . >A54> � ��� � at � � � � � .
� If

� � � receives an input
�
 8(5,= <�; >A5,= ; 	?��I��/�-� � � at 528G� � � �� � � � , it acts similarly as in

the above case, i.e., it performs the test of the “Receive Message” transition, and
if all tests succeed it outputs

� @38 . 8 > � 84� � � � �
at � � � � � .

After this rather informal definition which we hope to increase basic understanding,
we now rigorously define our system. After that, we show how to modify the concrete
implementation for secure message transmission in order to preserve the “at least as
secure as” relation.

Scheme 6.1 (Secure Message Transmission with Reliable Channels) Let (� �
and a polynomial

� � � � � � be given.
� � � � bounds the length of the messages for

the security parameter � . Let � � � �%& �GR�RGR �)(denote the set of possible participants,
and let the access structure

����
be the powerset of � . Moreover, let a family of sets� F � � � ������� be given such that F � . � 0 �

. Our specification for secure message
transmission with reliable channels is now a standard ideal system

#�� !
� � �6 � � � � ��� � � ��G# � � � � � ���� �R

As in the standard, localized definition, we have # ���� � >A5 � � , � � ���?� , >A5�� � � � � � � , but
additionally, there are specified ports 528G� � � �� � � � � and 6 � � � � �� � � � � for every pair

� � � � � � F � .
Thus, we obtain

�� � � >A5 � ���&� � � � ����>A5 � � � � � � � 2 � 5 8$�
� � �
� � � � �3� 6 � �

� � �
� � � � � � � �!� � � � F � �R

The machine
� � � is defined as follows. When

�
is clear from the context,

let
 � � � 	 �

denote the indices of corrupted machines. The ports of

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 96

� � � are
� >A5 � ���&� � � � ���&� � � � ��� � � � � 2 � 5 8$� � � �� � � �3� 5 8$�

� � �� � � � � � �!� � � � F � 2
� 6 � � � � �� � � ���/6 ���

� � �� � � � � � � � � � � F � 2 � � @T� 7 6,= � � �'���C� 6,= � � �3�C�C� 6,= � � � � � � � � (cf.
Figure 6.1).

� � � maintains arrays
�C)+�H)+� �� � � ��� � � ��� and

�-! �-� 	�	 ��� �� ��� � � over
� � � & , both ini-

tialized with � everywhere, and an array
�������) � �G� �� � � ��� � � � � of lists, all initially empty.

The state-transition function of
� � � is defined by the following rules, written in the

usual pseudo-code language.

Initialization.

� Send initialization. On input
�
 5,= >A5(> � � at >A5 � � : If

!D�-� 	 	 ��� �� � � and
)+��)+� �� � � �

� , set
)+��)+� �� � � � � &

. After that, output
�
 5,= >A54> � � at 6 ��� � � �� � � � for every

� � � with� �!� � � � F � ,
�
 5 = >A5(> � � at �C� 6,= � � � , and

&
at �C� 6,= � � � � .

� Receive initialization. On input
� @ 8 . >A5(> � � � � at

� @T� 7 6,= ��� � with � � � � � � �
or

�
 5,= >A54> � � at 6 ��� � � �� � � � : If
!D�-� 	 	 ��� �� � � and

)+��)+� �� � � � � and � � � � �)+��)+� �� � � � & �
, set

)+�H)+� �� � � � � &
and output

� @38 . >A54> � ��� � at ����� � � , & at ����� � ��� .
Sending and receiving messages.

� Send. On input
�
 845 = � � � � � at >A5 �?� with � � � �

, � � � ; 845 � � � � � � � � ,
and

� � � 	 � � : If
! ��� 	�	 ��� �� � � ,

)+��)+� �� � � � &
, and

)+��)+� �� � � � &
:

If
� �

then
�

output
�
 8(5,= � � � � � at �C� 6,= � � � , &

at �C� 6,= � � � � else� I � �
�> � 8 �������) � �G� �� � � � � &
;

�B� �) � �G� �� � � � I � � � � . If
� �!� � � � F � out-

put
�
 8(5,= <'; >A5 = ; 	 ��I�� � � � � at 528G� � � �� � � � , �
 845 = <�; >A5,= ; 	 �&I/�/�-� � � at �C� 6,= � � � and

&
at�C� 6,= � � � � . Otherwise, output

�
 8(5,= <'; >A5,= ; 	 ��I��/�-� � � at �C� 6,= � � � , & at �C� 6,= � � � � .
 .

� Receive from honest party � . On input
� @ 8 . 8,> � 8 <�; >A5,= ; 	?� � �&I � at

� @ � 7 6,= ��� �
with �!� � � �

, I � � or
�
 8(5,= <'; >A5,= ; 	 ��I��/�-� � � at 528G� � � �� � � � : If

! ��� 	�	 ��� �� �
� ,

)+��)+� �� � � � &
,

)+��)+� �� � � � &
, and � � � �B� �) � �$� �� � � � I � �� �

, then output� @ 8 . 8,> � 8����!� � �
at ����� � � , & at � � � � �'� .

� Receive from dishonest party � . On input
� @ 8 . 8 > � 8�� � � � �

at
� @ � 7 6,= ��� � with

� � , � � � �
, ; 8(5 � � ��� � � � � , and

� � � : If
! �-� 	 	 ��� �� � � ,

)+��)+� �� � � � &
and)+��)+� �� � � � &

, then output
� @ 8 . 8 > � 8�� � � � �

at � � � � � , & at ����� � ��� .
� Stop. On input

�
C�C� & � at
� @ � 7 6,= � � � with � � � , set

! �-� 	 	 ��� �� � &
and output�
C�C� & � at � � ��� � , & at ����������� . �

After presenting the abstract specification, we now show how to modify the concrete
implementation for secure message transmission with ordered channels in order to pre-
serve the “at least as secure as” relation.

6.4.2 The Real System

Recall that the concrete implementation of standard secure message transmission is a
standard cryptographic system of the form

#�� ! � ��� � � � � �� � �$# � � ��� � ���� '�

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 97

where
����

is the powerset of � , i.e., any subset of participants may be dishonest. It
uses asymmetric encryption and digital signatures as cryptographic primitives. A user
� can let his machine create signature and encryption keys that are sent to other users
over authenticated channels 6 � ��� � � . Furthermore, messages sent from user � to user

�
will be signed and encrypted by

���
and sent to

� � over an insecure channel 528G��� � � ,
representing the net in the real world (cf. Figure 2.6 on page 24). The adversary is
able to schedule the communication between the users, and he can furthermore send
arbitrary messages � to arbitrary users � for a dishonest sender

�
.

We now have to implement the modification of the ideal system in this concrete im-
plementation. In order to realize the authenticated reliable channels for key exchange
between two users � and

�
, we simply define the clock port for clocking the channel

6 � � � � � as specified. Thus, the master scheduler can connect to it and we obtain a reli-
able and authenticated channel. Obviously, this modification yields the same functional
behaviour as the modification in the ideal system.

The modification of the 5 8$� � � � -channels is slightly more complicated. Obviously,
we could simply define a new channel 5 8$� � � �� � � between the machines

� �
and

� � and
let the master scheduler schedule it. However, this channel could only be used by the
honest user, not by the adversary, so we would essentially assume a secure channel for
message transmission. Thus, the whole cryptography could simply be omitted. Being
more precise, the adversary could still send arbitrary messages to

�
, but they would

arrive at port 528G� � � � � � of
� � , not at 528G� � � �� � � � . Thus, the machine

� � could distinguish
between messages which have been sent by honest users (and which have not been
modified), and between messages which have either been sent or modified by the ad-
versary. Thus, we could as well omit the whole underlying cryptography, and let the
machine decide whether the message should be accepted or not, so this kind of channels
is not realistic in this case.

In order to circumvent this problem, we introduce so-called reliable, non-
authenticated channels, i.e., channels which are reliable on the one hand, but addi-
tionally usable for the adversary on the other hand. They are defined as follows.

Definition 6.6 (Reliable, Non-authenticated Channels) Let a structure
� �� �$# � of a

system #�� ! with
�� � � � ��� � � � � be given. Consider a port & � &��?@T��
 � ��� � with

&� � &��?@T��
 � � � � with
� � �

, i.e., � � � &?� &� is a high-level connection between two
machines. If a channel model � classifies this channel as reliable non-authenticated we
modify the channel according to Figure 6.2, obtaining new machines

��� � � and
� � � � .

Without loss of generality, let & be an output port &'� . Then
��� � � gets an additional

new port & � � and its clock-out port & � � � , where it duplicates and immediately schedules
outputs made at &?� . It is free so the adversary can connect to it. Additionally, the
complement of the clockout port & � � is specified, i.e., & � � � # � , so it can be scheduled
by the master scheduler, which yields a reliable channel. The input port &(� of

� � � � is
renamed into &

�K(L�M � . Furthermore, we define a machine �& as follows:
The ports of �& are given by

� &,��� &
�6 7 �'� & �K(LNM �3� & �K(L�M � �� , see Figure 6.2. On a non-empty

input at either &(� or &
�6 7 � , �& forwards this input at &

�K(LNM � and schedules this input by
outputting

&
at &

�K(LNM � � .
We assume without loss of generality that there is a systematic naming scheme for

such new ports (e.g., appending
�
,
�KDLNM , �6 7) that does not clash with prior names.

�

Note, that message sent from either the honest user � or the adversary now arrive at the
same port &

�K(L�M � of machine
� � � � , if we use this kind of channels. Obviously, these

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 98

M
u,H

M
v,H

p A

p
d

p
r

out

p

p
r

in

M
v

M
u

p
X

Figure 6.2: Modeling Reliable, Non-Authenticated Channels

reliable non-authenticated channels precisely model the modification of the trusted host
� � � in the ideal system. We will denote the modified real system by #�� !

� � �� ��� � .
Moreover, if we take a look at the security proof of [49] we can see that the concrete

implementation is derived using blackbox simulatability, so our preservation theorem
can be applied. Looking at the proof, it is quite obvious that this still holds for our
modified systems.

6.4.3 Proof of Liveness

After introducing the specification, we now want to show that it in fact fulfills the de-
sired liveness property, i.e., that messages sent by the honest user over reliable channels
will eventually be received unless some internal checks of

� � � fail (e.g., the user has
not initialized itself, its machine has been stopped etc.).

At first, we have to rigorously define the liveness property � � � >�� � �� � which we aim

to prove. Let an arbitrary structure
� ��� � � '�$# � � � #�� !

� � �6 � be given. Then the three
components of � ��� >�� � �� �

� ��� � � ��G# � � are defined as follows.

� Its first component, the integrity requirement � � � , is defined as follows. Con-
sider two users �!� � , � ����

such that
� �!� � � � F � . Informally, a trace is contained

in the requirement if the following holds: if both users � and
�

have established
a connection (i.e., they have initialized themselves, and both users have received
the corresponding keys), and the user � has not been stopped so far, then a valid
message sent from � to

�
will either be eventually delivered, or the recipient

�
has been or will be stopped.

Formally, this is captured as follows. As usual, the � th step of the trace

 � is

denoted by

 ��$. For the considered set # � of specified ports, we define that a

trace

 � of an arbitrary configuration is contained in � � � � # � � if the following

holds.

If there exists � 	 �/� � � � , such that

� >A5�� � � � �
 5,= >A54> � � ��>A5�� � � � � & .
 � $ � (Key generation of � in

 ��$ �)� >A5 � � � � �
 5,= >A54> � � � >A5 � � � � � & .
 � $ = (Key generation of

�
in

 � $ =)

and � � � � 	 , ��� � � � such that

� � � � � � � � � @ 8 . >A5(> � � � ��� �
 ��$ � (Connection established from � to
�

in

 �2$ �)� � � � � � � � � @ 8 . >A5(> � � � �� �
 � $�� (Connection established from

�
to � in

 � $��)

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 99

then the following must hold. At first, set � � � �����
� � � �/� � . Then for every
 ��� ,

� >A5�� � � � �
 8(5,= � � � � � ��>A5�� � � � � & .
 � � (User � sends a message � to
�

and schedules it)
�
 � � (and a connection is established)
� � � � � � �T�$� � � � � � � � � (and the message is valid)
� �
 	 �
?� � �������?� � � �
��C� & �� ��
 � � � (and the machine of � has not been

stopped so far)
� � �
 � ��� � � ����� � � � � �
C�C� & �� �
 � � = (then

�
’s machine is either stopped

in the run)� �
 � �
?�
(or there is a future time

 �
)

� ����� � � � � � @ 8 . 8 > � 8�� � � � ��� �
 � � � � (such that the message � will be

delivered in

 � � �)

� Secondly, we have to specify the set of ports that should be scheduled by
the fair master scheduler. For a given set # � , we define this set to be� 5 8$� � � �� � � � �3� 6 � �

� � �� � � � � � � �!� � � � F � .
� At last, the function

 S can be chosen arbitrary as long as it is bounded by a
polynomial, i.e.,

 S � � � � � � � � �
for a natural number � .

We can now state our main theorem.

Theorem 6.2 The system #�� !
� � �6 � fulfills the polynomial liveness property � ��� > � � �� � per-

fectly, i.e., in formulas #�� !
� � �6 � � � � � � < � � � > � � �� � .

�

Proof. Let an arbitrary structure
� ��� � � '�$# � � � #�� !

� � �6 � , arbitrary polynomials � �
 � MTK �
with

 � MTK � �
 S be given. We then define
 � � � � � �
 � � � � � �
 � MTK � � � � � � � � ��3 � �

.
Now, let

�(���	� � 6 � � � �-� � � � '�$# � � � � 2 � � < � 6 � �� � � � 6 � � � � � 5 � � 6 �
� � #�� !

� � �6 � � denote an
arbitrary (

 � M K � , � ,
 �
,
 �)-liveness configuration. We have to show that all
 � � � �

prefixes of the restriction of the run to the ports # �� lie in � � � � # �� � .
In our particular case, this means the following: let an arbitrary pair

� �!� � � � F � be
given, and assume that the preconditions of � � � � # � � are fulfilled, i.e., both users � and�

have initialized themselves and a connection has been established between them at
time � . Now, user � sends a command

�
 845 = � � � � � at
� � � at time

 � � and schedules
it. Moreover, the message is valid and the machine of user � has not been stopped so
far.

If we take a look at the “Send” transition of the machine
� � � , we can see that

all of its internal checks will succeed by our above preconditions. Thus, it will output�
 8(5,= <'; >A5,= ; 	?��I�� � � � � at 5 8$� � � �� � � � . By construction of
� � � it only outputs anything at

5 8$� � � �� � � � if it obtains inputs of the form
�
 8(5,= � 3 � � � at >A5 �?� . Since these inputs must

come from the user � and the overall honest user � will stop outputting messages after
its

 � MTK � � � � -th view-step, there can be at most

 � MTK � � � � messages stored in the buffer

�

5 8$� � � �� � � . By precondition, the function

 S (as a function of �) is bounded by � �

for a
natural number � , so

 � M K � � � � �
 S � � � implies that the number of messages stored in
�

5 8$� � � �� � � is also bounded by � �

.

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 100

We now distinguish two cases: first, we assume that the user
�

is stopped before the
overall user � stops outputting messages, i.e., before the run-empty phase begins. In
this case,

� � � will output a command
�
��C� & � at � � � � � and schedule it by construction,

so we have
� ����� � � � � �
��C� & ��� �
 � � = for one particular

 � ��� . Hence, the requirement
is fulfilled in this case, even before the run-empty phase begins.

Secondly, we assume that the machine of
�

has not been stopped before the run-
empty phase begins. Since the adversary does not produce outputs any further, and
� � � may only stop a machine after it has been scheduled by the adversary, the machine
of

�
will not be stopped during the whole run. In this case, we have to prove that the

message � will in fact be delivered.
As we already stated above, the desired message � (more precisely, the term�
 8(5,= <'; >A5,= ; 	?��I�� � � � �) has been stored in the buffer

�

5 8$� � � �� � � . Moreover, this buffer can
contain at most a polynomial number of messages (bounded by � �

). By precondition,
the master scheduler � < � 6 � is � -fair, hence it schedules the first message of every of its
connected buffers again and again, each one always after at most � � � � steps. Since

5 8$� � � �� � � � � � &��?@T��
 � � < � 6 � � holds by assumption, the buffer
�

528G� � � �� � � has to be scheduled
after at most � � � � view-steps of � < � 6 � , so the term

�
 845 = <�; >A5,= ; 	'�&I/�/�-� � � will be sched-
uled after at most � � � ��3 � �

view-steps of � < � 6 � . If we now take a closer look at the
behaviour of

� � � in this case, we will see that all internal checks will succeed by
assumption (the user

�
is initialized, a connection is established,

�
’s machine has not

been stopped, and the message � has been stored in
�����) � �G� �� � � � I � before). Thus,

� � �
outputs

� @38 . 8 > � 8'���!� � �
at ����� � � , so we have

� � � � � � � � � @ 8 . 8,> � 8����!� � �� �
 � � � for one
particular time

 � �

. Note that our choice of
 �

and
 � additionally ensures that
both � < � 6 � and � run sufficiently long for this event to happen.

Now, we are almost finished. The only thing left to show is that this input occurs
after a polynomial number of view-steps of the user; by now we only showed that it will
happen after a polynomial number of view-steps of the master scheduler. However,
since the user � does not produce any outputs any further, the master scheduler will
always be scheduled immediately after the honest user. Thus, the number of view-steps
the honest user can perform in the run-empty phase is bounded by the number of view-
steps of � < � 6 � . Therefore, the message will be received after at most � � � � 3 � �

view-steps
of the honest users, counted from the beginning of the run-empty phase, i.e., after at
most

 � MTK � � � � � � � � �:3 � � �
 � view-steps in total, which finishes the proof.

After proving the liveness property for the ideal specification, we now concentrate
on the concrete implementation.

Theorem 6.3 The real system #�� !
� � �� ��� � fulfills the polynomial liveness property � ��� > � � �� � � �

computationally, with � ��� > � � �� � � � given as in Theorem 6.1. In formulas, #�� !
� � �� ��� � � � � K�� �

� � � > � � �� � � � . �

Proof. Obviously, perfect fulfillment of polynomial liveness implies fulfillment in the
computational case. Thus, using Theorem 6.2, we know that #�� ! 6 �� � � � � � K�� � � ��� > � �� � � . As
we already stated above, the concrete implementation is at least as secure as the abstract
specification with respect to liveness in the computational case, i.e., #�� !

� � �� ��� � � � � � 6 � � � � K�� �#�� !
� � �6 � . Now the claim follows with Theorem 6.1.

CHAPTER 6. POLYNOMIAL FAIRNESS AND LIVENESS 101

6.5 Conclusion

We have presented the first general definition of polynomial fairness and polynomial
liveness in asynchronous reactive systems. We considered three grades of fulfilling
a given polynomial liveness property: perfect (denoting usual fulfillment), statistical
(denoting fulfillment up to a statistically small error probability) and computational
(denoting fulfillment up to a negligible error probability, if all machines have polyno-
mial runtime). Especially the computational case is essential to cope with real cryp-
tography, since usually we can only ensure that good things happen if the underlying
cryptographic primitives have not been broken, which might happen with negligible
probability. Our approach might help to make the important concept of liveness better
accessible for systems involving real cryptographic primitives. We have shown that
polynomial liveness properties behave well under simulatability under certain condi-
tions which enables step-wise refinement and modular proofs. Moreover, properties of
abstract specifications can be validated by formal proof tools more easily than concrete
implementations, although the polynomial-time limits

 S and � might make that more
complicated for polynomial liveness than it is for safety properties. As an example
fitting our definition, we have presented a specification of secure message transmission
with reliable channels. Here, reliability is considered as the desired liveness property,
and we have shown that the abstract specification in fact fulfills this property. More-
over, we have presented a concrete implementation, and, using our preservation the-
orem of the previous section, we have concluded that the implementation also fulfills
this liveness property.

Chapter 7

Computational Probabilistic
Non-Interference

After introducing integrity, liveness and fairness, we now finally concentrate on the
important concept of non-interference, which has become very popular for expressing
both integrity and privacy properties. We present the first general definition of proba-
bilistic non-interference in reactive systems which includes a computational case. Sim-
ilar to the previous chapter, this case is essential to cope with real cryptography since
non-interference properties can usually only be guaranteed if the underlying crypto-
graphic primitives have not been broken, which might happen, but with negligible
probability. We show that our definition is maintained under simulatability, which
allows secure composition of systems, and we present a general strategy how cryp-
tographic primitives can be included in information flow proofs. As an example we
present an abstract specification and a possible implementation of a cryptographic fire-
wall guarding two honest users from their environment, and we prove them to fulfill
our definition of non-interference. We conclude this chapter with a short summary of
its results.

7.1 Introduction and Related Literature

Nowadays, information flow and non-interference are known as powerful possibilities
for expressing privacy and integrity requirements a program or a cryptographic pro-
tocol should fulfill. Over the last two decades there has been considerable progress
in this field of research which we will briefly review now. The first models for infor-
mation flow have been considered for secure operating systems by Bell and LaPadula
[8], and Denning [15]. After that, various models have been proposed that rigorously
define when information flow is considered to occur. The first one was named non-
interference introduced by Goguen and Meseguer [20, 21] in order to analyze the se-
curity of computer systems, but their work was limited to deterministic systems. Nev-
ertheless, future work was (and still is) based on their idea of defining information
flow. After that, research focused on non-deterministic systems mainly distinguishing
between probabilistic and possibilistic behaviors. Beginning with Sutherland [60] the
possibilistic case has been dealt with in [36, 64, 37, 66, 34], while security properties
handling probabilistic and information-theoretic behaviours in non-deterministic sys-
tems have been proposed by Gray [23, 24] and McLean [38]. Clark et. al. showed in

102

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 103

[13] that absence of possibilistic information implies absence of probabilistic informa-
tion flow.

Gray’s definition of “Probabilistic Non-Interference” of reactive systems stands
out. It is closely related to the perfect case of our definition, but it does not cover
computational aspects of probabilistic non-interference which are essential for reason-
ing about systems using real cryptographic primitives. Thus, if we want to consider real
cryptography we cannot only restrict ourselves to perfect non-interference as captured
by the definition of Gray (nor to any other definition mentioned before, because they
are non-probabilistic and hence not suited to cope with real cryptography) because it
will not be sufficient for most cryptographic purposes. Adopting this notion we will
present the first general definition of non-interference for this computational case, i.e.,
our definition can be used to reason about non-interference properties of arbitrary cryp-
tographic primitives for the first time.

One important application of information flow is the static analysis of program
code with respect to certain privacy requirements. This problem was first considered
by Denning [16] by defining flow graphs on I/O variables. In recent times, type-based
systems have been proposed [62, 58, 63, 57] for detecting and eliminating informa-
tion flow in different kinds of languages. Some of these systems were proven correct
by Sabelfeld and Sands [53, 54] by presenting a semantic characterization of proba-
bilistic bisimulation that they used to express non-interference for multi-threaded and
sequential programs. Mantel and Sabelfeld [35] investigated the integration of security
properties of programming languages and abstract-level properties of information flow
providing an interesting overview of how models of different security properties could
be combined to increase the relative power of their analysis. Moreover, a tool for au-
tomatic checking of information flow in concurrent languages has been developed by
Focardi and Gorrieri [19] for a variety of different information flow models.

Today, there is no general definition of non-interfered information flow but sev-
eral of them coexist. Every definition has advantages and disadvantages so which one
to take mainly depends on the goal to strive for. However, many definitions of non-
interference have been overly restrictive preventing useful systems from being built.
This problem is often tackled by downgrading certain information which then may
nevertheless leak from the system, see [42, 67]. The amount of leaked information can
in some cases be rigorously defined using information-theoretic techniques [40, 27].

Recent research also focused on expressing non-interference properties involving
real cryptographic primitives. Laud [28] presented a sequential language where real
computational secrecy can be expressed. Besides our work, this paper contains the
only definition of non-interference including a computational case. However, only
encryption is covered so far, i.e., other important concepts like authentication, pseudo-
number generators, etc. are not considered. Moreover, the definition is non-reactive,
i.e., it does not comprise continuous interaction between the user, the adversary, and the
system, which is a severe restriction to the set of considered cryptographic systems. In
contrast to that, our definition is reactive and comprises arbitrary cryptographic primi-
tives. Volpano [61] investigated which conditions are needed so that one-way functions
can be used safely in a programming language, but he did not actually express non-
interference but only secrecy of a specific secret. Abadi and Blanchet [1] introduced
type systems where asymmetric communication primitives, especially public-key en-
cryption can be expressed, but these primitives are only relative to a Dolev-Yao abstrac-
tion [17], i.e., the primitives are idealized so that no computational non-interference
definition is needed. For a discussion why the Dolev-Yao abstraction is not justified by
current cryptography, see [48].

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 104

Our definition is closely related to the indistinguishability of probability distribu-
tions and it can be seen as a complementary approach to include cryptographic prim-
itives in a definition of information flow. In contrast to most existing definitions we
will not abstract from cryptographic details and probabilism, e.g., by using the com-
mon Dolev-Yao abstraction or special type systems, but we immediately include the
computational variant in our definition. This enables sound reduction proofs with re-
spect to the security definitions of the included cryptographic primitives (e.g., reduction
proofs against the security of an underlying public key encryption scheme), i.e., a pos-
sibility to break the non-interference properties of the system can be used to break the
underlying cryptography. Moreover, we show that our definition behaves well under
the concept of simulatability modern cryptography often uses, i.e., non-interference
properties proved for an abstract specification automatically carry over to the concrete
implementation which enables modular designs and proofs. Thus, non-interference
properties can be expressed for reactive systems containing arbitrary cryptographic
primitives, which is of great importance for extensible systems like applets, kernel
extensions, mobile agents, virtual privacy networks, etc. Exemplarily, we present a
concrete implementation of a cryptographic firewall which enables two honest users
to communicate with each other, but guards them from their environment, and we will
prove the implementation to fulfill the desired non-interference property.

7.2 Expressing Non-Interference

In this section we define non-interference for our underlying model. At first we look
at the more general topic of information flow. Information flow properties consist of
two components: a flow policy and a definition of information flow. Before we turn our
attention to the formal definition we start with an informal description of how these
two components will be expressed. Flow policies are built by graphs with two different
classes of edges. The first class symbolizes that information may flow between two
users, the second class symbolizes that it may not. If we now want to define non-
interference, we have to provide a semantics for the second class of edges. Intuitively,
we want to express that there is no information flow from a user ��� to a user � � iff
the view of � � does not change for every possible behaviour of ��� , i.e., � � should
not be able to distinguish arbitrary two families of views induced by two behaviours of

��� .

7.2.1 Flow Policies

We start by defining the flow policy graph.

Definition 7.1 (General Flow Policy) A general flow policy is a pair
� � � � ��� � with

� . � 0 � 0 ��� �4�� . Thus, we can speak of a graph
�

with two different kind
of edges:

� �(�� . � 0 �
. Furthermore we demand

� � 	 �/� 	 � � � for all � 	 � �
, and

every pair
� � 	 �/� � � of nodes should be linked by exactly one edge, so

�
and �� form a

partition of
� 0 �

.

�

Remark. The set
�

often consists of only two elements
� � � � ��� which are

referred to as low- and high-level users. A typical flow policy would then be given by�	� �
,
�
� � , � � � , and finally � �� �

, see Figure 7.1, so there should not be
any information flow from high- to low-level users.

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 105

L H

Figure 7.1: A Typical Flow Policy Graph Consisting of High and Low Users Only.

This definition is quite general since it uses an arbitrary set
�

. If we want to use
it for our purpose, we have to refine it so that it can be applied to a system #�� ! of our
considered model. The intuition is to define a graph on the possible participants of
the protocol, i.e., users and the adversary. However, this definition would depend on
certain details of the users and the adversary, e.g., their port names, so we specify users
by their corresponding specified ports of #�� ! , and the adversary by the remaining free
ports of the system to achieve independence. After that, our flow policy only depends
on the ports of #�� ! .
Definition 7.2 (Flow Policy) Let a structure

� �� �$# � be given, and let � 8 �� � � A �
� # U � I � F9 denote a partition of # for a finite index set F , so

$ 8 �� � � A � � � 8 �� � � A 2 � �#B
is a partition of

� @ 8 8 � � �� � � . A flow policy
� 8 �� � � A of the structure

� �� �$# � is now defined
as a general flow policy

� 8 �� � � A � � $ 8 �� � � A � � 8 �� � � A � .
The set of all flow policies for a structure

� �� �$# � and a partition
$ 8 �� � � A of� @ 8 8 � � �� � � will be denoted by

��� � �� � � � ��� �� � ��� . Finally, a flow policy for a system #�� !
is a mapping

� ��� > � #�� ! 0 	
8 �� � � A � ��� >

��� � �� � � � � � �� � �
�
� �� �G# � �0 � 8 �� � � A

that assigns each structure
� �� �$# � a flow policy

� 8 �� � � A � ��� � �� � � � � � �� � ��� .
�

We will simply write
�

,
$

, and � instead of
� 8 �� � � A , $ 8 �� � � A , and � 8 �� � � A if the un-

derlying structure is clear from the context. Additionally, we usually consider graphs
with the following property: for blocks of ports # � �$# �

� $ with
� # � �$# �

� � �� there
should not be a path from # � to # � consisting of “

�
”-edges only. We will refer to this

property as transitivity property and speak of a transitive flow policy.
The relation �� is the non-interference relation of

�
, so for two arbitrary blocks# � �$# �

� $,
� # � �$# �

� � �� means that no information flow must occur directed from
the user connected to # � to the user connected to # � . The notion of a transitive flow
policy is motivated by our intuition that if a user � � should not be allowed to directly
send any information to user � � , he should also not be able to send information to � �

by involving additional users, and similarly for the adversary.

7.2.2 Definition of Non-Interference

We now have to define the semantics of our non-interference relation �� . Usually,
expressing this semantics is the most difficult part of the whole definition. In our un-
derlying model, it is a little bit easier because we already have definitions for runs,
views, and indistinguishability that can be used to express the desired semantics.

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 106

H
H

H
L

BIT
H

p
*

L_bit

 p
H_bit

S
H

S
L

OUT
L

M

^

Figure 7.2: Sketch of our Non-Interference Definition

Figure 7.2 contains a sketch of our definition of non-interference between two users
� � and � � (one of them might also be the adversary). Mainly, we define a specific
machine ��� � � , which simply chooses a bit

� � � � � & at random and outputs it to � � .
Non-interference now means that � � should not be able to change the view of � � , so it
should be impossible for � � to output the bit

�
at & � � � 6 M � with a probability better than

	�
in the case of perfect non-interference. Statistical and computational non-interference
now means that the advantage of � � for a correct guess of

�
should be a function of a

class # � " �1� or negligible, respectively, measured in the given security parameter � .
These specific configurations including the special ��� � � - and

��� �
� -machines

will be called non-interference configurations. Note that these configurations are es-
sentially based on the idea of guessing configurations (cf. Section 3.3). Before we turn
our attention to the formal definition of these configurations we briefly describe which
machines have to be included, how they behave, and which ports are essential for these
sort of configurations, see Figure 7.3.

First of all, we have special machines ��� � � ,
��� �

� and � 7 6 7
. As described above,

��� � � will uniformly choose a bit at the start of the run and output it to the user ��� ,
while the second machine simply catches the messages received at port & � � � 6 M � to close
the collection. This ensures that runs and views of the configuration are still defined
without making any changes.

The machine � 7 6 7
is the master scheduler of the configuration. Its function is to

provide liveness and to avoid denial of service attacks, so it ensures that every machine
will be able to send messages if it wants to. This is important for expressing non-
interference, since a denial of service attack of the adversary will certainly be noticed
by the affected user; thus, we have information flow. We now briefly describe the ports
of the users. In order to improve readability we encourage the reader to compare these
descriptions with the port labeling in Figure 7.3.

At first, we demand that every user I must not have any clockout ports; instead they
have additional output ports & � � connected to the master scheduler for every specified
clock-out port & � � � # �U , where # U denotes the part of the partition user I connects to.
The master scheduler will use these ports &,�'� to schedule outputs from port &?� , so a
user can tell the master scheduler which port it wants to be scheduled. This is essential
for excluding denial of service, because otherwise, there might be cycles inside of the
system, so that neither the master scheduler nor some users will ever be scheduled.
Therefore, we explicitly give the control to the master scheduler and define a useful
scheduling strategy in the formal definition.

Secondly, we focus on the ports of the master scheduler. First of all, it has the
corresponding input ports & � � for receiving scheduling demands from the users, and
the corresponding clockout ports & � � � and & ��� . Finally, it has special ports 7
6
C�-84@�$/� to

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 107

H
H

H
L

BIT
H

M

p
*

L_bit

 p
H_bit

S
H

S
L

OUT
L

clk ?

master

L

master

H

X
n_in

p
s
!

master
BIT

H

p !

p
s
?

 p
s
 !

p!

p?

^

Figure 7.3: Sketch of a Non-Interference Configuration. The ports of the master sched-
uler � 7 6 7

and of the two emphasized users � � and � � are sketched.

schedule (or to give control to) the user � U
. The actual scheduling process, i.e., how

and in what order users are scheduled, is defined “round-robin like”, i.e., we obtain a
rotating clocking scheme such that every user and the adversary are clocked equally
often with respect to the special 7 6
C�-8(@ -ports. Let us turn to the formal definition.

Definition 7.3 (Non-Interference Configuration) Let a finite index set F with
� �� F

and � � � � F 2 � � , � �� �
be given. Furthermore, let a multi-party con-

figuration
�(���	� � �� � �

� � �� �G# � � 2 � ��� � � � ��� � � � � 7 6 7 �� � �
of a system #�� ! with

� � � � U � I � F� and a partition
$ � � # U � I � F9 2 � �#B of

� @ 8 8 � � �� � � be given. For
naming convention we will in the following set � � � � �

and # � � � �# . We call this
configuration a non-interference configuration for

$
of #�� ! if the following holds:

a) The ports of ��� � � are given by
� 7
6
��-8(@���� ��� ��� &�� � 6 M ��� &�� � 6 M �'�A .

The specific machine
��� �

� has only one input port & � � � 6 M � connected to � � .

The machine � 7 6 7
is the master scheduler of the configuration. Its ports are given

by

–
� .(;!/ � �4 : The master clock-in port.

–
� & �'� � &2�'� � # �U �&I � F9 : The ports for scheduling the buffers � & with &2�'� �# �U .

–
� & � �'� & � � � � & � � � # �U ��I � F9 : The ports connected to the users for receiving
scheduling demands.

–
� & � � � � 6 M ��� & � � � � 6 M � �3� & � � � 6 M � �� : The ports for scheduling demands and outputs
to machine

��� �
� .

–
� 7 6
C�-8(@ $ � � 7 6
C�-8(@ $ �'� � I � F 2 � � 2 � ��� � � 4 : The ports for giving control
to the users, the adversary and ��� � � .

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 108

b) For I � F the ports of � U
must include

� & � � � & ��� � # �U 2 � 7
6
��-8(@ $ �� , and
the ports of the adversary must include 7
6
C�-84@ � � . Additionally, � � must have
an input port & � � 6 M � , and � � must have output ports & � � � 6 M � and & � � � � 6 M � (cf.
Figure 7.3).

Furthermore, we demand that the remaining ports of every user and of the ad-
versary connect exactly to their intended subset of specified ports. Formally
speaking, we demand that

&��?@ ��
 � � � � 	 �-� & � � 6 M �4 2 � 7 6
C�-8(@ � �(2 � & � � � & � � � # �� �� # �� 	�� & � � � & � � � # ��
and

&��?@ ��
 � � �
� 	 � � & � � � 6 M ��� & � � � � 6 M �� 2 � 7
6
C�-84@ � �� 2 � & � � � & � � � # �� �� # ��

	�� & � � � & � � � # ��
must hold, respectively.

For the remaining users � U
with I � F 2 � � , I �� � � � � we simply have to

leave out the special <4> � -ports, i.e., the equation

&��?@T��
 � � U � 	 � � & � � � & � � � # �U 2 � 7
6
C�-84@ $ �4 � � # �U 	�� & � � � & � � � # �U
must hold.

If the adversary is one of the two emphasized users, i.e.,
� � ��� � �! , we have to

leave out the term
� & � � � & �'� � # �� , or

� & � � � & �?� � # �� in the first two equalities,
respectively.

c) The behaviour of the machine ��� � � is defined as follows. If ��� � � receives an
arbitrary input at 7
6
��-8(@ ��� � � � , it chooses a bit

� � � � � & at random, outputs it
at & � � 6 M � , and schedules it. The machine

��� �
� simply does nothing on inputs

at & � � � 6 M � .
d) The behaviour of the machine � 7 6 7

is defined as follows. Internally, it main-
tains two flags
C� 64@ � and � over

� � � & , both initialized with � , and a counter�$�H�
over the finite index set F 2 � � . Without loss of generality we assumeF � ���%& ��RGR�R ��(, so the counter is defined over

� � ��RGRGR ��(, initialized with �
(identifying the number � with

�
). Additionally, it has a counter

� � # � 	 � � � if
the machine is demanded to be polynomial time, furthermore, a polynomial

-
must be given in this case that bounds the steps of � 7 6 7

.

If � 7 6 7
is scheduled, it behaves as follows:

Case 1: Start of the run. If
C� 64@ � � � : Set
C� 64@ � � � &
and output

&
at 7
6
��-8(@ ��� � �!� ,&

at 7
6
��-8(@ ��� � � �?� .
Case 2: Schedule users. If � � � and
�� 6(@T� � &

: If � 7 6 7
has to be polynomial

time, it first checks
�$�H� � (, increasing

� � # � 	 � � � in this case and checking
whether

� � # � 	 � � � � - � � � holds for the security parameter � , stopping at
failure. Now, it sets

�G��� � � �$�H� � &
����� � (� & �

, and outputs
&

at 7
6
C�-84@ � � = � , &
at 7
6
��-8(@ � � = �?� , i.e., it schedules the ’currently active’ user � � � � (or the adversary
if � (
 � �). If

�G��� �� � , i.e., the clocked machine is an honest user, it additionally
sets � � � &

to handle the scheduling demands of this user at its next clocking.

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 109

Case 3: Handling scheduling demands. If � � &
and
�� 6(@T� � &

: In this case it
outputs

&
at every port & � � � with & �'� � # �� � = (for

�G����� �
it also outputs

&
at

& � � � � 6 M � �) and tests whether it gets a non-empty input at exactly one input port.1 If
this does not hold, it sets � � � � and does nothing. Otherwise, let & � � denote the
unique port with non-empty input I . � 7 6 7

then outputs I at & �'� and sets � � � � .

Non-interference configurations are denoted by
�D���	� � U �

� � � � � =
� �� �$# ��� � U �

� � � � $��
�

with �
� U � � � � 2 � ��� � � � � � � � � � 7 6 7 but we will usually omit the index F .�D����� � U �

� � � is called polynomial-time if its underlying multi-party configuration
�D���	� � �� � �

is polynomial-time. The set of all non-interference configurations of a system #�� ! for
fixed � ,

�
, and F will be denoted by ��� 5 � � U �

� � � � � � #�� ! � , and the set of all polynomial-

time liveness configurations by � � 5 � � U �
� � � � � � � K�� � � #�� ! � .

�

Definition 7.4 (Non-Interference) Let a flow policy
� � � $ � � � for a structure

� �� �$# �
be given. Given two arbitrary elements � � � � F 2 � � , � �� �

with
� # � �$# �

� � �� ,
we say that

� �� �$# � fulfills the non-interference requirement � ' � � � � � � � �
a) perfectly (written

� �� �$# � � � � � � < � ' � � � � � � � �) iff for any non-interference con-

figuration
�D���	� � U �

� � �
� ��� 5 � � U �

� � � � � � #�� ! � of this structure the inequality

- � � � � � ���
 ��� � � ; ����� V �� � � � ��� � � � � " � � � � 	 � �
� � � � � " � �
 � � 	 � ���

&%
holds.

b) statistically for a class # � " �1� (
� �� �$# � � � � ��� � � � ' � � � � � � � �) iff for any non-

interference configuration
�D���	� � U �

� � �
� � � 5 � � U �

� � � � � � #�� ! � of this structure there is
a function � � # �#" �1� such that that the inequality

- � � � � � ���
 ��� � � ; ��� � V �� � � � � � � � � � " � � � � 	 � �
� � � � � " � �
 � � 	 � ���

&% � � � � �

holds. # � " �1� must be closed under addition and with a function � also contain
every function � � � � .

c) computationally (
� �� �$# � � � � K�� � � ' � � � � � � � �) iff for any polynomial-time non-

interference configuration
�D���	� � U �

� � �
� � � 5 � � U �

� � � � � � � K�� � � #�� ! � the inequality

- � � � � � ���
 ��� � � ; ��� � V �� � � � � � � � � � " � � � � 	 � �
� � � � � " � �
 � � 	 � ���

&% � &
&�� ; 	 � � �

holds.

We write ”
� �

” if we want to treat all cases together.

If a structure fulfills all non-interference requirements � ' � � � � � � � � with� # � �$# �
� � �� , we say it fulfills the (global) requirement � ' � � � � (

� �� �G# � � �
� ' � � � �). A system #�� ! fulfills a flow policy

� ��� > if every structure
� �� �$# � �#�� ! fulfills its requirement � ' � � ��� ���� 8 �� � � A , and we consequently write #�� ! � �

� ' � � � � ���� 8 �� � � A , or #�� ! � � � � � > for short. �
1More formally, it enumerates these clockout ports and sends � at the first one. The buffer either schedules

a message to � 	 � 	 or it does nothing. In both cases � 	 � 	 is scheduled again, so it can send � at the second
clockout port and so on. Every received message is stored in an internal array so the test can easily be
applied.

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 110

7.3 Preservation of Non-Interference Requirements
under Simulatability

In this section we show that our definition of non-interference behaves well under sim-
ulatability. More precisely, we will show that the relation “at least as secure as” will not
change the non-interference relation between two arbitrary users (one of them might
also be the adversary), which yields the following preservation theorem. Similar to
the properties introduced in the two precedent chapters, this theorem is essential for
modular proofs and for the relation to formal proof tools.

Theorem 7.1 (Preservation of Non-Interference Properties) Let a flow policy
� � � > =

for a system #�� !�� be given, so that #�� !�� � � � ��� > = holds. Furthermore, let a system#�� ! 	 be given with #�� !�	 � � #�� ! � for a valid mapping � . Then #�� !�	 � � � � � > � for
all

� ��� > � with
� ��� > � � �� 	 �G# 	 � � � � � � > = � �� � �$# � � for an arbitrary structure

� �� � �G# � � �
� � �� 	 �$# 	 � . This holds for the perfect, statistical, and the computational case.

�

Proof. We first show that
� � � > � is a well-defined flow policy for #�� !�	 under our pre-

conditions. Let an arbitrary structure
� �� 	 �G# 	 � � #�� ! 	 be given. Simulatability implies

that for every structure
� �� 	 �$# 	 � � #�� !�	 , there exists

� �� � �$# � � � � � �� 	 �$# 	 � .� � � > = is a flow policy for #�� !�� , so we have a flow policy
� 8 �� = � � = A ��� $ � � � for� �� � �$# � � . Furthermore, we have # 	 � # � by precondition, so we can indeed build

the same set � of blocks on the specified ports and therefore the same partition
$

of
the free ports of � �� 	 �

.2 Hence,
� ��� > � � �� 	 �G# 	 � is defined on

� �� 	 �G# 	 � , so
� ��� > � is a

well-defined flow policy for #�� !�	 .
We now have show that #�� ! 	 fulfills

� ��� > � . Let a structure
� �� 	 �$# 	 � � #�� !�	

and two elements � � � � F 2 � � , � �� �
with

� # � �$# �
� � �� (with respect to

the flow policy
� ��� > � � �� 	 �$# 	 �) be given. We have to show that

� �� 	 �$# 	 � fulfills the
non-interference requirement � ' � � � � � � � � .

Let now a non-interference configuration
�D����� � U �

� � � � 	 ��� �� 	 �$# 	 ��� � U �
� � � � $�� �

� � 5 � � U �
� � � � � � #�� !�	 � be given. Because of #�� !�	 � � #�� ! � there is a configuration�D����� � � � � � � � �� � �$# � ��� � U �

� � � � � � � 5 � � U �
� � � � � � #�� ! � � for

� �� � �$# � � � � � �� 	 �G# 	 � with�)"��� � ; ��� � V �� � � � � � �
� U � � � �)"��� � ; ��� � � � � = � � � U � �

. Moreover, the honest users �
� U �

are
unchanged by simulatability, so

�D���	� � � � � � is again a non-interference configuration.

Hence, we write
�D����� � U �

� � � � � in the following instead of
�D���	� � � � � � . As usual we distin-

guish between the perfect, statistical, and the computational case. In the computational
case, both configurations must be polynomial-time.

In the perfect case, we have �)"��� � ; ��� � V �� � � � � � �
� U � � � �)"��� � ; ��� � V �� � � � = � � � U � �

be-

cause of #�� !�	 � � � � � < #�� ! � . Now, both
� � � � " � � � � 	 � and

��� � � � " � �
 � � 	 � are part of the
view of �

� U �
because ��� � � and

� � �
� are elements of �

� U �
, so we obtain the same

probabilities in both configurations. Our precondition
� �� � �$# � � � � � � � < � ' � � � � � � � � and

our arbitrary choice of
�D����� � U �

� � � � 	 implies that
� �� 	 �$# 	 � also fulfills � ' � � � � � � � � .

We will treat the statistical and the computational case together. In the statistical
(computational) case we have �)"��� � ; ��� � V �� � � � � � �

� U � � � � ��� �!� �)"��� � ; ��� � V �� � � � = � � � U � �
� �)"��� � ; ��� � V �� � � � � � �

� U � � � � K�� � �)"��� � ; ��� � V �� � � � = � � � U � �
). We assume for contradiction

2More precisely, the block �
�
� is identified with �

���
. The ports of both sets may be different, but this does

not matter because our definition of flow policies only uses whole blocks, so the different ports do not cause
any trouble.

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 111

that
� �� 	 �G# 	 � does not fulfill the non-interference requirement � ' � � � � � � � � , so the

probability) � � � of a correct guess for
� � �2�

is not smaller than
	� � � � � � for all

� � # �#" �1� in the statistical case (or) � � ��. 	�
is not negligible in the computational

case). Thus, the advantage � � � � � �) � � ��. 	�
of the adversary is not contained in

�#" �1� (or � � � � is not negligible).
� �� � �G# � � fulfills the non-interference requirement,

so in this configuration, the advantage � � � � � for a correct guess is a function of # �#" � �
in the statistical or negligible in the computational case.

We can then define a distinguisher 9B>
 as follows. Given the views of �
� U �

in both
configurations it explicitly knows the views of ��� � � and

� � �
� . Now 9B>
C� outputs

&
if
� � � �

and � otherwise. Its advantage in distinguishing is
� - � 9B>
 ��& � � �)"��� � ; ��� � V �� � � � � � � � �

� U � ��� � & �
. - � 9B>
 ��& � � �)"��� � ; ��� � V �� � � � = � � � � � U � ��� � & �G�

� � &% � � � � �:. � &% � � � � � ���G�
� � � � �/. � � � � � R

For the polynomial case, this immediately contradicts our assumption #�� ! 	 � � � K�� � #�� ! �
because � � � � . � � � � � is not negligible. For the statistical case, the distinguisher 9B>
 can
be seen as a function on the random variables, so Lemma 2.4 implies$ � �)"��� � ; ��� � V �� � � � � � � � �

� U � � � �)"��� � ; ��� � V �� � � � = � � � � � U � ���
� � - � 9B>
C� ��& � � �)"��� � ; ��� � V �� � � � � � � � �

� U � �� � & �
. - � 9B>
C� ��& � � �)"��� � ; ��� � V �� � � � = � � � � � U � �� � & ���

� � � � � . � � � � � R
But � � � �0. � � � � � �� # � " �1� must hold, because � � � � � � # �#" �1� , and we
demanded the class # �#" �1� to be closed under addition. Thus, we have$ � �)"��� � ; ��� � V �� � � � � � � � �

� U � � � �)"��� � ; ��� � V �� � � � = � � � � � U � �� �� # �#" � � because # �#" �1� is
closed under making functions smaller which yields the desired contradiction.

7.4 A Cryptographic Firewall

In the following we present an example of a system that allows authenticated com-
munication between two users and furthermore ensures that these two users cannot be
affected by their environment. This yields a flow policy our system has to (and indeed
will) fulfill.

The construction of both our ideal and our real system can be explained using
Figure 2.3 on page 20. Our ideal specification is based on the ideal specification for
secure message transmission with perfectly ordered channels, introduced in chapter 4
of this work, which we will slightly modify to fit our requests. Mainly, we have to avoid
denial of service attacks. We will denote this modified ideal system by #�� ! � following
the notation of Figure 2.3 on page 20. Furthermore, a possible implementation has also
been presented in chapter 4 which we modify in the same way as the ideal specification
to maintain the at least as secure as relation.

Our cryptographic firewall will then be derived by defining a new system #�� ! 	 so
that combination with #�� ! � yields the ideal system, replacing #�� ! � with #�� ! finally

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 112

S
a

S
b

S
1

S
A

Figure 7.4: Sketch of the flow policy
�

of our system. Only one non-emphasized user# 	 is considered and some edges of the graph are omitted. Missing edges are of the
form “

�
”.

M
b

n_in
M

a

n_in

p
Ma

p
Mb

in
a

? in
b

?out
a

! out
b

!

in�
a

! in�
b

!out�
a

? out�
b

?

Figure 7.5: Sketch of system #�� ! 	 .
yields a possible implementation. #�� !�	 will be designed to filter messages sent by
“wrong” senders that should not be allowed to influence the special users according
to the flow policy shown in Figure 7.4. According to Figure 2.3, we denote our ideal
system as #�� ! � and our real implementation as #�� !�� .

At first, we show how to modify the ideal system for secure message transmission
with ordered channels such that non-interference can be achieved. After that, we intro-
duce our system #�� !�	 and prove that our ideal system #�� ! � fulfills its non-interference
requirements. The last step we have to do is deriving a real system that fulfills its
non-interference requirements. We already stated that #�� ! � #�� ! � holds for the un-
modified systems. We will briefly sketch that it also holds for the modified systems, so#�� ! � is at least as secure as #�� ! � by the composition theorem. Now Theorem 7.1 im-
plies that the real system #�� ! � also fulfills its requirements which successfully finishes
our attempt to design a real example that fits our non-interference definition.

7.4.1 The Ideal System

Let (denote the number of participants, F � � �%& �GRGR�R ��(the set of indices of the
considered participants, and F � � � F 2 � � the set of participants including the ad-
versary. In the following we will identify these indices with their corresponding user.
Intuitively, we want a system that fulfills the flow policy shown in Figure 7.4. We
consider two distinguished users � and

�
with

�
� � � � F . We now have two blocks

of specified ports # � and #�� , so that information must not flow to one of these blocks
from the outside. More precisely, we have non-interference requirements � ' � � � U � � U = � �
for every pair

� I 	 �&I � � with I 	 � F � 	�� � � � , I � � �
� � � .

Recall, that the specification of secure message transmission with ordered channels
is of the typical form

#�� ! � � � �-� � � � '�$# � �G� � . � ��

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 113

M
u,H

M
v,H

p A

p
d

p
r

out

p

p
r

in

M
v

M
u

p

Figure 7.6: Self-scheduled reliable, non-authenticated channels

i.e., there is one structure for every subset of the machines, denoting the honest users.

Necessary Modifications of the scheme. We want our system to fulfill our flow pol-
icy shown in Figure 7.4, so especially the non-interference requirement � ' � � ��� � � � �
must hold. If we explicitly allow the adversary to schedule the communication be-
tween � � and � � he can obviously achieve two distinguishable behaviours by denial
of service attacks as follows. On the one hand, he directly schedules every message
sent from � � to � � in one behaviour, on the other hand he does not schedule any mes-
sage sent from � � to � � . This problem cannot be solved by the filtering system #�� ! 	
if scheduling of the communication channel is done by the adversary.3 In practice,
this means that two persons will not be able to communicate without being interfered
from outside if the channel they use can be cut off by the adversary. A possible so-
lution for the problem is to use reliable authenticated channels for key exchange and
reliable, non-authenticated channels for sending of messages (cf. Definition 6.6 and
Scheme 6.1) between the two emphasized users � and

�
. Obviously, channels which

are reliable and authenticated could be used as well for sending of messages, but in this
case, we would no longer need the underlying cryptography (e.g., authentication), cf.
the precedent chapter. Therefore, we only consider these authenticated channels for key
exchange as usual, but sending of messages is still performed over non-authenticated
channels.

However, we simplify definition 6.6 of reliable, non-authenticated channels accord-
ing to Figure 7.6. Just as in the original definition the output of the machine

���
at a

port & is duplicated at a port & � as usual, but the machine
���

now has the correspond-
ing clockout port &,��� and immediately schedules this output. This corresponds to a still
non-authenticated channel, but reliability is now guaranteed by immediately delivering
the message to its recipient. The reasons for this modification are quite simple: At first,
it is not immediately clear how the results of the precedent chapter could be applied,
i.e., we could assume the master scheduler � 7 6 7

to schedule the port &,��� . However,
this would imply & �'� � # , so we have to include it in the considered partition of the
flow policy, which would unnecessarily complicate the whole system, and its proof.
Second, the system should serve as an illustration of our definition of non-interference,
so it should be as easy as possible without containing unnecessary accessory parts.

Similarly, we consider self-scheduled authenticated channels for key exchange, so
the keys are sent to the adversary as usual, but also immediately scheduled to the re-
cipient.

3 �����
� can only sort out messages from “wrong” senders, the messages mentioned are sent by the “valid”

user ��� , so they have to be delivered because
�����

� has no internal clock to check for denial of service
attacks.

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 114

These modifications carry over to the trusted host
� � � as follows:

� If
� � � receives an input

�
 5,= >A54> � � from � � , it implicitly initializes a commu-
nication with � � and outputs

�
 5,= >A54> � � to the adversary,
� @38 . >A54> � � �

�
to � � and

schedules the second output.

� If
� � � receives an input

�
 8(5,= � � � � � from � � , it outputs
�
 845 = <'; >A5 = ; 	 ��I�� � � � �

to the adversary,
� @ 8 . 8,> � 8�� � � �

�
to � � scheduling the second output.

These modifications are also done for switched variables � and
�
. Strictly speaking, we

obtain the following scheme.

Scheme 7.1 Let (� � and polynomials
� �/� 	 ��� � � � � � � be given that bound the

length of each message and the number of messages a user can send of receive, re-
spectively. Let � � � �%& ��RGR�R ��(denote the set of possible participants and the access
structure

����
is the set of all subsets

�
of � including the elements � and

�
, i.e.,�

� � � . �
must hold. Our specification for secure message transmission with (sim-

plified) reliable, ordered channels is now a standard ideal system

#�� ! � � � �-� � � � '�$# � � �4�
� � � . � . � R

with the standard localized definition # �� � � � >A5�� ���&� � ���?����>A5�� � � � � � � , and
� � �

defined as follows. When
�

is clear from the context, let
 � � � 	 �

denote the
indices of corrupted machines.

The ports of the machine
� � � are given by

� >A5�� ���&� � ��� ���&� � ������� � � � � 2
� � @ � 7 6,= � � � , �C� 6,= � � �����C� 6,= � � � � � � � � .

Internally,
� � � maintains seven arrays: it contains an array

�C)+�H)+� � � ���� � � ��� � � ���
over

� � � & that models initialization of users, an array
�C! �)+� � � ���� � � ��� � � � � ��� over� � �GR�RGR ��� 	 � � � counting the number of outgoing messages of user � intended

to user
�
, arrays

��� ! � � � � � � ���� � � ��� � � � � ,
�-!�� � � � � � ���� � � ��� ��� � � � � over

� � ��RGRGR �/� � � � � ,
an array

�-! �-� 	 	 ��� � �
���� ��� � �

over
� � � & , and an array

�C� ! �)+� � � ���� � � ��� � � � � ��� over� � �GR�RGR ��� 	 � � � . All six arrays should be initialized with � everywhere, except
for

� ! � � � � � � ���� � � being initialized with
&

everywhere. Finally, it contains an array�������?) � �G� � � ���� � � � � � � � � of lists, all initially empty. The state-transition function of
� � �

is defined by the following rules.

Initialization.

� Send Initialization. On input (
 5 = >A5(> �) at >A5 � � : If
! �)+� � � ���� � � � � 	 � � � for all� � � , set

!��)+� � � ���� � � � � ! �)+� � � ���� � � � &
for all

� � � , otherwise do nothing. If the
test holds check

! ��� 	�	 ��� � �
���� � � and

)+��)+� � � ���� � � � � . In this case set
)+��)+� � � ���� � � � � &

.
If � � � (� � �

) set
)+��)+� � � ���

� � � � &
(
)+�H)+� � � ���

� � � � &
) and output

�
 5 = >A54> � � at �C� 6,= � � � ,� @ 8 . >A54> � � �
�

at � � � � � and
&

at ����� �/� � (�
 5 = >A5(> � � at �C� 6,= � � � , � @ 8 . >A54> � � � � at ����� � �
and

&
at � � � � �'�). Otherwise output

�
 5 = >A54> � � at �C� 6,= � � � and
&

at �C� 6,= � � � � .
� Receive initialization. On input

� @ 8 . >A54> � ��� � at
� @ � 7 6,= ��� � with � � � � � �

�
: If

! ��� 	�	 ��� � �
���

� � � ,
)+��)+� � � ���� � � � � , and � � � � �)+�H)+� � � ���� � � � & �

, set
)+��)+� � � ���� � � � �

&
. If

!�� � � � � � ���� � � � � � � � � set
!�� � � � � � ���� � � � � ! � � � � � � ���� � � � &

, output
� @ 8 . >A5(> � � � � at� � � � � , & at ����� � ��� .

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 115

Sending and receiving messages.

� Send. On input
�
 8(5,= � � � � � at >A5 � � : If

!��)+� � � ���� � � � � 	 � � � and
! �-� 	�	 ��� � �

���� � � ,
set

! �)+� � � ���� � � � � !��)+� � � ���� � � � &
, otherwise do nothing. If � � � �

, � � � ; 8(5 � � ���
� � � � , � � � 	�� � ,)+��)+� � �

���� � � � &
and

)+�H)+� � � ���� � � � &
holds:

If
� �

then
�

set
� ! �)+� � � ���� � � � � � ! �)+� � � ���� � � � &

and output�
 845 = � � � � � ! �)+� � � ���� � � � � � � at �C� 6,= � � � , &
at �C� 6,= � � � �� else

�
set I � �

�> � 8 ���B� �) � �$� � �
���� � � � � &

,
� ! �)+� � � ���� � � � � � ! �)+� � � ���� � � � &

,
�B� �) � �G� � � ���� � � � I � � �

� � � � ! �)+� � � ���� � � � .
If � �� �

� � � or
� �� �

� � � output
�
 845 = <�; >A5,= 	?�&I�� �-� � � at �C� 6,= � � � , &

at�C� 6,= � � � � , if
� � � � ���

� � � with � �� �
set

� ! � � � � � � ���� � � � �E� ! �)+� � � ���� � � � &
and output

�
 8(5,= <'; >A5 = 	 ��I�� � � � � at �C� 6,= � � � , � @ 8 . 8 > � 84� � � � � at � � � � � , & at ����� � ���
4 .

� Receive from honest party
�

. On input
� @ 8 . 8,> � 8 <'; >A5 = ; 	'� � �&I � at

� @ � 7 6,= � � �
with �!� � � �

: If
! �-� 	 	 ��� � �

���
� � � ,

)+�H)+� � � ���� � � � &
,
)+�H)+� � � ���� � � � &

,
!�� � � � � � ���� � � �

� � � � � and
� � � � ��� � �����) � �G� � � ���� � � � I � �� � , check

� ! � � � � � � ���� � � � �
. If this holds set! � � � � � � ���� � � � � !�� � � � � � ���� � � � &

,
� ! � � � � � � ���� � � � � � � &

and output
� @ 8 . 8,> � 8'���!� � �

at � � � � � , & at ����� � � � .
� Receive from dishonest party

�
: On input

� @38 . 8,> � 8����!� � �
at
� @ � 7 6,= � � � with

� � � � � � � � ; 845 � � �7� � � � � and
� � �

: If
! �-� 	 	 ��� � �

���
� � � ,

)+��)+� � � ���� � � � &
,)+��)+� � � ���� � � � &

and
! � � � � � � ���� � � � � � � � � , set

!�� � � � � � ���� � � � � !�� � � � � � ���� � � ��&
and output� @ 8 . 8,> � 8����!� � �

at ����� � � , & at � � � � � � .
� Stop. On input

�
��C� & � at
� @ � 7 6,= � � � with � � �

: If
! ��� 	�	 ��� � �

���� � � , set!D�-� 	 	 ��� � �
���� � � &

and output
�
��C� & � at ������� � , & at ���������'� . �

Putting it all together
� � � has been modified as follows. First of all, it behaves iden-

tically for users � �� �
� � � . In the following we consider a user � � �

� � � and write ��
for the corresponding emphasized user, i.e. �� � �-�

� � � 	B� � � . If � sends its initializa-
tion, the new

� � � immediately initializes a communication with �� . In the real system
this corresponds to usual initialization but scheduling is done by the machine of the
user, not by the adversary. Additionally, an initialization command is sent to the adver-
sary corresponding to a self-scheduled authenticated channel. Note that the adversary
will not be able to influence both � and �� in the initialization phase by construction of
� � � (additional initialization commands sent by the adversary will always be sorted
out by

� � �). Furthermore, sending of messages between � and �� has been changed. If
� sends a message to �� ,

� � � directly outputs this message at port ����� �� � and schedules
it, additionally it outputs the usual blinded term to the adversary.

After the modification of #�� ! � we can turn our attention to the system #�� !�	 . After
that, we will show that the already mentioned simplified reliable channels can be used
to modify the real system #�� ! such that the relation #�� ! � #�� ! � still holds for the
modified systems. The system #�� !�	 is built by additional machines

� 7 6 7�
for � �

�
� � � . These machines will be inserted between the users and the trusted host

� � � ,
see Figure 7.7. Formally, we obtain the following scheme:

4Increasing the message counter is essential for avoiding replay attacks because the message � is directly
delivered to � using a reliable channel.

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 116

TH
H

���

clk ?

A

M
b

n_in

���

A

H
a

H
b

H
1

H
n���

M
a

n_in

p
Ma

p
Mb

Sys
0

Sys
1

Sys
*

Figure 7.7: Ideal System for Non-Interfered Communication.

Scheme 7.2 (#�� !) Let (� � and polynomials
� �/���/� � � � � � � be given. Here (

denotes the number of intended participants,
� � � � bounds the message length and

� � � � �/� � � � � bound the number of messages each user can send and receive, respec-
tively, for the security parameter � . Let F � � �%& ��RGR�R ��(denote the set of possible
users again and � � � � F the special users that should not be influenced from outside.
The system #�� ! 	 is then defined as

#�� !�	
� � � � �� �$# �
with

�� � � � 7 6 7
� � � 7 6 7

� . The specified ports # are given by # � � �
� ����� � ��� >A5 � �3��>A5 � � � � � � �

� � � 4 2 � >A5 � � ��������� � � �3������� � � � � � � � �
� � � � . Without loss

of generality we just describe the ports and the behaviour of machine
� 7 6 7
� . The ma-

chine
��7 6 7
� is defined analogously by exchanging the variables � and

�
. The ports of

machine
� 7 6 7
� are

� >A5 � ���&� � �����3�����������'�A 2 � � � � � � �4� >A5 � � �3��>A5 � � � �� 2 � & � � �'� & � � �3� & � � �'�A .
The resulting connection graph is shown is Figure 7.5.

Internally,
� 7 6 7
� maintains a counter � � � � � �GRGR�R �/� � � � and an array

� � � � � � � � � �
over

� � ��RGR�R �/� � � � � bounding the number of messages � � can send and receive, re-
spectively, and a variable

! ��� 	�	 ��� � � � � � & both initialized with � everywhere. The
state-transition function of

� 7 6 7
� is defined by the following rules.

Initialization.
� Send initialization. On input

�
 5,= >A5(> � � at >A5 � � : If
!
�

� � � � � it sets
!
�
� � !

�
� &

,
otherwise it stops. If

!D�-� 	 	 ��� � � � it outputs
�
 5 = >A5(> � � at >A5 � � � , &

at >A5 � � � � ,
otherwise it outputs

�
 5 = >A5(> � � at & � � � , & at & � � ��� .
� Receive initialization. On input

� @38 . >A54> � ��� � at � � � � � � : It first checks whether
� � � � � � � � � � � hold. In this case it sets � � � � � � � � � � � � &

, otherwise it stops. If!D�-� 	 	 ��� � � � it checks � � �
. If this also holds it outputs

� @38 . >A54> � � � � at � � � � �
and

&
at � � � � �'� . On input

� @38 . >A54> � � � � at & � � � , it outputs
� @ 8 . >A54> � � � � at � � � � �

and
&

at � � � �2� � .
Sending and receiving messages.

� Send. On input
�
 8(5,= � � � � � at >A5 � � with � � � �

and ; 845 � � ��� � � � � it checks
whether � � � � � � � . If this holds it sets � � � � � � � &

, otherwise it stops. If

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 117

!D�-� 	 	 ��� � � � holds, it outputs
�
 845 = � � � � � at >A5 � � � , & at >A5 � � � � . Otherwise it first

checks
� � �

. After a successful test it outputs
� @ 8 . 8,> � 8'� � � � �

at & � � � and
&

at
& � � � � .

� Receive. On input
� @ 8 . 8 > � 8�� � � � �

at ����� � � � it first checks whether � � � � � � � � � � � .
If this holds it sets � � � � � � � � � � � � � &

, otherwise it stops. If � � �
holds it

outputs
� @ 8 . 8 > � 84� � � � �

at ��������� and
&

at � � �����?� . On input
� @38 . 8 > � 84� � � � �

at & � � �
it outputs

� @ 8 . 8,> � 8�� � � � �
at � � ���'� and

&
at ������� � � .

� Stop. On input
�
C�C� & � at � � � � � � or & � � � : If

! �-� 	�	 ��� � � � , it sets
! �-� 	 	 ��� � � &

and outputs
�
��C� & � at & � � � and

&
at & � � �?� . �

The special communication ports & � � and & � � are just included to prevent denial of
service attacks. Recall, that a mighty attacker could simply overpower the machine of
an honest user by sending too many messages, i.e., to exceed its runtime bound in the
real world. In the ideal system this is modeled by letting the adversary stop arbitrary
machines any time he likes. If we now consider an adversary that stops the machine
of user � at the very start of the run and another one that never stops this machine,
we would certainly obtain different views for this user. This problem cannot really
be avoided if we do not provide additional channels for communication that guarantee
availability. In practice this would correspond to a connection that contains trash all
the time sent by the adversary, so the users (their machines in our case) would certainly
look for a new way to communicate. Furthermore, this problem is much weaker in
practice than in theory because it ought to be impossible (or at least very difficult)
for an adversary to overpower a machine (the machine would surely be able to take
countermeasures). If we would not consider these sorts of attacks the ports & � � and
& � � could as well be omitted. Finally, a stopped machine

� 7 6 7
� would want the machine� 7 6 7

� also to use the special communication ports, so it will ’stop’ the machine as soon
it has been stopped itself. Before we now build the combination of both systems to
obtain our complete system #�� ! � , we rename the ports >A5 � � , � � � � � and ����� � ��� of #�� ! �
into >A5 � � � , ����� � � � and � � � � � � � , respectively, for � � �

� � � . Furthermore, we restrict
the structures of #�� ! � to all sets

�
with

�
� � � . �

. Combination now means that
we combine every structure of #�� ! � with the (only) structure of #�� !�	 . The resulting
system #�� ! � � � � ���� �G# � � �4�

� � � . � . F9 is shown in Figure 7.7.

Remark 7.1. It is quite obvious how to modify the system #�� !�	 to an arbitrary set of
users (instead of

�
� � �) that have to be guarded by the firewall. Moreover, we can

easily consider multiple disjoint sets of users so that a user can communicate with
other users of its own set without being interfered from outside. This corresponds to
multiple firewalls and can easily be achieved by modifying the filtering system #�� !�	 ,
so our specification carries over to arbitrary transitive flow policies. -

7.4.2 The Real System

We now briefly sketch how to modify the real system for secure message transmission
with ordered channels such that the relation “at least as secure as” is preserved.

Obviously, the modification in the “Send initialization” transition can be modeled
similar by letting the machine schedule the connection itself, corresponding to a reli-
able, authenticated channel. We already stated above, that our modifications of

� � � in

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 118

the “Send” transition carry over to the concrete implementation by using our simplified
definition of reliable, non-authenticated channels between � and

�
. Being more precise,

we introduced the simplified definition before the actual modification of
� � � , and the

modification of
� � � has been derived by that definition.

We will only sketch that the relation “at least as secure as” still holds for the modi-
fied system, because we would have to redo the whole original proof of [49], with only
slight changes.

Proof (sketch). First of all, we set
� � � �

� � � and � � � � F 	 ��� 2 � � representing the
set of low and high level users, respectively. There are four possible communication
“channels” on these sets that we have to take into account. A term of the form “ �
sends to

�
” means that an output of a high level user can result in on input of a low

level user.

� � sends to � . In this case, both our ideal and real system have not been
changed, so we obtain indistinguishable views in both systems.

� �
sends to � . In this case, the only difference between the original and the

modified systems is that initialization of � and
�

is done directly by
� � � , so the

adversary is not able to initialize a connection between these two honest users
by himself because initialization commands will be sorted out by construction of
� � � . In the real system, this implicit initialization of

� � � exactly corresponds
to a self-scheduled authenticated channel. In both systems, an initialization com-
mand will be output to the user, and immediately scheduled, along with the usual
output to the adversary. Sending of messages has not been changed in both sys-
tems in this case, so we again obtain identical behaviours.

� � sends to
�

. The only modification in this case that initialization commands
made by the adversary will always be sorted out. This has already been treated
in the previous point, and it can moreover be easily achieved by a slight modifi-
cation of the simulator of the original proof.

� �
sends to

�
. The modifications in the initialization step have already been dis-

cussed in the second part. Obviously, the modified
� � � and the self-scheduled

authenticated channels yield identical views in both systems. In the “Send”
transition,

� � � immediately schedules the message to the corresponding user
and sends a blinded copy to the adversary. In the real system reliable, non-
authenticated channels do exactly the same: scheduling the message to the cor-
responding user and sending a blinded copy to the adversary. So we again have
identical views of the user and the adversary in both systems.

7.4.3 Non-Interference Proof

In the following we will show that our system #�� ! � fulfills its non-interference require-
ments given by the following flow policy. For two given elements I 	 �&I � � F 2 � � , we
define

� # U � �$# U = � � �� iff I 	 � � � 	 �
� � � � 2 � � and I � � �

� � � . The flow policy is
sketched in Figure 7.4.

Theorem 7.2 (Non-Interference Properties of #�� ! �)

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 119

Let an arbitrary structure
� ��� � � � � 7 6 7

� � � 7 6 7
� '�$# � � � #�� ! � be given. For the

sake of readability, we set
�� � � � ��� � � � � 7 6 7

� � � 7 6 7
� in the following. Let a func-

tion
� ��� > � be given that maps the structures

� �� � �G# � � of #�� ! � to the flow policy� 8 ���� � � � A � � $ 8 ���� � � � A ��� 8 ���� � � � A � as defined above. The partition
$ 8 ���� � � � A of # �

is defined by
$ 8 �� � � � � A � � � # U�� I � � 2 � �#B with # �U � � � � � � $ ����>A5*$ ��� >A5 $ � �� for

I � �
and # � � � �# � � @ 8 8 � � �� � � � 	 � U�� � # U � . Then the system #�� ! � fulfills

� ��� > �
perfectly.

�

Before we turn our attention to the proof of Theorem 7.2, we present the following
lemma.

Lemma 7.1 By definition of the system, the following invariants hold for all possible
runs of the configuration.

1. The collection
� � 7 6 7

� � � 7 6 7
� , i.e., the system #�� ! 	 , is polynomial-time.

2. If � � receives an input at � � ���,� , it is of the form
� @38 . >A54> � � � � or

� @ 8 . 8 > � 8�� � � � �
for an arbitrary � � � �

. If � � receives an input at 7
6
C�-84@ �,� , it is sent by the
master scheduler and is of the form

&
.

3. No output of � 7 6 7
at 7
6
��-8(@ �'� depends on inputs from other machines. Each

machine is clocked equally often using a rotating clocking scheme. Furthermore,
each output at a port & � � for & � � � # �� and the scheduled message does only
depend on prior outputs of � � at port & � � and &?� .

4. If � � receives a term of the form
� @38 . >A54> � � � � at ����� � � , it is a direct consequence

of the input
�
 5,= >A54> � � sent by � � (i.e., the scheduling sequence must have been

� � � � 7 6 7 � � 7 6 7
� � � � � � � 7 6 7

� � � � or � � � � 7 6 7 � � 7 6 7
� � � 7 6 7

� � � �). This also implies
that initializing a communication between � � and � � is not possible for the
adversary, so there cannot be any replay attacks with initialization commands
because they will be sorted out by

� � � .

5. If � � receives a term of the form
� @ 8 . 8 > � 84� � � � �

at � � � � � , it is a direct
consequence (in the sense of Point 4) of the message

�
 8(5,= � � � �
�

sent by
� � , so the scheduling sequence has been � � � � 7 6 7 � � 7 6 7

� � � � � � � 7 6 7
� � � � or

� � � � 7 6 7 � � 7 6 7
� � � 7 6 7

� � � � . It is not possible for the adversary to pretend to be
user � � , and furthermore the number of received messages of this form and the
number of messages sent by � � to � � are equal. Therefore, the adversary can
neither replay these messages nor throw them away.

The invariants also hold if we exchange the variables � and
�
.

�

Proof.

1. The first part is quite obvious. The machine
� 7 6 7
� (

� 7 6 7
�) has internal counters

� � and � � � (� � and � � �) that are bounded by polynomials � � � � and � � � � � for a
fixed security parameter � . At least one counter is always increased if

� 7 6 7
�

(
� 7 6 7
�) receives an input at port >A5 � � or ����� � � � (>A5 � � or � � � � � �). An output at

& � � � (& � � �) must be a direct consequence of an input at >A5 � � or � � � � � � (>A5 � � or� � � � � �) by construction of
� 7 6 7
� (

� 7 6 7
�), so the number of messages sent over

& � � � (& � � �) can be at most �����
� � � � � ��� � � � � . If a counter reaches its bound the

machine stops by construction, so the steps of the whole system #�� ! 	 is bounded
by �����

� � � � � ��� � � � � . Thus, the collection
� � 7 6 7

� � � 7 6 7
� is polynomial-time.

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 120

2. Part 2 follows by construction of
� 7 6 7
� and � 7 6 7

. In the initialization transition
the only possible output at � � ���'� is of the form

� @38 . >A54> � � � � . The check
� �

�
of

��7 6 7
� ensures

� @ 8 . >A54> � � � � . The only remaining step in which
� 7 6 7
� may

output something to � � is the receive-message step. Outputs are of the form� @ 8 . 8,> � 8����!� � �
. Again,

� 7 6 7
� checks � � �

first so we can only have outputs of
the form

� @ 8 . 8 > � 84� � � � �
. Thus, every output at port ����� � � must have the desired

form. The port 7
6
��-8(@ � � is connected to the master scheduler, and it has to be
of the form

&
by definition of the master scheduler � 7 6 7

.

3. The proof of part 3 is clear by construction of � 7 6 7
. At the start of the run, � 7 6 7

schedules ��� � � and switches between case
%

and case � afterwards. In case
%
,

only the internal counter is checked and maybe
� � # � 	 � � � is increased, so no

outputs from outside must be taken into account. Now assume that � 7 6 7
outputs

anything at &,��� for &2�?� � # �� . This can only happen in case � if � 7 6 7
receives

exactly one input at one of the ports & � � for & � � � &��?@T��
 � � �
�
. In this case it

schedules the unique output port & � � . Because of &'� � &��?@ ��
 � � �
�

only messages
sent by � � are scheduled which finishes this sub-part of the proof.

Furthermore, note that neither the adversary nor an honest user can perform a
clocked self-loop by definition. Moreover, the control will automatically come
back to � 7 6 7

after an arbitrary user is clocked by the system because users are
forbidden to have any clockout ports by definition. If the adversary is scheduled
it either has to do nothing or it has to schedule a machine of the system. In the
first case the control immediately goes to the master scheduler, in the second one
the machine of the system will either output nothing if one of its internal tests
fails, or it finally schedules one of the honest users. In both cases � 7 6 7

will be
clocked again. This ensures that the master scheduler will always be scheduled
after a constant number of steps, so it can in fact perform its rotation clocking
scheme which clocks every machine equally often by definition.

4. This holds by construction of
� 7 6 7
� and

� � � , and the previous part. First of
all, note that � � may only receive a term

� @38 . >A54> � � � � if it has been output by
� � � at ����� � � � or by

��7 6 7
� at & � � � in the previous step. The second case fulfills

our requirements by construction of
� 7 6 7
� , because a message

�
 5 = >A5(> � � must
have been output from � � and scheduled by � 7 6 7

, so we can turn our attention
to the first case. There are only two possibilities in which

� � � may have output
this term. The first case is initialization of user � � , the second case is “Receive
initialization”. In the first case � � outputs

�
 5,= >A54> � � , the master scheduler � 7 6 7
schedules it (if � � tells him what port to schedule, otherwise nothing is sched-
uled) and

� � � directly outputs this term to
� 7 6 7
� scheduling it immediately

which fulfills our requirements. We will now show that
� � � will not output

anything in the other case. On input
� @38 . >A54> � � � � at port

� @T� 7 6,= � � � , � � � first
checks

!D�-� 	 	 ��� � �
���

�
� � , doing nothing at failure. After a successful test it checks)+��)+� � � ���

� � � � � . By our modification of
� � � this can only hold if � � does not have

initialized itself, so
)+�H)+� � � ���

� � � � � must hold. Because of
� � �

,
� � � will not

outputs anything which finishes the proof of this part.

5. The proof of this part can be done similar to the previous one. First of all, note
that � � may only receive a term

� @38 . 8 > � 8'� � � � �
if it has been output by

� � �
at ����� � � � or by

� 7 6 7
� at & � � � in the previous step. The second case again ful-

fills our requirements by construction of
� 7 6 7
� . As in the previous step there

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 121

are are only two possibilities in which
� � � may have output this term. The

first case is sending messages of user � � to user � � , the second case is “Re-
ceive from honest party

�
”. In the first case, � � sends

�
 845 = � � � �
�

which is
again scheduled by � 7 6 7

.
� � � directly outputs this term to

� 7 6 7
� scheduling it

immediately which fulfills our requirements. Furthermore, it increases the inter-
nal counter

� ! � � � � � � ���
� � � . We will now finally show that

� � � will not output
anything in the second case. On input

� @38 . 8,> � 8 <�; >A5,= ; 	'� � ��I � at port
� @ � 7 6,= � � � ,

� � � first does its usual initialization checks. We assume them to be success-
ful, otherwise it outputs nothing anyway. It then checks

� ! � � � � � � ���
� � � � �

, if� � � � � � � �B� �) � �$� � � ���
� � � � I � �� � . However, the message counter

� ! � � � � � � ���
� � � is set

to
� ! �)+� � � ���

� � � � &
after every sent message from

�
to � and

�'� � ! �)+� � � ���
� � �

always holds by construction of
� � � for every

� � � � � � � �����) � �G��� � ���
� � ��� I � �� � .

Hence, we have
� � � ! � � � � � � ���

� � � so
� � � will not output anything which yields

the desired result and finishes the proof of this part.

Proof. (Theorem 7.2) We have to show that #�� ! � fulfills the non-interference require-
ment

� ��� > � . Let an arbitrary structure
� ���� �G# � � � � � 5 � � #�� ! � � be given so we have a

flow policy
� 8 ���� � � � A � � $ 8 ���� � � � A�� ��8 �� � � � � A � for this structure. Let now two arbi-

trary blocks # U � �$# U = � $ 8 �� � � � � A with I 	 � � � 	
�
� � � � 2 � � , I � � �

� � � be given,
so
� # U � �$# U = � � �� must hold.
Let a non-interference configuration

�D����� � U �U � � U = � � ���� �$# � ��� � U �
� � � � $�� for this

structure be given. Without loss of generality we can assume I � � � because of the
symmetry of the flow policy.

Depending on the choice of the bit
�

we denote the two families of views
of � � by �)"��� � ; ��� � V �V � � � � � � �

�
and �)"��� � ; ��� � V �V � � � � 	 � � �

�
. Assume for contradiction

that the probability of a correct guess
� � �2�

is greater than
	�
, which implies�)"��� � ; ��� � V �V � � � � � � � � � � � � �� �)"��� � ; ��� � V �V � � � � 	 �-� � � � � � � . First of all, we can exclude

denial of service attacks applying Part 3 of the above lemma, so there has to be a first
input at

� � � � � � with different probability in both cases because Part 3 ensures that
scheduling of messages sent by a user only depends on its own prior behaviour. We
will now use the previous lemma to show that this cannot happen.

By Part 2 of Lemma 7.1 this input can only be of the form
� @38 . >A54> � ��� � ,� @ 8 . 8 > � 84� � � � �

at � � ���?� , or
&

at 7 6
C�-8(@ � � for � � �
� � � . We will in the following

write �� for the other emphasized user (i.e., �� � �
� � � 	1� �). Assume this input to

be of the first form. Now Part 4 implies that this input is a direct consequence of an
input

�
 5 = >A54> � � sent by the other emphasized user ���� . Hence, there had to be an input
of ���� with different probability in both cases which contradicts our assumption of the
first different input, so there cannot be any influence from outside #�� ! 	 . We therefore
obtain identical probability distributions for possible inputs of � � in both cases which
yields the desired contradiction.

Now assume this input to be of the form
� @ 8 . 8 > � 84���!� � �

. By Part 5 the corre-
sponding input

�
 845 = � � � �� � must have been sent directly by � � with exactly the same
message � . Furthermore, the underlying system for secure ordered channels ensures
that the message has been sent exactly that often as � � receives this input, so there
cannot be any influence from outside because of the same reason as in the first case.

Finally, assume this input to be at port 7 6
C�-8(@ � � . This input does not depend on
arbitrary behaviours of other machines by Part 3 so we obtain identical probability

CHAPTER 7. COMPUTATIONAL PROBABILISTIC NON-INTERFERENCE 122

distributions again. Therefore, the views must in fact be identical in both cases so the
probability of a correct guess

� � �2�
is exactly

	�
. Part 3 additionally ensures that every

machine will be able to send messages if it wants to. This is not really necessary in our
proof but it guarantees some kind of fairness a useful system ought to have. Thus, we
have #�� ! � � � � � � < � � � > � .
After proving the non-interference property for the ideal specification, we now concen-
trate on the concrete implementation.

Theorem 7.3 (Non-Interference Properties of #�� ! �) The real system #�� ! � fulfills the
non-interference property

� � � > � computationally, with � � � > � given as in theorem 7.1.
In formulas, #�� ! � � � � K�� � � ��� > � .

�

Proof. Putting it all together, we know that the real implementation of secure message
transmission with ordered channels is at least as secure as the specification with re-
spect to computational indistinguishability of views. Moreover, we already sketched in
Section 7.4.2 that this also holds for the modified systems. Using Part 1 of Lemma 7.1
we know that the system #�� ! 	 is polynomial-time, which is an essential precondi-
tion for applying the composition theorem in the computational case, so we have#�� !�� � � K�� � #�� ! � . Obviously, fulfillment of non-interference requirements in the per-
fect case implies fulfillment in the computational case, so we can conclude that the
derived concrete implementation also fulfills its non-interference requirements with
computational indistinguishability of views using theorem 7.1.

7.5 Conclusion

We have presented the first general definition of computational probabilistic non-
interference in reactive systems (Section 7.2). Our approach is mainly motivated by
the concept of simulatability which is fundamental for modern cryptography, and it
might help to build a bridge between prior research in the field of information flow
and systems involving real cryptographic primitives. We have shown that our defi-
nition behaves well under simulatability (Section 7.3), which enables modular proofs
and step-wise refinement without destroying the non-interference properties. As an
example fitting our definition we have presented an abstract specification of a crypto-
graphic firewall guarding two honest users from their environment (Section 7.4). We
have shown that the specification in fact fulfills the desired non-interference property.
Moreover, we have presented a concrete implementation which we also showed to ful-
fill this property using our preservation theorem.

Chapter 8

Conclusion and Outlook

We successfully finished our attempt to build a bridge between the trustworthy proofs
generated or verified by formal methods and the rigorous definitions and proofs of
cryptography.

More precisely, we presented a general methodology how cryptographic protocols
can be verified by formal proof tools, such that these proofs nevertheless maintain their
sound cryptographic semantics, i.e., a leak in the proof could be used to break the
underlying cryptography. Prior to this work, no such proof could be performed.

We believe that our approach paves the way for future protocol analysis, since it
links real cryptography, i.e., cryptographic protocol involving real cryptographic prim-
itives, and tool-assisted verification for the first time. Moreover, commonly accepted
verification techniques might be used in our approach as well simply by using our
sound abstractions instead of the usually assumed perfect cryptography.

The first step of our methodology considers the derivation of secure implemen-
tations of a given abstract specification. We showed that, besides the still necessary
handmade proofs for suitably abstracting the cryptographic primitives, formally veri-
fied bisimulations in conjunction with the composition theorem of [49] are well-suited
for this difficult and error-prone task. As an example, we presented an abstract speci-
fication of secure message transmission with ordered channels together with a secure
implementation. The bisimulation which occurred in the security proof of the imple-
mentation has been formally verified using the theorem prover PVS.

The second step consists in the verification of the actual goals a protocol should ful-
fill. We expressed integrity properties in our underlying model and we showed that they
are maintained under simulatability, i.e., properties proved for abstract specifications
automatically carry over to their concrete implementations. This enables step-wise re-
finement and modular proofs, and it is an essential precondition for formal verification.
Moreover, we showed that logic derivations among integrity properties are valid for
the concrete implementation in a cryptographic sense, which makes them accessible
for theorem provers. As an example, we formally validated our specification of secure
message transmission with ordered channels, using the theorem proving system PVS,
i.e., we showed that message reordering is in fact prevented. Now the verified property
automatically carries over to the concrete implementation, which successfully finishes
our attempt to verify both the security of the implementation and its actual goals.

As additional properties, we considered the important concepts of fairness, live-
ness, and information flow, which we expressed using the well-established method of
probabilistic non-interference.

123

CHAPTER 8. CONCLUSION AND OUTLOOK 124

We showed that the standard definitions of integrity, fairness, liveness, and non-
interference are not suited to cope with real cryptography, so we introduced new, more
general definitions which circumvent this problem. These new, so-called polynomial
definitions make these concepts accessible for real cryptographic protocols. More pre-
cisely, we restricted the definitions to polynomial length and included error probabili-
ties. Similar to integrity properties, we showed that liveness and non-interference prop-
erties are preserved under simulatability, which again enables step-wise refinement and
modular proofs. In case of liveness, we presented a specification and a secure imple-
mentation of secure message transmission with reliable channels, and we showed that
both systems in fact fulfill the desired liveness property, i.e., reliability of messages. In
case of non-interference, we presented a specification and a secure implementation of
a cryptographic firewall guarding two honest user from their environment.

If we consider our approach as a whole, i.e., combining the results of [49] and
this work, we can state the following results: we successfully finished presenting the
first approach for cryptographic protocol verification which is sound with respect to
the underlying cryptographic primitives, and that allows abstractions suitable for for-
mal proof systems. These abstractions are easy to use and can be combined to large
protocols very easily. Moreover, these abstraction can be refined step-wise in order
to obtain formally verified concrete systems, and formal proofs made for the abstract
specification automatically carry over to the concrete implementation.

Concerning future work, there are innumerous things to do. Obviously, the security
of our implementation which we verified using PVS is still based on paper-and-pencil
proofs such as the composition theorem, the transitivity lemma, or the security proof of
the primitive used. Hence, one future step could be the verification of those theorems
using formal proof systems. However, we are aware of the difficulty of this task be-
cause we have to handle probabilism and also computational variants. After verifying
the basic theorems of our model, we are likely to turn our attention to more sophisti-
cated cryptographic primitives like commitments. By now, there is already progress at
our group at Saarland University and IBM Zurich on designing a cryptographic library
which should provide sound abstractions of common cryptographic primitives includ-
ing common concepts for standard protocol design like nonces, timestamp, and so on.
On the long run, we hope to be able to verify really large systems which are commonly
used in practice (e.g., e-commerce architectures), and which are essentially based on
these concepts.

Concerning liveness properties of cryptographic protocols, we might extend our
definition of polynomial liveness to multiple run-empty phases, i.e., we might consider
multiple good events and continuous interaction of users and the adversary.

Finally, we may include additional properties in our definition of non-interference.
So far, we restricted ourselves to transitive flow policies. However, there are several
interesting examples of intransitive flow policies, e.g., the original work by Haigh and
Young [25] who used it to formalize security for type enforcement, or the more recent
work by Roscoe [51] who cast intransitive non-interference within CSP. If we consider
cryptographic protocols it might be of great interest to state that there can only be
information flow between two honest users iff special additional users must have been
involved. As a possible application of such a definition we can consider secret sharing.
Assume that the first user shares a secret among some other users. Then a second
user might not be able to send information to the first user all by itself, but if it gets
some help of the remaining users, the secret can be restored resulting in the desired
information flow. Moreover, the concept of downgrading certain information which we

CHAPTER 8. CONCLUSION AND OUTLOOK 125

already sketched briefly in the corresponding chapter seems to be another important
goal to strive for. A possible way to express this would be to include conditional
probabilities in our usual definition of non-interference but future research is needed in
this area.

Appendix A

Postponed Proofs

A.1 From Section 3.1

Proof. (Lemma 3.1). Let a configuration
�(���	� � � �� �G# � � � � � � � � 5 � � #�� ! � be given.

Construction of � � � :
According to Figure 3.1, we define a new honest user � � � using � as a blackbox
submachine as follows. Its ports are given by

� � & � & � &��?@ ��
 � � � � & � � #B , i.e., it has the same ports for connecting to the
specified ports of the structure as the original user � .

� � &?�A� &(� � � &'� � &��?@ ��
 � � � � &?� � �� # � � � &(� � &��?@ ��
 � � � � &(� � �� # � , i.e., it
has the same set of ports for connecting to the adversary, but additionally it has
the corresponding input, or output ports formerly owned by the adversary. This
yields self-loops, see Figure 3.1, which will be essential for achieving identical
views. Our idea is that the contents of these so-called “self-loop-buffers” will
always equal the original buffers between � and

�
.

� � & �4� � &2�'� � &��?@ ��
 � � � , i.e., is has the same set of clockout ports.

� � & � � ��� & � � �3� & � � ���3 , i.e., the special duplex port for communication with the
adversary.

Its behaviour is defined as follows.

� If it gets a non-empty input � at a port &(� from the system (i.e., &,� � � #) it
applies % � � ���OF ���)� � � where � denotes the current state of the blackbox subma-
chine, yielding a tuple

� � � �DJ � . � � � now outputs this tuple at its own output
ports and switches to the same state � � .1

� If it gets a non-empty input � at a self-loop port &(� with &,� � &��?@ ��
 � � � (which
means that this has been a connection for receiving messages either from the
adversary or from itself), it applies the state transition function % � on

� ���NF ���)� � �
yielding a tuple

� � � �DJ). Now, it again outputs J and switches to state � � .
1Note, that this is indeed possible, because every output port of � is also an output port of � � � by

construction.

126

APPENDIX A. POSTPONED PROOFS 127

� If it gets a non-empty input � at a self-loop port &(� with &,� �� &��?@ ��
 � � � (which
means that this has been a connection for sending messages to the adversary),
it outputs

� &(��� � �
at & � � � , &

at & � � � � . Formally, we consider an efficiently
computable mapping

� � � � 0 � � �0 � �
so that decomposition is unique and

efficiently computable. Moreover, we assume that there is an element
� � � �

with
� �� �A7 � � � . Intuitively, � � � tells the adversary

� � � that a message �

would arrive at &,� in the original configuration
�D�����

.

� If � � � gets a non-empty input � �
at & � � � , it tries to decompose � �

into the
form

� &,��� � �
with &,� � &��?@T��
 � � � and � � � �

, doing nothing at failure. In
case of success, it outputs � at &?� , �

at & � � � , and
&

at & � � �'� . This case ensures
that messages sent by the adversary are delivered to the corresponding self-loop-
buffers. After that, � � � explicitly gives the control back to the adversary by
scheduling the special message

�
. Thus, the still to define adversary

� � � can
send messages intended for the honest user one by one scheduling them imme-
diately. � � � writes the message into the corresponding buffer and gives the
control back to the adversary.

Construction of
� � � :

In order to obtain the adversary
� � � , the original adversary

�
is modified in a similar

way. If
� � � receives an arbitrary input from the system it calls its internal blackbox

function % � on this input. If it receives an input � � �� �
at & � � � it tries to decompose

it into the form
� &,��� � �

with &,� � &��?@T��
 � � �
. If this fails it does nothing, otherwise it

calls % � � ���NF ����� � � yielding a tuple
� � � � J). The case � � � �

is defined below.
Now,

� � � checks whether there are non-empty outputs at a port &?� with &(� �
&��?@T��
 � � � . If this does not hold it simply outputs the tuple J . This corresponds to the
case that all buffers between � and

�
remain unchanged in

�D�����
, so we do not have to

worry about this case.
Otherwise, it stores all such nonempty values at ports &?� with &(� � &��?@T��
 � � � in

internal arrays, so that every array corresponds to exactly one port. Let now &,� be the
first port which has a non-empty array, then the first entry � of the array is removed
and

� � � outputs
� &(��� � �

.
If

� � � receives an input
�

at & � � � , it again looks for the first port with a non-
empty array yielding a new output of the form

� & � �'� � � �
again and so on until all arrays

are empty. If all arrays have finally been emptied the rest of the original tuple J is
output.

Putting it all together, messages sent to � are delivered one by one to � � � which
outputs them to their intended buffers. After every message, � � � schedules

� � �
again which can now send the next message and so on, until all messages are finally
delivered. This gives us a new configuration

�(���	� � � � � �� �G# � � � � � � � � � � � � 5 � � #�� ! � R
Obviously,

�(���	� � � � � � 5 � � � � #�� ! � holds which finishes the first part of the proof.
Proof of indistinguishability:
We now have to show that the view of � is indistinguishable in both configurations.
First of all, note that the newly defined machines � � � and

� � � simply forward inputs
made by the system to their blackbox submachine. We will now prove by induction
over the run that the contents of the buffers between � and

�
in
�D���	�

and the contents
of the corresponding “self-loop” buffers of � � � in

�D���	� � � are always equal at every

APPENDIX A. POSTPONED PROOFS 128

time either � ,
�

, or a machine of the system switches. We will use this to show that
the views of � are identical in both configurations.

At the start of the run, all these buffers are empty in both configurations yielding a
correct start of our induction.

We first take a look at buffers for sending messages from � to
�

. Assume, that �
outputs an arbitrary tuple J in

�(���	�
. In

�D����� � � , � � � outputs the same tuple at the
same ports which surely yields the desired result.

If such a buffer � & is scheduled with input I (it does not matter which machine has
the corresponding clockout port &(���), the I -th element � is sent to the recipient. In
the second configuration, the I -element � �

is delivered to its original sender � � � .
Applying our induction hypothesis, � � � �

must hold. Now, � � � outputs a tuple� &(��� � �
at & � � � , scheduling it immediately,

� � � decomposes this tuple into port name
and contents and applies its blackbox function using the correct input � at the correct
port &,� . The buffers remain mapped to each other between the two clockings of � and�

, and this step obviously yields identical views for � and
� 	

because they neither
notice that the message has been sent back to its sender � � � nor that the message has
been changed to a tuple and has been decomposed again later.

We finally have to consider sending messages from
�

to � . Assume � & to be a
buffer for sending messages from

�
to � . This case is slightly more complicated. If�

makes an arbitrary output J in
�D���	�

, the messages are immediately stored in the
desired buffers. In

�D���	� � � ,
� � � sends the first of these messages to � � � which

outputs it at the corresponding port, so we now have equal contents of this buffer in
both configurations by our induction hypothesis. Now, it gives back control to

� � �
and the game continues with the second message and so on until all outputs to � are
considered and the contents of every such buffers are equal again. Finally, it outputs the
remaining components, i.e., outputs to the system and to itself, and the first scheduling
output. Scheduling of such a buffer � & now obviously yields identical results in both
configurations by our induction hypothesis because the affected buffers between � and�

have already been filled.
Moreover, outputs of � and

�
to the system are simply forwarded by � � � and� � � , respectively, which yields identical outputs for the machines of the system. Thus,

we obtain identical views of � and
�

, and furthermore identical behaviours for the
machines of the considered structure. Altogether, this yields

�)"��� � ; ��� � � � � �)"��� � ; ��� � � � � � R
We finally have to show that both � � � and

� � � are polynomial-time if � and
�

are
polynomial-time. Both machines � � � and

� � � either only forward inputs and out-
puts to their blackbox submachines or they deliver the messages to the corresponding
buffers iteratively as described above. This needs at most

� &��?@T��
 � � ��� steps (i.e., a con-
stant number of steps), so both machines perform only a constant number of steps
between two successive clockings of their submachines. Thus, both machines must
be polynomial-time if the original user and adversary has been polynomial-time which
finishes the proof.

Proof. (Lemma 3.2) We first reverse our construction on � � � to obtain the original
user � again. Now, we define the new adversary

� �
as follows. It has the same set of

ports as
� 	

but instead of the ports & � � � , & � � � and & � � ��� , it has the “original” ports
for connecting to the honest user, i.e.,

� & � & � &��?@T��
 � � � � & �� &��?@T��
 � �� 2 � � � �R

APPENDIX A. POSTPONED PROOFS 129

Furthermore, it has three special ports
� & � � � < ��� & � � � < ��� & � � � < �?�A for a clocked self-loop.

Its behaviour can be defined very simple: if it gets a non-empty input from the
system it uses

� 	
as a blackbox on this input yielding a new state and an output tupleJ . If it gets a non-empty input � at a port &,� connected to the honest user, it applies% � � with F	� � � ��� 8 ����� � A .

So far, inputs of
� 	

are obviously the same in both configurations. Now, let an
arbitrary output tuple J be given. If & � � � � � and & � � �'� � � hold it simply outputsJ . In this case there are only outputs to the system and to itself which obviously yields
identical views for

� 	
, the machines of

��
and especially � . If & � � � � � �� � it

appends � at an internal list over
� �

. This internal list will be used to model the
(now missing) buffer �& � � of

�D���	� � � � � , i.e., their contents should always be equal.
If & � � �'� � I �� � it first removes the I -th element from this array doing nothing in
case of fewer elements. In

�D����� � � � � , the scheduled buffer would also have failed
so the control goes to the master scheduler in both configurations.

� �
now tries to

decompose this element into the form
� &,�'� � �

with &(� � &��?@T��
 � � � , doing nothing
at failure. In

�D����� � � � � the honest user � � � would also have failed to decompose
the message in this case so the control again goes to the master scheduler in both
configurations. In case of success, it outputs � at &?� and schedules itself (using the
clocked self-loop & � � � < , e.g., it outputs

&
at & � � � < � and

&
at & � � � < � �). Now, it applies its

blackbox function % � � with F � � � ��� � which corresponds to the behaviour of � � � in�D����� � � � � (the control is explicitly given back to the adversary). Intuitively,
� �

now
“plays the role” of � � � . Obviously, this results in identical views for

� 	
. Moreover,

we have identical behaviours with respect to the environment, i.e., the machines of the
structure.

It is now easy to see that we also obtain identical views for � in both configurations.
More formally, we could as usual consider inputs and outputs of � and

� 	
in both

configurations and show that the contents of the buffers between � and
� �

in
�(���	� �

and the contents of the self-loop buffers of � � � in
�D���	� � � � � are always equal which

finally results in identical views of the honest user in both configurations. This can be
proven similar as in the precedent proof so we will omit this straightforward but tedious
exercise this time. We finally obtain

�)"��� � ; ��� � � � � � � � � �)"��� � ; ��� � � � � R
As in the previous proof,

� �
mainly forwards inputs and outputs to and from the black-

box submachine. Now and then, it has to perform a clocked self-loop, which only takes
a constant number of steps. Moreover, it uses its blackbox submachine at least once
between two successive clocked self-loops. Hence,

� �
is polynomial-time if the origi-

nal
� 	

is polynomial-time. Moreover, � is polynomial-time if � � � is polynomial-time
(cf. the previous proof). Thus,

�D���	� � is a polynomial-time configuration if
�(���	� � � � � is

polynomial-time, which finishes the proof.

A.2 From Section 3.2

Proof. (Lemma 3.3) Let # � denote the set of specified ports the adversary connects to,
i.e., # � � � �) �) � # 	 &��?@T��
 � � � � R
Roughly speaking, we will define a new machine �

	
which is inserted between the

system and the adversary such that �
	

uses all ports of # � . Combination of �
	

and �

APPENDIX A. POSTPONED PROOFS 130

will yield the new honest user � � . However, we will at first concentrate on the machine� � .
If the configuration

�(���	�
is polynomial-time, let the adversary

�
be bounded by� � � � for a polynomial

�
and the security parameter � . We now define the new adver-

sary
� � of

�D���	� � starting with its ports.

� First of all, every port) � &��?@ ��
 � � �
that does not connect to a specified port, i.e.

) � �� # � , is also a port of
� � .

� For every simple port) � &��?@ ��
 � � �
with) � � # � ,

� � has a port) � of the same
kind.

� For every clockout port &,�'� � &��?@T��
 � � �
that connects to the specified ports, i.e.

&2�'� � � # � ,
� � has a clockout port & � � �'� and an additional output port & � � � .2

� � � has additional ports & � � ��� & � � ��� & � � � � which will be needed for synchroniz-
ing the communication with �

	
and ports & � � � � � � � � �4� & � � � � ��� & � � � � ��� needed to

make the machine �
	

polynomial-time in case of a polynomial-time configura-
tion

�D���	�
.

We assume without loss of generality that all these primed and additional ports
are new ports of the configuration. Internally,

� � maintains an array J � � �
�
�
�

� � � !G� � � � � � � � � � � � K � M � 8 � � A over
� �

initialized with � everywhere and two arrays�&� � � ����� ��� � � � � ���� and
�C��� !������ ��� � ��� � ���� over

� � � & initialized with � everywhere.
The array

� � � �����
will be used to indicate the buffers between

�
and the cor-

responding specified ports of the system which have nonempty contents. The array��� !��B���
will be used to explicitly tell �

	
which input ports it has to “cut off”, i.e.,

which ports it has to mask with a length bound � .
The behaviour of

� � is now defined as follows. On an arbitrary given output J �
� � � � � � � K � M � 8 � A and the given state � � of the blackbox

�
, the corresponding output J � �

� � �� � � � � K � M � 8 � � A of
� � is derived by the following algorithm. Initially, all components ofJ �

are set to � . They are automatically reset to � at every call of % � .

� Preliminary Step: First of all,
� � checks whether

�
masked one of its own input

ports connected to the specified ports using a zero length bound, which it can
easily do, because it knows the current state � � of the blackbox. For every masked
input port &(� �� # �� , i.e., a port connected to an unspecified port of the system,
it masks this input too; for every non-masked input port of this kind, it sets the
length bound to the runtime of

�
in the polynomial case and to infinity in the

remaining cases. For every masked input port &(� � # �� , it sets
��� !������ ��� � � &

.
Afterwards, it sets J � �

�
�
� � J (i.e., it saves the whole output tuple, since

it will need the tuple after it has been scheduled by �
	

again) and encodes the
whole array

� ��!������
into � � � �

. Finally, it outputs � at & � � � � � , & at & � � � � �'� .
Informally speaking,

� � has to tell �
	

which ports it should mask, so it stores
them in the array

� ��!��B���
and sends the whole array to �

	
.

� Step 1: &'� �� # �� : At first,
� � simply goes through the tuple and sets � �� � � � � �

for every port &'� with &?���� # �� . This case ensures that outputs to itself, to the
system, and to the original honest user � will simply be forwarded.

2The index ��� serves as an abbreviation for “clocking request”. These ports will later be used to tell � �

which buffer it has to schedule.

APPENDIX A. POSTPONED PROOFS 131

� Step 2: &'� � # �� : Then,
� � goes through the tuple and sets � �� � �

� � ��� for every
port &?� with &?� � # �� . If � ��� �� � , � � additionally sets

� � � ����� � � �
� � &

, i.e., it
stores which buffers between

� � and �
	

have nonempty content.

So far we have considered outputs at the simple ports of
�

. Now
� � goes through the

tuple and searches for the first nonempty output at a clockout port &(�'� .
� Step 3: & ��� � # �� : If

�
outputs � at a clockout port &,�'� � # �� ,

� �
encodes � and

the whole array
� � � �������

into � � � � �
. It then sets � �� � � �

� � � , � �� � � � �
� &

, and� � � ��������� � for all elements of the array and outputs J �
. Informally speaking,� � tells �

	
what buffer have nonempty contents at the moment, and that it should

schedule the � -th message of buffer � & afterwards.

� Step 4: & ��� �� # �� or no non-empty clock output at all : If
�

outputs � at &(���
with & �'� � �� # � ,

� � encodes the whole array
� � � �������

into � � � � �
as in the

previous step but containing the number � instead of the number � . It then sets
� �� � � �

� � � � , � �� � � � �
� � &

, � � � �
�
� � � � � � � , and

� � � ������� � � for all elements

of the array and outputs J �
.

We again briefly sketch the intuition behind this case. Messages intended for
the system are directly output, but no message is immediately scheduled. Again,� � tells �

	
all necessary information for delivering messages to the specified

ports, but additionally, it stores which buffer it has to schedule afterwards. An-
ticipating, �

	
will give back control to

� � by construction after he delivered the
messages to the specified ports, so

� � will be able to schedule the desired buffer
� & .
If there is no nonempty clock output,

� � acts identically but sets � � � �
�
� � � � � � �

instead. This ensures that no buffer will be scheduled after the control comes
back from �

	
to

� � , so the master scheduler will be scheduled just as in the
original configuration

�D�����
.

The behaviour of
� � on external inputs can be described quite simply.

� If
� � receives an input

&
at & � � � (i.e., the machine �

	
gives back the control), it

simply outputs J � � �
�
� and sets � � � �

�
� � � � � � afterwards for all elements of

the array. This case can only occur as a direct consequence of Step
�

of the above
algorithm. Inputs at other ports are simply forwarded to their corresponding ports
of

�
.

� If
� � receives an input

&
at & � � � � � � � � � it sets all components of

��� !������
back to

� and J � � J � �
�
� and proceeds with Step

&
.

� If
�

enters final state, we define that
� � finishes the delivering of messages and

enters final state too. More precisely, it outputs its tuple derived by the above
algorithm and stops. If Step

�
applies, it additionally waits for a nonempty input

at & � � � , outputs the tuple J � !G� � � , i.e., the scheduling of the desired buffer, and
enters final state after that.

Note, that
� � obviously can only do a polynomial number of steps between two suc-

cessive calls of % � by construction which yields a polynomial-time adversary
� � again

if
�

is polynomial.
We can now turn our attention to the machine �

	
which is defined as follows. Its

ports are given by

APPENDIX A. POSTPONED PROOFS 132

� � & � & � � # � : Ports for connecting to the specified ports # � .

� � & � ��� & � � � � &,� � � # � : Input ports for connecting to
� � .

� � & � �3� & � � � � &?� � � # � : Output ports for connecting to
� � .

� � & � � � � &2�'� � � # � : Input ports for clocking requests of
� � .

� � & � � ��� & � � �3� & � � �'�A : Ports for synchronization with
� � .

� � & � � � � ��� & � � � � � � � � ��� & � � � � � � � � � �� : Ports for making explicit changes of length
bounds. As already described above, these ports will be used for masking certain
inputs.

Internally, �
	

maintains an array
� ����� �(� � � ��� � ��� � � � over

� �
initialized with � every-

where. The behaviour of �
	

is defined as follows.

� If �
	

receives an input � at & � � � � � it decomposes � into the array
� ��!��B���

again.
For every

��� !��B��� ��� � &
it masks the input port &,� using a zero length bound.

For every
��� !������ ��� � � it sets the length bound of &(� to the runtime of

�
in the

polynomial case; otherwise, it sets it to infinity.

� If �
	

receives an input � at a port &(� , it outputs � at & � � , &
at & � � � . This case

ensures that outputs made by system are simply forwarded to the adversary.

� If �
	

receives an input � � at & � � � , it decomposes � � into its original form � � �
�,� �(� � � ����� ��� � � � � ���� .

– In case ���� � , it does the following: For every element
� � � ����� ��� �� � it

schedules the message stored in �& � and saves them in
����� �D� � � ��� .3 After

that, �
	

outputs the array
����� �D� � � ��� to the corresponding output ports &'�

and removes these elements from the array (which yields an empty array
again). Additionally, it outputs � at &,��� (the corresponding clocking port
for requests at & � � �).

– In case � � � , it collects all messages stored in the buffers �& � in
����� �D� � � ���

again as in the previous step. Finally, it outputs these messages at their
corresponding ports and

&
at & � � � , & at & � � �'� . This case ensures that the ad-

versary
�

will be scheduled again, so he can eventually schedule its desired
buffer (cf. Step

�
of the description of

� �).
If the configuration

�D�����
is polynomial-time, we let �

	
also stop after a polynomial

number of steps. A possible polynomial bound can simply be derived if you consider
that �

	
has to make less than

� &��?@T��
 � � � �G� outputs for collecting messages from the
nonempty buffer. These messages are stored in the corresponding arrays and finally
output as a tuple. The number of ports is finite and does not depend on the security pa-
rameter � , so the number of steps which �

	
performs between two successive clockings

of itself in every run is constant, because masking of input ports is done not only by
�

but also �
	
. Moreover, �

	
can only be clocked either by the system or by the adversary.

If it is clocked by the system it immediately clocks
� � which has to be polynomial-time

if
�

is polynomial-time as we showed above. Thus, �
	

can only perform a constant

3This is indeed possible, because the scheduled buffer will schedule ��� again by construction if it has a
nonempty output. This will always be the case, since ��� will only schedule buffers which he knows to be
nonempty.

APPENDIX A. POSTPONED PROOFS 133

number of steps between two successive clockings of
� � . If we denote this constant by

.
�� , �
	

simply stops after .
C� 3 � � � � � � steps where the polynomial
� � � � � � bounds the

number of steps
� � can perform.

Putting it all together, �
	

and
� � simply forward every message between the sys-

tem #�� ! and the original adversary
�

which is represented as a blackbox submachine
of the newly defined adversary

� � . Thus, we obtain identical views of the original ad-
versary

�
, the system #�� ! , and the honest user � in both configurations. To prove this

more formally we could simply go through all possible cases of outputs of
�

, � , and
machines of the system and show that we obtain identical behaviours with respect to
the original machines � ,

�
, and the machines of the system in both configurations. We

omit it here because it is a rather simple but tedious proof, and we believe that it is
already clear by construction of �

	
and

� � and our above explanations.
As a direct consequence we obtain that the probability of the runs restricted to# does not change, because �

	
always outputs exactly the same tuple to the speci-

fied ports as the original
�

and the view of all machines of the system and the view
of � is identical in both configurations. We now combine � and �

	
into one ma-

chine � � . Because of Lemma 2.1 this combination is well-defined and yields a closed
collection

�� 2 � � � � � � again. Moreover, if
�(���	�

is polynomial-time, � and
�

are
polynomial-time by precondition which implies that

� � and �
	

are polynomial-time
as shown above. Using, Lemma 2.1 we know that � � also has to be polynomial-time
yielding a polynomial-time configuration

�(���	� � � � �� �$# � � � � � � � � � � 5 � � #�� ! �
in this case. The view of any set of submachines of � � and the probability of the runs
restricted to # does not change at combination of machines, which yields

�)"��� � ; ��� � � � � �)"��� � ; ��� � � � � and
��� � � ; ��� " � �
��� � � ; ��� � " � R

Finally, # � . &��?@T��
 � � � � holds by construction, so we have
�D���	� � � � � 5 � � � #�� ! � which

finishes our proof.

A.3 From Section 3.4

Proof. (Theorem 3.5) We first reverse our function � on the structure
�
�
� �� � �C7 � � 2

� � � ��7 � � � '�$# � and on the user �
� � � �C7 � � yielding the structure

� �� � ��7 � �$# � of #�� ! � ��7 � � �
and the original honest user � � ��7 � . Note, that we cannot reverse the function � on
the new adversary

� � � �C7 � in the same way, because we did not demand it to have a
similar internal structure, so we construct a new adversary

� � ��7 � for the synchronous
configuration as follows. The ports of

� � ��7 � are given by

� & � & � � &��?@ ��
 � �� � �C7 � � 2 &��?@T��
 � � � ��7 � ����� & �� � &��?@T��
 � �� � ��7 � � 2 &��?@T��
 � � � ��7 � �� '�
i.e., it connects to all remaining free ports of

�� � ��7 � and � � ��7 � . Internally,
� � ��7 � main-

tains an array
�&� � � 	 � � ! �����&� ��� � � � � K(LNMO8 � K � M � 8 � � � ����� A"A of lists over

� �
all initially empty.� � �C7 � has the adversary

� � � ��7 � as a blackbox submachine and its behaviour is de-
fined as follows. If

� � ��7 � is clocked in the synchronous system, it gets an input tupleF � � F ��� � ��� � 6 7 8 � K � M � 8 � � ����� A:A . It now tries to restore the order of the ports, these messages
would have arrived in the asynchronous system. More precisely, it knows the clocking

APPENDIX A. POSTPONED PROOFS 134

scheme � , so it know which machines have been clocking after the last clocking of� � �C7 � . Moreover, it knows the order in which machines are switched by � � ��7 � � � in one
particular subround. Using the order on the ports of the asynchronous machines, it can
finally decide in which order messages sent by one machine on different ports would
have arrived in the asynchronous system. The only problem which might arise is that
a machine has been clocked more then once since the last clocking of the adversary.
This might result in two inputs at the same port of

� � ��7 � which would be concatenated
without any separation symbol. Such an input would not be restorable into its original
form, so we had to include the restriction to the considered clocking scheme that every
machine and the user are at most clocked once between two successive clockings of
the adversary. Note, that our usually used clocking scheme

� �� 2 � � '� � � '� � �B'� � � �
fulfills this requirement.

After restoring both the usual messages and their order,
� � ��7 � uses the blackbox

function % � � � ����� on the first input yielding an output tuple J . This tuple J is appended
to the array

� � � 	 � � ! �-���&�
, i.e. each component J ��� is appended to

� � � 	 � � ! �-���&� � � . If
there is a nonempty output � at a clockout port &(��� , we would have a clocked self-loop
in
�D����� � � �C7 � if

� � � 	 � � ! �����&� � � � � � �� � . In this case, this component is removed from the
array and % � � � ����� is called again with the new state and F � � F ���)� ; � = � � = >-= ;�< �
 ��� � � and so
on.

Remark A.1. Note, that the adversary
� � �C7 � does not always have to be validly defined

if
� � � ��7 � performs infinite successive clocked self-loops. In this case, it may either

diverge or it may yield an infinite probability distribution over possible states and out-
puts. Therefore, we included the precondition that at least one of the three mentioned
modifications has to be made. Obviously, every such modification solves the problem,
because a bounded adversary cannot perform infinite self-loops and the third possi-
bility would result in a validly defined adversary

� � �C7 � even in case of such infinite
self-loops. -
The above steps are repeated with the second input and the new state of

� � � �C7 � and
so on until all inputs have been considered. Finally, the blackbox function is used
with F	� � � � ����� ��� 8 U � � A where I denotes the global round and

�
denotes the subround the

adversary is clocked in.4 This correspond to the clocking signal of � � ��7 � � � in the asyn-
chronous system. The output tuple is again concatenated to the same array and possible
clocked self loops are considered again. Finally,

� � ��7 � outputs the first elements of each
list of

� � � 	 � � ! �����&� � � with &'� � &��?@ ��
 � �� � �C7 � 2 � � � �C7 � � as its output tuple J and re-
moves these elements from the lists.

Note, that this newly defined adversary
� � �C7 � is polynomial iff

� � � ��7 � is polynomial
by construction. Thus, if the original configuration

�D����� � � ��7 � has been polynomial-time
(i.e., the user �

� � � �C7 � � and the adversary
� � � �C7 � must be polynomial-time) then the

configuration
�D����� � ��7 � � � �� � ��7 � �$# � � � ��7 � � � � �C7 � � will also be polynomial-time, since

the runtime of � � �C7 � is always bounded by �
� � � ��7 � � .� � �C7 � “reverse” the function � by construction. The asynchronous adversary would

receive many single inputs, and it would produce outputs every time which would be
stored in the outgoing buffers. Possible clocked self-loops are handled by repeated
calls of the transition function with correct inputs. If

� � � ��7 � is scheduled by � � �C7 � � � it
again performs an arbitrary transition and the first element of its outgoing buffer would
be clocked. The synchronous adversary first splits its input messages into their original

4The adversary obviously knows both � and � because he knows the clocking scheme � , so he may simply
maintain two counters that he adapt every time he is clocked.

APPENDIX A. POSTPONED PROOFS 135

A
async

A
async

 (A
async

)

ϕ((A
async

))

output_store

input_store

p
1

p
n

p
n

p
1

�
�
�

�
�
�

�
�
�

�
�
�

ϕ

ϕ

≈

Figure A.1: Overview of the proof of Lemma A.1.

order and uses the blackbox function one by one storing the outputs in
� � � 	 � � ! �-���&�

.
The split inputs correspond to the original inputs of the asynchronous system, so the
output tuples are also equal after every step. Therefore, the contents of

� � � 	 � � !D�-���(�
always correspond to the outgoing buffers in the asynchronous system after a clocking
step of

� � � �C7 � . If the synchronous adversary is clocked it again calls its blackbox func-
tion with the correct input and stores the output in the array. After that, it outputs the
first element of each list of the array and removes these elements from the lists. In the
asynchronous system messages stored in the outgoing buffers are treated in the same
way. More formally we could show the following lemma.

Lemma A.1 We denote this “reversion” of �
�

by ��
�

and the reversion of the whole
configuration by ��

� ; ��� for the moment. Then for an arbitrary configuration
�D����� � � ��7 � ��

�
� �� � ��7 � � 2 � � � �C7 � � � ��G# � � � � � ��7 � � � � � � ��7 � � we have

�)"��� ���
 "�� 8 ����
 "�� 8 � ; ��� � � ����� A:A � � � � �� � �)"��� � ; ��� � � ����� � � � � ��
for every

� � � �� � ��7 � 2 � � � ��7 � � and

�)"��� ���
 "�� 8 ����
 "�� 8 � ; ��� � � ����� A"A � � � � �C7 � � � �)"��� � ; ��� � � ����� � � � � �C7 � �
where the view of

� � � ��7 � in the first configuration is given as a submachine of
�
� �

��
� � � � � �C7 � �� . �

Proof. The proof is illustrated in Figure A.1. We first show that
� �� � ��7 � � �

�
� �

��
� � � � � �C7 � �� behaves exactly as

� � � �C7 � , i.e., both machines are perfectly indistin-
guishable for their environment. This is already sufficient to show that the views of
�
� � �

for every
� � � �� � ��7 � 2 � � � ��7 � � are equal in both configurations because they

remain unchanged. We will also show that the view of
� � � ��7 � is equal in both configu-

rations which finishes our proof.
We show that both adversaries

� �� � ��7 � and
� � � ��7 � behave identically between two

successive clockings. Moreover, we show that the content of array
� � � 	 � � ! �����&� ��� of� �� � �C7 � always equal the outgoing buffers � & in the corresponding asynchronous configu-

ration at every clocking of
� � � ��7 � as a submachine of

� �� � ��7 � if we identify clockings of

APPENDIX A. POSTPONED PROOFS 136

� � � �C7 � in both configurations in the natural way.5 Furthermore, we show that outputs
made by the adversary are always equal in both configurations.

At the start of the run both buffers and arrays are empty which fulfills our claim.
Now assume that

� �� � ��7 � receives an arbitrary input at &,� �� & � � . It stores the message in
its array

)+� 	 � � ! �-���&� ��� and gives the control to the master scheduler. If
� �� � �C7 � receives

a non-empty input at & � � it applies the state transition function % �� @ 8 � � � ����� A on the arrays)+� 	 � � ! �����&�
. Now, the arrays

)+� 	 � � ! �-���&�
are decomposed into single inputs again

preserving their original order, and the function % � � � ����� is applied on every such input.
Since the inputs are obviously equal in both configuration, we obtain identical outputs,
and moreover identical views for

� � � ��7 � . By precondition, the arrays
� � � 	 � � ! �-���&�

are mapped to the outgoing buffers. After one call of % � � � ����� , every output at &?� is
stored either in

� � � 	 � � !D�-���(� � � or in � & at the same position, so they remain validly
mapped. Now, either the first component of

� � � 	 � � ! �����&� � � or the first entry of � & for

&?� � � &��?@T��
 � �� � ��7 � � 2 � � � ��7 � � are output yielding identical outputs and therefore
identical views for the environment in both configurations, i.e.,

�)"��� ���
 "�� 8 ����
 "�� 8 � ; ��� � � ����� A:A � � � � �� � �)"��� � ; ��� � � ����� � � � � ��
for

� � � �� � ��7 � 2 � � � ��7 � � . We already showed that the views of
� � � �C7 � are equal in

both configurations which finishes our proof.

According to Lemma A.1, the function �
� ; ��� - ��

� ; ��� yields identical views for �
� � �

for every
� � � �� � �C7 � 2 � � � �C7 � � and the asynchronous adversary, i.e.,

� �)"��� � �
 "�� 8 �� �
 "�� 8 � ; ��� � � ����� A:A � � � � �� � �)"��� � ; ����� � ����� � � � � �� and

� �)"��� � �
 "�� 8 �� �
 "�� 8 � ; ��� � � ����� A:A � � � � ��7 � � � �)"��� � ; ��� � � ����� � � � � �C7 � � R
We already showed in Theorem 3.4 that �)"��� � ; ��� � ����� � � � � � � �)"��� � 8 � ; ��� � ����� A � � � � ����
holds for every synchronous configuration

�D���	� � ��7 � � � �� � ��7 � �G# � � � ��7 � � � � �C7 � � and
for every machine

� � � �� � ��7 � 2 � � � ��7 � � � � �C7 � � . If we now set
�D���	� � ��7 � � �

��
� ; ��� ���D����� � � �C7 � � , we obtain

� �)"��� � ; ��� � ����� � � � � � � �)"��� � �
 "�� 8 �� �
 "�� 8 � ; ����� � ����� A:A � � � � ����
Moreover, this implies

� �)"��� � ; ��� � ����� � � � ��7 � � � � � �)"��� � �
 "�� 8 �� �
 "�� 8 � ; ��� � � ����� A:A � � � � ��7 � ����
since the views of

� � � �C7 � and �
�

��
� � � � �C7 � ��� are identical. We apply the mapping

�
on

the first two equations and, using Lemma 2.4, we obtain

� � � �)"��� � �
 "�� 8 �� �
 "�� 8 � ; ����� � ����� A:A � � � � ���� � � � �)"��� � ; ��� � � ����� � � � � ���� and

� � � �)"��� � �
 "�� 8 �� �
 "�� 8 � ; ����� � ����� A:A � � � � ��7 � �� � � � �)"����� ; ��� � � ����� � � � � ��7 � ���
Note, that

�
is in fact defined on runs of these configuration because both the machines

of the structure and the honest user have the prescribed form. Using transitivity, we
immediately obtain the desired result

�)"��� � ; ��� � ����� � � � � � � �)"��� � ; ����� � ����� � � � � ����
5More precisely, this means that we identify the � -th clocking of � � ���
	
� in ��� �

� � ���
	
� with the � -th call of�
� � � ����� by � 1� ���
	� in ���	��
� ���������
� ���� � � � ���
	� � � .

APPENDIX A. POSTPONED PROOFS 137

and �)"��� � ; ��� � ����� � � � ��7 � � � � � �)"��� � ; ��� � � ����� � � � � ��7 � ��
As a special case we set

� � � � � ��7 � which yields

�)"��� � ; ��� � ����� � � � �C7 � � � � � �)"��� � ; ����� � ����� � � � � � ��7 � ���� R

A.4 From Section 5.3

Recall, that we already gave a transcript of the proof of transitivity of sublists in Sec-
tion 5.3. For the sake of completeness, and to compare our transcript to our actual PVS
proof, we now give the PVS proof in full detail.

Verbose proof for sublist transitiv.
sublist transitiv:

�
1 �

(I , �
, � : list[

�
]): sublist(I , �

)
�

sublist(
�
, �)

� sublist(I , �)
Inducting on k on formula 1,
we get 2 subgoals:
sublist transitiv.1:

�
1 �

(I , �
): sublist(I , �

)
�

sublist(
�
, null)

� sublist(I , null)

Repeatedly Skolemizing and flattening,
sublist transitiv.1:�

-1 sublist(I � , � �
)�

-2 sublist(
� �
, null)�

1 sublist(I � , null)

Expanding the definition of sublist,
sublist transitiv.1:�

-1 null?(I �) �
cons?(

� �
)
�

((car(I �) �
car(

�'�
)
�

sublist(cdr(I �), cdr(
� �
)))

�
(sublist(I � , cdr(

� �
))))�

-2 null?(
� �
)�

1 null?(I �)
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of sublist transitiv.1.

APPENDIX A. POSTPONED PROOFS 138

sublist transitiv.2:

�
1 �

(cons1 var:
�
, cons2 var: list[

�
]):

(
�
(I , �

): sublist(I , �
)

�
sublist(

�
, cons2 var)

� sublist(I , cons2 var))
�
(
�
(I , �

):
sublist(I , �

)
�

sublist(
�
, cons(cons1 var, cons2 var))

� sublist(I , cons(cons1 var, cons2 var)))

Repeatedly Skolemizing and flattening,
sublist transitiv.2:�

-1 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-2 sublist(I � , � �
)�

-3 sublist(
� �
, cons(cons1 var

�
, cons2 var

�
))�

1 sublist(I � , cons(cons1 var
�
, cons2 var

�
))

Expanding the definition of sublist,
sublist transitiv.2:�

-1 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-2 sublist(I � , � �
)�

-3 sublist(
� �
, cons(cons1 var

�
, cons2 var

�
))�

1 null?(I �) �
((car(I �) �

cons1 var
� �

sublist(cdr(I �), cons2 var
�
))

�
(sublist(I � , cons2 var

�
)))

Applying propositional simplification and decision procedures,
we get 2 subgoals:
sublist transitiv.2.1:�

-1 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-2 sublist(I � , � �
)�

-3 sublist(
� �
, cons(cons1 var

�
, cons2 var

�
))�

1 car(I �) �
cons1 var

�
�
2 null?(I �)�
3 (sublist(I � , cons2 var

�
))

Instantiating (with copying) the top quantifier in -1 with the terms: I � , � � ,
sublist transitiv.2.1:�

-1 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-2 sublist(I � , � �
)
�

sublist(
� �
, cons2 var

�
)

� sublist(I � , cons2 var
�
)�

-3 sublist(I � , � �
)�

-4 sublist(
� �
, cons(cons1 var

�
, cons2 var

�
))�

1 car(I �) �
cons1 var

�
�
2 null?(I �)�
3 (sublist(I � , cons2 var

�
))

APPENDIX A. POSTPONED PROOFS 139

Simplifying, rewriting, and recording with decision procedures,
sublist transitiv.2.1:�

-1 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-2 sublist(I � , �'�
)�

-3 sublist(
� �
, cons(cons1 var

�
, cons2 var

�
))�

1 car(I �) �
cons1 var

�
�
2 sublist(

� �
, cons2 var

�
)�

3 null?(I �)�
4 (sublist(I � , cons2 var

�
))

Expanding the definition of sublist,
sublist transitiv.2.1:�

-1 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-2 sublist(I � , � �
)�

-3 null?(
� �
)

�
(car(

� �
)
�

cons1 var
� �

sublist(cdr(
� �
), cons2 var

�
))�

1 car(I �) �
cons1 var

�
�
2 sublist(

� �
, cons2 var

�
)�

3 null?(I �)�
4 (sublist(I � , cons2 var

�
))

Applying propositional simplification and decision procedures,
we get 2 subgoals:
sublist transitiv.2.1.1:�

-1 null?(
� �
)�

-2 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-3 sublist(I � , � �
)�

1 car(I �) �
cons1 var

�
�
2 sublist(

� �
, cons2 var

�
)�

3 null?(I �)�
4 (sublist(I � , cons2 var

�
))

Expanding the definition of sublist,

APPENDIX A. POSTPONED PROOFS 140

sublist transitiv.2.1.1:�
-1 null?(

� �
)�

-2 �
(I , �

):
(null?(I) �

cons?(
�
)
�

((car(I) �
car(

�
)
�

sublist(cdr(I), cdr(
�
)))

�
(sublist(I , cdr(

�
)))))

�

(null?(
�
)

�
((car(

�
)
�

car(cons2 var
�
)
�

sublist(cdr(
�
), cdr(cons2 var

�
)))

�
(sublist(

�
, cdr(cons2 var

�
)))))

�

null?(I) �
((car(I) �

car(cons2 var
�
)
�

sublist(cdr(I), cdr(cons2 var
�
)))

�
(sublist(I , cdr(cons2 var

�
))))�

-3 FALSE�
1 car(I �) �

cons1 var
�

�
2 TRUE�
3 null?(I �)�
4 ((car(I �) �

car(cons2 var
�
)
�

sublist(cdr(I �), cdr(cons2 var
�
)))

�
(sublist(I � , cdr(cons2 var

�
))))

which is trivially true.
This completes the proof of sublist transitiv.2.1.1.
sublist transitiv.2.1.2:�

-1 car(
� �
)
�

cons1 var
�

�
-2 sublist(cdr(

� �
), cons2 var

�
)�

-3 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-4 sublist(I � , � �
)�

1 car(I �) �
cons1 var

�
�
2 sublist(

� �
, cons2 var

�
)�

3 null?(I �)�
4 (sublist(I � , cons2 var

�
))

Instantiating the top quantifier in -3 with the terms: I � , cdr(
� �

),
we get 2 subgoals:
sublist transitiv.2.1.2.1:�

-1 car(
� �
)
�

cons1 var
�

�
-2 sublist(cdr(

� �
), cons2 var

�
)�

-3 sublist(I � , cdr(
� �
))

�
sublist(cdr(

� �
), cons2 var

�
)

� sublist(I � , cons2 var
�
)�

-4 sublist(I � , � �
)�

1 car(I �) �
cons1 var

�
�
2 sublist(

� �
, cons2 var

�
)�

3 null?(I �)�
4 (sublist(I � , cons2 var

�
))

APPENDIX A. POSTPONED PROOFS 141

Simplifying, rewriting, and recording with decision procedures,
sublist transitiv.2.1.2.1:�

-1 car(
� �
)
�

cons1 var
�

�
-2 sublist(cdr(

� �
), cons2 var

�
)�

-3 sublist(I � , � �
)�

1 car(I �) �
cons1 var

�
�
2 sublist(I � , cdr(

� �
))�

3 sublist(
� �
, cons2 var

�
)�

4 null?(I �)�
5 (sublist(I � , cons2 var

�
))

Expanding the definition of sublist,
sublist transitiv.2.1.2.1:�

-1 car(
� �
)
�

cons1 var
�

�
-2 sublist(cdr(

� �
), cons2 var

�
)�

-3 FALSE�
1 car(I �) �

cons1 var
�

�
2 sublist(I � , cdr(

� �
))�

3 sublist(
� �
, cons2 var

�
)�

4 null?(I �)�
5 (sublist(I � , cons2 var

�
))

which is trivially true.
This completes the proof of sublist transitiv.2.1.2.1.
sublist transitiv.2.1.2.2:�

-1 car(
� �
)
�

cons1 var
�

�
-2 sublist(cdr(

� �
), cons2 var

�
)�

-3 sublist(I � , � �
)�

1 cons?[
�
](
� �
)�

2 car(I �) �
cons1 var

�
�
3 sublist(

� �
, cons2 var

�
)�

4 null?(I �)�
5 (sublist(I � , cons2 var

�
))

Expanding the definition of sublist,

APPENDIX A. POSTPONED PROOFS 142

sublist transitiv.2.1.2.2:�
-1 car(

� �
)
�

cons1 var
�

�
-2 null?(cdr(

� �
))

�
cons?(cons2 var

�
)
�

((car(cdr(
� �
))

�
car(cons2 var

�
)
�

sublist(cdr(cdr(
� �
)), cdr(cons2 var

�
)))

�
(sublist(cdr(

� �
), cdr(cons2 var

�
))))�

-3 cons?(
� �
)

�
(sublist(I � , cdr(

� �
)))�

1 cons?[
�
](
� �
)�

2 car(I �) �
cons1 var

�
�
3 null?(

� �
)

�
cons?(cons2 var

�
)
�

((car(
� �
)
�

car(cons2 var
�
)
�

sublist(cdr(
� �
), cdr(cons2 var

�
)))

�
(sublist(

� �
, cdr(cons2 var

�
))))�

4 null?(I �)�
5 cons?(cons2 var

�
)
�

((car(I �) �
car(cons2 var

�
)
�

sublist(cdr(I �), cdr(cons2 var
�
)))

�
(sublist(I � , cdr(cons2 var

�
))))

Simplifying, rewriting, and recording with decision procedures,
This completes the proof of sublist transitiv.2.1.2.2.
sublist transitiv.2.2:�

-1 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-2 sublist(I � , � �
)�

-3 sublist(
� �
, cons(cons1 var

�
, cons2 var

�
))�

1 sublist(cdr(I �), cons2 var
�
)�

2 null?(I �)�
3 (sublist(I � , cons2 var

�
))

Expanding the definition of sublist,
sublist transitiv.2.2:�

-1 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-2 sublist(I � , � �
)�

-3 null?(
� �
)

�
((car(

�'�
)
�

cons1 var
� �

sublist(cdr(
� �
), cons2 var

�
))

�
(sublist(

� �
, cons2 var

�
)))�

1 sublist(cdr(I �), cons2 var
�
)�

2 null?(I �)�
3 (sublist(I � , cons2 var

�
))

Applying propositional simplification and decision procedures,
we get 3 subgoals:

APPENDIX A. POSTPONED PROOFS 143

sublist transitiv.2.2.1:�
-1 null?(

� �
)�

-2 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-3 sublist(I � , �'�
)�

1 sublist(cdr(I �), cons2 var
�
)�

2 null?(I �)�
3 (sublist(I � , cons2 var

�
))

Expanding the definition of sublist,
sublist transitiv.2.2.1:�

-1 null?(
� �
)�

-2 �
(I , �

):
(null?(I) �

cons?(
�
)
�

((car(I) �
car(

�
)
�

sublist(cdr(I), cdr(
�
)))

�
(sublist(I , cdr(

�
)))))

�

(null?(
�
)

�
((car(

�
)
�

car(cons2 var
�
)
�

sublist(cdr(
�
), cdr(cons2 var

�
)))

�
(sublist(

�
, cdr(cons2 var

�
)))))

�

null?(I) �
((car(I) �

car(cons2 var
�
)
�

sublist(cdr(I), cdr(cons2 var
�
)))

�
(sublist(I , cdr(cons2 var

�
))))�

-3 FALSE�
1 null?(cdr(I �)) �

((car(cdr(I �)) �
car(cons2 var

�
)
�

sublist(cdr(cdr(I �)), cdr(cons2 var
�
)))

�
(sublist(cdr(I �), cdr(cons2 var

�
))))�

2 null?(I �)�
3 ((car(I �) �

car(cons2 var
�
)
�

sublist(cdr(I �), cdr(cons2 var
�
)))

�
(sublist(I � , cdr(cons2 var

�
))))

which is trivially true.
This completes the proof of sublist transitiv.2.2.1.
sublist transitiv.2.2.2:�

-1 car(
� �
)
�

cons1 var
�

�
-2 sublist(cdr(

�'�
), cons2 var

�
)�

-3 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-4 sublist(I � , � �
)�

1 sublist(cdr(I �), cons2 var
�
)�

2 null?(I �)�
3 (sublist(I � , cons2 var

�
))

Instantiating the top quantifier in -3 with the terms: cdr(I �), cdr(
� �

),
we get 2 subgoals:

APPENDIX A. POSTPONED PROOFS 144

sublist transitiv.2.2.2.1:�
-1 car(

� �
)
�

cons1 var
�

�
-2 sublist(cdr(

� �
), cons2 var

�
)�

-3 sublist(cdr(I �), cdr(
� �
))

�
sublist(cdr(

� �
), cons2 var

�
)

� sublist(cdr(I �), cons2 var
�
)�

-4 sublist(I � , � �
)�

1 sublist(cdr(I �), cons2 var
�
)�

2 null?(I �)�
3 (sublist(I � , cons2 var

�
))

Simplifying, rewriting, and recording with decision procedures,
sublist transitiv.2.2.2.1:�

-1 car(
� �
)
�

cons1 var
�

�
-2 sublist(cdr(

�'�
), cons2 var

�
)�

-3 sublist(I � , � �
)�

1 sublist(cdr(I �), cons2 var
�
)�

2 sublist(cdr(I �), cdr(
� �
))�

3 null?(I �)�
4 (sublist(I � , cons2 var

�
))

Using lemma sublist lem 1,
sublist transitiv.2.2.2.1:�

-1 sublist(I � , � �
)
�

cons?(I �) �
cons?(

� �
)

� sublist(cdr(I �), cdr(
� �
))�

-2 car(
� �
)
�

cons1 var
�

�
-3 sublist(cdr(

� �
), cons2 var

�
)�

-4 sublist(I � , � �
)�

1 sublist(cdr(I �), cons2 var
�
)�

2 sublist(cdr(I �), cdr(
� �
))�

3 null?(I �)�
4 (sublist(I � , cons2 var

�
))

Simplifying, rewriting, and recording with decision procedures,
sublist transitiv.2.2.2.1:�

-1 car(
�'�
)
�

cons1 var
�

�
-2 sublist(cdr(

� �
), cons2 var

�
)�

-3 sublist(I � , � �
)�

1 cons?(
� �
)�

2 sublist(cdr(I �), cons2 var
�
)�

3 sublist(cdr(I �), cdr(
� �
))�

4 null?(I �)�
5 (sublist(I � , cons2 var

�
))

Expanding the definition of sublist,

APPENDIX A. POSTPONED PROOFS 145

sublist transitiv.2.2.2.1:�
-1 car(

� �
)
�

cons1 var
�

�
-2 null?(cdr(

� �
))

�
cons?(cons2 var

�
)
�

((car(cdr(
� �
))

�
car(cons2 var

�
)
�

sublist(cdr(cdr(
� �
)), cdr(cons2 var

�
)))

�
(sublist(cdr(

� �
), cdr(cons2 var

�
))))�

-3 FALSE�
1 cons?(

� �
)�

2 null?(cdr(I �)) �
cons?(cons2 var

�
)
�

((car(cdr(I �)) �
car(cons2 var

�
)
�

sublist(cdr(cdr(I �)), cdr(cons2 var
�
)))

�
(sublist(cdr(I �), cdr(cons2 var

�
))))�

3 null?(cdr(I �)) �
cons?(cdr(

� �
))

�

((car(cdr(I �)) �
car(cdr(

� �
))

�

sublist(cdr(cdr(I �)), cdr(cdr(
� �
))))

�
(sublist(cdr(I �), cdr(cdr(

� �
)))))�

4 null?(I �)�
5 cons?(cons2 var

�
)
�

((car(I �) �
car(cons2 var

�
)
�

sublist(cdr(I �), cdr(cons2 var
�
)))

�
(sublist(I � , cdr(cons2 var

�
))))

which is trivially true.
This completes the proof of sublist transitiv.2.2.2.1.
sublist transitiv.2.2.2.2:�

-1 car(
� �
)
�

cons1 var
�

�
-2 sublist(cdr(

� �
), cons2 var

�
)�

-3 sublist(I � , � �
)�

1 cons?[
�
](
� �
)�

2 sublist(cdr(I �), cons2 var
�
)�

3 null?(I �)�
4 (sublist(I � , cons2 var

�
))

Expanding the definition of sublist,

APPENDIX A. POSTPONED PROOFS 146

sublist transitiv.2.2.2.2:�
-1 car(

� �
)
�

cons1 var
�

�
-2 null?(cdr(

� �
))

�
cons?(cons2 var

�
)
�

((car(cdr(
� �
))

�
car(cons2 var

�
)
�

sublist(cdr(cdr(
� �
)), cdr(cons2 var

�
)))

�
(sublist(cdr(

� �
), cdr(cons2 var

�
))))�

-3 cons?(
� �
)

�

((car(I �) �
car(

� �
)
�

sublist(cdr(I �), cdr(
� �
)))

�
(sublist(I � , cdr(

� �
))))�

1 cons?[
�
](
� �
)�

2 null?(cdr(I �)) �
cons?(cons2 var

�
)
�

((car(cdr(I �)) �
car(cons2 var

�
)
�

sublist(cdr(cdr(I �)), cdr(cons2 var
�
)))

�
(sublist(cdr(I �), cdr(cons2 var

�
))))�

3 null?(I �)�
4 cons?(cons2 var

�
)
�

((car(I �) �
car(cons2 var

�
)
�

sublist(cdr(I �), cdr(cons2 var
�
)))

�
(sublist(I � , cdr(cons2 var

�
))))

Simplifying, rewriting, and recording with decision procedures,
This completes the proof of sublist transitiv.2.2.2.2.
sublist transitiv.2.2.3:�

-1 (sublist(
� �
, cons2 var

�
))�

-2 �
(I , �

): sublist(I , �
)
�

sublist(
�
, cons2 var

�
)

� sublist(I , cons2 var
�
)�

-3 sublist(I � , �'�
)�

1 sublist(cdr(I �), cons2 var
�
)�

2 null?(I �)�
3 (sublist(I � , cons2 var

�
))

Instantiating the top quantifier in -2 with the terms: I � , � � ,
sublist transitiv.2.2.3:�

-1 (sublist(
� �
, cons2 var

�
))�

-2 sublist(I � , � �
)
�

sublist(
� �
, cons2 var

�
)

� sublist(I � , cons2 var
�
)�

-3 sublist(I � , � �
)�

1 sublist(cdr(I �), cons2 var
�
)�

2 null?(I �)�
3 (sublist(I � , cons2 var

�
))

Simplifying, rewriting, and recording with decision procedures,
This completes the proof of sublist transitiv.2.2.3.
Q.E.D.

Bibliography

[1] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. 4th
Intern. Conf. Foundations of Software Science and Computation Structures (FOS-
SACS 2001), Springer-Verlag, Berlin 2001, 25-41.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. 4th Conf. on Computer and Communications Security, ACM, 1997,
36–47.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation 148/1 (1999) 1-70.

[4] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption). IFIP Intern. Conf. on Theoretical
Computer Science (TCS 2000), LNCS 1872, Springer-Verlag, 2000, 3–22.

[5] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters
21 (1985) 181-185.

[6] M. Backes. A calculus for probabilistic bisimulation and its usefulness for mod-
ern cryptography. Unpublished Manusscript.

[7] D. Beaver and S. Haber. Cryptographic protocols provably secure against dy-
namic adversaries. Eurocrypt ’92, LNCS 658, Springer-Verlag, Berlin 1993, 307-
323.

[8] D. Bell and L. LaPadula. Secure computer systems: Unified exposition and mul-
tics interpretation. D. Elliott Bell and Leonard. J. LaPadula. Secure computer
systems: Unified exposition and Multics interpretation. Technical Report ESD-
TR-75-306, The Mitre Corporation, Bedford MA, USA, March 1976.

[9] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. Crypto ’98, LNCS 1462, Springer-
Verlag, 1998, 26–45.

[10] J. Burch and D. Dill. Automatic verification of pipelined microprocessor control.
Computer Aided Verification (CAV’94), Springer-Verlag, June 1994, 68-80.

[11] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asyn-
chronous broadcast protocols. Cryptology ePrint Archive, Report 2001/006, Mar.
2001. http://eprint.iacr.org. Full length version of the extended abstract in Proc.
Crypto 2001.

147

BIBLIOGRAPHY 148

[12] R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13/1 (2000) 143-202.

[13] D. Clark, C. Hankin, S. Hunt, and R. Nagarajan. Possibilistic informa-
tion flow is safe for probabilistic non-interference. WITS00, available at
www.doc.ic.ac.uk/ clh/Papers/witscnh.ps.gz.

[14] R. Cramer and V. Shoup. Practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. Crypto ’98, LNCS 1462, Springer-
Verlag, 1998, 13–25.

[15] D. E. Denning. A lattice model of secure information flow. Communications of
the ACM 19/5 (1976) 236-243.

[16] D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM 20/7 (1977) 504-513.

[17] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transac-
tions on Information Theory 29/2 (1983) 198-208.

[18] F. J. T. Fabrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security
protocol correct? 1998 IEEE Symposium on Research in Security and Privacy,
Oakland, 1998, 160-171.

[19] R. Focardi and R. Gorrieri. The compositional security checker: A tool for the
verification of information flow security properties. IEEE Transactions on Soft-
ware Engineering 23/9 (1997) 550-571.

[20] J. A. Goguen and J. Meseguer. Security policies and security models. IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, Washington
1982, 11-20.

[21] J. A. Goguen and J. Meseguer. Unwinding and inference control. IEEE Sym-
posium on Security and Privacy, IEEE Computer Society Press, Oakland 1984,
75-86.

[22] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences 28 (1984), 270-299.

[23] J. W. Gray III. Probabilistic interference. IEEE Symposium on Research in
Security and Privacy, IEEE Computer Society Press, Los Alamitos 1990, 170-
179.

[24] J. W. Gray III. Toward a mathematical foundation for information flow security.
Journal of Computer Science, Vol.1, Num. 3,4, 1992, 255-295.

[25] J. Haigh and W. Young. Extending the non-interference version of mls for sat.
IEEE Symposium on Security and Privacy, IEEE Computer Society Press, April
1986, 232-239.

[26] C. A. R. Hoare. Communicating sequential processes. International Series in
Computer Science, Prentice Hall, Hemel Hempstead 1985.

[27] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network version of the pump.
IEEE Symposium on Research in Security and Privacy, IEEE Computer Society
Press, Los Alamitos 1995, 144-154.

BIBLIOGRAPHY 149

[28] P. Laud. Semantics and program analysis of computationally secure information
flow. 10th European Symposium On Programming (ESOP 2001), LNCS 2028,
Springer-Verlag, Berlin 2001, 77-91.

[29] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time
framework for protocol analysis. 5th Conf. on Computer and Communications
Security, ACM, 1998, 112–12.

[30] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-
time equivalence and security analysis. Formal Methods ’99, LNCS 1708,
Springer-Verlag, 1999, 776–793.

[31] G. Lowe. Breaking and fixing the needham-schroeder public-key protocol us-
ing FDR. Tools and Algorithms for the Construction and Analysis of Systems,
Springer-Verlag, 1996, 147-166.

[32] N. Lynch. Distributed algorithms. Morgan Kaufmann Publishers, San Francisco
1996.

[33] N. Lynch. I/o automaton models and proofs for shared-key communication sys-
tems. 12th Computer Security Foundations Workshop (CSFW), IEEE, 1999, 14–
29.

[34] H. Mantel. Unwinding possibilistic security properties. ESORICS ’00 (6th Eu-
ropean Symposium on Research in Computer Security), Toulouse, LNCS 1895,
Springer-Verlag, Berlin 2000, 238-254.

[35] H. Mantel and A. Sabelfeld. A generic approach to the security of multi-threaded
programs. 14th IEEE Computer Security Foundations Workshop (CSFW’01),
IEEE Computer Society Press, Cape Breton 2001, 200-214.

[36] D. McCullough. Specifications for multi-level security and a hook-up property.
IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Oak-
land 1987,, 161-166.

[37] J. McLean. Security models. in: John Marciniak (ed.): Encyclopedia of Software
Engineering; Wiley Press, 1994.

[38] J. McLean. Security models and information flow. IEEE Symposium on Research
in Security and Privacy, IEEE Computer Society Press, Los Alamitos 1990, 180-
187.

[39] C. Meadows. Using narrowing in the analysis of key management protocols.
Symposium on Security and Privacy, IEEE, 1989, 138–147.

[40] J. K. Millen. Covert channel capacity. Proc. 1987 IEEE Symp. on Security and
Privacy, April 27-29, 1987, Oakland, California, 60-66.

[41] J. K. Millen. The interrogator: A tool for cryptographic protocol security. Sym-
posium on Security and Privacy, IEEE, 1984, 134–141.

[42] A. Myers and B. Liskov. Protecting privacy using the decentralized label model.
ACM Transactions on Software Engineering and Methodology, 2000, 410-442.

BIBLIOGRAPHY 150

[43] S. Owre and N. Shankar. Abstract datatypes in PVS. Technical report, Computer
Science Laboratory, SRI International, 1993.

[44] S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system.
In CADE 11, volume 607 of LNAI, pages 748–752. Springer, 1992.

[45] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6(1):85-128, 1998.

[46] B. Pfitzmann, M. Schunter, and M. Waidner. Provably secure certified mail. IBM
Research Report RZ 3207 (#93253) 02/14/2000, IBM Research Division, Z ürich,
August 2000.

[47] B. Pfitzmann, M. Schunter, and M. Waidner. Secure reactive systems. IBM
Research Report RZ 3206 (#93252) 02/14/2000, IBM Research Division, Z ürich,
May 2000.

[48] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. 7th ACM Conference on Computer and Communications Secu-
rity, Athens, November 2000, ACM Press, New York 2000, 245-254.

[49] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. IEEE Symposium on Security and
Privacy, Oakland, May 2001, 184-201.

[50] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. Crypto ’91, LNCS 576, Springer-Verlag, Berlin
1992, 433-444.

[51] A. Roscoe and M. Goldreich. What is intransitive noninterference? 12th IEEE
Computer Security Foundations Workshop (CSFW’99), IEEE Computer Society
Press, 1999, 226-238.

[52] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and
FDR. 8th Computer Security Foundations Workshop (CSFW’95), IEEE, 1995,
98–107.

[53] A. Sabelfeld and D. Sands. A per model of secure information flow in sequen-
tial programs. 8th European Symposium on Programming, ESOP’99, Springer
Verlag, 1999, 40-58.

[54] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-
grams. 13th Computer Security Foundations Workshop (CSFW’00), IEEE Com-
puter Society Press, 2000, 200-214.

[55] S. Schneider. Security properties and CSP. 1996 IEEE Symposium on Security
and Privacy, IEEE Computer Society Press, Washington 1996, 174-187.

[56] M. Schunter. Optimistic fair exchange. Dissertation, Technische Fakult ät, Uni-
versit ät des Saarlandes, 2000.

[57] G. Smith. A new type system for secure information flow. 14th IEEE Computer
Security Foundations Workshop (CSFW’01), IEEE Computer Society Press,
Cape Breton 2001, 115-125.

BIBLIOGRAPHY 151

[58] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative
language. 25th Symposium on Principles of Programming Languages (POPL),
ACM, New York 1998, 355-364.

[59] M. Steiner. Secure group key exchange. Dissertation, Technische Fakult ät, Uni-
versit ät des Saarlandes, 2001.

[60] D. Sutherland. A model of information. Proceedings of the 9th National Com-
puter Security Conference; National Bureau of Standards, National Computer
Security Center, 15.-18. September 1986, 175-183.

[61] D. Volpano. Secure introduction of one-way functions. 13th Computer Security
Foundations Workshop, IEEE Computer Society Press, Los Alamitos 2000, 246-
254.

[62] D. Volpano and G. Smith. Eliminating covert flows with minimum typings. 10th
Computer Security Foundations Workshop (CSFW’97), IEEE Computer Society
Press, Los Alamitos 1997, 156-168.

[63] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.
11th Computer Security Foundations Workshop (CSFW’98), IEEE Computer So-
ciety Press, Los Alamitos 1998, 34-43.

[64] J. T. Wittbold and D. M. Johnson. Information flow in nondeterministic systems.
IEEE Symposium on Research in Security and Privacy, IEEE Computer Society
Press, Los Alamitos 1990, 144-161.

[65] A. C. Yao. Protocols for secure computations. 23rd Symposium on Foundations
of Computer Science (FOCS) 1982, IEEE Computer Society, 1982, 160-164.

[66] A. Zakinthinos and E. S. Lee. A general theory of security properties. IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, Washington
1997, 94-102.

[67] S. Zdancewic and A. C. Myers. Robust declassification. 14th IEEE Computer
Security Foundation Workshop, Cape Breton 2001, 15-23.

Index

�> � 8 , 24
� � � , 28
� � , 41
� � ��� , 14
� � , 33
�B@ � �� � , 10
; 8(5 � � �

, 22
� � 5 � � 6 �

� � #�� ! � , 88
� @ � �� � , 10
� � 5 � � U �

� � � � � � #�� ! � , 109
�
�

, 46
� � � > , 47
�
� ; ��� , 48

� � 5 � � � � #�� ! � , 27
� � 5 � � � #�� ! � , 40������� , 14
� � 5 � � � #�� ! � , 33# �#" �1� , 14
� � 5 � � � � #�� ! � , 39

at least as secure as
computationally —, 15
perfectly —, 14
statistically —, 15

bisimulation, 69
black-box, 9
buffer, 10

channel
authenticated, 19
insecure, 19
reliable non-authenticated —, 97
secure, 19

clocking scheme, 45
standard —, 46

collection, 10
closed —, 10

combination, 15
complement

high-level —, 8

low-level —, 8
completion, 10
composable, 20
composition, 20
composition theorem, 21
configuration, 12

guessing —, 40
indistinguishable —, 15
liveness —, 88
multi-party —, 39
one-

�
- � –, 27

s–, 33
suitable —, 13

connection
graph

high-level —, 10
low-level —, 10

high-level —, 10
low-level —, 10

cryptographic firewall
ideal system, 112

distance, statistical, 14
distinguisher, 14

embedding theorem
first —, 54
second —, 56

executions, 11

flow policy, 105
general —, 104
transitive —, 105

indistinguishability, 14
computational —, 14
perfect —, 14
statistical —, 14

information flow, 104
integrity

preservation theorem, 76
requirements, 75

152

INDEX 153

length function, 8
list, 79

receive–, 81
send–, 81
sub–, 79

machine, 8
black-box sub–, 9
blackbox sub–, 16
correct —, 12
simple —, 9

mapping
canonical —, 13
valid —, 13

master scheduler, 9
fair—, 86

modus ponens, 78

negligible, 14
new

name, 15
port, 19

non-interference, 109
preservation theorem, 110

polynomial fairness, 86
polynomial liveness, 89

preservation theorem, 91
polynomial-time, 9
port, 7

buffer —, 8
clock —, 8
direction, 7
forbidden —, 12
free —, 10
input —, 8
label, 7
name, 7
output —, 8
simple —, 8
specified —, 12

PVS, 69

restriction of runs, 34
run-empty phase, 88
runs, 11

secure message transmission, 22
ideal system, 22
ideal system with ordered chan-

nels, 60

ideal system with reliable chan-
nels, 95

real system, 24
real system with ordered chan-

nels, 65
real system with reliable chan-

nels, 96
sequence

input —, 78
output —, 78

simulatability, 14
blackbox —, 16
guessing —, 41
liveness —, 91
one-

�
- � –, 28

s–, 33
universal —, 16

state-trace, 78
structure, 12

intended —, 18
localized cryptographic —, 18
standard cryptographic —, 18

system, 12
localized cryptographic —, 18
localized ideal —, 19
standard cryptographic —, 18
standard ideal —, 19

traces, 11
transitivity lemma, 17
trust model, 18

views, 11

