7,012 research outputs found

    On Approximating Four Covering and Packing Problems

    Get PDF
    In this paper, we consider approximability issues of the following four problems: triangle packing, full sibling reconstruction, maximum profit coverage and 2-coverage. All of them are generalized or specialized versions of set-cover and have applications in biology ranging from full-sibling reconstructions in wild populations to biomolecular clusterings; however, as this paper shows, their approximability properties differ considerably. Our inapproximability constant for the triangle packing problem improves upon the previous results; this is done by directly transforming the inapproximability gap of Haastad for the problem of maximizing the number of satisfied equations for a set of equations over GF(2) and is interesting in its own right. Our approximability results on the full siblings reconstruction problems answers questions originally posed by Berger-Wolf et al. and our results on the maximum profit coverage problem provides almost matching upper and lower bounds on the approximation ratio, answering a question posed by Hassin and Or.Comment: 25 page

    Selfish Bin Covering

    Get PDF
    In this paper, we address the selfish bin covering problem, which is greatly related both to the bin covering problem, and to the weighted majority game. What we mainly concern is how much the lack of coordination harms the social welfare. Besides the standard PoA and PoS, which are based on Nash equilibrium, we also take into account the strong Nash equilibrium, and several other new equilibria. For each equilibrium, the corresponding PoA and PoS are given, and the problems of computing an arbitrary equilibrium, as well as approximating the best one, are also considered.Comment: 16 page

    Intrinsic circle domains

    Get PDF
    Using quasiconformal mappings, we prove that any Riemann surface of finite connectivity and finite genus is conformally equivalent to an intrinsic circle domain Ω \Omega in a compact Riemann surface S S . This means that each connected component B B of S ∖ Ω S\setminus \Omega is either a point or a closed geometric disc with respect to the complete constant curvature conformal metric of the Riemann surface ( Ω ∪ B ) (\Omega \cup B) . Moreover, the pair ( Ω , S ) (\Omega , S) is unique up to conformal isomorphisms. We give a generalization to countably infinite connectivity. Finally, we show how one can compute numerical approximations to intrinsic circle domains using circle packings and conformal welding.</p

    Towards More Practical Linear Programming-based Techniques for Algorithmic Mechanism Design

    Get PDF
    R. Lavy and C. Swamy (FOCS 2005, J. ACM 2011) introduced a general method for obtaining truthful-in-expectation mechanisms from linear programming based approximation algorithms. Due to the use of the Ellipsoid method, a direct implementation of the method is unlikely to be efficient in practice. We propose to use the much simpler and usually faster multiplicative weights update method instead. The simplification comes at the cost of slightly weaker approximation and truthfulness guarantees

    Learning to Approximate a Bregman Divergence

    Full text link
    Bregman divergences generalize measures such as the squared Euclidean distance and the KL divergence, and arise throughout many areas of machine learning. In this paper, we focus on the problem of approximating an arbitrary Bregman divergence from supervision, and we provide a well-principled approach to analyzing such approximations. We develop a formulation and algorithm for learning arbitrary Bregman divergences based on approximating their underlying convex generating function via a piecewise linear function. We provide theoretical approximation bounds using our parameterization and show that the generalization error Op(m1/2)O_p(m^{-1/2}) for metric learning using our framework matches the known generalization error in the strictly less general Mahalanobis metric learning setting. We further demonstrate empirically that our method performs well in comparison to existing metric learning methods, particularly for clustering and ranking problems.Comment: 19 pages, 4 figure

    Using Optimization to Obtain a Width-Independent, Parallel, Simpler, and Faster Positive SDP Solver

    Full text link
    We study the design of polylogarithmic depth algorithms for approximately solving packing and covering semidefinite programs (or positive SDPs for short). This is a natural SDP generalization of the well-studied positive LP problem. Although positive LPs can be solved in polylogarithmic depth while using only O~(log2n/ε2)\tilde{O}(\log^{2} n/\varepsilon^2) parallelizable iterations, the best known positive SDP solvers due to Jain and Yao require O(log14n/ε13)O(\log^{14} n /\varepsilon^{13}) parallelizable iterations. Several alternative solvers have been proposed to reduce the exponents in the number of iterations. However, the correctness of the convergence analyses in these works has been called into question, as they both rely on algebraic monotonicity properties that do not generalize to matrix algebra. In this paper, we propose a very simple algorithm based on the optimization framework proposed for LP solvers. Our algorithm only needs O~(log2n/ε2)\tilde{O}(\log^2 n / \varepsilon^2) iterations, matching that of the best LP solver. To surmount the obstacles encountered by previous approaches, our analysis requires a new matrix inequality that extends Lieb-Thirring's inequality, and a sign-consistent, randomized variant of the gradient truncation technique proposed in

    On the Complexity of Anchored Rectangle Packing

    Get PDF
    corecore