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INTRINSIC CIRCLE DOMAINS

EDWARD CRANE

Abstract. Using quasiconformal mappings, we prove that any Rie-
mann surface of finite connectivity and finite genus is conformally equiv-
alent to an intrinsic circle domain Ω in a compact Riemann surface S.
This means that each connected component B of S \Ω is either a point
or a closed geometric disc with respect to the complete constant curva-
ture conformal metric of the Riemann surface (Ω ∪ B). Moreover the
pair (Ω, S) is unique up to conformal isomorphisms. We give a gener-
alization to countably infinite connectivity. Finally we show how one
can compute numerical approximations to intrinsic circle domains using
circle packings and conformal welding.

Accepted for publication in Conformal Geometry and Dynamics

1. Introduction

Let Ω be a finitely connected domain in the Riemann sphere Ĉ. A classical
theorem of Koebe states that Ω is conformally equivalent to the complement
of a finite set of pairwise disjoint closed discs and points. Such a domain is
called a finitely connected circle domain. Koebe’s theorem was extended by
He and Schramm [4] to apply to domains with countably many complemen-
tary components. Schramm later gave a different proof of this result using
transboundary extremal length [7].

Theorem A. [4, Theorem 0.1] Let Ω be a domain in Ĉ such that boundary

∂Ω has at most countably many components. Then Ω is conformally home-

omorphic to a circle domain Ω∗ in Ĉ. Moreover, Ω∗ is unique up to Möbius

transformations and every conformal automorphism of Ω∗ is the restriction

of a Möbius transformation.

If Ω is a domain in Ĉ that has at least three complementary components,
or at least one complementary component that is not a puncture, then we
say that Ω is hyperbolic. The reason is that there is then an unbranched
analytic covering map from the unit disc D onto Ω, which can be used to
transfer the Poincaré metric on D to a complete conformal metric of constant
curvature −1 on Ω, which is called the hyperbolic metric.

Every ring domain is conformally equivalent to a round annulus, a punc-

tured disc, or the punctured plane. For a round annulus Ĉ \ (B1 ∪B2), each
complementary component Bi is a spherical disc, i.e. a closed ball in the
spherical metric. Observe that Bi is also a closed ball with respect to the
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2 EDWARD CRANE

hyperbolic metric belonging to the domain Ω∪Bi, which is a larger spherical
disc. In this paper we generalize this property to obtain a new canonical
form for multiply connected domains.

Theorem 1. Let Ω be a finitely connected domain in the Riemann sphere

Ĉ with complementary components K1, . . . ,Kn. Suppose that each domain

Ω∪Ki is hyperbolic. Then Ω is conformally equivalent to a domain Ω∗ in Ĉ

with complementary components L1, . . . , Ln such that for each i = 1, . . . , n,
Ω ∪ Li is hyperbolic and either Li is a puncture or Li is a closed disc with

respect to the hyperbolic metric of Ω ∪ Li. Moreover, Ω∗ is unique up to

Möbius transformations.

We call the canonical domains given by this theorem intrinsic circle domains.
Theorem 1 has a generalization to positive genus ambient surfaces in

place of Ĉ, which we will now explain. In any Riemann surface S, a closed

geometric disc will mean a closed ball of some positive radius with respect
to the appropriate complete conformal metric of constant curvature on S,
(i.e. hyperbolic, Euclidean or spherical), with the extra condition that it
must be homeomorphic to the closed unit disc. Equivalently, the radius of
the ball must be strictly less than the injectivity radius of the metric at the
center of the disc. A circle domain Ω∗ in S is a connected open subset of
S for which each complementary component is either a point or a closed
geometric disc in S. Via the uniformization theorem, He and Schramm
extended Theorem A to this setting, as follows.

Theorem B. [4, Theorem 0.2] Let Ω be an open Riemann surface with finite

genus and at most countably many ends. Then there is a closed Riemann

surface R∗ such that Ω is conformally homeomorphic to a circle domain Ω∗

in R∗. Moreover the pair (R∗,Ω∗) is unique up to conformal homeomor-

phisms.

Likewise, we can extend Theorem 1 to deal with the case of arbitrary finite
genus. For the moment we also restrict ourselves to finite connectivity; we
will relax this condition in §5.

Theorem 2. Let Ω be a Riemann surface of finite genus and finite connec-

tivity. Then there is a conformal embedding ϕ of Ω into a compact Riemann

surface S, of the same genus as Ω, so that S \ ϕ(Ω) is the union of dis-

joint closed, connected and simply connected sets L1, . . . , Ln, and for each

i ∈ {1, . . . , n}, Li is either a single point or a closed geometric disc with re-

spect to the Riemann surface ϕ(Ω)∪Li. Moreover, the pair (S,ϕ) is unique
up to conformal homeomorphisms.

The condition that Ω and S have the same genus means that S has the
minimal possible genus among all compact Riemann surfaces into which Ω
may be embedded. We will refer to the domain ϕ(Ω) as an intrinsic circle

domain in S. Note that Theorem 2 includes Theorem 1 as the special case
of genus 0, so this terminology is consistent; we shall only give a proof of
Theorem 2.

There are some simple special cases. For example, there is precisely one
case in which the appropriate geometry of ϕ(Ω) ∪ Li is spherical; this oc-
curs when Ω is simply connected, in which case the statement reduces to
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the Riemann mapping theorem. The doubly connected genus 0 cases occur
when Ω is conformally equivalent to the punctured plane C∗, the punctured
disc D

∗, or a round annulus. Note that in the case of the punctured disc,
the appropriate geometry for ϕ(Ω) ∪ Li is Euclidean for one complemen-
tary component and hyperbolic for the other. Another case in which more
than one type of geometry must be considered occurs when Ω is a simply
connected domain with two points removed; then the resulting canonical
domain is either a triply-punctured sphere or it is C

∗ \K, where K is the
image under the exponential map of a closed disc of radius less than π. If
Ω is a Riemann surface of genus 1 with one end, then Ω∗ is the comple-
ment of a point or of a Euclidean disc in C/Λ, where Λ is a lattice in C.
In all other cases the natural geometry of ϕ(Ω) ∪ Li is hyperbolic for every
complementary component Li.

Our definition of intrinsic circle domains was motivated by an observa-
tion about extremal cases in the Grötzsch or Pólya-Chebotarev problem,
which asks for the minimizer of the logarithmic capacity among compact
connected sets containing a given finite set of points in C. This problem
often appears in the course of studying other extremal problems in geo-
metric function theory. For example, there are recent applications to the
Bloch-Landau constant [1] and to Smale’s mean value conjecture [2]. It is a
classical result of Lavrentiev and Goluzin that the extremal continuum E is
unique and is the union of finitely many analytic arcs Ai, which are trajec-
tories of a certain rational quadratic differential (see for example [3]). It is
not hard to show that each arc Ai is a geodesic arc in the hyperbolic metric

of the domain (Ĉ\E)∪Ai. A similar condition arises for local minima of the
condenser capacity for domains separating one finite set of points from an-
other. In [5] it is observed that the extremal continuum E enjoys harmonic

symmetry. This means that for any subarc I of E, the harmonic measure of

the complementary domain Ĉ \E with respect to the point ∞ assigns equal
masses to each side of I. Note that both the geodesic arc condition and the
harmonic symmetry condition have the property that they may be verified
by checking each arc Ai separately. To check Ai, we need to know only the

conformal class of the pair (Ĉ\E,Ai). Our notion of intrinsic circle domains
arose by analogy with this property.

We now outline the rest of the paper. Section 2 gives a simple qualitative
distortion bound for quasiconformal extensions of conformal maps between
ring domains, which we later use several times. Section 3 gives the proof
of uniqueness in Theorem 2, and section 4 gives the existence proof. In
section 5, we extend Theorem 2 to include some cases with countably infin-
itely many complementary components, subject to a geometric constraint.
Section 6 deals with a mixed condition, in which some boundary compo-
nents are required to be circles in the spherical metric while the others are
required to be intrinsic circles in the sense of Theorem 1. In section 7 we
discuss the use of circle packings for the numerical approximation of intrinsic
circle domains, and illustrate with some examples.
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2. A geometric lemma

Lemma 3. Suppose A1 and A2 are ring domains in C whose inner bound-

aries are circles C1 and C2 respectively. Suppose there is a conformal home-

omorphism F : A1 → A2 under which C1 corresponds to C2. Then the

induced homeomorphism F : C1 → C2 has a K-quasiconformal extension

between the interior discs of C1 and C2, where the constant K depends only

on the conformal modulus of A1.

Proof. Lemma 3 is a consequence of [4, Thm 1.4], but it can also be proved
simply as follows. After applying similarities, we may assume that C1 and C2

are both the unit circle ∂D. Let m be the conformal modulus of A1. Apply
Schwarz reflection across ∂D to extend F to a conformal homeomorphism
F̃ between ring domains Ã1 and Ã2. If m = ∞ then F̃ is a conformal
homeomorphism from the punctured plane to itself, so is in fact a similarity,
and its restriction to ∂D is an isometry. Otherwise, the doubled ring domains
Ãi are hyperbolic, F̃ is a hyperbolic isometry, and the hyperbolic length of
∂D in each domain depends only on m. We claim that the density of the
hyperbolic metric of Ã1 on ∂D is bounded above and below in terms of m.
Indeed, the hyperbolic length of ∂D is a function of m so we get such a
bound by applying the Koebe distortion theorem to a single-valued lift of
log F̃ to the universal cover of Ã1.

It follows that F : ∂D → ∂D is bi-Lipschitz , with constants that depend
only on m. Therefore the radial interpolation of the boundary correspon-
dence provides a quasiconformal extension with dilatation bounded in terms
of the modulus of A1. �

3. Uniqueness

Suppose that Ω and Ω′ are two intrinsic circle domains in closed Riemann
surfaces S and S′ respectively. Let f : Ω → Ω′ be a conformal homeomor-
phism. We have to show that f is the restriction of a conformal isomorphism
f̃ : S → S′.

First, suppose that Ω is simply connected or doubly connected. If Ω is
simply connected or is doubly connected with infinite conformal modulus,
then S is the Riemann sphere and Ω is a circle domain. Ω′ has the same
connectivity as Ω since they are homeomorphic, so Ω′ is also a circle domain
in the Riemann sphere S. The uniqueness part of Koebe’s theorem then
shows that f is the restriction of a Möbius map. Otherwise, Ω is a ring
domain of finite modulus, as is Ω′. Then S and S′ are both of genus 0 and
we have to show that f extends to a Möbius map. Consider a complemen-
tary component B1 of Ω, and let B′

1 be the corresponding complementary
component of Ω′. Let π : D → Ω∪B1 and π′ : D → Ω′∪B′

i be any Riemann
maps. Then by hypothesis π−1(B1) and π

′−1(B′

1) are closed hyperbolic discs
in D, which are bounded by Euclidean circles. Thus π−1(Ω) and π′−1(Ω′) are
round annuli. Any conformal homeomorphism between round annuli is the
restriction of a Möbius map, so we can extend π′−1 ◦ f ◦ π to a Möbius map
g. Now define f1 = π′ ◦ g ◦ π−1. Then f1 : Ω ∪B1 → Ω′ ∪B′

1 is a conformal
homeomorphism extending f . Similarly, f extends to a conformal homeo-
morphism f2 : Ω ∪ B2 → Ω ∪ B′

2. Gluing f1 and f2 together we obtain a
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conformal homeomorphism from the Riemann sphere to itself which extends
f . This must be a Möbius map. Since Ω is conformally equivalent to some
round annulus, which is an intrinsic circle domain, this in fact shows that Ω
is a round annulus.

Now suppose that Ω is at least triply connected. Consider any comple-
mentary component Bi of Ω, and let B′

i be the corresponding complementary
component of Ω′. This makes sense since the homeomorphism f induces a
bijection between the ends of Ω and the ends of Ω′; for an intrinsic circle
domain each end corresponds to precisely one complementary component
since the complementary components are all contractible.

Since Ω and Ω′ are at least triply connected, Ω ∪ Bi and Ω′ ∪ B′

i are
not simply connected. Therefore we must consider their universal covers,
U and U ′ respectively, in order to understand their hyperbolic metrics. Let
π : U → Ω∪Bi and π

′ : U ′ → Ω′∪B′

i be unbranched analytic covering maps,
with deck transformation groups Γi and Γ′

i respectively. Since Bi and B
′

i are
contractible subsets of Ω∪Bi and Ω′ ∪B′

i respectively, the homeomorphism
f induces a homotopy equivalence Ω ∪Bi → Ω′ ∪B′

i, which in turn induces
an isomorphism ρi : Γi → Γ′

i. Then f lifts to a conformal homeomorphism

f̂i : U \ π−1 (Bi) → U ′ \ π′−1
(
B′

i

)
.

Note that f̂i is (Γi,Γ
′

i)-equivariant: for any element γ ∈ Γi we have

ρi(γ) ◦ f̂i = f̂i ◦ γ .

The connected components of π−1 (Bi) and of π′−1 (B′

i) are disjoint closed

discs because Ω and Ω′ are intrinsic circle domains. Therefore f̂i is a con-
formal homeomorphism between circle domains. Hence by the uniqueness
part of Theorem B it is the restriction of a Möbius map Mi. We find that
Mi takes U onto U ′ since each of the two circle domains has only one non-
isolated boundary component. In particular, U = U ′. Moreover, the map
Mi : U → U ′ is also (Γi,Γ

′

i)-equivariant, since ρi(γ) ◦Mi ◦ γ
−1 : U → U ′ is a

Möbius map extending f̂i and is therefore equal to Mi. It follows that Mi

descends to a conformal homeomorphism f̃i : Ω∪Bi → Ω′∪B′

i that extends
f .

Gluing the extensions f̃i together for i = 1, . . . , n, we obtain the desired
conformal homeomorphism f̃ : S → S′ extending f . This completes the
proof of uniqueness.

4. Existence

The first step is to apply Theorem B to map Ω via a conformal homeo-
morphism onto a circle domain Ω∗ in some compact Riemann surface R.

Our goal is to construct a quasiconformal homeomorphism f of R onto
another Riemann surface S so that f is conformal on Ω∗ and the image
f(Ω∗) is an intrinsic circle domain in S. In fact we will construct a Beltrami
coefficient µ on R with ‖µ‖∞ < 1; then by the measurable Riemann mapping
theorem we will obtain a Riemann surface S and a quasiconformal homeo-
morphism f : R → S such that µ(z)fz = fz a.e. on R. By construction, µ
will be identically zero on Ω∗, so that f is conformal there.
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πR

Γ

WU

V

f

Ω∗

R

C ′

Ẽ

E ′

f (Ω∗)
f(B)

S

Q

π

π′

h

h′
Γ′

V B
E

α

C B̃

Figure 1. Domains, maps and group actions in the exis-
tence proof, illustrating the case where R is hyperbolic.

Consider any connected component B of R\Ω∗ that is not a single point.
Our aim is to construct µ on R so that f(B) will be a closed geometric disc
with respect to the Riemann surface f(Ω∗ ∪B). Since this is a condition on
the conformal structure of f(Ω∗ ∪ B), it depends only on the restriction of
µ to Ω∗ ∪ B, which by construction will be non-zero only on B. This is a
key point, for it means that we can correct the conformal structure on each
complementary component separately and the corrections will not interfere
with each other. This is in contrast to the proof of Koebe’s theorem by
iterated Riemann mapping, where each complementary component has to be
corrected infinitely many times and the required mapping is obtained in the
limit. By hypothesis Ω∗ has only finitely many complementary components
in R, so to ensure that ‖µ‖∞ < 1 it will suffice that ‖µ‖B < 1 for each
complementary component B.

Let π : U → Ω∗ ∪ B be an unbranched analytic covering map, where U

is one of D, C, or Ĉ. We rule out the case U = Ĉ, since in this case Ω∗

is an open disc in Ĉ, so it is already an intrinsic circle domain. Let Γ be
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the deck transformation group of π, i.e. the (infinite) group of conformal
automorphisms γ : U → U such that π ◦ γ = π. The preimage π−1(B) has
infinitely many connected components, each of which is a topological closed
disc, bounded by an analytic Jordan curve.

Apply Theorem A to the domain π−1 (Ω∗) = U \π−1(B). This provides a

conformal mapping h : π−1(Ω∗) → V ⊂ Ĉ, where V is a circle domain. Each

component of π−1(B) corresponds under h to a component of Ĉ \ V that is
a closed disc, not a singleton, since it is isolated and cannot be separated
from the other components by a ring domain of arbitrarily large modulus
contained in π−1 (Ω∗). The remaining end of π−1 (Ω∗) may correspond to
either a point or a disc in the complement of V ; this component is distin-
guished because it is not isolated. Let V be the union of V and all of its
isolated complementary components.

For any non-trivial element γ ∈ Γ, the map h ◦ γ is also a conformal
mapping of π−1 (Ω∗) onto the circle domain V , so by the uniqueness part of
Theorem A we have h◦γ = γ′◦h for a unique Möbius map γ′, which restricts
to an automorphism of V with no fixed points since γ has no fixed points
in U . The map that sends γ to γ′ is therefore an injective homomorphism
Γ → Γ′, where Γ′ is a subgroup of Aut(V). Since Γ′ acts simply transitively
on the components of h(π−1(B)) and has no fixed points in V , it acts freely
on V. Since Aut(V ) acts properly discontinuously on V , and each compact
subset of V intersects only finitely many components of h(π−1(B)), we also
conclude that Γ′ acts properly discontinuously on V.

Let C be a connected component of U \ π−1 (Ω∗), and let C ′ be the
corresponding component of V \ V , so that C ′ is bounded by a circle ∂C ′.
Let πR : W → R be an analytic universal covering of R, so that π−1

R (Ω∗) is

a circle domain. Let B̃ be a connected component of π−1

R (B), bounded by

a circle ∂B̃.
We will examine the behavior of the maps h, π and πR in the neighborhood

of the curves ∂C and ∂B̃. For the present proof the aim is merely to show
that h may be extended continuously to a quasiconformal homeomorphism
h′ : U → V that is equivariant with respect to Γ and Γ′. In fact we will work
slightly harder, using Lemma 3 to show that the quasiconformal dilatation
of this extension can be made to depend only on a conformal invariant of
Ω. This will be useful in the next section.

Let α be the simple closed geodesic in the hyperbolic metric of Ω∗ that
separates B from all the other components of R \ Ω∗. Let E be the ring
domain bounded between α and B. It has modulus mod(E) = π2/2ℓ(α),
where ℓ(α) is the length of α in the hyperbolic metric of Ω∗; note that this
length is a conformal invariant of Ω.

The restriction of πR to this circle domain is an unbranched analytic
covering of Ω∗ and is therefore an isometry from the hyperbolic metric of
π−1

R (Ω∗) to the hyperbolic metric of Ω∗. Thus the connected components of

π−1

R (α) are simple closed geodesics in the hyperbolic metric of π−1

R (Ω∗) and

are therefore disjoint, each separating a connected component of π−1

R (B)

from all of the other components of W \ π−1

R (Ω∗). It follows that πR maps
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each connected component of π−1

R (E) bijectively onto E. One of these is a

ring domain Ẽ surrounding B̃.
Likewise, the restriction of π◦h−1 to V is an unbranched analytic covering

of Ω∗, so π ◦ h−1 maps each connected component of h ◦ π−1(E) bijectively
onto E. One of these connected components is a ring domain E′ surrounding
C ′.

Consider the branch of π−1

R ◦ π ◦ h−1 that maps E′ to Ẽ. It is a home-
omorphism of ring domains taking the inner boundary circle ∂C ′ onto the
inner boundary circle ∂B̃. Lemma 3 gives an extension to a quasiconformal
homeomorphism Q from E′ ∪ C ′ to Ẽ ∪ B̃.

Now Q−1◦π−1

R gives us a quasiconformal homeomorphism g : B → C ′ that
continuously extends the boundary correspondence induced by of h ◦ π−1.
We define µ|B to be the Beltrami coefficient gz/gz.

When we solve the Beltrami equation to obtain f : R → S, the covering
map π′ : V → (S \ f (Ω∗)) ∪ f(B) such that f ◦ π = π′ ◦ h will be an
unbranched analytic covering, mapping the disc C ′ onto f(B), as required.

5. The case of countably infinite connectivity

It is natural to ask whether the notion of intrinsic circle domains can be
extended to domains of countably infinite connectivity.

5.1. All ends isolated. First, we deal with the case of a domain Ω such
that every end of R is isolated, i.e. has a neighborhood that meets no other
end. If Ω is embedded in a compact ambient Riemann surface then this
implies that Ω has only finitely many ends and finite genus, and we already
understand this case.

For a more interesting example, let R be a Z-cover of a compact genus 2
Riemann surface, so that R has infinite genus and two ends. Then let Ω be
a domain obtained by removing countably many disjoint closed topological
discs with no accumulation point from R. We could hope to modify the
structure of R on a neighborhood of each disc in order to make the com-
plementary components be intrinsic discs. However, there is no way to fix
the two ends of R so that they are represented by intrinsic discs, for the
resulting ambient Riemann surface would be compact and therefore have
only finite genus.

Suppose that Ω is infinitely connected or has infinite genus. We call an
end of Ω fixable if it has a neighborhood that is a ring domain.

Lemma 4. For any Riemann surface Ω, there is a conformal embedding of

Ω into another Riemann surface R such that every connected component of

R \ Ω is an intrinsic disc and no end of R is fixable.

Proof. We can find disjoint open neighborhoods of all the fixable ends, for
example by cutting along closed geodesics or horocycles around each end.

In the existence proof for Theorem 2 we only used a local surgery to mod-
ify the ambient Riemann surface in a neighborhood of each complementary
component. The initial step of passing to a circle domain was technically
convenient (and will be needed later), but was not really necessary. All we
really needed to know was that for each individual end E, we can embed Ω
in a Riemann surface RE such that RE \Ω is a geometric disc in RE . This is
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true for any fixable end E, since it has a neighborhood that is a ring domain
and therefore it has a neighborhood UE conformally equivalent to a round
annulus A = {z ∈ C | a < |z| < 1}, for some 0 ≤ a < 1. Then we can glue
the open unit disc to Ω, identifying A with UE, to obtain a Riemann surface
R′

E in which Ω is embedded so that the end E corresponds to a connected
component K of R′

E \ Ω. Then we can apply Theorem A to the preimage
of Ω in the universal cover of R′

E , to find out how to modify the conformal
structure on K to obtain an embedding of Ω in a new Riemann surface RE

so that the end E corresponds to a connected component of RE \Ω that is
an intrinsic disc.

To construct R we glue together all the Riemann surfaces RE correspond-
ing to fixable ends E by identifying the embedded copies of Ω. The resulting
R is locally a Riemann surface, is connected, and is second countable because
Ω can only have countably many fixable ends. �

5.2. Non-isolated ends. We now return to the case of a subdomain Ω
of a compact Riemann surface, but assume that Ω is countably infinitely
connected. It must now be the case that some complementary components
are not isolated. There is a potential topological obstruction associated
with complementary components that are not isolated: they cannot be rep-
resented by intrinsic discs of finite radius. We might attempt to salvage
something by allowing complementary components to be horodiscs with re-
spect to the hyperbolic metric, but this would not help in the case of a

circle domain Ω ⊂ Ĉ in which some circular complementary component B
has precisely two points on its boundary that are accumulation points of
other complementary circles.

Therefore in the countably infinitely connected case, we define an intrinsic
circle domain Ω to be a subdomain of a compact Riemann surface R such
that any complementary component that is not isolated is a singleton and
every non-singleton complementary component L is a closed geometric disc
with respect to Ω ∪ L. This definition is intended to be analogous to the
definition of a circle domain in the countably connected case.

In order to obtain a positive theorem, we can place a simple conformal
geometric constraint on the domain. We will say that a countably connected
domain Ω in a compact Riemann surface R is uniformly separated if there
exists ǫ > 0 such that each connected component of R \ Ω either is a single
point or is separated from all the remaining complementary components by
a ring domain of modulus at least ǫ embedded in R \ Ω.

Lemma 5. Suppose Ω is a countably-connected uniformly separated domain

in a compact Riemann surface R. Let ϕ be any conformal embedding of Ω
into a compact Riemann surface R′ of the same genus as R. Then the non-

singleton complementary components of R′ correspond to the non-singleton

complementary components of R, so ϕ(Ω) is uniformly separated in R′.

To explain the significance of this, we first note that a complementary
component B is isolated if and only if Ω contains a ring domain with B
as one of its complementary components; this is a topological condition
on Ω, so the corresponding complementary component in ϕ(Ω) is also not
isolated. If Ω is uniformly separated, then the connected components of
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R \ Ω that are not singletons must be isolated. However, the remaining
complementary components need not be punctures; some or all of them could
be accumulation points of sequences of other complementary components.
For a general open Riemann surface Ω of countable connectivity and finite
genus, it is possible for an end of Ω to be represented in one conformal
embedding by a complementary component that is a non-isolated singleton,
yet in some other conformal embedding to be represented by a non-singleton.

Figure 2. Two conformally equivalent countably connected domains.

We can construct an example of this cavitation behavior1 as follows. Con-
sider a subdomainD of C\D obtained by removing countably many complex
conjugate pairs of circular arcs, where one arc of the nth pair is

An =
{(

1 + 2−n
)
eit : θn < t < π − θn

}
, θn ց 0 .

The domain

Dn = C \


D ∪

n⋃

j=1

(
Aj ∪ Aj

)



is conformally equivalent via a conformal map that fixes z = 2 to a slit do-
main Sn, which may be obtained from C\{0} by removing finitely many pairs
of intervals In, In contained in the imaginary axis, arranged symmetrically
about 0, together with an interval (−δni, δni). See figure 2 for a schematic
illustration. One can show that if the angles θn are chosen to decrease to 0
sufficiently fast then the domains Sn converge in the Carathéodory topology
to a limit domain S in which 0 is a non-isolated singleton complementary
component, but every other complementary component is an isolated inter-
val of the imaginary axis. Then D is conformally equivalent to S and we

1The term cavitation refers in fluid dynamics to the sudden formation of a bubble as
a dissolved gas comes out of solution around a nucleation site.
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have an example of cavitation: the singleton complementary component {0}
of S corresponds to the complementary component D of D.

The idea is that by making θn small we can ensure that the extremal
length of the family of curves in D joining An to An is as small as we like.
This means we can make the gap between the intervals In and In as short
as we like in comparison to the length of In. In fact to ensure that the end
represented in D by the unit circle is represented in S by a singleton, it
suffices to take θn = 2−n.

We will now prove Lemma 5, which says that uniform separation prevents
cavitation.

Proof. Suppose each non-singleton connected component Bi of R \Ω is sep-
arated from the remaining complementary components by a ring domain
Ai ⊆ Ω of modulus ǫ. Then the core curve γi of the ring domain Ai has
length 2π2/ǫ with respect to the hyperbolic metric of Ai. By the Schwarz-
Pick lemma, the length of γi with respect to the hyperbolic metric of Ω is
also at most 2π2/ǫ. Consider the simple closed geodesic gi (with respect to
the hyperbolic metric of Ω) that lies in the free homotopy class of γi. Since
gi is a length minimizer in its free homotopy class, it is no longer than γi
in the hyperbolic metric of Ω. It follows that the ring domain Ei bounded
between gi and Bi has modulus at least ǫ/4. Our reason for passing from
the ring domains Ai to the ring domains Ei is that the closures of the Ei

in R are pairwise disjoint, which was not necessarily true of the Ai, and
moreover the Ei are intrinsically-defined subdomains of Ω.

We now cut Ω along each gi to leave a domain U = Ω \
⋃
Ei. We claim

that for any conformal embedding ϕ of Ω into a compact Riemann surface
R′ of the same genus as R, there exists a quasiconformal homeomorphism
Q : R → R′ such that ϕ|U = Q|U . To prove this, consider a component
Di = Bi ∪ Ei of R \ U . It corresponds to a component D′

i = B′

i ∪ ϕ(Ei) of
R′ \ ϕ(U), where B′

i is a component of R′ \ ϕ(Ω). We claim that there is a
K-quasiconformal homeomorphism Di → D′

i whose restriction to the curve
gi agrees with ϕ. Here K depends only on ǫ. To see this, let ψ : Di → D and
χ : D′

i → D be Riemann mappings, and note that ∂Di and ∂D
′

i are analytic
Jordan curves. Apply Lemma 3 to the conformal homeomorphism

χ ◦ ϕ ◦ ψ−1 : ψ (Ei) → χ
(
E′

i

)

and apply a Schwarz reflection to obtain a K-quasiconformal homeomor-
phism h : D → D whose boundary correspondence agrees with that of
χ ◦ ϕ ◦ ψ−1, where K depends only on ǫ. Now

χ−1 ◦ h ◦ ψ : Di → D′

i

is a K-quasiconformal homeomorphism agreeing with ϕ on the boundary,
as required.

Gluing together ϕ and the K-quasiconformal extensions to the compo-
nents Di, we obtain a K-quasiconformal homeomorphism

H : Ω ∪
⋃
Bi → ϕ(Ω) ∪

⋃
B′

i .

Since Ω is countably connected, the complement X = R \ (Ω ∪
⋃
Bi) is

a countable union of singletons, and therefore is a removable set for the
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solution of the Beltrami equation. Thus H extends to a homeomorphism
R→ R′, and hence the complementary components of R′ that are not among
the Bi are singletons.

�

Theorem 6. Suppose Ω is a domain in a compact Riemann surface R such

that Ω has countably infinite connectivity, has the same genus as R, and

is uniformly separated. Then there is a conformal embedding ϕ of Ω in a

compact Riemann surface S so that ϕ(Ω) is an intrinsic circle domain in S.
The pair (S,ϕ) is unique up to conformal isomorphism.

Proof. The existence proof is similar to that of Theorem 2. Lemma 5 shows
that when we apply Theorem B, the resulting countably connected circle
domain Ω∗ ⊂ R satisfies the hypotheses of Theorem 6, in addition to having
the property that its non-singleton complementary components are geomet-
ric discs. Then we note that by Lemma 3 the quasiconformal distortion of
the extension C → B can be bounded in terms of ǫ. Then the resulting
Beltrami coefficient µ has ‖µ‖∞ < 1, so we may still apply the measurable
Riemann mapping theorem to obtain the desired conformal structure on S.
Then Lemma 5 ensures that the non-isolated complementary components of
f(Ω∗) are singletons, so that f(Ω∗) is an intrinsic circle domain.

The uniqueness proof goes through as before, but with one additional
step. Because of the separation hypothesis there is no difficulty in extending
a conformal homeomorphism f : Ω → Ω′ between two countably-connected
intrinsic circle domains across each non-singleton complementary compo-
nent. We thus obtain a conformal homeomorphism between domains whose
complements consist of countably many points, which in turn extends to
a conformal homeomorphism f̃ : S → S′ between the ambient Riemann
surfaces. �

It is likely that the condition of uniform separation can be weakened
by making use of results on existence and uniqueness of solutions to the
Beltrami equation in the case where the Beltrami coefficient has norm 1 but
the measure of the set on which the distortion is large is controlled.

6. Mixtures of intrinsic and extrinsic circles

Now we present a generalization of Theorems 2 and 6 in which the con-
ditions on the complementary components of Ω in S are mixed. That is,
some components are punctures or geometric discs in the natural geometry
of the ambient compact Riemann surface S, while each of the others is an
intrinsic disc, i.e. a geometric disc with respect to its own union with Ω.

Theorem 7. Let Ω be an open Riemann surface with finite genus and at

most countably many ends. Let Ki, i ∈ I be some of the ends of Ω, none
of them punctures, where the index set I may be either finite or countably

infinite. Suppose that for some ǫ > 0 and for each i ∈ I there is a ring

domain Ai contained in Ω, with modulus at least ǫ, that separates the end

Ki from the other ends of Ω. Then Ω is conformally equivalent to a domain

ϕ(Ω) in a compact Riemann surface S, with complementary components Li

corresponding to Ki, such that ϕ(Ω)∪
⋃

i∈I Li is a circle domain in S and for



INTRINSIC CIRCLE DOMAINS 13

each i ∈ I, Li is either a singleton or a closed geometric disc with respect

to the domain ϕ(Ω) ∪ Li. Such a pair (S,ϕ) is unique up to conformal

isomorphism.

Proof. We begin by replacing Ω by a conformally equivalent circle domain
Ω∗ in a compact Riemann surface R, as in Theorem B. Apply the construc-
tion of section 4 to each of the components Ki, i ∈ I, to obtain a Beltrami
differential µ(z)dz

dz
supported on

⋃
Ki. In the case where I is infinite, the

separation condition guarantees that ‖µ‖∞ < 1, as it did for Theorem 6.
Solving the Beltrami equation µ(z)fz = fz on R gives a new compact Rie-
mann surface S′ with a homeomorphism f : R → R′, conformal away from
the preimages of the Ki, such that f(Ki) is a closed hyperbolic disc with
respect to the hyperbolic metric of f(U)∪ f(Ki). The domain f (U ∪

⋃
Ki)

is countably connected so by Theorem B there is a conformal homeomor-
phism g : f (U ∪

⋃
Ki) → Ω∗, where Ω∗ is a circle domain in a compact

Riemann surface S. The image Ω = g(f(U)) is the required domain, and
Li = g(f(Ki)). Indeed, g is conformal on U ∪ f(Ki), so it is an isometry
from the hyperbolic metric of U ∪ f(Ki) to the hyperbolic metric of Ω∪Li.

To prove uniqueness, suppose that f : Ω → Ω′ is a conformal homeo-
morphism between two domains Ω ⊂ S and Ω′ ⊂ S′, each satisfying the
conditions of the theorem. Let the complementary components of Ω′ be L′

i,
i ∈ I. Apply the argument of §3 to extend f to a conformal homeomorphism
of countably connected circle domains f : Ω ∪

⋃
Li → Ω′ ∪

⋃
L′

i. This must
be the restriction of a conformal map from S to S′ by the final part of He
and Schramm’s Theorem B. �

7. Numerical approximation using circle packings

The rest of this paper concerns the practical numerical approximation of
finitely-connected intrinsic circle domains in the sphere. The idea is roughly
to follow the steps of the existence proof, performing each step numerically.

Firstly, we need a way to approximate circle domains having Fuchsian
symmetry. This already presents us with a choice of methods, as there are
several numerical methods for computing circle domains. Finitely connected
circle domains can be approximated using iterated Riemann mapping, the
individual steps of which can be carried out using a number of different
methods for computational conformal mapping. However, we must deal
with an infinitely connected circle domain, so it seems at first sight that we
must make decisions about which complementary components to ignore at
any particular stage of the approximation. We will see that this truncation
can in fact be avoided.

Secondly, if we follow the existence proof directly, it seems that we need
to compute a quasiconformal extension numerically, find its dilatation and
then solve a Beltrami equation on a larger domain. In practice, these steps
can be combined into a single conformal welding step.

A final practical difficulty may arise in converting the output of each step
into the input for the next step, especially when the steps require different
types of grid.

Fortunately, circle packing is a numerical approximation method that of-
fers solutions to all of these challenges. Although circle packing is not often
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used for high-precision conformal mapping problems on account of its rela-
tively slow convergence, it is particularly well suited to the approximation
of circle domains, especially those with Fuchsian symmetry. It is also a
practical tool for numerical conformal welding. We were able to carry out
all of the steps of an approximation procedure for computing intrinsic circle
domains using the CirclePack software [9] written by Ken Stephenson et
al. For an introduction to circle packing and its use as a computational tool,
we refer the reader to Stephenson’s monograph [8].

7.1. Overview of circle packing. Let T be a finite graph embedded in
the plane. A circle packing of T in the plane is a collection P of circular discs
Cv with disjoint interiors, one corresponding to each vertex v of T , such that
whenever vertices v and w are adjacent in T the discs Cv and Cw are tangent.
We call T the nerve of P. We may also circle pack in the sphere, using discs
in the spherical metric, or in the hyperbolic plane, using hyperbolic circles
and possibly also horocircles on the boundary. The carrier of P is the
geometric complex formed by connecting the centers of neighboring circles
by geodesic segments. According to the Koebe-Andreev-Thurston theorem,
when T is any triangulation of the sphere, there exists a circle packing of
T , and it is unique up to Möbius maps and reflection. In this case, the
carrier of P is the entire sphere. Since we want to use circle packings to
approximate conformal structures, we remove the reflection ambiguity by
imposing a fixed orientation.

There is a beautiful algorithm due to Bill Thurston for computing a circle
packing from a given nerve. It works by removing one vertex and packing the
remaining triangulation into the unit disc. This is achieved by computing
the hyperbolic packing label for the packing; this is the function which assigns
a hyperbolic radius to each vertex of the triangulation, in such a way that
the boundary circles are given infinite radius, so that they correspond to
horocircles, internally tangent to the unit circle, and all interior circles have
finite hyperbolic radius. There is a unique packing label that results in an
angle sum of 2π at each interior vertex. Thurston’s algorithm approximates
the correct label as the limit of a pointwise increasing sequence of labels.
Once the correct packing label is known, the circles of the given radii can
be laid out in the hyperbolic plane iteratively so that each satisfies the
appropriate tangency conditions.

7.2. Outline of the approximation algorithm. Here we outline a nu-
merical method for approximating intrinsic circle domains. Let Ω be a given
finitely connected domain in the Riemann sphere. Begin by taking a circle
packing P such that the interiors of all the circles of P are contained in
Ω and the complementary components of Ω are separated by the carrier of
P. All subsequent calculations depend only on the nerve of P, so it is in
this step that we have captured a discrete approximation to the conformal
equivalence class of Ω. The quality of the final approximation of the intrinsic
circle domain Ω∗ conformally equivalent to Ω will depend on the mesh of
P (the size of its largest circle) and the maximum distance of ∂Ω from the
carrier of P.
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We perform a sequence of circle packing computations in order to con-
struct a triangulation of the sphere together with an embedding of the nerve
of P as a subcomplex. When we compute the circle packing Q of the spher-
ical triangulation, the carrier of the embedded sub-packing gives an approx-
imation to the intrinsic circle domain Ω conformally equivalent to U . We
can interpolate the mapping of circle centers of P to the corresponding cir-
cle centers in Q to give a polyhedral embedding of the carrier of P into the
carrier of Q. Since we are mapping from the plane to the sphere, we cannot
map in a piecewise affine fashion, so instead we map in a piecewise affine
fashion to the polyhedron in R

3 whose vertices are the vertices of Q in S2,
and then project radially outwards to S2. This map gives a homeomor-
phism which approximates the conformal map from U to Ω and is locally
quasiconformal.

We will explain informally why each step of the computation provides an
arbitrarily good approximation to a conformal map occurring at the cor-
responding step in the constructive proof of Theorem 1. Note that the
computation consists of finitely many circle packing steps. In each step we
are approximating the solution of a problem whose solution depends contin-
uously on its data. This should suffice to prove local uniform convergence
of the approximations to the conformal map from Ω to Ω∗, but we will not
attempt to estimate the rate of convergence.

7.3. Approximating circle domains via circle packing. Suppose we
are given a bounded finitely connected domain Ω in the complex plane. We
find a sequence of circle packings Pn in Ω whose carriers exhaust Ω. To
construct Pn we cut out a portion of the regular hexagonal circle packing
with circles all of radius ǫ = 2−n. This means that we keep only those circles
whose interiors are entirely contained in Ω. Stephenson [8] describes this as
using ∂Ω as a ‘cookie cutter’. We have to take some care at the boundary: we
retain only the largest connected component of the hexagonal packing that
remains, discarding any peripheral islands and iteratively removing vertices
of degree one until we are left with a connected triangulation. When we
take n large enough, the boundary components of this triangulation will be
in one-to-one correspondence with the complementary components of Ω.

Next, to each cycle of boundary vertices of Pn we adjoin a new ‘ideal’
vertex, adjacent to all of the vertices in the cycle, and in this way we obtain
a triangulation of the sphere. By the Koebe-Andreev-Thurston theorem
there is a circle packing whose nerve is this triangulation, and it is unique
up to Möbius transformations. Consider what happens to this spherical
packing as we let n tend to ∞. Using quasiconformal distortion estimates
for packings of bounded vertex degree, one can show that after a suitable
Möbius normalization, the circles corresponding to the added ideal vertices
converge to limit circles of positive radius, while the maximum radius of the
all the other circles tends to zero uniformly.

Let fn be the polyhedral map from the hexagonal cut-out packing Pn to
the carrier of the spherical packing, normalized so that three chosen points
in Ω are fixed by fn. It turns out that as n → ∞, fn converges locally
uniformly on Ω to a conformal map from Ω to a circle domain. To prove
this, we can use the hex packing lemma of Rodin and Sullivan [6]. This says
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that the quasiconformal dilatation of fn converges locally uniformly to 0 on
Ω. The Rodin-Sullivan bound for the quasiconformal dilation on a given
face of the triangulation depends only on the number of layers of hexagonal
packing surrounding it, and tends to 0 as the number of layers tends to
infinity. Let Ω′ be any subdomain of Ω bounded by Jordan curves in Ω,
such that Ω′ is homeomorphic to Ω. The dilatation bound shows that the
images of the maps fn restricted to Ω′ remain within a compact subset of the
Teichmüller space of multiply connected domains homeomorphic to Ω. Any
subsequential limit of the sequence fn must be a conformal homeomorphism,
and its image must be a circle domain. Given the normalization, there is
a unique such homeomorphism. It follows that the sequence fn converges
locally uniformly as n→ ∞.

We can augment the image packings by inverting across all the ‘ideal’
circles, adding circles of degree 4 in the resulting four-sided interstices to
maintain a triangulation. By considering moduli of ring domains in the
resulting packing it is possible to show that the maximum radius of any
non-ideal circle in the image packing also converges to 0 as n→ ∞.

We have now seen how to compute an arbitrarily good approximation to
the circle domain Ω∗ conformally equivalent to Ω. We may assume that Ω∗

is contained in the plane.

Figure 3. A circle packing of a circle domain in the Rie-
mann sphere. Both the domain and the circle packing have
sixfold symmetry.

7.4. Circle domains with Fuchsian symmetry. Suppose B is one of
the complementary components of Ω∗. Let π : D → Ω∗ ∪ B be an analytic
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universal covering map. To compute an approximation to the circle domain
conformally equivalent to D\π−1(B), we use the same trick again. We have
a triangulation of Ω∗, to which we add just one ideal vertex vB corresponding
to the complementary component B. Now we apply Thurston’s algorithm
to compute the hyperbolic packing label for the resulting multiply connected
triangulation. If we lay the circles out according to this packing label, we
get a Fuchsian monodromy group. Call the resulting packing PB . The
circle corresponding to vB and its translates under the monodromy group
approximate the bounded components of the required circle domain. For the
conformal welding step that follows we will only need to know the hyperbolic
radii for the circles corresponding to the vertex vB and its neighbors. It is
not necessary to perform the layout routine.

Figure 4. A circle packing approximation of the intrinsic
circle domain conformally equivalent to the circle domain in
Fig. 3, with the circle packing of the same complex shown.

7.5. Conformal welding via circle packing. Given a Jordan curve γ in
the Riemann sphere, we can compute the Riemann mappings of the unit
disc onto the interior and the exterior of γ. The boundary values of these
Riemann mappings give two different continuous maps of the unit circle
onto γ, φint and φext. The shape of γ is encapsulated in the boundary
correspondence φ−1

ext◦φint, which is an orientation-reversing homeomorphism
of the unit circle. Conformal welding is the process of recovering γ (up to a
Möbius map) from the boundary correspondence.

The CirclePack software includes a package for performing approximate
conformal welding, following the procedure described by Williams [10]. The
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idea is to paste two combinatorial closed discs together along their bound-
aries, according to a best possible combinatorial approximation of the given
boundary correspondence, to produce a triangulation of the sphere. We
then compute the circle packing for this triangulation. For example, we
may start with two maximal packings of the unit disc (meaning that the
boundary circles are internally tangent to the unit circle), and use the arc
length around the unit circle as a guide for pasting together the two trian-
gulations, introducing new vertices where necessary to keep control of the
vertex degrees.

In our application to intrinsic circle domains, we weld a combinatorial
closed disc to the boundary cycle corresponding to each complementary
component B of Ω, using the arc length around the circle corresponding to
vB in the packing PB and the trivial boundary correspondence eiθ 7→ e−iθ.
A suitable choice of combinatorial closed disc would be a large section of the
regular hexagonal packing, for then the hex packing lemma of Rodin and
Sullivan can be applied to show that the desired welding and the computed
welding differ by a quasiconformal map which has small dilatation except
on an annulus of small modulus and small area covering the cycle of edges
along which the welding is performed. After performing a welding for each
boundary component, we simply apply Thurston’s algorithm to compute a
circle packing of the resulting spherical triangulation. In the case where
the ambient Riemann surface R has positive genus, we would compute a
packing of the universal cover of the welded complex at this stage to get a
circle packing approximation to the Riemann surface S.

The finished spherical circle packing gives an approximation to the map ϕ
and to the desired conformal structure on the interior of each complementary
component of ϕ(Ω), and on the interior of the image of ϕ(Ω).

7.6. Convergence. We sketch a proof that the approximation scheme de-
scribed above does converge locally uniformly on the domain Ω∗ to the
conformal mapping to an intrinsic circle domain, after suitable normaliza-
tion. The strategy is to show that every map appearing in Figure 1 is well
approximated by the corresponding polyhedral map between circle packings.
Then since each step depends continuously on its input data, we will find
that the polyhedral map from P∗ to S2 converges locally uniformly on Ω∗

to the desired conformal mapping.
On the subcomplex of the packing representing the intrinsic circle domain,

the hex-packing distortion estimate of Rodin and Sullivan shows that the
polyhedral mapping is quasiconformal with dilatation that converges locally
uniformly to zero. We can apply a similar estimate on the interior of each
complementary component.

It remains to show that the conformal welding step is well approximated
by the discrete conformal welding. To do this we have to control the con-
formal modulus of the image of a narrow annular neighborhood of each
boundary component, where the circles are not deep enough in the hex
packing for the Rodin-Sullivan estimate to give the bound we need. To do
this it suffices to bound the maximum degree of the vertices appearing in
the final triangulation. This is because the Rodin-Sullivan ring lemma allow
the quasiconformal distortion of polyhedral maps between circle packings
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to be bounded in terms of the maximum degree. We can arrange that all
vertices have degree 6 except those involved in the combinatorial welding.
The largest degree arising when we weld using the hyperbolic radii of the
neighbors of vB in the packing PB can be bounded in terms of the ratio
between the radii of the largest and smallest circles adjacent to vB. Since
we began with a hex-packing of Ω with circles all of equal radius, this ra-
tio is controlled in the limit by the maximum and minimum value of the
derivative on the boundary ∂B of the conformal map h ◦ π−1.

Figure 5. A circle packing of a circle domain with four com-
plementary components.

7.7. Practical considerations. Examining the figures, the reader will note
that in our numerical experiments we have not restricted ourselves to using
hex packings as our starting point. Instead we have used packings with few
layers of degree 7 vertices near the boundary, so that there can are many
very small circles on the boundary without needing a very large number of
circles in total. This was done to reduce the errors from the combinatorial
welding step. We pay for this by having larger circles far from the bound-
ary, and losing the rigorous distortion bounds, but this seems a worthwhile
trade since we expect the Schwarzian derivative of the map that we are
approximating to be small on this region. In Figures 3 and 4 there is a
circle of degree 15 fixed by a rotational symmetry of the packing of order 3.
The Schwarzian derivative of the map we are approximating must certainly
vanish at the center of this circle, by symmetry considerations. Apart from
two circles of this type, the maximum degree in the packing is 10. In the
packings in Figures 5 and 6, the maximum degree is 7.
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Figure 6. The spherical circle packing used to compute the
intrinsic circle domain conformally equivalent to the circle
domain shown in Fig. 5.

Finally we comment that it may be more satisfactory from the point of
view of computation, and also to simplify the convergence proof, to perform
the discrete conformal welding using packings with specified overlap angles
rather than restricting ourselves to tangency packings. However, we have
not implemented this in practice.

References
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