
On the Complexity of Anchored Rectangle
Packing
Antonios Antoniadis
Universität des Saarlandes,
Saarbrücken, Germany
Max-Planck-Institut für Informatik,
Saarbrücken, Germany
aantonia@mpi-inf.mpg.de

Felix Biermeier
Universität Hamburg, Germany
felix.biermeier@uni-hamburg.de

Andrés Cristi
Universidad de Chile, Santiago, Chile
andres.cristi@ing.uchile.cl

Christoph Damerius
Universität Hamburg, Germany
christoph.damerius@uni-hamburg.de

Ruben Hoeksma
Universität Bremen, Germany
University of Twente, Enschede, The Netherlands
hoeksma@uni-bremen.de

Dominik Kaaser
Universität Hamburg, Germany
dominik.kaaser@uni-hamburg.de

Peter Kling
Universität Hamburg, Germany
peter.kling@uni-hamburg.de

Lukas Nölke
Universität Bremen, Germany
noelke@uni-bremen.de

Abstract
In the Anchored Rectangle Packing (ARP) problem, we are given a set of points P in the unit
square [0, 1]2 and seek a maximum-area set of axis-aligned interior-disjoint rectangles S, each of
which is anchored at a point p ∈ P . In the most prominent variant – Lower-Left-Anchored Rectangle
Packing (LLARP) – rectangles are anchored in their lower-left corner. Freedman [19, Unsolved
Problem 11, page 345] conjectured in 1969 that, if (0, 0) ∈ P , then there is a LLARP that covers an
area of at least 0.5. Somewhat surprisingly, this conjecture remains open to this day, with the best
known result covering an area of 0.091 [11]. Maybe even more surprisingly, it is not known whether
LLARP – or any ARP-problem with only one anchor – is NP-hard.

In this work, we first study the Center-Anchored Rectangle Packing (CARP) problem, where
rectangles are anchored in their center. We prove NP-hardness and provide a PTAS. In fact, our
PTAS applies to any ARP problem where the anchor lies in the interior of the rectangles. Afterwards,
we turn to the LLARP problem and investigate two different resource-augmentation settings: In
the first we allow an ε-perturbation of the input P , whereas in the second we permit an ε-overlap
between rectangles. For the former setting, we give an algorithm that covers at least as much area
as an optimal solution of the original problem. For the latter, we give an (1− ε)-approximation.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases anchored rectangle, rectangle packing, resource augmentation, PTAS, NP,
hardness

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.8

Acknowledgements We thank the organizers of the Bremen-Hamburg workshop on algorithms,
combinatorics, and optimization for organizing the open problem session where we first learned of
the Freedman conjecture. In particular, we thank Nicole Megow from University of Bremen for
posing the conjecture during that session and for valuable suggestions. Parts of this work were a
result of the UHH & UChile TCS Workshop 2018.

© Antonios Antoniadis, Felix Biermeier, Andrés Cristi, Christoph Damerius, Ruben Hoeksma,
Dominik Kaaser, Peter Kling, and Lukas Nölke;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/228086809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-2152-7883
mailto:aantonia@mpi-inf.mpg.de
mailto:felix.biermeier@uni-hamburg.de
mailto:andres.cristi@ing.uchile.cl
mailto:christoph.damerius@uni-hamburg.de
https://orcid.org/0000-0002-6553-7242
mailto:hoeksma@uni-bremen.de
https://orcid.org/0000-0002-2083-7145
mailto:dominik.kaaser@uni-hamburg.de
https://orcid.org/0000-0003-0000-8689
mailto:peter.kling@uni-hamburg.de
https://orcid.org/0000-0003-0523-0668
mailto:noelke@uni-bremen.de
https://doi.org/10.4230/LIPIcs.ESA.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 On the Complexity of Anchored Rectangle Packing

1 Introduction

The lower-left-anchored rectangle packing (LLARP) problem was first posed in 1969 by
Freedman [19]: Given the unit square U := [0, 1]2 in the plane and a finite set of points P ⊆ U ,
find a maximum-area set of axis-aligned and interior-disjoint rectangles S, such that for
each p ∈ P , there is exactly one (possibly trivial) rectangle R ∈ S that has p in its lower-left
corner. It was conjectured [19, 20] that the area covered is at least 0.5 as long as (0, 0) ∈ P .
The first and so far only result that achieves a constant lower bound covers an area of at
least 0.091 [11].

A natural generalization of the LLARP problem looks at anchors different from the
lower-left corner. Such an anchoring can be defined by a pair (α, β) ∈ [0, 1]2. The (α, β)-
ARP problem then looks for a maximum-area rectangle set as above but with rectangles
anchored in the relative position (α, β) (see Section 2). For example, (0, 0)-ARP is LLARP,
while (1/2, 1/2)-ARP requires all rectangles to have a p ∈ P at their center. We refer to the
latter as center-anchored rectangle packing (CARP) problem.

Our Contribution. Even though the formulation of LLARP and Freedman’s conjecture [19],
date back to 1969 it is still not even known whether its decision variant is NP-hard. This
is why, in this work, we focus on the complexity of related ARP problems and introduce a
resource augmentation setting for LLARP.

When looking at the complexity of CARP, a difference that stands out compared to
LLARP is that CARP allows one to simulate “non-expandable” points: By putting four
points at the corners of a tiny ε-sized square, none of their rectangles’ side lengths can
exceed ε. One can think of these four points as one input point that cannot be used as an
anchor but still restricts the expansion of other rectangles. These non-expandable points turn
out to be a valuable asset, as they can be used to build walls and inject additional geometry
into the problem. We exploit this in an elaborate construction that encodes maximum
independent set into a CARP instance, proving NP-hardness of CARP (cf. Section 4). The
construction of non-expandable points seems difficult or even impossible for LLARP and is
the main obstacle in transferring our NP-hardness proof to that setting.

The NP-hardness is complemented by a polynomial-time approximation scheme (PTAS),
which extends also to any anchoring (α, β) ∈ (0, 1)2. The PTAS is based on a carefully
constructed input instance for a related problem called maximum weight independent set of
rectangles (MWISR) and the usage of a known PTAS in a resource augmentation setting of
MWISR (cf. Section 3).

With respect to the classical LLARP problem, we initiate the investigation of the problem
with resource augmentation. We study two such settings. In the first, the algorithm is
allowed to slightly perturb the input points. In the second, the rectangle set produced by
the algorithm may have some (bounded) overlap. In both cases, the resulting solution is
compared to an optimal solution without these augmentations. For the first setting, we
develop an algorithm that produces an anchored rectangle set of total area no less than
that of an optimal solution of LLARP without resource augmentation (cf. Section 5). Our
analysis is combinatorial in nature and consists of transforming the optimal solution to a
feasible solution for a perturbed instance by using a specific linear program with totally
unimodular incidence matrix. For the second setting, we provide an algorithm that covers at
least (1− ε) times the area of an optimal solution (cf. Section 5). Our algorithm is based on
the one for the first setting.

A. Antoniadis et al. 8:3

Further Related Work. The best known polynomial time algorithm for the LLARP problem
is due to Dumitrescu and Tóth [11] and covers an area of at least 0.091. Since the optimal
solution cannot cover more than an area of 1 (the whole unit square), their analysis also
implies a 0.091-approximation. In the setting where, instead of arbitrary rectangles, squares
must be used, Balas et al. [5] achieve an approximation ratio of 1/3. They also consider a
setting where the algorithm can choose for each rectangle from multiple anchors (the four
corners), giving a (7/12− ε)-approximation algorithm, where ε = |P |−1, and a QPTAS for
rectangles, as well as a 9/47-approximation algorithm and a PTAS for squares. The QPTAS
and PTAS extend to the lower-left anchored variants. Recently, Akitaya et al. [4] gave the
first NP-hardness result for an ARP variant where only squares may be packed and each
square can be anchored at any of its four corners. They also show that, for any instance
consisting of finitely many input points inside U , the union of all feasible anchored square
packings covers an area of at least 1/2. Finally, if rectangles can be anchored at any of their
four corners but input points are restricted to the boundary of U , Biedl et al. [9] give a
polynomial-time algorithm (based on maximum independent set for a specific class of graphs).

ARP problems fall within the more general setting of packing axis-aligned and interior-
disjoint rectangles in a rectangular container. This setting captures several important and
well studied optimization problems. See, for example, the (NP-hard) problems 2D-knapsack
and strip packing [2, 6], as well as maximum area independent set of rectangles [3, 7, 8].
Similar problems have also been formulated by Radó and Rado [16, 13, 14, 15]. These
problems differ from ARP in that the size of the packed objects is part of the input and not
controllable and, in some cases, there is no anchoring of the rectangles.

2 Preliminaries

We start with some general notation. Consider a point p ∈ R2 and an axis-aligned rectan-
gle R ⊆ R2 with its lower-left corner in (x, y) ∈ R2. Let w and h denote the width and height
of R, respectively. For a pair (α, β) ∈ [0, 1]2 (called anchoring), we say R is (α, β)-anchored
in p if p = (x+ α · w, y + β · h). We also say that p (α, β)-spans R. If the anchoring (α, β)
is clear from the context we omit it. We use A (R) = w · h to denote the area of rectan-
gle R. Similarly, given a set S of rectangles we define A (S) as the area of

⋃
R∈S R. We

use U = [0, 1]2 to denote the unit square. If not stated otherwise, any rectangle is assumed
to be axis-aligned.

The Anchored Rectangle Packing Problem. We now define the anchored rectangle packing
(ARP) problem with respect to an anchoring (α, β) ∈ [0, 1]2. An instance consists of a finite
set P ⊆ U of n points. A valid rectangle set (also solution) S for the ARP instance P is
a set of interior-disjoint rectangles that contains one (possibly zero-sized) rectangle Rp for
each p ∈ P such that Rp is (α, β)-anchored in p and does not contain any point from P \ { p }
in its interior. The goal is to find a solution S for P that covers as much area as possible.
We use S∗ARP(P) to denote a valid rectangle set of maximum area OPTARP(P) := A(S∗ARP(P))
and omit ARP and/or P if it is clear from context.

We will mostly consider two specific anchorings. When using the anchoring (0, 0), we
refer to the problem by the name lower-left-anchored rectangle packing (LLARP). When
the anchoring is (1/2, 1/2), we refer to the problem by the name center-anchored rectangle
packing (CARP).

ESA 2019

8:4 On the Complexity of Anchored Rectangle Packing

Rmax

R′
max

h
(1

−
δ)

j
·h

(1
−
δ)

j
+
1
·h

w
(1− δ)i · w

(1− δ)i+1 · w

Ri,j
max

p

p′

Figure 1 Maximal rectangles Rmax and R′max and candidate rectangles Ri,j
max derived from Rmax

for the anchoring (1/2, 1/2).

3 A PTAS for ARP with Fractional Anchorings

In the following, we give a PTAS for the anchored rectangle packing problem for any
anchoring (α, β) ∈ (0, 1)2. It is based on a result for maximum weight independent set
of rectangles (MWISR)1 that uses resource augmentation similar to that in Theorem 8.
An instance of MWISR consists of a set of n axis-aligned, weighted rectangles. The goal
is to compute a maximum-weight subset of pairwise interior-disjoint rectangles. In the
relaxed variant δ-MWISR (for fixed δ > 0), rectangles must be non-overlapping only after
shrinking them by a factor of 1 − δ. Here, Adamaszek et al. [1] give an algorithm that,
in time n(δε)−O(1/ε) , computes a solution which is within a (1 + ε)-factor of the optimum
MWISR. While the original algorithm considers shrinking only around the rectangles’
centers, this can be generalized such that it also works when shrinking around an arbitrary
anchoring (α, β) ∈ (0, 1)2. However, this does not generalize to anchors on the boundaries
(in particular, not to LLARP), since [1] requires shrinking around a rectangle’s center, this
way the shrunken rectangle would no longer contain its anchor.

I Theorem 1. For any fixed anchoring (α, β) ∈ (0, 1)2, the anchored rectangle packing
problem admits a polynomial-time approximation scheme.

Proof. Consider an instance P ⊆ U of (α, β)-ARP with n input-points and fix ε > 0. Denote
by ε′, δ positive constants which we fix later and define N := dlog1−δ(δ/n)e+ 1.

For each point pair p, p′ ∈ P , there are at most two inclusion-wise maximal rectangles
that are anchored in p and have p′ on their boundary, one where p′ is on the left (right) side
of the rectangle and one where p′ is on its bottom (top) side. Thus, there are at most 2n
inclusion-wise maximal rectangles that are anchored in a point p ∈ P and at most 2n2

overall. For any such maximal rectangle Rmax, construct N2 candidate rectangles (Ri,jmax)N−1
i,j=0

by scaling (around the anchor) by a factor of (1− δ)i along the horizontal and (1− δ)j

along the vertical axis. Denote the set of all such candidate rectangles by C. See Figure 1
for an illustration.

In order to obtain a (1 + ε)-approximation for the ARP instance P , we first apply the
algorithm for δ-MWISR [1] to the MWISR instance (C,A) (i.e., all candidate rectangles
weighted by their area). This yields a rectangle set S ′ with A (S ′) ≥ (1 + ε′)−1 ·OPTMWISR,

1 A similar connection to MWISR has recently been used [5] to obtain a PTAS for packing squares and a
QPTAS for packing rectangles when the anchors are allowed to lie in any of the four corners (and may
be different for each rectangle).

A. Antoniadis et al. 8:5

where OPTMWISR denotes the area covered by an optimal solution for the instance (C,A) of
MWISR. Note that each rectangle R ∈ S ′ is anchored in some point p ∈ P . By definition
of δ-MWISR, scaling each rectangle in S ′ by a factor of 1− δ in each dimension around its
anchor produces a set S of pairwise interior-disjoint rectangles with

A (S) ≥ (1− δ)2(1 + ε′)−1 ·OPTMWISR . (1)

Moreover, since the scaling happens around the anchors, the rectangles are still anchored in
their associated input-points. It follows that, after possibly adding some trivial rectangles,
the set S is a solution for the ARP instance P . Note that for fixed δ and ε′, the total time
spent to obtain S is polynomial in n. The bottleneck here is the computation of S ′
from the |C| ≤ 2n2 · N2 candidate rectangles. By [1, Theorem 1], this can be done
in time n(δε′)−O(1/ε′)

.
We now bound the area OPTARP of an optimal (α, β)-ARP solution S∗ARP in terms

of OPTMWISR. To this end, fix a rectangle R∗p ∈ S∗ARP with anchor point p ∈ P . This rectan-
gle is contained in at least one maximal candidate rectangle Rmax. Let i, j ∈ { 0, 1, . . . , N − 1 }
be maximal such that R∗p ⊆ Ri,jmax and note that A

(
R∗p
)
≤ A (Rmax) · (1− δ)i+j . We say

that R∗p is negligible if i = N − 1 or j = N − 1. For each non-negligible R∗p ∈ S∗ARP,
define Rp := Ri+1,j+1

max and denote by S ′′ the set of all such rectangles. We consider the
contribution of non-negligible and negligible rectangles to OPTARP separately.

By construction, the contribution of non-negligible rectangles is at most (1− δ)−2 ·A (S ′′).
Furthermore, since S ′′ ⊆ C and as the rectangles in S ′′ are pairwise non-overlapping
(as a shrunken subset of an ARP solution), S ′′ is a solution to the MWISR instance C.
This implies that A (S ′′) ≤ OPTMWISR, which bounds the contribution of non-negligible
rectangles to OPTARP by (1− δ)−2 ·OPTMWISR.
To bound the contribution of negligible rectangles, fix a negligible R∗p ∈ S∗ARP and
note that A

(
R∗p
)
≤ A (Rmax) · (1− δ)N−1 ≤ OPTMWISR ·(1− δ)N−1 ≤ OPTMWISR ·δ/n,

where the penultimate inequality holds since {Rmax } is a valid MWISR solution. Since
there are at most n negligible rectangles in S∗ARP, they contribute at most δ ·OPTMWISR.

Combined, we get that OPTARP ≤
(
δ + (1− δ)−2) · OPTMWISR. Using Equation (1),

this implies

A (S) ≥ (1− δ)2(1 + ε′)−1 ·
(
δ + (1− δ)−2

)−1
·OPTARP = (1 + ε)−1 ·OPTARP, (2)

where the equality holds for small enough δ and appropriately chosen ε′. J

4 CARP is NP-Complete

In the decision variant of the center-anchored rectangle packing problem, we are given a
value A > 0 and a finite point set P ⊆ U . The goal is to decide whether there is a valid
rectangle set S for P that covers an area of at least A. In this section we prove that this
problem is NP-complete.

A useful observation is that if the input set contains four points in the corners of a
tiny square with side length δ > 0, then these points restrict the expansion of other points’
rectangles but cannot expand their own rectangles beyond side length 2δ (see Figure 2a). This
enables us to build walls that encode the graph structure of a suitable variant of maximum
independent set (MIS).

I Theorem 2. The center-anchored rectangle packing problem is NP-complete.

ESA 2019

8:6 On the Complexity of Anchored Rectangle Packing

δ

δ

δ/2

p

W

(a) Building a wall W to the north of
point p by adding four wall points.

(b) Two node gadgets directly connected via a path gadget.
The left node gadget is contracted, the right one expanded.

Figure 2 Illustrations of the wall construction and a normalized solution for a pair of node
gadgets.

The problem is easily seen to be in NP. Thus, the main challenge in proving Theorem 2
lies in the aforementioned reduction. Since the gadgets used in the construction as well
as their interplay are somewhat involved, we give a high-level overview in Section 4.1. In
Section 4.2, we describe in more detail how a suitable CARP instance is constructed from a
given MIS instance. The analysis of this construction is given in Section 4.3.

4.1 Overview of the Reduction
The reduction is from the problem maximum independent set in 3-regular planar graphs
(MIS3P), which is known to be NP-hard [12]. Given a MIS3P instance G, we use a result
by Tamassia [18] to construct an orthogonal embedding of G. We then replace each node of G
by a node gadget and each edge by a series of path gadgets. The number of path gadgets per
edge corresponds (roughly) to the number of turns that it takes in the orthogonal embedding.

Gadgets & Rectangle Sets. Figure 2b illustrates the gadgets via a simple example where
two node gadgets are directly2 connected by a path gadget. Black dots represent the normal
input points used to form center-anchored rectangles. Black lines represent walls built by
placing four δ-spaced wall points at the orthogonal projections of each normal input point
onto its closest wall in each direction. The horizontally striped blue areas connecting node
gadget and path gadget are called conflict areas. The vertically striped blue areas at the
entrance to the inner parts of the node gadget are called compensation areas. The shaded
areas represent a valid example rectangle set for the (non-wall) input points. Diagonally
striped red areas remain uncovered in the depicted solution.

Note that the rectangle sets of the two node gadgets in the depicted solution differ from
one another. If, in a given solution, the points of a node gadget span rectangles exactly as in
the right part of Figure 2b we say the node gadget is expanded. In particular, an expanded
node gadget covers all three adjacent conflict areas. In the left part of Figure 2b, we see

2 In our actual constructions, node gadgets are always connected via a chain of several path gadgets.
Figure 2b neglects this technical detail in order to keep the illustration simple and instructive.

A. Antoniadis et al. 8:7

one possible example of a so called contracted node gadget. Such contracted node gadgets
neither cover a neighboring conflict area (which is then covered by the adjacent path gadget),
nor the neighboring compensation area (which is then not covered at all). A central part of
our construction is that the latter case (where we loose an area of size b2) happens only if
the adjacent path gadget leads to another contracted gadget.

Normalized Solutions & Structural Properties. Our construction allows to prove the
existence of a well-structured, almost optimal solution. We call a solution normalized if each
wall point is assigned a (δ × δ)-square. In a normalized solution, non-wall points cannot
expand their rectangles beyond adjacent walls. Additionally, we show the following properties.

Lemma 4: There is a normalized solution approximating an optimal solution up to a factor
of 1−O

(
δ/ε2). Choosing δ suitably small allows us to consider normalized solutions only.

Lemma 5: We call a solution normalized with oriented paths if the rectangles spanned by
non-wall points are such that any series of connected path gadgets is alternatingly covered
by “big” and “small” rectangles. An optimal normalized solution can be transformed into
one with oriented paths without decreasing the covered area.
Lemma 6: Given an optimal normalized solution with oriented paths, one can transform
the rectangles spanned by non-wall points of node gadgets such that each node gadget is
either expanded or contracted. This transformation changes only rectangles spanned by
node gadgets and does not decrease the covered area.

From this, we obtain a bijection between normalized solutions S with oriented paths and only
either expanded or contracted node gadgets and independent sets I ⊆ V (G). Nodes u ∈ I
correspond to expanded node gadgets and nodes u 6∈ I to contracted node gadgets.

Covered Area & Size of Independent Set. We derive a formula for the area covered by S
in terms of the size |I| of the independent set. When a contracted node gadget does not
cover one (or multiple) of its compensation areas, we charge these areas to the neighboring
conflict area (which has the same size, b2). See Figure 3 for in illustration of compensation
and conflict areas. By this charging, the area covered by the inner part of any node gadget
(whether expanded or contracted) differs only by the number of covered ε-stripes (small
diagonally striped red areas within the node gadgets of size O(ε · b)� b2). For each path
gadget, we always loose an area of size 3b2 at one of the two ends. Additionally, for each
series of path gadgets connecting two contracted node gadgets, we loose an area b2 of one of
the conflict areas (using the charging).

Thus, ignoring negligible areas from the ε-stripes and wall-points, S covers an area of
size A (S) = AG + 3|I| · b2. While AG depends only on the graph G and its embedding, the
second term stems from an independent set node being the only means of covering both
critical areas of an incident edge. Thus, a solution covering the maximum area yields a
maximum independent set and vice versa.

4.2 Construction of the CARP Instance

We start by formalizing the ideas of walls, depicted as black lines in our images. Fix a
small δ > 0 (whose value we specify later) and consider a point set P , a point p ∈ P , and
a wall W (an axis aligned line segment), which is closest either in x- or y-direction. We
modify P by adding four wall points that form an (axis aligned) square of side length δ on
the (w.r.t. p) opposite side of the wall W . We do this in such a way that p and two of the
wall points lie on a straight line and the wall point closer to p is at a distance of δ/2 to W .
See Figure 2a for an illustration.

ESA 2019

8:8 On the Complexity of Anchored Rectangle Packing

6b
ε ε

ε ε

2ε

b
b7b

7b + ε

13b

3b
b

3b

b

ε

bb

3b

6b

bb

(a) A node gadget.

3b

3b

di

ai

ai

b

b

gi

(b) A path gadget.

Figure 3 Detailed illustration of node and path gadgets with the respective side lengths. Conflict
areas are horizontally striped. Compensation areas are vertically striped.

I Observation 3. Consider a valid solution for P after adding the four wall points for p. The
rectangles spanned by p and by the wall points cannot transgress the wall by more than δ/2.
Moreover, the rectangles spanned by the four wall points cover an area3 of at most 4δ2.

Gadgets. We now formally describe the node gadgets (representing nodes of the MIS3P
instance) and the path gadgets (representing edges of the MIS3P instance). Figure 3a shows
the details of a node gadget. Each input point is restricted by at most four walls. A node
gadget has three outgoing paths each connected to a path gadget (corresponding to an
incident edge). Figure 3b shows the details of a path gadget. Path gadgets are connected
either to other path gadgets via a 90◦ turn (the crossings in the figure) or to a node gadget.
There are two global parameters, the width of a path b and a small value ε > 0. We choose
the former such that we can fit each gadget into a small tile whose size depends on the
MIS3P instance, and we choose the latter small enough to ensure that certain non-coverable
areas of node gadgets are negligible. A path gadget gi has two additional parameters, di > 0
(roughly the length of the straight edge it represents) and ai := di/4− b (specifying the exact
placement of the non-wall points depending on di).

Orthogonal Embedding & Connecting the Gadgets. Next, consider an MIS3P instance G
(i.e., a 3-regular planar graph) consisting of n nodes. We embed G in a (4n+ 2)× (4n+ 2)
grid. This can be done in polynomial time (a simple application of a result from [18]). We
then partition the unit square U into a grid of equal-sized tiles of width and height 1/(4n+2).
Depending on how the embedding behaves at a grid point (i, j) ∈ { 1, . . . , 4n+ 2 }2, we
construct tile (i, j) from a suitable blueprint:

Grid point contains a node: Use an appropriate rotation of the tile in Figure 4a.
Grid point contains an edge bend: Use an appropriate rotation of the tile from Figure 4b.
Grid point contains part of an edge: Insert tiles to form a straight path of width b, either
from south to north or from east to west (determined by the orientation of the edge part).

3 While the rectangles may cover all of the square formed by the wall points, an area of size δ2, precisely 3
4

of each rectangle’s area lies outside this square. Thus, the total covered area is at most δ2 + 3δ2.

A. Antoniadis et al. 8:9

6b

10b

14b 6b

6b

13b 15b

(a) Node gadget inside a tile of U .

1
4n+2

1
4n+2 aj

ai

(b) Bend inside a tile connecting two path gadgets.

Figure 4 Two tiles used in our hardness construction. Further tiles include rotations of these as
well as straight horizontal and vertical paths. Both sides of each tile have size 64b+ 2ε.

Note that outgoing path gadgets always leave a tile at the center of a tile boundary and that
all parts are properly connected.

It remains to fix the parameters δ, b, and ε. These are chosen such that all parts of a
node gadget tile (Figure 4a) fit exactly into the 1/(4n+ 2)× 1/(4n+ 2) tiles and δ � ε� b.
The chosen lengths (Figure 3) guarantee that tile parts do not overlap. Our analysis also
requires 2ai ≥ b (or, equivalently, di ≥ 6b) for every path gadget gi. One can easily verify
that this is the case (see Section 4.2).

We now bound the size of the constructed CARP instance PG for a graph G consisting
of n nodes. Each tile of a node gadget contains 38 points. For each bend tile we add 2 points.
Since there are n nodes and at most 3n+ 2 bends [18, Lemma 7], the instance P contains
at most 44n + 4 non-wall points. For each non-wall point we add at most 16 wall points.
Thus, the size of P is bounded by 704n+ 64 = Θ (n), implying that PG can be constructed
in polynomial time.

4.3 Analysis of the Constructed CARP Instance
Fix a MIS3P instance G = (V,E) consisting of n nodes and let PG denote the construction
from the previous section. Let W ⊆ PG be the set of all wall points in PG. Recall that a
solution S for the CARP instance PG is called normalized if all points in W span (δ × δ)-
rectangles. Note that in such a solution the rectangles spanned by points from PG \W cannot
overlap the walls. An optimal normalized solution is a normalized solution of maximum size.
In the following, we state the key results of the analysis. Due to space constraints, we do not
give the proofs in all detail here. For the complete proofs, we refer the reader to the full
version of this paper.

Our first lemma shows that there exists a normalized solution that approximates an
optimal solution up to a factor of 1−O

(
δ/ε2).

I Lemma 4. There exists a normalized solution for CARP on the instance PG of area at
least

(
1− 2δ/ε2) ·OPTCARP(PG).

The next pair of lemmas form the center of our arguments. They show the existence of
optimal normalized solutions exhibiting useful structural properties for both the path and
node gadgets.

ESA 2019

8:10 On the Complexity of Anchored Rectangle Packing

I Lemma 5. There exists an optimal normalized solution in which the two rectangles spanned
by a path gadget gi’s two non-wall points have width (or, depending on orientation, height) b,
and one of them has height (width) 2ai, the other one 2(ai + 4b). In particular, the rectangles
of each path gadget cover exactly one of the gadget’s two conflict areas.

I Lemma 6. There exists an optimal normalized solution such that the following holds:
Each node gadget is either contracted or expanded.
No two adjacent node gadgets are expanded.
For each pair of contracted adjacent node gadgets there is a (uniquely identified) uncovered
area of size b2 inside one of the node gadgets.

The previous two lemmas hold simultaneously. NP-hardness follows from these results as
described in Section 4.1.

5 Resource Augmentation

In this section, we investigate the lower-left-anchored rectangle packing problem. We
study two different types of resource augmentation. In the first type, which we call
perturbation-augmentation, each solution rectangle does not need to be anchored exactly
in the corresponding point but instead its anchor may be up to an ε distance away
from that point (see Figure 5, center). We define an ε-grid Γ = (V,L) as a set of
points V = { (x, y) ∈ U | x = ε · kx ∧ y = ε · ky ∧ kx, ky ∈ N } together with a family of
grid-cells L = { [x, x+ ε]× [y, y + ε] ⊆ U | (x, y) ∈ V }. The perturbation-augmentation al-
lows us to focus on solutions where all vertices of rectangles are points on an ε-grid Γ, thereby
allowing us to enumerate all possible sets of interior-disjoint, axis-aligned rectangles with
vertices in V . We call such a solution a grid-point solution. We show that (i) there exists a
polynomial-time algorithm that finds the optimal grid-point solution and (ii) the optimal
grid-point solution covers at least as much area as an optimal (unrelaxed) solution.

Before formally stating the theorem, we introduce some notation. Let dist∞(x, y) denote
the distance of two points x, y ∈ R2 in the `∞-norm. For a set X ⊆ R2 and a point y ∈ R2,
we write dist∞(y,X) = infx∈X dist∞(y, x) and X = R2\X for the set’s complement. We
say that a set of interior-disjoint rectangles {Rp}p∈P is ε-valid, if dist∞(p, `(Rp)) < ε

and dist∞
(
p,Rp

)
< ε for all p ∈ P , where `(Rp) denotes the lower-left corner of Rp.

I Theorem 7. For every ε > 0 and a finite point-set P ⊆ U , there exists a polynomial time
algorithm that computes an ε-valid set of interior-disjoint rectangles that cover an area of at
least OPTLLARP(P).

The second type of resource augmentation we call overlap-augmentation. It relaxes the
condition that the rectangles need to be disjoint. More specifically, each pair of rectangles is
allowed to overlap by a thin strip of width at most δ. Note that this implies that a rectangle
may also contain input points as long as they are no more than a δ-distance away from
the boundary (see Figure 5, right).

Again, we require additional definitions. A set of rectangles {Rp}p∈P is called a δ-LLARP,
if the rectangle Rp is lower-left-anchored in p and supx∈Rp′

dist∞
(
x,Rp

)
< δ, for all p′ ∈ P .

We show that we can transform an ε-valid grid-point solution into a δ-LLARP while only
losing a small fraction of the covered area.4

4 Naturally, any area that is covered by multiple rectangles is counted only once.

A. Antoniadis et al. 8:11

ε

ε δ

δ
δ

Figure 5 An optimal lower-left-anchored rectangle packing (left), and illustrations of the two
kinds of resource augmentation that are used in the paper.

I Theorem 8. For every ε > 0 and a finite point-set P ⊆ U , there exists a polynomial time
algorithm that outputs an ε

11 -LLARP that covers an area of at least (1−ε) ·OPTLLARP(P).

Algorithm 1 Algorithm using resource augmentation of the perturbation-type.

1: Γ← ε-grid in U , H ← ∅
2: for every configuration C in Γ do
3: if C is ε-valid for P then
4: for every grid-point solution S := {Rq}q∈C of LLARP(C) do
5: H ← H∪ {S}
6: return S ∈ H maximizing A (S)

Proof of Theorem 7. Let Γ = (V,L) be an ε-grid in U and denote by k the number of
grid-cells. Without loss of generality, assume that all points of P lie in the interior of one of
the O

(
ε−2) grid-cells. A grid configuration on Γ is a subset of the grid points C ⊆ V . We say

that a grid configuration C on Γ is ε-valid for P if there is a surjective mapping ϕ : P → C,
such that dist∞(p, ϕ(p)) ≤ ε. Note that any LLARP for an ε-valid configuration C for P
can be extended to an ε-valid solution for P by adding degenerate rectangles anchored
at points in C.

Algorithm 1 enumerates all grid configurations on Γ that are ε-valid for P . Then, for
each configuration C, it computes all grid-point solutions {Rq}q∈C of LLARP(C). Among
all enumerated solutions, we keep one that maximizes the covered area.

First, we show that the running time of this algorithm is polynomial. Note that any
grid cell has four grid points as its vertices. Since any point p ∈ P lies in the interior
of some grid cell L ∈ L, an ε-valid grid configuration must contain at least one of the
four vertices of L. Thus, we can construct any ε-valid grid configuration by choosing for
each grid cell L ∈ L and each input point p ∈ P ∩ L, a vertex of L as its image in the
mapping ϕ. However, since whenever multiple rectangles are anchored in the same point at
most one can be non-degenerate, in each L ∈ L it suffices to decide on one of at most 15
cell configurations L ∩ C using either 0, 1, 2, 3, or 4 of the grid cell’s vertices. In particular,
any number of contained input points larger than 3, yields the same set of possible cell
configurations. Thus, by counting the number of input points contained in each grid cell (in
time O(n)) and then enumerating at most 15k grid configurations, we obtain all ε-valid grid
configurations. For each such configuration C, we obtain all corresponding ε-valid grid-point
solutions by picking for each q ∈ C one of the O(ε−2) grid points above and to the right of q
as the upper-right corner of the rectangle and checking interior disjointness. This amounts
to at most O(ε−2ε−2) solutions per grid configuration. Thus, in total, the running time of
Algorithm 1 is linear in n and doubly exponential in 1

ε .

ESA 2019

8:12 On the Complexity of Anchored Rectangle Packing

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

ε

X(Ri)={x8, x9, x10}

Figure 6 A row B of the ε-grid F and the corresponding rectangles of S∗B .

It remains to show that the computed grid-point solution covers at least as much area
as an optimal lower-left-anchored rectangle packing S∗LLARP(P) = {R1, R2, . . . , Rn} without
resource augmentation. We transform S∗LLARP(P) to a grid-point solution by “snapping” the
corners of its rectangles to Γ. We do this by first snapping the lower-left and upper-right
corners of each rectangle to either of the horizontal grid-lines directly above and below the
corner in question. Afterwards, the same is done analogously for the vertical grid-lines, which
we omit in our discussion.

Consider one row of the grid, say B = [0, 1]× (y, y + ε), for (x, y) ∈ V (see Figure 6). We
describe how the lower-left and upper-right corners within this row can be snapped up or down
without reducing the total area. Partition the row horizontally into segments x1, x2, . . . , xr
in-between the x-coordinates of corners of the rectangles S∗B := {Ri}mi=1 ⊆ S∗LLARP(P) that
have a corner in the row. We associate a variable hi ∈ [0, 1] with each rectangle Ri denoting
the height of Ri ∩ B relative to the height of B. Snapping the rectangles in this row can
be seen as rounding each such variable hi either up to 1 or down to 0 (i.e., expanding the
rectangle to span the full row height or collapsing it such that it does not appear in the row
anymore). We aim to do this in a manner, which neither introduces overlaps nor decreases the
covered area. This snapping problem is represented by the following integer linear program.

max
∑

i=1,...,m
hi · w(Ri) (3)

s.t.
∑

i : xj ∈X(Ri)

hi ≤ 1 for j = 1, . . . , r (4)

hi ∈ {0, 1} for i = 1, . . . ,m . (5)

Here, w(Ri) denotes the width of rectangle Ri, and the set X(Ri) consists of all segments xi
intersecting Ri. The objective function (3) maximizes the covered area while constraints
in (4) ensure that (in an integer solution) rectangles do not overlap. The binary constraints
in (5) force the rectangles to either span the entire height or nothing of the row. We note
that the linear program is inspired by a similar one for the demand flow problem [10].

It is easy to verify that S∗B corresponds to a feasible solution for the linear programming
relaxation of (3)–(5) and thus lower bounds the optimal value of the LP-relaxation. Since
the sets X(Ri) contain consecutive line segments, the LP satisfies the consecutive ones
property [17]. Therefore, constraints (4) yield a totally unimodular matrix and the LP
is integral [17]. It follows, that there is an integral solution that solves the relaxed linear
program optimally and induces a partial snapping of area at least OPTLLARP(P). Repeating
this argument for all rows and columns of Γ yields a grid-point solution with an area of at
least OPTLLARP(P). J

A. Antoniadis et al. 8:13

Algorithm 2 Algorithm using resource augmentation of the overlap-type.

1: Compute SI = Algorithm 1 (P, ε22)
2: for all Rp ∈ SI do
3: R′p ← the rectangle spanned by p and u(Rp) + (ε22 ,

ε
22)

4: if u(R′p) /∈ U then
5: u(R′p)← arg minx∈U ||x− u(R′p)||
6: return SII = {R′p}p∈P

Proof of Theorem 8. We show that Algorithm 2 satisfies the conditions of Theorem 8, that
is it runs in polynomial time and outputs a ε

11 -LLARP of area at least (1−ε) ·OPTLLARP(P).
In comparison to the previous case, input points cannot be moved, but the rectangles may
somewhat overlap.

Consider the ε
22 -valid solution SI = {Rp}p∈P of Algorithm 1 with input (P, ε22). In

constructing SI, we move the input-points p ∈ P to grid-points qp ∈ F spanning Rp, the
upper-right corner of which we denote by u(Rp). We transform the solution of Algorithm 1
to obtain an ε

11 -LLARP.
Shift each u(Rp) up and to the right by ε

22 to obtain u(Rp)′. The transformed solution S ′I
consists of the rectangles uniquely defined by the lower-left corners p ∈ P and their cor-
responding upper-right corners u(Rp)′. Since dist∞(p, qp) < ε

22 , moving u(Rp) by (ε22 ,
ε

22)
ensured that transforming the solution did not decrease its size. The overlap of rectangles is
bounded by 2 · ε22 = ε

11 .
However, moving the solution may cause some rectangles to protrude from the unit

square. We prune this excess area, by moving the respective upper-right corners back into
the square to obtain our final solution SII. Due to this pruning, we lose an area of size
at most 2· ε22 = ε

11 ≤ ε ·OPTLLARP(P), where the inequality follows from the lower bound
of 1

11 on OPTLLARP(P) [11]. This implies, that A (SII) ≥ (1− ε) ·OPTLLARP(P). J

OPTLLARP Algorithm 1 Algorithm 2

Figure 7 Algorithms Algorithm 1 and Algorithm 2 applied to a simple instance.

References

1 Anna Adamaszek, Parinya Chalermsook, and Andreas Wiese. How to Tame Rectangles: Solving
Independent Set and Coloring of Rectangles via Shrinking. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015),
volume 40 of LIPIcs, pages 43–60. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.
doi:10.4230/LIPIcs.APPROX-RANDOM.2015.43.

ESA 2019

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.43

8:14 On the Complexity of Anchored Rectangle Packing

2 Anna Adamaszek and Andreas Wiese. Approximation Schemes for Maximum Weight Indepen-
dent Set of Rectangles. In 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2013), pages 400–409. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.50.

3 Anna Adamaszek and Andreas Wiese. A quasi-PTAS for the Two-Dimensional Geometric Knap-
sack Problem. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2015), pages 1491–1505. SIAM, 2015. doi:10.1137/1.9781611973730.98.

4 Hugo A. Akitaya, Matthew D. Jones, David Stalfa, and Csaba D. Tóth. Maximum Area
Axis-Aligned Square Packings. In 43rd International Symposium on Mathematical Foundations
of Computer Science (MFCS 2018), volume 117 of LIPIcs, pages 77:1–77:15. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.77.

5 Kevin Balas, Adrian Dumitrescu, and Csaba D. Tóth. Anchored rectangle and square packings.
Discrete Optimization, 26:131–162, 2017. doi:10.1016/j.disopt.2017.08.003.

6 Nikhil Bansal and Arindam Khan. Improved Approximation Algorithm for Two-Dimensional
Bin Packing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014), pages 13–25. SIAM, 2014. doi:10.1137/1.9781611973402.2.

7 Sergey Bereg, Adrian Dumitrescu, and Minghui Jiang. Maximum Area Independent Sets
in Disk Intersection Graphs. Int. J. Comput. Geometry Appl., 20(2):105–118, 2010. doi:
10.1142/S0218195910003220.

8 Sergey Bereg, Adrian Dumitrescu, and Minghui Jiang. On Covering Problems of Rado.
Algorithmica, 57(3):538–561, 2010. doi:10.1007/s00453-009-9298-z.

9 Therese C. Biedl, Ahmad Biniaz, Anil Maheshwari, and Saeed Mehrabi. Packing Boundary-
Anchored Rectangles. In Proceedings of the 29th Canadian Conference on Computational
Geometry (CCCG 2017), pages 138–143, 2017.

10 Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd. Multicommodity demand
flow in a tree and packing integer programs. ACM Trans. Algorithms, 3(3):27, 2007. doi:
10.1145/1273340.1273343.

11 Adrian Dumitrescu and Csaba D. Tóth. Packing anchored rectangles. Combinatorica, 35(1):39–
61, 2015. doi:10.1007/s00493-015-3006-1.

12 Bojan Mohar. Face Covers and the Genus Problem for Apex Graphs. J. Comb. Theory, Ser.
B, 82(1):102–117, 2001. doi:10.1006/jctb.2000.2026.

13 Richard Rado. Some covering theorems (I). Proc. London Math. Soc., 51:232–264, 1949.
14 Richard Rado. Some covering theorems (II). Proc. London Math. Soc., 53:243–267, 1951.
15 Richard Rado. Some covering theorems (III). Proc. London Math. Soc., 42:127–130, 1968.
16 Tibor Radó. Sur un problème relatif à un théorème de Vitali. Fund. Math., 11:228–229, 1928.
17 Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in

discrete mathematics and optimization. Wiley, 1999.
18 Roberto Tamassia. On Embedding a Graph in the Grid with the Minimum Number of Bends.

SIAM J. Comput., 16(3):421–444, 1987. doi:10.1137/0216030.
19 William Thomas Tutte, editor. Recent Progress in Combinatorics: Proceedings of the 3rd

Waterloo Conference on Combinatorics. Academic Press, 1969.
20 Peter Winkler. Packing Rectangles. Mathematical Mind-Benders, pages 133–134, 2007.

https://doi.org/10.1109/FOCS.2013.50
https://doi.org/10.1137/1.9781611973730.98
https://doi.org/10.4230/LIPIcs.MFCS.2018.77
https://doi.org/10.1016/j.disopt.2017.08.003
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1142/S0218195910003220
https://doi.org/10.1142/S0218195910003220
https://doi.org/10.1007/s00453-009-9298-z
https://doi.org/10.1145/1273340.1273343
https://doi.org/10.1145/1273340.1273343
https://doi.org/10.1007/s00493-015-3006-1
https://doi.org/10.1006/jctb.2000.2026
https://doi.org/10.1137/0216030

	Introduction
	Preliminaries
	A PTAS for ARP with Fractional Anchorings
	CARP is NP-Complete
	Overview of the Reduction
	Construction of the CARP Instance
	Analysis of the Constructed CARP Instance

	Resource Augmentation

