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In this paper, we consider approximability issues of the following four problems: triangle
packing, full sibling reconstruction, maximum profit coverage and 2-coverage. All of them
are generalized or specialized versions of set-cover and have applications in biology
ranging from full-sibling reconstructions in wild populations to biomolecular clusterings;
however, as this paper shows, their approximability properties differ considerably. Our
inapproximability constant for the triangle packing problem improves upon the previous
results in [A. Caprara, R. Rizzi, Packing triangles in bounded degree graphs, Inform. Process.
Lett. 84 (4) (2002) 175–180; J. Chlebíková, M. Chlebík, Complexity of approximating
bounded variants of optimization problems, Theoret. Comput. Sci. 354 (3) (2006) 320–
338]; this is done by directly transforming the inapproximability gap of Håstad for
the problem of maximizing the number of satisfied equations for a set of equations
over GF(2) [J. Håstad, Some optimal inapproximability results, in: Proc. of the 29th
Annual ACM Symp. on Theory of Computing, 1997, pp. 1–10] and is interesting in
its own right. Our approximability results on the full siblings reconstruction problems
answers questions originally posed by Berger-Wolf et al. [T.Y. Berger-Wolf, B. DasGupta,
W. Chaovalitwongse, M.V. Ashley, Combinatorial reconstruction of sibling relationships,
in: Proc. of the 6th International Symposium on Computational Biology and Genome
Informatics, 2005, pp. 1252–1255; T.Y. Berger-Wolf, S. Sheikh, B. DasGupta, M.V. Ashley,
I. Caballero, W. Chaovalitwongse, S.L. Putrevu, Reconstructing sibling relationships in wild
populations, Bioinformatics 23 (13) (2007) i49–i56] and our results on the maximum profit
coverage problem provides almost matching upper and lower bounds on the approximation
ratio, answering a question posed by Hassin and Or [R. Hassin, E. Or, A maximum profit
coverage algorithm with application to small molecules cluster identification, in: 5th
International Workshop Experimental Algorithms, in: Lecture Notes in Comput. Sci., vol.
4007, Springer-Verlag, 2006, pp. 265–276].

© 2009 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: ashley@uic.edu (M. Ashley), tanyabw@cs.uic.edu (T. Berger-Wolf), berman@cse.psu.edu (P. Berman), wchaoval@rci.rutgers.edu

(W. Chaovalitwongse), dasgupta@cs.uic.edu (B. DasGupta), kao@cs.northwestern.edu (M.-Y. Kao).
1 Supported by NSF grant IIS-0612044.
2 Supported by NSF grants DBI-0543365, IIS-0612044, IIS-0346973 and DIMACS special focus on Computational and Mathematical Epidemiology.
0022-0000/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2009.01.002

https://core.ac.uk/display/82767062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:ashley@uic.edu
mailto:tanyabw@cs.uic.edu
mailto:berman@cse.psu.edu
mailto:wchaoval@rci.rutgers.edu
mailto:dasgupta@cs.uic.edu
mailto:kao@cs.northwestern.edu
http://dx.doi.org/10.1016/j.jcss.2009.01.002


288 M. Ashley et al. / Journal of Computer and System Sciences 75 (2009) 287–302
Fig. 1. Illustration of the Mendelian inheritance rule.

1. Introduction

We consider four combinatorial optimization problems motivated by four separate applications in computational biology.
Each of them concerns with packing or covering and falls under a general framework of covering/packing as described
below. In the general framework, we have a finite universe of elements and a collection of sets contained in the universe.
Optional parameters can be added to the problem statement to specify problems in this framework, and in this paper we
use the following (in different combinations): non-negative weights for elements, non-negative weights of sets, a limit on
the number of sets that can be selected, the minimum number of selected sets that contain an element, and a family of
“conflicts”, pairs of sets such that at most one set from a conflict pair can be selected. Our goal is to select a sub-collection
of sets that satisfies the constraints (like covering all nodes as required or not containing conflict pairs) and that optimizes
an objective function which is linear in terms of the weights of the sets and elements in our selection. For example, both
the minimum weight set-cover and the maximum weight coverage problem falls under the above framework. We start out
with the precise definitions of our problems and later describe their motivations.

Triangle packing problem (TP) [16,22,27]. We are given an undirected graph G . A triangle is a cycle of 3 nodes. The goal is to
find (pack) a maximum number of node-disjoint triangles in G .

Full Sibling Reconstruction Problems (k-ALLELEn,� for k ∈ {2,4}) [4,6,7,17,33,34]. Here the universe U consists of n elements. To
partially motivate the problem, think of each element as an individual in a wild population. Each element p is a sequence
(p1, p2, . . . , p�) where each p j is a genetic trait (locus) and is represented as an ordered pair (p j,0, p j,1) of numbers (alleles)
inherited from its parents. We also use p j to denote the set {p j,0, p j,1}. Certain sets of individuals can be full sibling, i.e.,
having the same pair of parents under the Mendelian inheritance rule. These sets are specified in an implicit manner in
the following way. The Mendelian inheritance rule states that an individual p = (p1, p2, . . . , p�) can be a child of a pair of
parents, say father q = (q1,q2, . . . ,q�) and mother r = (r1, r2, . . . , r�), if for each i ∈ {1, . . . , �} we have pi,0 ∈ qi and pi,1 ∈ ri ,
or pi,0 ∈ ri and pi,1 ∈ qi ; see Fig. 1 for a pictorial illustration. This gives rise to two necessary conditions for a set A of
elements to be full siblings.

Since each individual is generated by the same set of parents, each having at most two distinct alleles in each locus,
a set A of elements can be full siblings if at most 4 alleles occur in each locus, i.e., |⋃p∈A p j | � 4 for every j ∈ {1,2, . . . , �}.
Sets generated in this manner are said to satisfy the 4-allele condition. Notice that the 4-allele condition is not a
sufficient condition for individuals to be full siblings since it allows an individual to inherit both its alleles from the same
parent which violates the Mendelian inheritance rule; nonetheless this condition is used in practice since it is easy to check.

In a more precise way, the full sibling sets can be specified via the 2-allele condition described below. In a full
sibling set, we can reorder the alleles in each locus of each individual in A so that the first allele always comes from the
father and second one comes from the mother. Then, after such a reordering, a set A of elements can be full siblings if at
most 2 alleles occur in each coordinate of the locus. Formally, a set A ⊆ U of elements satisfies the 2-allele condition if and
only if, for each p ∈ A and each j ∈ {1,2, . . . , �}, there exists a reordering σp, j = (σp, j,1, σp, j,2) ∈ {(p j,0, p j,1), (p j,1, p j,0)}
such that both |⋃p∈A{σp, j,1}| � 2 and |⋃p∈A{σp, j,2}| � 2 for every j ∈ {1,2, . . . , �}.

With the Mendelian rules in mind, the sets in the k-ALLELEn,� problem are all possible sets of elements that satisfy the
k-allele condition for k ∈ {2,4}. The goal is then to find a collection of sets that cover the universe and the objective is to
minimize the number of sets selected. As an example to illustrate the k-allele condition, consider the n = 4 elements (with
� = 2 loci) p = ({1,2}, {5,5}), q = ({3,4}, {5,5}), r = ({1,1}, {5,5}) and s = ({5,5}, {5,5}). Then, there is no set containing all
of p,q, r and s in either 4-ALLELE4,2 or 2-ALLELE4,2 because |{1,2} ∪ {3,4} ∪ {1,1} ∪ {5,5}| > 4, the set {p,q, r} is contained
in the instance of 4-ALLELE4,2 but not in the instance of 2-ALLELE4,2.

A natural parameter of interest in these problems is the maximum size (number of elements) a of any set; we denote the
corresponding problem by a-k-ALLELEn,� in some subsequent discussions. One can make the following easy observations:

• Both 2-4-ALLELEn,� and 2-2-ALLELEn,� are trivial since any two elements always satisfy the k-allele condition for k ∈
{2,4}.
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• If a is a constant, both a-4-ALLELEn,� and a-2-ALLELEn,� can be posed as a set-cover problem with a polynomially many
sets with the maximum set size being a and thus have a (1 + ln a)-approximations (by using standard algorithms for
the set-cover problem [37]).

• For general a, both a-4-ALLELEn,� and a-2-ALLELEn,� have a trivial ( a
c + ln c)-approximation for any constant c > 0

obtainable in the following manner. For any integer constant c > 0, it is trivial to find in polynomial time a set of
individuals that are full siblings for both 4-ALLELEn,� and 2-ALLELEn,� , if such a set exists. Thus we can assume that for
every induced instance of the problem, either the maximum sibling group size is below c and we can find such a group
of maximum size, or we can find a set of size c. Obviously, we can assume that if a sibling group can be used, we
can use all its subsets too. Consider an optimum solution, and make it disjoint. We will distribute the cost of an actual
solution between the sets of the optimum. When a set with b elements is selected, we remove each of its element and
charge the sets of the optimum 1/b for each removal. It is easy to see that a set with a elements will get the sequence
of charges with values at most (1/c, . . . ,1/c,1/(c − 1),1/(c − 2), . . . ,1) and these charges add to a

c − 1 +∑c
i=1

1
i , which

in turn equals a
c + ∑c

i=2
1
i < a

c + ln c.

Maximum Profit Coverage problem (MPC) [24]. We have family of m sets S over a universe U of n elements. For each A ∈ S
we have a non-negative cost qA and for each i ∈ U we have a non-negative profit wi . We extend costs and profits to sets:
q(P ) = ∑

S∈P qP and w(A) = ∑
i∈A wi . For P ⊂ S we define the profit c(P ) = w(

⋃
A∈P A) − q(P ). The goal is to find a

subcollection of sets P that maximizes c(P ). A natural parameter for this problem is a = maxA∈S |A|. MPC admits a PTAS
in the Euclidean space but otherwise its complexity was unknown.

2-Coverage problem. Given S and U as in the MPC problem above and an integer k > 0, a valid solution is P ⊂ S such
that |P | � k; the goal is to maximize the number of elements that occur in at least two of the sets from P . Another natural
parameter of interest here is the frequency f , i.e., the maximum number of times any element occurs in various sets.

1.1. Motivation

In this section we discuss the motivations for the problems considered in this paper. We discuss one motivation in details
and mention the remaining ones very briefly.

For wild populations, the growing development and application of molecular markers provides new possibilities for the
investigation of many fundamental biological phenomena, including mating systems, selection and adaptation, kin selec-
tion, and dispersal patterns. The power and potential of the genotypic information obtained in these studies often rests
in our ability to reconstruct genealogical relationships among individuals. These relationships include parentage, full and
half-sibships, and higher order aspects of pedigrees [14,15,23,28]. In our motivation we are only concerned with full sib-
ling relationships from single generation sample of microsatellite markers Several methods for sibling reconstruction from
microsatellite data have been proposed [1,2,13,31,32,35,36,38]. Most of the currently available methods use statistical likeli-
hood models and are inappropriate for wild populations. Recently, a fully combinatorial approach [4,6,7,17,33,34] to sibling
reconstruction has been introduced. This approach uses the simple Mendelian inheritance rules to impose constraints on the
genetic content possibilities of a sibling group. A formulation of the inferred combinatorial constraints under the parsimony
assumption of constructing the smallest number of groups of individuals that satisfy these constraints leads to the full sib-
ling problems discussed in the paper. Both the 4-allele and the 2-allele constraints encode the above biological conditions
for full siblings with varying strictness. In this paper we study of computational complexity issues of these approaches.

MPC has applications in clustering identification of molecules [24]. The 2-coverage problem has motivations in opti-
mizing multiple spaced seeds for homology search (for relevant concepts, see e.g. [39]). For application of TP to genome
rearrangement problems, see [5,16].

2. Several useful problems for reductions

Several known problems were used for hardness results. Below we list many of these problems together with the known
relevant results. Recall that a (1 + ε)-approximate solution (or simply an (1 + ε)-approximation) of a minimization (resp.
maximization) problem is a solution with an objective value no larger (resp. no smaller) than 1 + ε times (resp. (1 + ε)−1

times) the value of the optimum, and an algorithm achieving such a solution is said to have an approximation ratio of at
most 1 + ε. A problem is r-inapproximable under a certain complexity-theoretic assumption means that the problem does
not have an r-approximation unless the complexity-theoretic assumption is false.

3-LIN-2. We are given a set of linear equations modulo 2 with 3 variables per equation. Our goal is to maximize the
number of equations that are satisfied with a certain value assignment to the variables. A well-known result by Håstad [25]
shows the following result: for every ε < 1

2 it is NP-hard to differentiate between the instances that have at least (1 − ε)m

satisfied equations from those that have at most ( 1
2 + ε)m satisfied equations.

MAX-CUT on a 3-regular graph (3-MAX-CUT). An instance is a 3-regular graph, i.e., a graph G = (V , E) where the degree of
every vertex is exactly 3 (and thus |E| = 3 |V |). For a subset of vertices V ′ ⊆ V , define score(V ′) to be the number of edges
2



290 M. Ashley et al. / Journal of Computer and System Sciences 75 (2009) 287–302
with exactly one endpoint in V ′ and the other endpoint in V \ V ′ . The goal is then to find V ′ ⊆ V such that score(V ′) is
maximized. We will need the following inapproximability result for this problem proved in [9,10]. For all sufficiently small
constants ε > 0, it is impossible to decide, modulo RP �= NP whether an instance G of 3-MAX-CUT with |V | = 336n vertices
has a valid solution with a score below (331 − ε)n or above (332 + ε)n.

Independent set problem for a a-regular graph (ISa). A set of vertices are called independent if no two of them are connected
by an edge. The goal is to find an independent set of maximum cardinality when the input graph is a-regular, i.e., every
vertex has degree a. It is well known that this problem is NP-hard for a � 3 and ac-inapproximable for general a for some
constant 0 < c < 1 assuming P �= NP [3,12,26].

Graph coloring. The goal is to produce an assignment of colors to vertices of a given graph G = (V , E) such that no two
adjacent vertices have the same color and the number of colors is minimized. Let Δ∗(G) denote the maximum number of
independent vertices in a graph G and χ∗(G) denote the minimum number of colors in a coloring of G . The following
inapproximability result is a straightforward extension of a hardness result known for coloring of G [20]: for any two
constants 0 < ε < δ < 1, χ∗(G) cannot be approximated to within a factor of |V |ε even if Δ∗(G) � |V |δ unless NP ⊆ ZPP.

Weighted set-packing. We have a collection of sets each with a non-negative weight over an universe. Our goal is to select a
collection of mutually disjoint sets of total maximum weight. Let a denote the maximum size of any set. For a � 2, weighted
set-packing can be solved in polynomial time via maximum perfect matching in graphs. For fixed a > 2, Berman [8] provided
an approximation algorithm based on local improvements for this problem produces an approximation ratio of a+1

2 + ε for
any constant ε > 0. When a is not a constant, Algorithm 2-IMP of Berman and Krysta [11] provides an approximation ratio
of 0.6454a for any a > 4.

Densest subgraph problem (DS). We are given a graph G = (V , E) and a positive integer 0 < k < |V |. The goal is to pick k
vertices such that the subgraph induced by these vertices has the maximum average degree. The densest subgraph problem
is (1 + ε)-inapproximable for some constant ε > 0 unless NP �⊆ ⋂

ε>0 BPTIME(2nε
) [29]. A more general weighted version of

DS admits O (|V | 1
3 −ε)-approximation for some constant ε > 0 [21].

Maximum coverage problem. This is the same as the 2-coverage problem except that the number of elements that occur
in at least one of the selected sets is maximized. Recall that k is the number of sets that we are supposed to select and f
is the frequency, i.e., the maximum number of times any element occurs in various sets. Let e denote the base of natural
logarithm. It is known that the maximum coverage problem can be approximated to within a ratio of 1−(1− 1

k )k > 1−(1/e)

by a simple greedy algorithm [30] and approximation with ratio better than 1 − (1/e) is not possible unless P = N P [19].
Obviously, the same lower bound carries over to 2-coverage also for arbitrary f .

2.1. Our results and techniques

Table 1 summarizes our results.
Brief descriptions of our techniques and comparisons with relevant previous results are as follows.

Triangle packing (TP). The lower bound is shown by a careful reduction from 3-LIN-2 that roughly shows that, assuming
RP �= NP, it is hard to distinguish between instances of TP with profit (the number of disjoint triangles) of at most 75k as
opposed to a profit of at least 76k for every k, thereby giving us an inapproximability ratio of 76

75 ≈ 1.013. Our inapproxima-

bility constant is larger than the constant 95
94 ≈ 1.0106 reported in [18] (assuming P �= NP). A proof of Caprara and Rizzi [16]

is yet earlier and it implies a still worse inapproximability constant.

4-ALLELEn,� and 2-ALLELEn,� . The inapproximability results for the smallest non-trivial value of a, namely a = 3, and
� = O (n3), are obtained by reducing TP to instances in which the same sets satisfy 2- and 4-allele conditions and each
node of the initial graph (the TP instance) is annotated with a sequence of loci so these sets coincide with triangles. The
( 7

6 + ε)-approximation for any � and any constant ε > 0 is easily achieved using the results of Hurkens and Schrijver [27].
The inapproximability results for the second smallest non-trivial values of a and �, namely a = 4 and � = 2, are obtained

by reducing 3-MAX-CUT via an intermediate novel mapping of geometric nature. The ( 3
2 + ε)-approximations are achieved

by using the result of Berman and Krysta [11].
The inapproximability result for a = nδ , namely all sufficiently large values of a, is obtained by reducing a suitable hard

instance of the graph coloring problem.
In general, for all the above reductions for 4-ALLELEn,� and 2-ALLELEn,� additional loci are used carefully to rule out

possibilities that would violate the validity of our reductions.

Maximum Profit Coverage (MPC). The hardness reduction is from the ISa and the approximation algorithms are obtained
via the weighted set-packing problem. The (0.6454a + ε)-approximation for arbitrary a is obtained via a very careful
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Table 1
Summary of results in this paper.

Problem Lower bound (r-inapproximability) Upper bound
r-approximation for r =r = Assumption Reduction problem

Triangle packing (76/75) − ε ≈ 1.013 RP �= NP 3-LIN-2 –

{2,4}-ALLELEn,�

a = 3 � = O (n3) (153/152) − ε ≈ 1.0065 RP �= NP triangle packing –
a = 3 any � – – (7/6) + ε ≈ 1.166
a = 4 � = 2 (6725/6724) − ε ≈ 1.00014 RP �= NP 3-MAX-CUT –
a = 4 any � – – (3/2) + ε

a = nδ � = O (n2) Ω(nε) ∀ε < δ ZPP �= NP graph coloring εnδ − lnε ∀ constant ε

Maximum profit coverage
a � 2 – – – polynomial-time
a � 3 NP-hard – a-regular indep. set –
constant a – – – 0.5a + 0.5 + ε
any a ac P �= NP a-regular indep. set 0.6454a + ε

2-Coverage

f = 2 1 + α NP �
⋂

ε>0BPTIME(2nε
) densest subgraph O (m

1
3 −β )

any f – – – O (
√

m )

By {2,4}-ALLELEn,� we mean that the results apply to both 4-ALLELEn,� and 2-ALLELEn,� . 0 < ε, δ < 1 are any two constants. α, β and c are specific
constants mentioned in [29], [21] and [26], respectively, but not explicitly calculated. The parameters a, �, f and m are described in the definitions of the
corresponding problems. The ac -inapproximability result for MPC holds even if every set has weight a − 1, every element has weight 1, every set contains
exactly a elements and even if we impose further restrictions such as each element is a point in some underlying metric space and each set correspond to
a ball of radius β for some fixed specified β .

polynomial-time dynamic programming implementation of the 2-IMP approach in Berman and Krysta [11] that implicitly
maintains subsets for possible candidates for improvement that cannot be explicitly enumerated due to their non-polynomial
number.

2-coverage. The inapproximability result and approximation algorithms for f = 2 are obtained by identifying the problem
with the DS problem. Note that the 1− (1/e)-inapproximability result for maximum coverage does not extend to 2-coverage
under the assumption of f = 2. For arbitrary f , we show O (

√
m )-approximation by taking the better of a direct greedy

approach and another greedy approach based on the maximum coverage problem. Note that a significantly better than
O ( 3

√
m )-approximation for 2-coverage would imply a better approximation for DS than what is currently known.

3. Inapproximability result for triangle packing

The theorem below gives a (76/75) − ε ≈ 1.0133-inapproximability for TP.

Theorem 1. Assume RP �= NP. If 0 < ε < 1/2, there is no RP algorithm that for each instance of TP with 228n nodes and a triangle
packing of size at least (76 − ε)n returns a triangle packing of size at least (75 + ε)n.

Proof. For convenience to readers, we first describe the plan of the proof, then an informal overview of the calculations and
finally the details of each component of the proof.
Plan of the proof. As stated before, the following result was obtained by Håstad in [25]. Let L be any language in NP. Then, an
instance x of L can be translated in polynomial time to an instance of 3-LIN-2 with 2n equations such that, for any constant
0 < ε < 1

2 , the following holds:

• if x ∈ L, then we can satisfy at least (2 − ε)n equations, and,
• if x /∈ L, then we can satisfy at most (1 + ε)n equations.

The above result therefore provides an (2 − ε)-inapproximability of 3-LIN-2 for any small constant ε > 0, assuming P �= NP.
Our randomized schema to prove the desired inapproximability result modulo RP �= NP is as follows. Our randomized

reduction uses the following polynomial-time transformations that we will devise:

(A) First, we have a randomized “instance transformation” Tins that maps an instance S of 3-LIN-2 with 2n equations into
a graph G ≡ Tins(S) with 228nmS nodes (mS < n is a small integer related to the size of S). The algorithm of Tins is
randomized and the output is random. A crucial property of this transformation is that with probability at least 1/2 the output
is correct, i.e., the corresponding instance graph G will satisfy the subsequent requirement in (C) below.
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(B) Second, we have a (deterministic) “solution transformation” Tsol that maps a solution, say s, of the instance S of 3-
LIN-2 with 2n equations to a solution Tsol(s, G) of the triangle packing problem in the above-mentioned graph G . Our
transformation will satisfy the following properties:
(a) If s satisfies 2n − � equations of S then Tsol(s, G) has (76n − �)mS triangles in G (and 3mS� nodes not covered by

the triangles). In particular, note that this implies that,
• if we satisfy (2 − ε)n equations of S then Tsol(s, G) has (76 − ε)nmS triangles in G , and,
• if we satisfy (1 + ε)n equations of S then Tsol(s, G) has (75 + ε)nmS triangles in G .

(b) We can find s in polynomial-time if we are given Tsol(s, G).
(C) Third, we have “solution normalization” transformation N maps a triangle packing P in the graph G into another

triangle packing N(P, G) in the graph G which is of the form Tsol(s, G) for some solution s of the instance S of 3-
LIN-2. If G is a “correct output” of Tins(S) then |N(P, G)| � |P|, i.e., normalization does not decrease the number of
triangles in the solution.

Given the above transformation, the overall approach in our proof is as follows. Suppose that we have a polynomial-time
randomized algorithm A that with probability at least 1/2 finds triangle packing of size larger than (75 + ε)/(76 − ε) times
the optimum (assuming that one exists). Then, we can use A to devise an RP algorithm for any language in NP in the
following manner:

(a) We start with an instance x of a language L ∈NP. Using the proof of Håstad in [25] we translate x in polynomial time
to the corresponding instance of S 3-LIN-2 with 2n equations.

(b) We compute G = Tins(S).
(c) We compute the triangle packing solution P = A(G).
(d) We compute a new triangle packing solution Q = N(P) using the normalization transformation N.
(e) If |Q| < |P| then we repeat steps (b)–(d) up to a polynomial number of times.
(f) If |Q| < |P| in some execution of step (e) then we find the solution s of S that corresponds to Q. If s satisfies strictly

more than (1 − ε)n equations then we declare x ∈ L. In all other cases we declare x /∈ L.
One can now see that we are always correct if x /∈ L and we are correct with probability at least 1/2 if x ∈ L.

An informal overview of the calculations involved in instance transformation Tins . The transformation Tins from an instance S
of 3-LIN-2 to an instance (graph) G of triangle packing goes through the following stages. In S we have a system of 2n
equations modulo 2, with 3 literals per equation, and we can satisfy either at most ( 1

2 + ε) fraction of the equations or at
least (1 − ε) fraction of the equations.

First, we replicate each equation some (polynomial) m times. This is to increase the minimum number of occurrences of
each variable such that the “consistency gadgets” for occurrences will be correct—the correctness of these gadgets is proved
“in the limit”, i.e., starting from a certain size. This does not change the fraction of equations in the system that can be
simultaneously satisfied, which is either 1 − ε or 1

2 + ε.
Denote by ¬x the negation of the variable or constant x modulo 2, i.e., ¬x = x + 1 (mod 2). Then, any equation can have

two “normal” forms, namely,

x + y + z = b (mod 2),

¬x + ¬y + ¬z = ¬b (mod 2).

We now replace each equation with such a pair. Again, this does not change the proportion of the equations that can be
simultaneously satisfied. Our reductions and instance/solution transformations will ensure that each variable ¬x receives a
value which is the negation of the value received by variable x. The above replications together account for the constant mS

mentioned in item (A) of the plan of the proof. In other words, after these replications, we have nmS variables.
Now, our system of equations have some nice properties:

• roughly, for each two equations, both can be satisfied or one;
• same number of negated and non-negated literals;
• same number of equations “= 0 (mod 2)” and “= 1 (mod 2)”;
• assured minimum number of occurrences of each variable.

Now, we show our calculation on a normal pair of equations as discussed in the replication method above.

• We have 6 occurrences of literals. We will design a “triplicate gadget” for each, in which each occurrence is represented
as 3 nodes called literal nodes, thus we have a total of 18 literal nodes. We will design a single gadget for each “= 0”
equation that has 6 other nodes, and a gadget for each “= 1 (mod 2)” equation that has 4 other nodes. Thus, we have
10 extra nodes for each normal pair of equations, which makes 30 extra nodes in a “triplicate gadget”.

• For each 18 literal node, we will have a part of a consistency gadget in which we have 7 triangles that make a sequence
of overlaps. Together, these triangles would have 21 nodes, but one of these node is the literal node, and of the other 20,
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each is shared with another triangle, so they are really 10 distinct nodes. For a pair of triplicate gadgets, we have
10 × 18 = 180 of the nodes of consistency gadgets.

• Thus, together, we have (180 + 30 + 18)nmS = 228nmS nodes.
• Roughly, the two cases of triangle packing (ignoring the ε factors and so forth) are as follows. When both equations in

the normal pair are satisfied, we cover them completely with 76 triangles, and when one equation fails, we will loose
one triangle thereby covering with 75 triangles.

The outline of the instance translation. Given S , a system of 2n equations with 3 variables per equations, we proceed as
follows.

1. We replicate each equation six times, three times as a simple copy, x + y + z = b mod 2 and three times as x̄ + ȳ + z̄ =
b̄ mod 2. Having the same number of literals x as x̄ helps in point 5, and having each equation copied three times helps
in point 4.

2. We replicate the equations in S m times for a sufficiently (polynomially) large m such each variable occurs sufficiently
(polynomially) many times. The construction in point 5 is faulty with probability O (cm′

) for some c < 1 when m′ the
number of occurrences of a variable.

3. For each literal (occurrence of a variable or its negation in an equation) we create a separate node. From now on, literal
will mean such a node.

4. We replace three copies of equation e with an equation gadget Be that contains nine literals of e (three, each in three
copies) as well as other nodes.

5. For each variable x we create consistency gadget Cx that all the literals of x, as well as other nodes.

Constructing consistency gadget Cx. The problem of triangle packing can be mapped into the independent set problem in
the following manner: starting from a graph (V , E) we create a graph (V ′, E ′), where V ′ is the set of triangles in E , and
{t, t′} ∈ E ′ if triangles t and t′ share a node.

If graph G ′ is cubic, i.e., each node has degree 3, we can have the reverse transformation: from (V ′, E ′) to (V , E);
V = E ′ , and {e, e′} ∈ E if e and e′ are incident to the same node. In this case, a node u ∈ V with neighbors vi , i = 0,1,2, is
transformed into nodes {u, vi}, i = 0,1,2} and those three nodes for a triangle. A pair of such triangles is node-disjoint if
the original nodes were not adjacent.

This point of view is not helpful in the construction of equation gadgets because we obtained smaller gadgets than those
that would correspond to fragments of cubic graphs. However, our consistency gadget are obtained by such a transformation.

In particular, we will use a gadget, called an amplifier, introduced by Berman and Karpinski [9] in the context of maxi-
mum cut problem (see also J. Chlebíková and M. Chlebík [18]).

Assume that we construct Gx for a variable with 2k occurrences (k simple, k negated). The respective amplifier can be
defined as the graph (V a, Ea) where V a = {u0, . . . , u14k−1}, This graph is bipartite, all edges are between even nodes and
odd nodes; we will refer to odd and even nodes as white and black. There are two classes of edges, the first forms a ring,
{ui .ui+1 mod 14k}, the second forms a random matching between white (even) and black (odd) nodes whose indices are not
divisible by 7. Nodes with indices divisible by 7 are called contacts, each of these nodes belongs also to an equation gadgets.

We wish a solutions—a U ⊂ V of nodes—to be consistent within consistency gadgets. Equation gadgets “see” only the
contacts. Set U is consistent within our gadget if either U contains all black contacts and none of the white ones, or vice
versa. If we have an inconsistent solution, we replace it with the choice “all white” or “all black” that requires fewer changes
of membership among the contacts. Here is the key property (that holds with the probability that converges to 1 as k → ∞):
if U ⊂ V a contains i � k contacts of one color (the minority) and at least as many nodes of another (the majority color),
then at least i edges of Ea do not belong to the cut of U .

The use of this property is that when we normalize a solution to coincide, all contacts of Gx should correspond to a
single value assigned to x; we can achieve it by altering the solution to coincide the color that contains more contacts.
If the normalization changes the membership of i contacts of x, we gain i units of the objective function—edges of the
cut—within the gadget. Presumably the size of the cut decreases within equation gadgets, but the decrease is bounded by i,
the number of contacts that changed the membership.

Now we have to translate this usage of the amplifier to the independent set problem. In a bipartite cubic graph with 14k
nodes, an independent set S has cut 3|S|, and if we have 3i edges not in the cut, then |S| = 7k − i. Thus the same amplifier
construction can be used for independent set problem. If U ⊂ V a contains i � k contacts of its minority color, then at least
i edges of Ea are not covered by U .

Then we can translate the amplifier into a part of triangle packing as shown in Fig. 2, and the property can be rephrase
by having i nodes not covered by the solution triangle packing within an equation gadget if i contacts are covered in a
minority manner (if the majority of contacts covered by a solution is black, black is the D majority color and inconsistent
consistent contact are black contacts that do not belong, as well as white contacts that do belong).

How equation gadget Be works. Equations were replicated so they can be grouped into triples of identical equations. We
create gadgets for equations and then, for each group of three, we connect identical gadgets by providing triangles that
cover one node in each of them.
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Fig. 2. A fragment of an amplifier and its translation into a fragment of our equation gadget. Contacts are indicated by a gray “halo”. Note that after
translation, each original contact node becomes a contact triangle. Each contact triangle contains a contact node (in the diagram, on top). If we choose
white triangles, then contact nodes of the black triangles are not covered within the gadget, and vice versa when we choose all black triangles.

Fig. 3. Equation gadgets, used in three copies. Thick dots are nodes connected with other copies (self-sufficient), empty circles are literals, nodes shared
with consistency gadgets of variables.

For such a group of copies of equation e, let Bi
e , i = 0,1,2, be an individual gadget and Be the combined one.

Thus we can describe a triple gadget by describing an individual gadget, Bi
e = (V i

e, Ei
e) and specifying set Si

e of nodes
that are connected to their copies in other individual gadget. From the point of view of an individual gadget, nodes in Si

e
can be covered separately.

Assume that e ≡ x′ + y′ + z′ = b mod 2 where x′ is a literal of x (x or x̄). An individual gadget contains these three
literals.

The property of an individual gadget Bi
e is that V i

e can have all nodes covered by a triangle packing and Si
e if only if

the literals are covered consistently with values that make e satisfied. For example, if e ≡ x + y + z = 0 mod 2, and none
(or exactly two) of the three literals contained in V i

e is covered by triangles contained in Cx ∪ C y ∪ Cz . The property of the
combined gadget is that if the literals are covered consistently (e.g. either all x′ are covered by triangles contained in Cx

or none), then either they are covered consistently with values that satisfy e and we can cover entire V e = V 0
e ∪ V 1

e ∪ V 2
e ,

or the literals are covered consistently with values that do not satisfy e and we can cover V e except for three nodes (one
exception in each V i

e).

Properties of gadgets imply correct normalization. So far, we described Q = N(P) only partially, namely how to select triangles
contained in consistency gadget Gx (white or black, corresponding to assigning 0 or 1 to x). If the normalization change the
way i contacts are covered, then within Gx we cover all nodes with the triangle, while before we did not cover i of them.
Thus we can pass to each “minority case” a permission not to cover one node.

Now consider a combined equation gadget. If the majority cases satisfy the equation, after the normalization we cover
all nodes of the equation gadget. Otherwise each individual gadget either contained a minority case literal and will receive
a permission not to cover a node, or it had all majority cases and thus at least one uncovered node. Thus to maintain the
number of covered nodes it suffices to cover the nodes in the gadget with three exceptions.

Construction of Bi
e . Consider equation e ≡ x + y + z = 0 mod 2. Node set V i

e consists of three literals (one copy of x, y, z),
two self-sufficient nodes Si

e = {si, ti} and four other nodes. (See Fig. 3.)
If x, y, z are false, this is coded by a solution in which none is already covered by triangles from their consistency

gadgets, we cover the nine nodes of Bi
e with three triangles. If exactly two are already covered, we cover the uncovered

literal, si and “four other nodes” with two triangles.
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If exactly one of the literals true (already covered), we would have to cover eight nodes. This could be done only with
two triangles and two self-sufficient nodes; however the triangles disjoint with Si

e all overlap, so the best we can do is to
use one such triangle, one triangle that contains si and ti , leaving one non-self-sufficient node uncovered.

If three literals are true, we would have to cover six nodes, this could be done only with two triangles, but there is only
one triangle that does not contain literals, so the best we can do is to use this triangle, as well as Si

e , leaving one of the
“other nodes” uncovered.

Now consider equation e ≡ x + y + z = 1 mod 2. Sub-gadget Bi
e contains xi, yi, zi , self-sufficient node si and three other

nodes.
If exactly one of the literals is true, we have to cover six nodes, which we can do with two triangles. If all literals are

true, we have to cover 4 nodes, which we do using a triangle that is disjoint with si , as well as si .
If no literal is true, we would have to cover 7 nodes, this could be done only with two triangles and si , but all triangles

that do not contain si overlap. If two literals are true, we would have to cover 5 nodes, impossible. But if we pretend that
one more literal is covered we can cover all other nodes, so when the equation is false we leave one non-self-sufficient
node uncovered.

The property of the combined gadget. It is easy to see that when the literals are consistent we can cover each individual
gadget in the same way, so when any nodes remain uncovered they form triples of corresponding self-sufficient nodes and
thus they are covered by the triangles that connected individual gadgets. �
4. Approximability for 4-ALLELEn,� and 2-ALLELEn,� for a = 3

Theorem 2. Both 4-ALLELEn,� and 2-ALLELEn,� are ((153/152) − ε)-inapproximable even if a = 3 assuming RP �= NP and (for any �)
admit ((7/6) + ε)-approximation for any constant ε > 0.

Proof. We reduce the triangle packing (TP) problem to our problem. We will use the inapproximability result for TP as
described in Section 3.

To treat both 4-ALLELEn,� and 2-ALLELEn,� in an unified framework in our reduction, it is convenient to introduce the
2-label cover problem. The inputs are the same as in 4-ALLELEn,� or 2-ALLELEn,� except that each locus has just one value
(label) and a set of individuals are full siblings if on every locus they have at most 2 values. Thus, each individual can be
thought of as an ordered sequence of labels. An instance of the 2-label cover problem can be translated to an instance of
our problem by replacing each label in each locus in the following manner:

• for 4-ALLELEn,� , the label value v is replaced by the pair (v, v ′) where v ′ is a new symbol;
• for 2-ALLELEn,� the value v is replaced by the pair (v, v).

We will reduce an instance of TP to the 2-label cover problem by introducing an individual for every node of the graph G
with n nodes and providing label sequences for each node (individual) such that:

(�) three individuals corresponding to a triangle of G have at most two values on every locus, and
(��) three individuals that do not correspond to a triangle of G have three values on some locus.

Note that, since any pair of individuals can be full siblings, the above properties imply that TP has a solution with t
triangles if and only if the 2-label cover can be covered with n−t

2 sibling groups. Thus, Theorem 1 implies that it is NP-hard
to decide on instances of 228k individuals whether the number of full sibling groups is above (228 − 76 + ε)k/2 or below
(228 − 75 − ε)k/2, thereby giving (153/152) − ε ≈ (1.0064 − ε)-inapproximability.

The index of a locus, which we call the coordinate, is defined by:

(a) an “origin” node a, and
(b) optionally, a certain edge e.

Thus, we will have at most O (|V | · |E|) loci. The respective label of a node v at this coordinate is the distance from a to v ,
assuming every edge except e has length 1 while e has length 0. Let dist(u, v) denote the distance between nodes u and v .

It is easy to see that property (�) holds. Consider a triangle {u, v, w} and assume that u has the minimum label value
of L, i.e., it is the nearest with respect to the origin node that defined this locus. Then labels of v and w are at least L and
at most L + 1, hence we have at most two labels.

It is a bit more involved to verify property(��). Consider a non-triangle {u, v, w} in a labeling defined by u (with no
edge). u has label 0 and v, w have positive labels which may be equal: if not, we are done; if yes, let L = dist(u, v) =
dist(u, w).

Consider the two shortest paths from u to v and w , respectively, such that they share a maximally long initial part; so
for some node x dist(u, v) = dist(u, x)+ dist(x, v), dist(u, w) = dist(u, x)+ dist(x, w) and the shortest paths from x to v and
w have to be disjoint. Let {x, y} be an edge on a shortest path from x to v and now set its length to 0.
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First, observe that dist(y, w) � dist(x, w), since otherwise dist(y, w) � dist(x, w) − 1, dist(u, v) = dist(u, x) + dist(x, y) +
dist(y, v) and also dist(u, w) = dist(u, x) + dist(x, y) + dist(y, w) and we found a longer common prefix of shortest paths
from u to v and w .

Now when we shrink e = {x, y} by setting its length to zero, the labels of u and w are unchanged and the label of v
drops by 1; we have only two labels only if the labels of u, v and w are 0, 1 and 1, respectively, which implies that {u, v}
and {u, w} are edges.

In this case we label nodes by distances from v; v gets 0, u gets 1, if w also gets 1 then we have edges {u, v}, {u, w}
and now we witnessed {v, w}, hence {u, v, w} is a triangle.

This completes the hardness reduction.
On the algorithmic side, suppose that an optimal solution for either version of the sibling problem on n individuals

involve a triples and b pairs of individuals (and, thus 3a + 2b). Hurkens and Schrijver [27] have a schema that approximates
triangle packing within a ratio of 1.5 + ε for any constant ε > 0. We can use this algorithm to get at least (2a/3)− ε triples.
We can cover the remaining n − (2a − 3ε) = a + 2b + 3ε elements by pairs. Thus, we use at most (2a/3) − ε + (a/2) + b +
(3/2)ε = (7a/6) + b + (ε/2) which is within a factor of (7/6) + ε of a + b. �
5. Approximability of 4-ALLELEn,� and 2-ALLELEn,� for a = 4

Theorem 3. For a = 4, both 4-ALLELEn,� and 2-ALLELEn,� are ((6725/6724) − ε)-inapproximable even if � = 2 assuming RP �= NP
and (for any �) admit ((3/2) + ε)-approximation for any constant ε > 0.

Proof. We will prove the result for 2-ALLELEn,� only; a proof for 4-ALLELEn,� can be obtained by an easy modification of
the above proof. We will prove the result by showing that, for any constant ε > 0, 2-ALLELEn,� cannot be approximated to
within a ratio of 6725

6724 − ε unless RP = NP.
We will reduce an instance G = (V , E) of 3-MAX-CUT to 2-ALLELEn,� and use the previously proved result on 3-MAX-CUT

as stated in Section 2. For notational simplicity, let m = |E|. We will provide a reduction from an instance G = (V , E) of 3-
MAX-CUT with 336n vertices to an instance of 4-ALLELE10m,� with � = 2. The reduction will satisfy the following properties:

(i) a solution of 3-MAX-CUT with a score of x correspond to a solution of 2-ALLELE24m,2 with 14m − x sibling groups;
(ii) a solution of 2-ALLELE24m,2 with z sibling groups can be transformed in polynomial time to another solution of 2-

ALLELE24m,2 with 14m − y � z sibling groups (for some positive integer y) such that this solution correspond to a
solution of 3-MAX-CUT with a score of y.

Note that this provides the required gap in approximability. Indeed, observe that (with m = 336× 3
2 ×n = 504n) 3-MAX-CUT

has a solution of score below (331 − ε)n if and only if 2-ALLELE24m,2 has a solution with at least 14 × 504n − (331 − ε)n =
(6725 + ε)n sibling groups and conversely 3-MAX-CUT has a solution of score above (332 + ε)n if and only if 2-ALLELE24m,2
has a solution with at most 14 × 504n − (332 + ε)n = (6724 − ε)n sibling groups; thereby the inapproximability gap is
6725
6724 − ε.

When we look at one locus only, a set of full siblings can have a very limited set of values for alleles. Consider first
the case in which every individual has two different elements (alleles) at this locus. We can then view each individual
{u, v} as an edge in an undirected graph with the two elements u and v representing two nodes in the graph. Three edges
(individuals) can be full siblings if they form a path or a cycle; if they do not form a connected graph their union has more
than 4 elements, and if they are of the form {u, v}, {u, w}, {u, x} then also they violate the 2-allele condition. Four edges can
be full siblings if they form a cycle since they must have only 4 nodes and 3 edges incident on the same node violate the
2-allele condition. The other members in a full sibling group for an individual {u, u} can be subsets of either {{u, v}, {v, v}}
or {{u, v}, {u, w}, {v, w}}. In our reduction cycles of length 3 will not exist, so full siblings sets of size larger than two will
be paths of 3 edges, cycles of 4 edges and triples of the form {u, u}, {u, v}, {v, v}. For the purpose of the reduction, it would
be more convenient to reformulate the properties (i) and (ii) of the reduction described above by the following obviously
equivalent properties:

(i′) a solution of 3-MAX-CUT with a score of m − x correspond to a solution of 2-ALLELE24m,2 with 13m + x sibling groups;
(ii′) a solution of 2-ALLELE24m,2 with z sibling groups can be transformed in polynomial time to another solution of 2-

ALLELE24m,2 with 13m + y � z sibling groups (for some positive integer y) such that this solution correspond to a
solution of 3-MAX-CUT with a score of m − y.

We now describe our reduction. We are given a cubic graph G with 2n nodes (and thus with m = 3n edges) and we will
construct an instance J of 2-ALLELE24m,2. We replace each node u of G with a gadget Gu that consists of 36 individuals
(see Fig. 4). Our individuals have two loci. According to the first locus, individuals are edges in a 4-regular graph. Gadget Gu

is a 3 × 12 grid. The rows are closed to form rings of 12 edges, and every fourth column is similarly closed to form a ring
on 3 edges. This leaves 6 connected groups of 3 nodes each with 3 neighbors only (e.g., the second, third and fourth node
from left on the first row is one such group); these groups are connected to similar groups in other gadgets. A connection
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Fig. 4. Node gadget Gu for a node u (left) and connections between two node gadgets (right) used in the proof of Theorem 3. The dashed lines indicate
wrap-around connections between boundary nodes of the node gadget. The edge labels indicate the values (alleles) in the second locus of each edge
(individual). The wrap-around horizontal edges have label δ.

between two gadgets consists of two 2 × 3 grids; for each grid the two rows come from two above-mentioned groups of
nodes, one from each gadget.

We can view the second locus as labels on edges. A one-letter label a corresponds to a “pair with a repeat”, i.e., (a,a),
and two-letter label a,b is a “normal pair” (a,b). Inside the 3 × 12 grid of a node gadget the labels of horizontal edges
are equal if one edge is above another, and in a 12-edge ring of such edges labels repeat in a cycle of 4 (and each has
one letter). We have similar situation for vertical edges inside the grid. The “wrap-around” edges (in every 4th column) are
labeled with proper pairs α, δ such that they intersect the labels of their neighbors. We assume that these labels are unique
to every Gu (in Fig. 4, these would be labels δu and αu).

The edges that connect node gadgets are labeled μ where μ is the same in all node gadgets and the labels of gadget
edges that take part in the connection are the same in all gadgets (thus β and γ are without implicit subscripts).

It is easy to see that every cycle of 4 edges in our new graph is indeed a full siblings set: according to the first locus
they are surely so and according to the second locus we can have only two distinct labels on a cycle, e.g., {αu, λ} or {β,μ}.
Edges with a “normal pair” label α, δ do not belong to any cycle of length 4.

It is a bit more non-trivial to check that we have only two types of full sibling sets of 3 edges: subsets of 4-cycles, and
sets with repeat label α, repeat label δ and normal label α, δ that include “wrap-around” edges and adjacent horizontal
edges (one at each end). Basically, if we have two horizontal edges from “different columns” in a set, we cannot add
any other label—with the exception we have just described. Recall that a full sibling set of 3 edges forms a path; thus
combination of labels like λ, δ and κ is not full siblings.

We give each edge a potential. By default it is equal to 0.25. The exceptions are: an edge with the label α, δ has a
potential of 0.5, an edge with label μ that is not a center of a group of three nodes in the node gadget that defined an edge
connection has a potential of 0.5 and an edge with label μ that is a center of a group of three nodes in the node gadget
that defined an edge connection has a potential of 0.

By previous observations, no full siblings set has a potential exceeding 1. Note also that for each node of G we distributed
a potential of 19.5, so no cover with full siblings sets can use fewer than 19.5 × 2n = 39n = 13m sets.

Assume that in G we have a cut with 3n − c = m − c edges, i.e., a partition of the set of nodes into A and B such that
only c edges (of m = 3n edges) are inside the partitions. We will show a cover with 39n + c full siblings sets. First we use
cycles that correspond to gray squares in every gadget Gu such that u ∈ A, and if u ∈ B we use cycles that correspond to
white square. This is 12 sets per gadgets. Next, in each gadget we use 3 triples centered on α, δ edges. Next, in a connection
between A and B we have either two edges labeled β already covered, or two edges labeled γ : in the diagram, suppose
that the “lower gadget” is in A, then γ is in a gray square of that gadget; and as the upper gadget is in B and in that edge
the upper γ is covered by a white cycle, it is already covered. Thus we can use a cycle with two β edges and two μ’s, and
one μ is left out. This happens twice in a connection between two gadget, so we add two cycles and one pair of left-out
μ’s, a total of 3 sets.

If a connection is inside A or inside B , then the uncovered edges have one β and one γ and they form a path of 5
edges, which can be covered with 2 sets, and since this happens twice, we use 4 sets.

Summarizing, we used 2n × (12 + 3) + 3n × 3 + c = 39n + c sets. This proves (i′).
Now, we prove (ii′). Suppose that we have a cover with 39n + c sets. We have to normalize it so it will have the form

of a cover derived from a cut, without increasing the number of sets. The potential introduced above allows to make local
analysis during the normalization. A set with potential p < 1 has a penalty of 1 − p, and we have the sum of penalties
equal c.

We can assign the penalty to node gadgets. If a set with a penalty is contained in some Gu than the assignment is clear.
If we have a set of two edges, then we assign penalty of 0.25 to each edge with potential 0.25 and if such an edge is
contained in Gu , we assign the penalty to Gu .

If Gu has a penalty of 1 or more, we remove Gu from consideration and recursively normalize the cover of the remaining
gadgets. Once we make this normalization, we partition the remaining nodes into A and B . If a node u has at most one
neighbor in A we insert u to A, meaning, we cover it with gray cycles etc, and we will add 19.5 + 1 sets (an edge not
covered counts as half of a set, because we can combine them in pairs).
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Thus remains to normalize the cover of Gu assuming that its penalty is at most 0.75. Consider the central horizontal cycle
of the grid of Gu : it has 12 edges, and no two of them can belong to the same full sibling set with more than 2 edges;
moreover, the sets of at least 3 edges to which they belong are fully contained in Gu . Because Gu obtain at most 0.75 in
penalties, at least 9 edges of that 12-cycle are covered by full siblings 4-cycles. Consider the longest connected fragment of
such covered edges; assume that they are covered with gray cycles.

Suppose that the last two cycles in that fragment are A and B in the last diagram. We want to change the solution
without increasing the number of set and use also cycle C . If C contains a set S used in the current solution, we can
enlarge S (making some other sets smaller) and our fragment is extended. If C contains two edges contained in two-edge
sets, we can combine the sets so the latter two are in one set, and again we can force C into our solution. So every edge of
C is in a different set from the current solution and at most one of these sets is a pair.

Consider the edge on the boundary of B ′ and C ; if it is in a set of more than 3 edges, that set is contained in C—and we
excluded that case, or in B ′—but only two edges of B ′ remain uncovered. Hence this edge is contained in a set with two
edges only, and it gets a penalty of 0.25 that is delivered to Gu .

Consider the edge on the boundary of C and C ′ . According to our case analysis, it is contained in a set of at least 3
edges, and which has only one edge in C , so this set is contained in C ′ . Because A covers one edge of C ′ , we have a set of
exactly 3 edges that gets a penalty of 0.25, and thus Gu already got 0.5 of penalty.

We repeat the same reasoning at the other end of the fragment and we double the penalty to 1. The only doubt we can
have is that we are counting one of the penalties twice. But this is not possible: the other end of the fragment cannot be
covered by C , and it cannot be covered by D , as we use the set C ′ \ B which overlaps D . If the other end of our fragment is
covered with E , then we get penalties for the boundary of D and D ′ , and for the set D ′ \ E and we have no double counting.
Other cases are similar.

Now an explicitly normalized node gadget has a center row covered with 12 cycles of the same color. The wrap-around
edges with α, δ labels can be included in paths of 3 edges—and with potential 1; note that after we committed ourselves to
12 “central” cycles, the edges of such a path do not belong to any other set with more than two edges. Now the uncovered
edges are only in the connection gadgets and they form sets of 5 edges, with no connections between them. We have two
such 5-tuples for each connection.

We split the nodes according to the colors used in their gadgets: gray cycles are in set A and white cycles are in set B .
If we have a 5 tuple of an A − B connection, its uncovered edges form a cycle and an edge, so we can cover it with 1.5 sets
and we cannot do any better. If we have an A − A or B − B connections, the uncovered edges form a path of 5 edges and
we much cover them with two sets.

This completes the hardness reduction.
On the algorithmic side, we can use the result of Berman and Krysta [11]. For polynomial time, we have to round the

rescaled weights to small integers, so the approximation ratio should have some ε added. The 2-IMP with rescaled weight
has an approximation ratio of βa, where for a = 3, β = 2/3, for a = 4, β = 0.6514 and for a > 4, β = 0.6454. We can greedily
find a maximal packing with sets of size 4 and find 1/2 of the remaining sets of size 3 using 2-IMP algorithm of [11]. Easy
analysis shows that this gives an approximation ratio of 3/2. �
Remark 1. Using a reduction again from 3-MAX-CUT that is similar in flavor to the above proof (but with different
gadgets, different covering components and simpler case analysis) one can prove that, assuming RP �= NP, there is no
((1182/1181) − ε)-approximation algorithm for 4-ALLELE n,� even if a = 6 and � = O (n) for any constant ε > 0.

6. Inapproximability for 4-ALLELEn,� and 2-ALLELEn,� for a = nδ

Lemma 4. For any two constants 0 < ε < δ < 1 with a = nδ , 4-ALLELEn,� and 2-ALLELEn,� are nε-inapproximable assuming
NP � ZPP.

Proof. For any two constants 0 < ε < δ < 1, consider a hard instance G = (V , E) of the graph coloring problem with n
vertices [n] = {1,2, . . . ,n} and Δ∗(G) � |V |δ . As observed in the proof of Theorem 2, it will be sufficient to translate this to
an instance J of the 2-label cover problem. We will have a individual for every vertex i. We will translate an edge {i, j} ∈ E
to exactly n − 2 “forbidden triplets” of individuals {{i, j,k} | k ∈ [n] \ {i, j}} of the 2-label cover problem such that each of
these set of individuals cannot be a full sibling group. We call {i, j} as the “anchor” of these triplets. The translation is done
by introducing a new locus and three labels a, b and c, putting a and b as the labels of individuals i and j in this locus, and
putting c as the label of every other individual in this locus. Finally, we use the following distinctness gadgets, if necessary,
to ensure that all the individuals are distinct. There are at most O (n2) such gadgets. The purpose of such gadgets is to make
sure no two individuals are identical, i.e., every pair of individuals differ in at least one locus, while still allowing any subset
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of individuals to be in a full sibling group. Consider a pair of individuals u and v that have the same set of loci. Select a
new locus, two symbols, say a and b, and put a in the locus of all individuals except v and put b in the locus of v .

It suffices to show that our reduction has the following properties:

(1) A set of x � 3 vertices of G are independent if and only if the corresponding set of x individuals in J is a valid full
sibling group.

(2) If G can be colored with k colors then J can be covered with k sibling groups.
(3) If J can be covered with k′ sibling groups then G can be colored with no more than 2k colors.

Suppose that we have a set S of independent vertices in G . Suppose that the corresponding set of individuals in J cannot
be a full sibling group and thus must include a forbidden triplet {i, j,k} with {i, j} as the anchor. Then {i, j} ∈ E , thus S
is not an independent set. Conversely, suppose that the set of individuals J is be a full sibling group. Then, they cannot
include a forbidden triplet. This verifies property (1).

Suppose that G can be colored with k colors. We claim that the set of individuals corresponding to the set of vertices
with the same color constitute a sibling group for either problem. Indeed, since the set of vertices of G with the same color
are mutually non-adjacent, they do not include a forbidden triplet. This verifies property (2).

Finally, suppose that the instance of the generated 2-label cover problem has a solution with k′ sibling groups. For each
sibling group, select a new color and assign it to all the individuals in the group. Now, map the color of individuals in J to
the corresponding vertices of G = (V , E). Let E ′ ⊆ E be the set of edges which connect two vertices of the same color. Note
that in the graph G ′ = (V , E ′) every vertex is of degree at most one since otherwise the sibling group that contains these
three individuals corresponding to the three vertices that comprise the two adjacent edges has a forbidden triplet. Thus, we
can color the vertices of G ′ from a set C of two colors. Obviously, the graph G ′′ = (V , E \ E ′) can be colored with colors
from a set D of k′ colors. Now, it is easy to see that G can be colored with at most k � 2k′ colors: assign a new color to
every pair in C × D and color a vertex with the color (c,d) ∈ C × D where c and d are the colors that the vertex received
in the coloring of G ′ and G ′′ , respectively. This verifies property (3). �
7. Approximating maximum profit coverage (MPC)

Lemma 5.

(a) MPC is NP-hard for a � 3 and ac-inapproximable for arbitrary a and some constant 0 < c < 1 assuming P �= NP even if every
set has weight a − 1, every element has weight 1 and every set contains exactly a elements. The hard instances can further be
restricted such that each element is a point in some underlying metric space and each set correspond to a ball of radius α for some
fixed specified α.

(b) MPC is polynomial-time solvable for a � 2. Otherwise, for any constant ε > 0, MPC admits (0.5a + 0.5 + ε)-approximation for
fixed a and (0.6454a + ε)-approximation otherwise.

Proof. (a) Consider an instance of the independent set problem on a a-regular graph G = (V , E). Build the following instance
of the MPC problem. The universe U is E . For every vertex v ∈ V , there is a set S v consisting of the edges incident on v .
Finally, set the weight of every element to be 1 and the weight of every set to be a − 1. Note that each set contains exactly
a elements.

It is clear that an independent set of x vertices correspond to a solution of the MPC problem of profit x by taking the
sets corresponding to the vertices in the solution. Conversely, suppose that a solution of the MPC problem contains two
sets S and S ′ that have a non-empty intersection. Since each set contains exactly a elements, removing one of the two sets
from the solution does not decrease the total profit. Thus, one may assume that every pair of sets in a solution of the MPC
problem has empty intersection. Then, such a solution involving x sets of total profit x correspond to an independent set of
x vertices.

If one desires, one can further restrict the instance of the MPC problem in (a) above to the case where each element is
a point in some underlying metric space and each set correspond to a ball of radius α for some fixed specified α. All one
needs to do is to use the standard trick of setting the weight of each edge in the graph to be α and define the distance
between two vertices to be the length of the shortest path between them.

(b) Consider the weighted set-packing problem and let a denote the maximum size of any set. For fixed a, it is easy to
use the algorithm for the weighted set-packing as a black box to design an a/2-approximation for the MPC problem. For
each set Si of MPC, consider all possible subsets of Si and set the weight w(P ) of each subset P to be the sum of weights
of its elements minus qi . Remove any subset from consideration if its weight is negative. The collection of all the remaining
subsets for all Si ’s form the instance of the weighted set-packing problem.

It is clear that a solution of the weighted set-packing will never contain two sets S and S ′ that are subsets of some
Si since then the solution can be improved by removing the sets S and S ′ and adding the set S ∪ S ′ to the solution (the
solution cannot contain the set S ∪ S ′ because of the disjointness of sets in the solution). Thus, at most one subset of any
Si is used the solution of the weighted set-packing. If a subset S of some Si was used, we use the set Si in the solution of
the MPC problem; note that the elements in Si \ S must be covered in the solution by other sets since otherwise there is
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a trivial local improvement. In this way, a solution of the weighted set-packing of total weight x corresponds to a solution
of the MPC problem of total profit x. Conversely, in an obvious manner a solution of the MPC problem of total profit x
corresponds to solution of the weighted set-packing of total weight x.

For a � 2, weighted set-packing can be solved in polynomial time via maximum perfect matching in graphs.
For fixed a > 2, Berman [8] provided an approximation algorithm based on local improvements for this problem produces

an approximation ratio of a+1
2 + ε for any constant ε > 0. An examination of the algorithm in [8] shows that the running

time of the procedure for our case is O (2(a+1)2
ma+1) = O (ma+1).

When a is not a constant, Algorithm 2-IMP of Berman and Krysta [11] can be adapted for MPC to run in polynomial
time. For polynomial time, we have to round the rescaled weights to small integers, so the approximation ratio should have
some ε added. The 2-IMP with rescaled weight has an approximation ratio of 0.6454a for any a > 4. However, we need a
somewhat complicated dynamic programming procedure to implicitly maintain all the subsets for each Si without explicit
enumeration.

Here are the technical details of the adaptation. We will view sets that we can use as having names and elements.
A name of A is a set N(A) given in the problem instance, and elements form a subset S(A) ⊂ N(A). The profit w(S) is sum
of weights of elements minus the cost of the naming set p(A) = w(S(A)) − c(N(A)).

The algorithm attempts to insert two sets to the current packing and remove all sets that overlap them; this attempt is
successful if the sum of weights raised to power α > 1 increases; more precisely, the increase should be larger then some δ,
chosen is such a way that it is impossible to perform more than some polynomial time of successful attempts. As a result,
we can measure the weights of sets with a limited precision, so we have a polynomially many different possible weights.

When we insert set with name B that overlaps a set A currently in the solution, we have a choice: remove set A from
the solution or remove A ∩ B from B . If we also insert a set with name C we have the same dilemma for A and C . Our
choice should maximize the resulting sum of wα(S) for S in the solution.

If we deal with two sets, we can define the quantities

xA = p(A − B),

xB = p(B − A),

w AB = w(A ∩ B).

If we include A ∩ B in A, the modified profit is (xA + w AB)α + xα
B .

If we include A ∩ B in B , and remove A, the modified profit is (xB + w AB)α .
Our problem is that we know y1 = xα

A and y1 = w AB but we do not know xB , because the exact composition of B
depends on many decisions. Thus we do not know if the following inequality holds for x = xB + xAB :

(y1 + y2)
+(x − y2)

α � xα.

It is easy to see that the left-hand side grows slower than the right-hand side, so once the inequality holds, it is true for
all larger x. For this reason it is never optimal to split A ∩ B between the two sets, instead we allocate the overlap to one
of them.

The situation is similar when we insert two sets. To decide how to handle each overlap of the (names of) sets that we are
inserting with the sets already in the solution, it suffices to know their profits. Because we measure profits with a bounded
precision, we can make every possible assumption about these two profits, make the decisions and check if the resulting
profits are consistent with the assumption; if not, we ignore that assumptions. Among assumptions that we do not ignore,
we select one with the largest increase of profits raised to power α. If one of them is positive, we perform the insertion.

Thus we can select a pair of insertion in polynomial time even though we have a number of candidates that is propor-
tional to n2a . Thus our algorithm runs in polynomial time even for a � log n. Therefore we can achieve the approximation
ratio of 2-IMP, i.e., 0.6454a + ε, which is better than factor a offered by a greedy algorithm: keep inserting a set with
maximum profit that does not overlap an already selected set. �
8. Approximating 2-coverage

Lemma 6.

(a) For f = 2, 2-coverage is (1+ε)-inapproximable for some constant ε > 0 unless NP �
⋂

ε>0 BPTIME(2nε
) and admits O (m

1
3 −ε′

)-
approximation for some constant ε′ > 0.

(b) For arbitrary f , 2-coverage admits O (
√

m )-approximation.

Proof. (a) Consider an instance 〈G,k〉 of the densest subgraph problem. Then, define an instance of the (k,2)-coverage
problem such that U = E , there is a set for every vertex in V that contains all the edges incident to that vertex, and we
need to pick k sets. Note that for this instance f = 2.
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For the other direction, define a vertex for every set, connect two vertices if they have a non-empty intersection with
a weight equal to the number of common elements. This gives an instance of weighted DS whose goal is to maximize the

sum of weights of edges in the induced subgraph and admits O (m
1
3 −ε)-approximation for some constant ε > 0 [21].

(b) For notational convenience it will be convenient to define the (k, �)-coverage problem (for � � 1) which is same
as the 2-coverage problem with k sets to be selected except that every element must belong to at least � selected sets
(instead of two selected sets). We will also use the following notations. OPT(k, �, S) is the maximum value of the objective
function for the (k, �)-coverage problem on the collection of sets in S and A(k, �, S) is the value of the objective function
for the (k, �)-coverage problem on the collection of sets in S computed by our algorithm. For notational convenience, let
℘ = 1 − (1/e). We will give both an O (k) and an O (m/k) approximation which together gives the desired approximation.

The following gives an O (k)-approximation. Create a new set Ti, j = Si ∩ S j for every pair of indices i �= j. Run the
(k/2,1)-coverage ℘-approximation algorithm on the Ti, j ’s and output the elements and, for each selected Ti, j , the corre-

sponding Si and S j . Note that each element is covered at least twice. One can look at all the
(k

2

)
pairwise intersections of

sets in an optimal solution of (k,2)-coverage on S , consider the k/2 pairs that have the largest intersections and thus con-
clude that an optimal solution of 2-coverage on S covers no more than O (k) times the number of elements in an optimal
solution of the (k/2,1)-coverage on the Ti, j ’s.

To get an O (m/k)-approximation, first note that OPT((k/2),1, S) � OPT(k,2, S). Run the ℘-approximation algorithm to
select the collection of sets T ⊆ S to approximate OPT((k/2),1, S). For each remaining set in S \ T , remove all elements
that do not belong to the sets in T and remove all elements that are already covered twice in T . We know that if we were
allowed to choose all of the m − k remaining sets in S \ T we would cover all the elements in the sets T . But since we
are allowed to choose only additional k/2 sets, we choose those k/2 sets from S \ T that cover the maximum number of
elements in the union of sets in T . This involves again running the ℘-approximation algorithm. We will cover at least a
fraction k/(2m) of the maximum number of elements. �
9. Conclusion and further research

In this paper we investigated four covering/packing problems that have applications to several problems in bioinformat-
ics. Several questions remain open on the theoretical side. For example, can stronger inapproximability results be proved for
4-ALLELEn,� and 2-ALLELEn,� intermediate values of a and � that are excluded in our proofs?
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