12 research outputs found

    Graph Polynomials and Group Coloring of Graphs

    Get PDF
    Let ฮ“\Gamma be an Abelian group and let GG be a simple graph. We say that GG is ฮ“\Gamma-colorable if for some fixed orientation of GG and every edge labeling โ„“:E(G)โ†’ฮ“\ell:E(G)\rightarrow \Gamma, there exists a vertex coloring cc by the elements of ฮ“\Gamma such that c(y)โˆ’c(x)โ‰ โ„“(e)c(y)-c(x)\neq \ell(e), for every edge e=xye=xy (oriented from xx to yy). Langhede and Thomassen proved recently that every planar graph on nn vertices has at least 2n/92^{n/9} different Z5\mathbb{Z}_5-colorings. By using a different approach based on graph polynomials, we extend this result to K5K_5-minor-free graphs in the more general setting of field coloring. More specifically, we prove that every such graph on nn vertices is F\mathbb{F}-55-choosable, whenever F\mathbb{F} is an arbitrary field with at least 55 elements. Moreover, the number of colorings (for every list assignment) is at least 5n/45^{n/4}.Comment: 14 page

    Covering grids with multiplicity

    Get PDF
    Given a finite grid in R2\mathbb{R}^2, how many lines are needed to cover all but one point at least kk times? Problems of this nature have been studied for decades, with a general lower bound having been established by Ball and Serra. We solve this problem for various types of grids, in particular showing the tightness of the Ball--Serra bound when one side is much larger than the other. In other cases, we prove new lower bounds that improve upon Ball--Serra and provide an asymptotic answer for almost all grids. For the standard grid {0,โ€ฆ,nโˆ’1}ร—{0,โ€ฆ,nโˆ’1}\{0,\ldots,n-1\} \times \{0,\ldots,n-1\}, we prove nontrivial upper and lower bounds on the number of lines needed. To prove our results, we combine linear programming duality with some combinatorial arguments

    Subspace coverings with multiplicities

    Get PDF
    We study the problem of determining the minimum number f(n,k,d)f(n,k,d) of affine subspaces of codimension dd that are required to cover all points of F2nโˆ–{0โƒ—}\mathbb{F}_2^n\setminus \{\vec{0}\} at least kk times while covering the origin at most kโˆ’1k-1 times. The case k=1k=1 is a classic result of Jamison, which was independently obtained by Brouwer and Schrijver for d=1d = 1. The value of f(n,1,1)f(n,1,1) also follows from a well-known theorem of Alon and F\"uredi about coverings of finite grids in affine spaces over arbitrary fields. Here we determine the value of this function exactly in various ranges of the parameters. In particular, we prove that for kโ‰ฅ2nโˆ’dโˆ’1k \ge 2^{n-d-1} we have f(n,k,d)=2dkโˆ’โŒŠk2nโˆ’dโŒ‹f(n,k,d)=2^d k - \left \lfloor \frac{k}{2^{n-d}} \right \rfloor, while for n>22dkโˆ’kโˆ’d+1n > 2^{2^d k-k-d+1} we have f(n,k,d)=n+2dkโˆ’dโˆ’2f(n,k,d)= n + 2^dk-d-2, and also study the transition between these two ranges. While previous work in this direction has primarily employed the polynomial method, we prove our results through more direct combinatorial and probabilistic arguments, and also exploit a connection to coding theory.Comment: 15 page

    ๊ทผ์‚ฌ ์—ฐ์‚ฐ์— ๋Œ€ํ•œ ๊ณ„์‚ฐ ๊ฒ€์ฆ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€,2020. 2. ์ฒœ์ •ํฌ.Verifiable Computing (VC) is a complexity-theoretic method to secure the integrity of computations. The need is increasing as more computations are outsourced to untrusted parties, e.g., cloud platforms. Existing techniques, however, have mainly focused on exact computations, but not approximate arithmetic, e.g., floating-point or fixed-point arithmetic. This makes it hard to apply them to certain types of computations (e.g., machine learning, data analysis, and scientific computation) that inherently require approximate arithmetic. In this thesis, we present an efficient interactive proof system for arithmetic circuits with rounding gates that can represent approximate arithmetic. The main idea is to represent the rounding gate into a small sub-circuit, and reuse the machinery of the Goldwasser, Kalai, and Rothblum's protocol (also known as the GKR protocol) and its recent refinements. Specifically, we shift the algebraic structure from a field to a ring to better deal with the notion of ``digits'', and generalize the original GKR protocol over a ring. Then, we represent the rounding operation by a low-degree polynomial over a ring, and develop a novel, optimal circuit construction of an arbitrary polynomial to transform the rounding polynomial to an optimal circuit representation. Moreover, we further optimize the proof generation cost for rounding by employing a Galois ring. We provide experimental results that show the efficiency of our system for approximate arithmetic. For example, our implementation performed two orders of magnitude better than the existing system for a nested 128 x 128 matrix multiplication of depth 12 on the 16-bit fixed-point arithmetic.๊ณ„์‚ฐ๊ฒ€์ฆ ๊ธฐ์ˆ ์€ ๊ณ„์‚ฐ์˜ ๋ฌด๊ฒฐ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ๊ณ„์‚ฐ ๋ณต์žก๋„ ์ด๋ก ์  ๋ฐฉ๋ฒ•์ด๋‹ค. ์ตœ๊ทผ ๋งŽ์€ ๊ณ„์‚ฐ์ด ํด๋ผ์šฐ๋“œ ํ”Œ๋žซํผ๊ณผ ๊ฐ™์€ ์ œ3์ž์—๊ฒŒ ์™ธ์ฃผ๋จ์— ๋”ฐ๋ผ ๊ทธ ํ•„์š”์„ฑ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ ๊ณ„์‚ฐ๊ฒ€์ฆ ๊ธฐ์ˆ ์€ ๋น„๊ทผ์‚ฌ ์—ฐ์‚ฐ๋งŒ์„ ๊ณ ๋ คํ–ˆ์„ ๋ฟ, ๊ทผ์‚ฌ ์—ฐ์‚ฐ (๋ถ€๋™ ์†Œ์ˆ˜์  ๋˜๋Š” ๊ณ ์ • ์†Œ์ˆ˜์  ์—ฐ์‚ฐ)์€ ๊ณ ๋ คํ•˜์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ์งˆ์ ์œผ๋กœ ๊ทผ์‚ฌ ์—ฐ์‚ฐ์ด ํ•„์š”ํ•œ ํŠน์ • ์œ ํ˜•์˜ ๊ณ„์‚ฐ (๊ธฐ๊ณ„ ํ•™์Šต, ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ๊ณผํ•™ ๊ณ„์‚ฐ ๋“ฑ)์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋ฐ˜์˜ฌ๋ฆผ ๊ฒŒ์ดํŠธ๋ฅผ ์ˆ˜๋ฐ˜ํ•˜๋Š” ์‚ฐ์ˆ  ํšŒ๋กœ๋ฅผ ์œ„ํ•œ ํšจ์œจ์ ์ธ ๋Œ€ํ™”ํ˜• ์ฆ๋ช… ์‹œ์Šคํ…œ์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฐ์ˆ  ํšŒ๋กœ๋Š” ๊ทผ์‚ฌ ์—ฐ์‚ฐ์„ ํšจ์œจ์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๊ทผ์‚ฌ ์—ฐ์‚ฐ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๊ณ„์‚ฐ ๊ฒ€์ฆ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ฃผ์š” ์•„์ด๋””์–ด๋Š” ๋ฐ˜์˜ฌ๋ฆผ ๊ฒŒ์ดํŠธ๋ฅผ ์ž‘์€ ํšŒ๋กœ๋กœ ๋ณ€ํ™˜ํ•œ ํ›„, ์—ฌ๊ธฐ์— Goldwasser, Kalai, ๋ฐ Rothblum์˜ ํ”„๋กœํ† ์ฝœ (GKR ํ”„๋กœํ† ์ฝœ)๊ณผ ์ตœ๊ทผ์˜ ๊ฐœ์„ ์„ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋Œ€์ˆ˜์  ๊ฐ์ฒด๋ฅผ ์œ ํ•œ์ฒด๊ฐ€ ์•„๋‹Œ ``์ˆซ์ž''๋ฅผ ๋ณด๋‹ค ์ž˜ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜์œผ๋กœ ์น˜ํ™˜ํ•œ ํ›„, ํ™˜ ์œ„์—์„œ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋„๋ก ๊ธฐ์กด์˜ GKR ํ”„๋กœํ† ์ฝœ์„ ์ผ๋ฐ˜ํ™”ํ•˜์˜€๋‹ค. ์ดํ›„, ๋ฐ˜์˜ฌ๋ฆผ ์—ฐ์‚ฐ์„ ํ™˜์—์„œ ์ฐจ์ˆ˜๊ฐ€ ๋‚ฎ์€ ๋‹คํ•ญ์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๊ณ , ๋‹คํ•ญ์‹ ์—ฐ์‚ฐ์„ ์ตœ์ ์˜ ํšŒ๋กœ ํ‘œํ˜„์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋Š” ์ƒˆ๋กญ๊ณ  ์ตœ์ ํ™”๋œ ํšŒ๋กœ ๊ตฌ์„ฑ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ฐˆ๋ฃจ์•„ ํ™˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ˜์˜ฌ๋ฆผ์„ ์œ„ํ•œ ์ฆ๋ช… ์ƒ์„ฑ ๋น„์šฉ์„ ๋”์šฑ ์ตœ์ ํ™”ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์‹คํ—˜์„ ํ†ตํ•ด ์šฐ๋ฆฌ์˜ ๊ทผ์‚ฌ ์—ฐ์‚ฐ ๊ฒ€์ฆ ์‹œ์Šคํ…œ์˜ ํšจ์œจ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์šฐ๋ฆฌ์˜ ์‹œ์Šคํ…œ์€ ๊ตฌํ˜„ ์‹œ, 16 ๋น„ํŠธ ๊ณ ์ • ์†Œ์ˆ˜์  ์—ฐ์‚ฐ์„ ํ†ตํ•œ ๊นŠ์ด 12์˜ ๋ฐ˜๋ณต๋œ 128 x 128 ํ–‰๋ ฌ ๊ณฑ์…ˆ์˜ ๊ฒ€์ฆ์— ์žˆ์–ด ๊ธฐ์กด ์‹œ์Šคํ…œ๋ณด๋‹ค ์•ฝ 100๋ฐฐ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค.1 Introduction 1 1.1 Verifiable Computing 2 1.2 Verifiable Approximate Arithmetic 3 1.2.1 Problem: Verification of Rounding Arithmetic 3 1.2.2 Motivation: Verifiable Machine Learning (AI) 4 1.3 List of Papers 5 2 Preliminaries 6 2.1 Interactive Proof and Argument 6 2.2 Sum-Check Protocol 7 2.3 The GKR Protocol 10 2.4 Notation and Cost Model 14 3 Related Work 15 3.1 Interactive Proofs 15 3.2 (Non-)Interactive Arguments 17 4 Interactive Proof for Rounding Arithmetic 20 4.1 Overview of Our Approach and Result 20 4.2 Interactive Proof over a Ring 26 4.2.1 Sum-Check Protocol over a Ring 27 4.2.2 The GKR Protocol over a Ring 29 4.3 Verifiable Rounding Operation 31 4.3.1 Lowest-Digit-Removal Polynomial over Z_{p^e} 32 4.3.2 Verification of Division-by-p Layer 33 4.4 Delegation of Polynomial Evaluation in Optimal Cost 34 4.4.1 Overview of Our Circuit Construction 35 4.4.2 Our Circuit for Polynomial Evaluation 37 4.4.3 Cost Analysis 40 4.5 Cost Optimization 45 4.5.1 Galois Ring over Z_{p^e} and a Sampling Set 45 4.5.2 Optimization of Prover's Cost for Rounding Layers 47 5 Experimental Results 50 5.1 Experimental Setup 50 5.2 Verifiable Rounding Operation 51 5.2.1 Effectiveness of Optimization via Galois Ring 51 5.2.2 Efficiency of Verifiable Rounding Operation 53 5.3 Comparison to Thaler's Refinement of GKR Protocol 54 5.4 Discussion 57 6 Conclusions 60 6.1 Towards Verifiable AI 61 6.2 Verifiable Cryptographic Computation 62 Abstract (in Korean) 74Docto

    Some contributions to incidence geometry and the polynomial method

    Get PDF
    corecore