
European Journal of Combinatorics 102 (2022) 103505

O

g

h
0

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Graph polynomials and group coloring of
graphs✩

Bartłomiej Bosek a, Jarosław Grytczuk b, Grzegorz Gutowski a,
riol Serra c, Mariusz Zając b

a Institute of Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian
University, Kraków, Poland
b Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
c Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 13 February 2021
Accepted 15 December 2021
Available online 12 January 2022

a b s t r a c t

Let Γ be an Abelian group and let G be a simple graph. We say
that G is Γ -colorable if for some fixed orientation of G and every
edge labeling ℓ : E(G) → Γ , there exists a vertex coloring c by
the elements of Γ such that c(y) − c(x) ̸= ℓ(e), for every edge
e = xy (oriented from x to y).

Langhede and Thomassen proved recently that every planar
graph on n vertices has at least 2n/9 different Z5-colorings.
By using a different approach based on graph polynomials, we
extend this result to K5-minor-free graphs in the more general
setting of field coloring. More specifically, we prove that every
such graph on n vertices is F-5-choosable, whenever F is an
arbitrary field with at least 5 elements. Moreover, the number
of colorings (for every list assignment) is at least 5n/4.
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1. Introduction

Let Γ be an Abelian group and let G be a simple graph. We say that G is Γ -colorable if for some
orientation of G and every edge labeling ℓ by the elements of Γ there exists a vertex coloring c by
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the elements of Γ such that c(y)−c(x) ̸= ℓ(e), for every edge e = xy (oriented from x towards y). This
otion was introduced by Jaeger, Linial, Payane and Tarsi [9] as a dual concept to group connectivity.
Answering a question posed in [9], Lai and Zhang [11] proved that every planar graph is Z5-

olorable. Recently, Langhede and Thomassen [12] strengthened this result by proving that the
umber of Z5-colorings of every planar graph on n vertices (for any fixed edge labeling) is at least
n/9. The proof is elementary but quite involved.
In this paper we further extend these results by using the polynomial method. It is convenient

o introduce a slightly more general setting. Let F be an arbitrary field and let G be a simple graph.
uppose that each edge e = xy of G is assigned a triple (ae, be, ce) ∈ F3, with ae, be ̸= 0. We say that
is F-colorable if for every such edge labeling there exists a vertex coloring f by the elements of F

uch that aef (x) + bef (y) + ce ̸= 0, for every edge e = xy. Clearly, F-colorability of a graph implies
ts Γ -colorability, where Γ is the additive group of the field F.

Define a graph G to be F-k-choosable if it is F-colorable from arbitrary lists of elements of F, each
f size k, assigned to the vertices.

heorem 1. Let G be a graph on n vertices without a minor of K5. Let F be an arbitrary field with at least
elements. Then G is F-5-choosable. Moreover, the number of colorings (for any fixed list assignment
nd any fixed edge labeling) is at least 5n/4.

The proof is based on the method of graph polynomials. We use two tools, the Combinatorial
ullstellensatz of Alon [2] and a result of Alon and Füredi [3] concerning the number of non-zero
alues of a polynomial evaluated at all points of a multidimensional grid.
Notice that Theorem 1 only covers Abelian groups that are additive groups of a field. For a

eneral Abelian group Γ of order at least 5, Chuang, Lai, Omidi, Wang, and Zakeri proved in [6] by
lementary methods that every K5-minor free graph is Γ -5-choosable. Theorem 1 does not extend
his result, but in the overlapping cases guarantees a stronger conclusion, and also easily implies it
n the case of arbitrary cyclic groups Γ (Theorem 10).

. The results

.1. Graph polynomials

Let G be a simple graph on the set of vertices V (G) = {x1, x2, . . . , xn}. Let PG be the graph
olynomial of G, defined by

PG(x1, x2, . . . , xn) =

∏
xixj∈E(G),i<j

(xi − xj). (2.1)

We identify symbols denoting vertices of Gwith variables of PG. We may consider PG as a polynomial
over an arbitrary field F.

In the process of expanding the polynomial PG, one creates monomials by picking one variable
from each factor (xi−xj). Thus, every monomial corresponds to the unique orientation of G obtained
by directing the edge xixj towards the picked variable. Thus, the degrees of the variables in the
monomial coincide with the in-degrees of the vertices in the corresponding orientation.

Let MG denote the multi-set of all monomials arising in this way. So, the cardinality of MG is
equal to 2m, where m = |E(G)|, and the multiplicity of each monomial M is equal to the number of
orientations of G sharing the same in-degree sequence (corresponding to the degrees of the variables
in M). The sign of a monomial M ∈ MG is the product of signs of all variables picked to form M .
The coefficient of a monomial M in PG, denoted as cM (PG), is the sum of signs of all copies of M in
MG. A monomial M is called non-vanishing in PG if cM (PG) ̸= 0.

Suppose now that each edge e = xixj of a graph G (oriented so that i < j) is assigned an arbitrary
pair (ae, be) of non-zero elements of F. We say that the edges of G are decorated with pairs (a, b),
and we define the corresponding decorated graph polynomial DG in which every factor (xi − xj)
corresponding to the edge e = xixj decorated with (ae, be) is substituted with (aexi + bexj):

DG(x1, x2, . . . , xn) =

∏
(aexi + bexj). (2.2)
e=xixj∈E(G),i<j

2



B. Bosek, J. Grytczuk, G. Gutowski et al. European Journal of Combinatorics 102 (2022) 103505

o

2

m
d
o

T
a

e

p
s

t
D

A
d

w

P

w

c

Of course, different decorations may give different polynomials, but we denote the whole family
f them with the same symbol DG, hoping that this ambiguity will not cause too much confusion.

.2. Combinatorial Nullstellensatz

For a monomial M , let degxi (M) denote the degree of the variable xi in M . The total degree of the
onomial M is the sum

∑n
i=1 degxi (M). In a graph polynomial each monomial has the same total

egree equal to the number of edges of G. Recall that the degree of a polynomial is the maximum
f total degrees of its non-vanishing monomials.
We will use the following famous theorem of Alon [2].

heorem 2 (Combinatorial Nullstellensatz, [2]). Let P be a polynomial in F[x1, x2, . . . , xn], where F is an
rbitrary field of coefficients. Suppose that there is a non-vanishing monomial xk11 xk22 · · · xknn in P whose

total degree is equal to the degree of P. Then, for arbitrary sets Ai ⊆ F, with |Ai| = ki + 1, there exist
lements ai ∈ Ai such that

P(a1, a2, . . . , an) ̸= 0.

In view of this theorem it is convenient to denote by AF(P) the least integer k such that the
olynomial P has a non-vanishing monomial M whose degree is equal to the degree of P and
atisfying degxi (M) ⩽ k, for each i = 1, 2, . . . , n.
Let D1, D2 be any two orientations of the graph G sharing the same in-degree sequence. Observe

hat the set of edges oriented differently in D1 than in D2 is an Eulerian subgraph of both D1 and
2. Thus, every monomial corresponding to an acyclic orientation of G is of multiplicity exactly 1

in MG. Such monomials are non-vanishing in PG, and AF(PG) is well defined for every graph G.
For the decorated graph polynomial DG, which denotes a collection of polynomials, we define

F(DG) as the least number k such that AF(P) ⩽ k holds for every P in DG. It is not hard to
emonstrate that for every graph G we have

AF(PG) ⩽ AF(DG) ⩽ col(G) − 1,

here col(G) is the coloring number of G, defined as the least k such that the vertices of G can be
linearly ordered so that each vertex v has at most k − 1 neighbors that precede v in the ordering.

2.3. Field coloring and graph polynomials

Let F be any field and let ℓ be any edge labeling of a graph G by the elements of F. Let DG be
a decorated graph polynomial with some fixed decoration over F. Consider the polynomial DG,ℓ

defined as:

DG,ℓ(x1, x2, . . . , xn) =

∏
e=xixj∈E(G)

(aexi + bexj + ℓ(e)). (2.3)

Our basic observation is formulated as follows.

Theorem 3. Let G be any simple graph, with a graph polynomial PG, and let F be an arbitrary field.
Let ℓ be any edge labeling of G by the elements of F. Then AF(DG,ℓ) = AF(DG).

roof. First notice that the polynomial DG,ℓ can be written as:

DG,ℓ = DG + Q , (2.4)

here Q is a polynomial of degree strictly smaller than the degree of DG. Indeed, we obtain the
summand DG by choosing the whole expression (aexi + bexj) in every factor of DG,ℓ. In every other
ase, the formed monomial uses at least one constant ℓ(e), hence the total degree of such monomial
is strictly smaller than the number of edges of G, which is equal to the degree of DG. This means
that every non-vanishing monomial of D does not vanish in D . This completes the proof. □
G G,ℓ

3
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2.4. Field coloring of planar graphs

In [21] Zhu proved that every planar graph G satisfies AQ(PG) ⩽ 4, though the same proof works
or an arbitrary field. This constitutes an algebraic analog of the famous result of Thomassen [16]
n 5-choosability of planar graphs. We will derive below a slightly stronger statement.

heorem 4. Let G be a planar graph and let DG be its decorated graph polynomial over an arbitrary
field F. Then AF(DG) ⩽ 4.

By Theorems 3 and 4 we get immediately the following result.

Corollary 1. Every planar graph is F-5-choosable, where F is an arbitrary field with at least 5 elements.

The original proof from [21] is by induction with the same scenario as in Thomassen’s famous
roof from [16], except for one unexpected twist. We will give below a purely algebraic proof along
imilar lines of the following more general statement, stressing the fact that it works for decorated
olynomials over an arbitrary field (which is crucial for our applications).

heorem 5. Let G be a near-triangulation and let e = xy be an arbitrary edge of the boundary cycle of
. Then a decorated graph polynomial DG−e over an arbitrary field F contains a non-vanishing monomial
satisfying the following conditions:

(i) degx(M) = degy(M) = 0,
(ii) degv(M) ⩽ 2, for every boundary vertex v,
(iii) degu(M) ⩽ 4, for every interior vertex u.

Before we present the proof, let us comment on how Theorem 4 is derived from Theorem 5. We
an choose any planar drawing of a planar graph G, and any edge e = xy of the boundary cycle of
he drawing. Let M be the non-vanishing monomial in DG−e given by Theorem 5, and observe that
the monomial Mx does not vanish in DG and certifies that AF(DG) ≤ 4.

roof of Theorem 5. Let us denote P = DG−e, and call a non-vanishing monomial M in P satisfying
onditions (i)–(iii), a nice monomial for (G, e). We use induction on the number of vertices of G.
t is easy to check that G = K3, a complete graph on vertex set {x, y, v}, satisfies the assertion. In
his case we have DG−e = (a1x + b1v)(a2y + b2v), and the only nice monomial is M = v2, whose
coefficient is b1b2 ̸= 0. Hence, M is non-vanishing.

We distinguish two cases.

Case 1. The boundary cycle of G has a chord.

Suppose first that G has a chord f = wz. This chord splits G into two subgraphs G1 and G2. We
assume that e is in G1, while f belongs to both subgraphs. By induction we assume that both graphs
contain nice non-vanishing monomials M1 and M2 for (G1, e) and (G2, f ), respectively.

Let us denote P1 = DG1−e, and P2 = DG2−f . Then we have P = P1P2, and we see that the monomial
M = M1M2 appears in the expansion of P . We claim that M is a nice monomial for (G, e). It is easy
to see that M satisfies conditions (i)–(iii). To see that it is non-vanishing, notice that M = M1M2
is the only way of expressing the monomial M as a product of two monomials from P1 and P2,
respectively. This is because the only common variables of P1 and P2 are w and z, and they do not
occur in M2. This shows that

cM (P) = cM1 (P1) · cM2 (P2) ̸= 0,

confirming that M is non-vanishing in the polynomial P .
4
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Case 2. The boundary cycle of G has no chord.

Suppose that there is no chord in G. Let v ̸= x be the neighbor of y on the boundary of G. Let
t be the other neighbor of v on the outer face, and let x1, x2, . . . , xk be the neighbors of v lying in
the interior of G. Let G′

= G − v.
By the inductive assumption, there is a nice monomial M ′ for (G′, e) in the graph polynomial

P ′
= DG′−e. So, we have cM ′ (P ′) ̸= 0.

Subcase 1. The boundary face is a triangle.

Suppose first that t = x, which means that the boundary face is a triangle. In this case the nice
monomial M ′ has the form

M ′
= Yxr11 xr22 . . . xrkk ,

where ri ⩽ 2 for each i = 1, 2, . . . , k, and Y is a monomial consisting of the rest of the variables.
Since M ′ is nice for (G′, e), the monomial Y does not contain variables x and y, and each other
variable z in Y satisfies degz(Y ) ⩽ 4.

First notice that P = P ′Q , where

Q = (av + bx)(cv + dy)(a1v + b1x1)(a2v + b2x2) . . . (akv + bkxk).

In the expansion of Q we get the monomial

N = v2x1 . . . xk,

whose coefficient is cN (Q ) = acb1 · · · bk ̸= 0. Hence, in the expansion of the product P ′Q we get
the monomial M = M ′N , which can be written as

M = Yxr1+1
1 xr2+1

2 . . . xrk+1
k v2.

Clearly M satisfies conditions (i)–(iii). We claim that it is also non-vanishing in P . More specifically,
we claim that there is only one way of expressing M as a product M = AB of two monomials, with
A from P ′ and B from Q . Indeed, to get v2 in B we have to use the first two factors of Q , since
otherwise we have x or y in M . This implies that B = N and A = M ′. Thus

cM (P) = cM ′ (P ′) · cN (Q ) ̸= 0,

which shows that M is non-vanishing in P .
For the remaining subcases, we assume that t ̸= x.

Subcase 2. There is a special monomial.

Suppose first that there exists a non-vanishing special monomial S in P ′ which satisfies all
conditions (i)–(iii), except that degt (S) ⩽ 1 and degxi (S) ⩽ 3 for at most one i. We may assume
without loss of generality that i = 1. So, we assume that cS(P ′) ̸= 0.

This special monomial S can be written in the form

S = Zxs11 xs22 . . . xskk ts,

where s ⩽ 1, s1 ⩽ 3, si ⩽ 2 for i = 2, 3, . . . k, and Z is some monomial consisting of the rest of the
variables. As before we may write the polynomial P = DG−e as the product P = P ′Q with

Q = (av + by)(cv + dt)(a1v + b1x1) . . . (akv + bkxk).

In the expansion of Q we get the monomial

N ′
= vtx1 . . . xk,

with coefficient cN ′ (Q ) = adb1 · · · bk ̸= 0. Hence, in the expansion of the product P ′Q we get the
monomial M = SN ′, which can be written as

s1+1 s2+1 sk+1 s+1
M = Zx1 x2 . . . xk t v.

5
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Clearly, M satisfies conditions (i)–(iii). Also, as in the previous case, the splitting M = SN ′ is
nique. Indeed, assume that M = AB is any decomposition of M into the product of monomials
rom P ′ and Q , respectively. To get v in B we have to use the first factor of Q , since otherwise we
ave y in M . This already implies that B = N ′ and A = S. Hence,

cM (P) = cS(P ′) · cN ′ (Q ) ̸= 0,

o, M is non-vanishing in P .

ubcase 3. There is no special monomial.

Finally, assume that there is no special monomial in P ′. However, by inductive assumption, there
s still a nice non-vanishing monomial M ′ in the graph polynomial P ′

= DG′−e. This monomial can
be written now as

M ′
= Yxr11 xr22 . . . xrkk t

r ,

where r ⩽ 2, ri ⩽ 2, for all i = 1, 2, . . . , k, and Y is a monomial consisting of the rest of the variables.
As in Subcase 1, we have P = P ′Q , where

Q = (av + by)(cv + dt)(a1v + b1x1)(a2v + b2x2) . . . (akv + bkxk).

In the expansion of Q we get the monomial

N = v2x1 . . . xk,

with cN (Q ) = acb1 · · · bk ̸= 0. Hence, in the expansion of the product P ′Q we get the monomial
M = M ′N , which can be written as

M = Yxr1+1
1 xr2+1

2 . . . xrk+1
k t rv2.

Clearly M satisfies conditions (i)–(iii). We claim that there is only one way of expressing M as a
product of two monomials, M = AB, with A from P ′ and B from Q . Indeed, to get v2 in B we have to
choose variable v exactly twice from the factors of Q . The first choice must be from the first factor,
otherwise y appears in M . The second choice must be from the second factor, since otherwise the
variable t appears in B, while some xi is missing. Then, in order to get M = AB, we would have
to have t r−1 and xri+1

i in the monomial A. But then A is a special monomial in P ′, contrary to our
assumption. Hence, we must have B = N and A = M ′. Thus

cM (P) = cM ′ (P ′) · cN (Q ) ̸= 0,

which demonstrates that M is non-vanishing in P .
The proof is complete. □

In [8] Grytczuk and Zhu proved that every planar graph G contains a matching S such that
AF(PG−S) ⩽ 3. The proof is similar to the above and can be easily modified to give the following
result.

Theorem 6. Every planar graph G contains a matching S such that AF(DG−S) ⩽ 3, for an arbitrary field
F. Thus, G − S is F-4-choosable, and in particular, Z2 × Z2-colorable.

2.5. K5-minor-free graphs

To extend the above results to graphs without a K5-minor we will use the well-known charac-
terization theorem of Wagner [18]. A similar approach was taken by Abe, Kim, and Ozeki [1] in an
extension of the result of Zhu [21] to graphs with no K5-minor.

Recall that a k-clique-sum of two graphs is a new graph obtained by gluing the two graphs along
a clique of size k in each of them, and possibly deleting some edges of the clique. Recall also that
the Wagner graph V8 is the graph obtained from the cycle C8 by adding four edges joining antipodal
pairs of vertices.
6
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Theorem 7 (Wagner, [18]). Every edge-maximal graph without a K5-minor can be built recursively from
planar triangulations and the graph V8 by clique-sums with cliques on at most 3 vertices.

We need the following result.

Theorem 8. Let G be a plane triangulation and let T be any triangle in G. Then the decorated
graph polynomial DG−E(T ) over an arbitrary field F contains a non-vanishing monomial N such that
degu(N) = 0, for every vertex u ∈ V (T ), and degw(N) ⩽ 4, for all other vertices.

Proof. Let V (T ) = {x, y, v} and denote e = xy. Suppose first that T is a facial triangle. We may
assume that T is the outer face of G. By Theorem 5 we know that there is a non-vanishing monomial
M in DG−e such that degx(M) = degy(M) = 0, degv(M) ⩽ 2, and degw(M) ⩽ 4, for all other variables.
In order to form this monomial we have to pick v exactly twice; once from each factor, (ax + bv)
and (cy + dv), since we can choose neither x, nor y. Thus, when we delete the corresponding two
edges xv and yv from the graph G − e, we must have a non-vanishing monomial N = M/v2 in the
polynomial DG−E(T ).

If T is not a facial triangle, then we may split the triangulation G into two sub-triangulations, G1
and G2, lying inside and outside the triangle T , respectively. Then we may apply the same argument
to each sub-triangulation separately to get the desired monomials N1 and N2 in polynomials DG1−E(T )
and DG2−E(T ), respectively. Clearly, we have

DG−E(T ) = DG1−E(T )DG2−E(T ),

and it is easy to see that N = N1N2 is a non-vanishing monomial in DG−E(T ) satisfying the assertion
of the theorem. □

Now we may give the proof of the aforementioned extension of Theorem 4.

Theorem 9. Let G be a graph without a K5-minor and let DG be its decorated graph polynomial over
an arbitrary field F. Then AF(DG) ⩽ 4.

Proof. Let G be an edge-maximal K5-minor-free graph. We proceed by induction on the number of
terms in a clique-sum giving G. So, suppose that G is k-clique-sum, k ⩽ 3, of two graphs H and F ,
where H is a clique-sum with a smaller number of terms, while F is a plane triangulation or F = V8.
Assume by induction that AF(DH ) ⩽ 4, and let M be the monomial witnessing this inequality with
coefficient cM (DH ) ̸= 0.

In the triangulation case, let {x, y, z} be the three vertices of the common triangle T in H and
F . Let N be a monomial in DF−E(T ) guaranteed by Theorem 8 with coefficient cN (DF−E(T )) ̸= 0. We
claim that the monomial MN occurs in the polynomial DG with coefficient

cMN (DG) = cM (DH ) · cN (DF−E(T )).

Indeed, we have an obvious equality DG = DHDF−E(T ) and the only common variables of the two
polynomial factors are x, y, z, none of which appears in the monomial N .

If F = V8, then the reasoning is similar. Notice that V8 is triangle-free, so the clique-sum can be
made on one vertex or one edge. Suppose it is the latter situation (the former is even easier). Let
x, y be the two common vertices of H and F . It is enough to notice that for every edge e = xy of
V8 there is an acyclic orientation of V8 − e with in-degrees of both vertices x and y equal to 0. The
monomial J corresponding to this orientation has a non-zero coefficient, the variables x and y do
not occur in J , while other variables have degrees at most 3. Thus, as before we have

cMJ (DG) = cM (DH ) · cJ (DF−e) ̸= 0.

This completes the proof. □

By Theorems 9 and 3 we get immediately the following results, whose special case extends
Z5-colorability of planar graphs.

Corollary 2. Let F be an arbitrary field with at least 5 elements. Then every graph G without a K5-minor
is F-5-choosable.
7



B. Bosek, J. Grytczuk, G. Gutowski et al. European Journal of Combinatorics 102 (2022) 103505

t
a
w

T
i

P
g
p

l
C

P

2.6. Extending to cyclic group choosability

The polynomial method is tied to an ambient field. One way of extending the potential results
o cyclic groups is to use cyclic subgroups of multiplicative groups of fields with appropriate order
nd to express the conditions on the coloring using multiplication instead of addition. By this trick
e get the following result.

heorem 10. Let Γ be an arbitrary cyclic group of order at least 5. Then every K5-minor free graph G
s Γ -5-choosable.

roof. Let Γ be a (multiplicative) cyclic group of order m ⩾ 5. Let p be a prime number such that
cd(m, p) = 1. Consider the field F = Fpφ(m) . Its multiplicative group F∗ is the cyclic group of order
φ(m)

− 1. Since m divides pφ(m)
− 1 (by Euler’s theorem), Γ is a subgroup of F∗.

Let ℓ be a labeling of the edges of a graph G by the elements of Γ . Denote by ℓij = ℓ(xixj) the
abel of an edge xixj in G. For any fixed orientation G⃗ of G, let di be the in-degree of the vertex xi.
onsider now the following function

fG(x1, x2, . . . , xn) =

∏
(xi,xj)∈E(G⃗)

(xix−1
j − ℓij) =

1∏n
i=1 x

di
i

∏
(xi,xj)∈E(G⃗)

(xi − ℓijxj).

By Theorem 9, the polynomial

PG(x1, x2, . . . , xn) =

∏
(xi,xj)∈E(G⃗)

(xi − ℓijxj)

has a nonvanishing monomial of degree at most four. It follows that, for every collection of sets
A1, A2, . . . , An ⊆ Γ ⊆ F∗, each with cardinality at least five, there is a point (a1, a2, . . . , an) in
A1 × A2 × · · · × An where PG is not vanishing, which implies that fG(a1, a2, . . . , an) ̸= 0. It follows
that (a1, a2, . . . , an) is a Γ -coloring of G for the labeling ℓ. □

2.7. The number of colorings

In this section we prove the second part of Theorem 1. Our main tool is the following general
result of Alon and Füredi [3].

Theorem 11 (Alon and Füredi, [3]). Let F be an arbitrary field, let A1, A2, . . . , An be any non-empty
subsets of F, and let B = A1 × A2 × · · · × An. Suppose that P(x1, x2, . . . , xn) is a polynomial over F
that does not vanish on all of B. Then, the number of points in B for which P has a non-zero value
is at least min

∏n
i=1 qi, where the minimum is taken over all integers qi such that 1 ⩽ qi ⩽ |Ai| and∑n

i=1 qi ⩾
∑n

i=1 |Ai| − deg P.

For a convenient use of this result, and for the sake of completeness, we will prove a slightly
weaker statement by an argument resembling a beautiful proof of Combinatorial Nullstellensatz,
due to Michałek [13]. A similar approach was taken by Bishnoi, Clark, Potukuchi, and Schmitt [4] to
get some generalization of the Alon-Füredi theorem.

We need a simple technical lemma.

Lemma 1. Let a1, a2, . . . , an be positive integers, with max ai = t ⩾ 2 and
∑n

i=1 ai = S. Then

A =

n∏
i=1

ai ⩾ t
S−n
t−1 . (2.5)

roof. The proof is by induction on n. For n = 1 we have A = a1 = t and S = a1 = t , hence we
get equality in (2.5). For n ⩾ 2, let ai0 = min ai = m. Then, by the inductive assumption, we have

A
=

A
⩾ t

(S−m)−(n−1)
t−1 .
ai0 m
8
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Observe that for every x ∈ [1, t] we have

x ⩾ t
x−1
t−1 . (2.6)

Indeed, it is not hard to check that the function f (x) = t (x−1)/(t−1) is convex, with f (1) = 1 and
f (t) = t . Hence, taking x = m, we may write

A ⩾ m · t
(S−m)−(n−1)

t−1 ⩾ t
m−1
t−1 · t

(S−m)−(n−1)
t−1 = t

S−n
t−1 ,

s asserted. □

heorem 12. Let F be an arbitrary field, and let A1, A2, . . . , An be any non-empty subsets of F, with
=

∑n
i=1 |Ai| and t = max |Ai|. Let B = A1 × A2 × · · · × An and suppose that P(x1, x2, . . . , xn) is a

olynomial over F of degree deg P = d, that does not vanish on all of B. Then, the number of points in
for which P has a non-zero value is at least

t
S−n−d
t−1 ,

provided that S ⩾ n + d and t ⩾ 2.

Proof. The proof is by induction on d and n. If d = 0, then P equals some non-zero constant c ∈ F,
and therefore all points of B are non-vanishing for P . There are exactly

∏n
i=1 |Ai| of them, so, the

assertion follows from Lemma 1 by putting ai = |Ai|.
For n = 1 and arbitrary d ⩾ 1, we know that the number of roots of a polynomial P is at most d.

Hence, the number of elements of A1 for which P is non-zero is at least t −d. So, by the assumption
that t ⩾ d + 1 and the inequality (2.6), we have

t − d ⩾ t
t−1−d
t−1 = t

S−1−d
t−1 ,

s S = t in this case.
Assume now that d ⩾ 1 and n ⩾ 2. Let |A1| = j, and assume, without loss of generality, that

here is another set Ai, with |Ai| = t . Let b ∈ A1 be any element, and let us divide the polynomial P
y (x1 − b):

P = (x1 − b)Qb + Rb.

Observe that degQb = deg P − 1 = d − 1, deg Rb ⩽ d, and that the polynomial Rb does not contain
he variable x1.

Suppose first that the polynomial Rb vanishes at all points of the grid A2 × · · · × An. This implies
that j ⩾ 2, since otherwise, the polynomial P would vanish over the whole grid B, contrary to the
assumption. Furthermore, each non-vanishing point of P in B is at the same time a non-vanishing
point of Qb in the grid (A1 − b) × A2 × · · · × An, and vice versa. Thus, by the inductive assumption
we get that P has at least

t
(S−1)−n−(d−1)

t−1 = t
S−n−d
t−1

non-vanishing points in B.
Finally, suppose that for every b ∈ A1, the polynomial Rb has some non-vanishing points in the

grid A2 × · · · × An. Then each such point can be extended to a non-vanishing point of P by setting
x1 = b. By the inductive assumption on n, the number of such points for each Rb is at least

t
(S−j)−(n−1)−d

t−1 .

ence, the total number of non-vanishing points of P in the grid B is at least

j · t
(S−j)−(n−1)−d

t−1 ⩾ t
j−1
t−1 · t

(S−j)−(n−1)−d
t−1 = t

S−n−d
t−1 ,

y the inequality (2.6). The proof is complete. □

The above result and Theorem 9 easily imply the following corollary.
9
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Corollary 3. Let G be a graph on n vertices with no K5-minor. Let F be an arbitrary field with at least 5
lements. Then for every assignment of lists of size 5 from F to the vertices of G and every edge labeling
, there are at least 5n/4 different F-colorings of G from these lists.

roof. Let G be a graph satisfying assumptions of the corollary and let PG be its polynomial. Let
i ⊆ F be lists of size 5 assigned to the vertices of G. So, keeping notation from Theorem 12, we
ave t = 5 and S = 5n. Since the number of edges of G is at most 3n − 6 (by Theorem 7), we have
= deg PG ⩽ 3n − 6. Hence, the number of F-colorings is at least

t (S−n−d)/(t−1) ⩾ 5(5n−n−(3n−6))/4
= 5(n+6)/4 > 5n/4,

s asserted. □

. Discussion

Let us conclude the paper with some further observations and possible extensions of our results.
First, let us point on other improvements of existing results one may easily get by using graph

olynomials. For instance, in [17] Thomassen proved that every planar graph on n vertices has at
east 2n/9 colorings from arbitrary lists of size 5. By a direct application of the Alon-Füredi theorem
ne may improve this bound to 5n/4, arguing in the same way as in the proof of Corollary 3. A similar
mprovement can be made for planar graphs of girth at least 5. Thomassen proved that every such
raph G with n vertices has at least 2n/10000 colorings from lists of size 3, while the Alon-Füredi
heorem gives 3n/6.

Another striking consequence can be formulated in connection to the famous theorem of
rooks [5] which asserts that every connected graph G of maximum degree ∆ is ∆-colorable, except
or the two cases, when G is a clique or an odd cycle (see [19] for a short proof of some more general
ersions). By Theorem 12 we get that the number of colorings in this case is at least

(
√

∆)n(1−
1

∆−1 ).

By a different argument based on the probabilistic method, this can be improved to roughly

(∆/e)n(1−
log∆

∆
),

s noticed by Alon (personal communication).
Another advantage of using graph polynomials is that any upper bound on AF(PG) not only gives

n upper bound for the choosability of G, but also for its game variant, known as paintability or
nline choosability. Roughly speaking, a graph G is k-paintable, if Alice, a color-blind person, can

color the vertices of G from any lists of size k in a sequence of rounds; in each round a new color is
ighlighted in the lists and Alice must decide which vertices will be painted by this color. This idea
as introduced independently by Schauz [15] and Zhu [20]. It is clear that every k-paintable graph

is k-choosable, but not the other way around. In [14] Schauz proved that every graph G satisfying
AF(G) ⩽ k − 1 is k-paintable (see [7] for a different, purely algebraic proof). Hence, all our results
for field choosability transfer to field paintability in a direct way.

Finally, let us mention about the intriguing conjecture relating group coloring and list coloring
of graphs, stated by Král’, Pangrác, and Voss in [10]. They suspect that if a graph G is Γ -colorable
for every Abelian group of order at least k, then G is k-choosable. We offer the following, somewhat
provocative, strengthening of this statement.

Conjecture 1. If a graph G is Γ -colorable for every Abelian group Γ of order at least k, then AQ(PG) ⩽
− 1. This would imply that G is k-paintable and k-choosable.
10
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