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Covering grids with multiplicity

Anurag Bishnoi ∗ Simona Boyadzhiyska† Shagnik Das ‡ Yvonne den Bakker §

May 2, 2023

Abstract

Given a finite grid in R
2, how many lines are needed to cover all but one point at

least k times? Problems of this nature have been studied for decades, with a general
lower bound having been established by Ball and Serra. We solve this problem for vari-
ous types of grids, in particular showing the tightness of the Ball–Serra bound when one side
is much larger than the other. In other cases, we prove new lower bounds that improve upon
Ball–Serra and provide an asymptotic answer for almost all grids. For the standard grid
{0, . . . , n− 1} × {0, . . . , n− 1}, we prove nontrivial upper and lower bounds on the number
of lines needed. To prove our results, we combine linear programming duality with some
combinatorial arguments.

1 Introduction

A celebrated result of Alon and Füredi [3] in combinatorial geometry states that any multiset
of hyperplanes that covers all but one point of a d-dimensional finite grid S1 × · · · × Sd ⊆ F

d

over an arbitrary field F must have size at least
∑d

i=1(|Si| − 1). This lower bound is easily seen
to be tight by taking all hyperplanes of the form xi − a = 0 for 1 ≤ i ≤ d and a ∈ Si \ {bi},
where (b1, . . . , bn) is the point that is uncovered. This is a significant theorem for a few different
reasons; not only did the proof of Alon and Füredi play an important role in the development
of the polynomial method [2,7,16], but this result and its generalisations have also seen several
applications in a wide variety of mathematical disciplines [1, 7, 9, 10,18].

One such generalisation that has been studied by several researchers is the multiplicity version
of the problem, where the points of the grid should be covered multiple times. We introduce
some notation to define this problem formally.

Definition 1. Given finite subsets S1, S2, . . . , Sd of some field F, we write Γ = Γ(S1, S2, . . . , Sd)
for the grid S1 × S2 × . . . × Sd ⊆ F

d. Note that by translation we may, and will, assume ~0 ∈ Γ.
We call a point in Γ a boundary point if any of its coordinates is equal to 0, and an interior
point otherwise.

For a given integer k ≥ 1, we call a multiset H of hyperplanes in F
d a k-cover of Γ if every

nonzero point of Γ is contained in at least k of the hyperplanes, while ~0 is not covered at all.
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We denote by covk(Γ;F) the minimum cardinality of a k-cover of Γ in F
d. In the case F = R,

we shall omit the field from the notation and simply write covk(Γ).

In this notation, the Alon–Füredi Theorem establishes that cov1(Γ,F) =
∑d

i=1(|Si| − 1)
for any grid Γ over any field F. The multiplicity extension asks for the value of covk(Γ;F)
for multiplicities k ≥ 2, and we can start with a few trivial observations. First, if we re-
move any hyperplane from a k-cover, what we are left with is still a (k − 1)-cover, and so
covk(Γ;F) ≥ covk−1(Γ;F) + 1; that is, this extremal function is strictly increasing in k. In
the other direction, since the union of a k-cover and an ℓ-cover yields a (k + ℓ)-cover, we have
covk+ℓ(Γ;F) ≤ covk(Γ;F) + covℓ(Γ;F), and so the function is subadditive in k. Applying these
recursive inequalities repeatedly until we reach the k = 1 case of Alon–Füredi, we have

d
∑

i=1

(|Si| − 1) + k − 1 = cov1(Γ;F) + k − 1 ≤ covk(Γ;F) ≤ k cov1(Γ;F) = k

d
∑

i=1

(|Si| − 1). (1)

The goal, then, is to narrow the considerable gap between these bounds, and there has been
much previous research on some specific cases. Predating the work of Alon and Füredi [3],
the study of affine blocking sets in finite geometry corresponds to setting F = Fq for some
prime power q and taking Γ = F

d
q . For this grid, the classic paper of Jamison [17] uses the

polynomial method to prove cov1(Γ;Fq) = d(q−1). Bruen [12] later used the polynomial method
with multiplicities to provide lower bounds for the multiplicity version, showing covk(Γ,Fq) ≥
(d + k − 1)(q − 1). This is an improvement upon (1), but is generally not tight [19, 22]. In [8],
the first three authors together with Tamás Mészáros obtained new bounds in the case q = 2 by
exploiting an equivalence between k-covers and linear binary codes of minimum distance k.

Recent work of Clifton and Huang [13] considered this problem over R, where the grid is
the hypercube Γ = {0, 1}d. For fixed dimension d and growing multiplicity k, they used linear
programming to determine covk(Γ) asymptotically. On the other hand, when the dimension
d is large with respect to the multiplicity k, they applied the polynomial method to provide
general lower bounds that are tight for k = 2 and k = 3. However, they conjectured that their
lower bound of d + k + 1 is not tight for k ≥ 4, and that the true value of covk(Γ) is d +

(k
2

)

for all fixed k and large enough d (see [13, Conjecture 4.1]). A subsequent paper of Sauermann
and Wigderson [21] determined the best bound one can obtain with the polynomial method,
where one seeks the minimum possible degree of a polynomial that does not vanish at the origin
but has zeroes of multiplicity k at all other points in the grid. While their result improves
the Clifton–Huang lower bound to covk(Γ) ≥ d + 2k − 3, it still falls short of the conjectured
value of covk(Γ) in this case, suggesting a strong separation between the algebraic and geometric
problems.

Apart from these special cases, Ball and Serra [5, Theorem 5.3] applied the polynomial
method to obtain a lower bound valid for any grid Γ = Γ(S1, S2, . . . , Sd) over any field F:

covk(Γ;F) ≥
d

∑

i=1

(|Si| − 1) + (k − 1) max
1≤i≤d

(|Si| − 1). (2)

This extends the bound of Bruen, and is a sizeable improvement on the lower bound of (1), but
remains far removed from the upper bound. Indeed, in the symmetric case when |Si| = n for
all i ∈ [d], we have (d + k − 1)(n − 1) ≤ covk(Γ;F) ≤ kd(n − 1). It is thus of great interest to
determine whether the Ball–Serra bound can be tight, and to obtain better bounds when it is
not.

In this paper we initiate the systematic study of the covering problem for two-dimensional
finite grids over R. Our first set of results concerns how the dimensions of the grid affect the
tightness of the Ball–Serra bound. We start by showing that when the grid is much wider than
it is tall, the Ball–Serra bound is sharp.
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Theorem 1.1. Let S1, S2 ⊆ R satisfy |S1| = n, |S2| = m, and 0 ∈ S1 ∩ S2, and set Γ =
Γ(S1, S2) ⊆ R

2. If, for a positive integer k, we have n ≥ (k − 1)(m− 1) + 1, then

covk(Γ) = k(n− 1) + (m− 1).

Our next result shows that the lower bound on n from Theorem 1.1 cannot be improved in
general. In fact, when n ≤ (k− 1)(m− 1), the Ball–Serra bound can be improved for almost all
n×m grids. We make the “almost all” precise with the following definition.

Definition 2. Let S1, S2 ⊆ R with 0 ∈ S1 ∩ S2, let Γ = Γ(S1, S2), and let ∆ ≥ 0 be an integer.
We call Γ ∆-generic if any line containing two boundary points contains at most ∆ interior
points. In the case ∆ = 0, when such lines avoid all interior points, we simply call Γ generic.

To see that grids are typically generic, suppose the nonzero points of S1 and S2 are sampled
uniformly and independently from [−1, 1]. If a line contains two boundary points and an interior
point, then the boundary points must come from different axes, and so we may assume the points
in question are (0, b1), (a1, 0) and (a2, b2) for some nonzero a1, a2 ∈ S1 and b1, b2 ∈ S2. For these
points to be collinear, we require a1(b1 − b2) = a2b1, and the probability of such an equation
holding for any choice of ai, bj is 0. We are now ready to state our next result, which concerns
covk(Γ) in the special case where Γ is a generic grid.

Theorem 1.2. Let Γ = Γ(S1, S2) ⊆ R
2 be a generic grid with |S1| = n, |S2| = m and 0 ∈ S1∩S2.

Then

covk(Γ) ≥ k(n− 1) +
k

n+m− 2
(m− 1)2.

Furthermore, if Γ is an arbitrary n×m grid, and if k is divisible by n+m−2
gcd(n−1,m−1) , then we have

covk(Γ) ≤ k(n − 1) +
k

n+m− 2
(m− 1)2. (3)

In particular, if Γ is generic, we have equality above.

Note that k
n+m−2(m − 1)2 is strictly larger than m − 1 precisely when n ≤ (k − 1)(m − 1),

and hence these theorems show the Ball–Serra bound is tight for generic grids if and only if
n ≥ (k − 1)(m− 1) + 1.

Theorem 1.2 shows that the Ball–Serra bound gets worse as the dimensions of the grid grow
closer. For the majority of our paper, therefore, we focus on square grids Γ, where n = m. In
this case, the Ball–Serra bound gives covk(Γ) ≥ (k + 1)(n− 1). Our next theorem gives a stark
improvement for general square grids.

Theorem 1.3. Let Γ = Γ(S1, S2) ⊂ R
2 be a grid with |S1| = |S2| = n and 0 ∈ S1 ∩ S2. Then,

for any integer k ≥ 2, we have:

(a) covk(Γ) ≤
⌈

3
2k

⌉

(n− 1).

(b) covk(Γ) ≥ (10− 4
√
5 + o(1))k(n − 1), where the asymptotics are for n → ∞.

(c) if Γ is ∆-generic for some ∆ ≥ 0, then covk(Γ) ≥
[

2− n−1
2(n−1)−∆

]

k(n− 1).

Note that part (a) improves the trivial upper bound from (1), while, since 10−4
√
5 ≈ 1.0557,

part (b) gives a constant factor improvement over the Ball–Serra bound in (2), showing that
it is never tight for large square grids. Moreover, as previously discussed, almost all grids are
generic, and substituting ∆ = 0 into part (c) gives a lower bound that matches the upper bound
of part (a) exactly when k is even and asymptotically when k is odd and large. In fact, part (c)
gives an asymptotically tight bound for all o(n)-generic grids.
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However, the most natural grid to consider is the standard n × n grid, given by S1 =
S2 = {0, 1, 2, . . . , n − 1}, and we denote this by Γn = Γ(S1, S2). By considering the diagonal
x + y = n − 1, we see that Γn is not ∆-generic for any ∆ < n − 2, and so Theorem 1.3(c) is
worse than the Ball–Serra bound when n > k. By tailoring our methods to this specific grid,
we obtain the following improvements on the general bounds.

Theorem 1.4. Let n, k ≥ 2 be integers, let S = {0, 1, 2, . . . , n− 1} and let Γn = Γ(S, S) be the
standard n× n grid. Then, as n, k → ∞, we have

(2− e−1/2 + o(1))k(n − 1) ≤ covk(Γn) ≤ (
√
2 + o(1))k(n − 1). (4)

Note that 2 − e−1/2 ≈ 1.3935, while
√
2 ≈ 1.4142, so there is still a gap between the best

lower and upper bounds we obtain for standard grids. To obtain sharper bounds, it can help
to restrict the class of k-covers we consider. As we will see in the proof of the upper bound
in Theorem 1.4, our construction uses only three types of lines: horizontal, vertical, and lines of
slope −1. A subsequent computer search verified that for small values of n and k, we can always
find an optimal k-cover using only these three kinds of lines. In our final result, we provide a
matching lower bound for these restricted k-covers, suggesting the upper bound of (4) may be
correct in the unrestricted case as well.

Theorem 1.5. As n → ∞, the smallest k-cover of the standard grid Γn that only contains lines
of slope 0,∞, or −1 has size at least

(√
2 + o(1)

)

k(n− 1).

When proving these results, we shall establish the upper bounds by means of explicit con-
structions of k-covers. The lower bounds, meanwhile, will follow by applying duality to a linear
programming relaxation of this problem, and we shall set up this framework in Section 2. Having
described our methodology, we will prove Theorems 1.1 and 1.2 in Section 3. We then shift our
focus to square grids, proving Theorems 1.3, 1.4, and 1.5 in Section 4. Finally, we provide some
concluding remarks and open problems in Section 5.

2 The linear programming framework

In this section we introduce the linear programming method that will be used to prove our
lower bounds. The use of linear programming in extremal combinatorics is well-established
and has led to many results (see, for example, [15]), including the Clifton–Huang [13] lower
bound on covk(Γ) for Γ = {0, 1}d in the case when d is fixed and k tends to infinity. The
standard template is as follows: assume without loss of generality that we are working with
a minimization problem; first, we interpret our extremal problem as an instance of an integer
programming problem. Then, since integer programming is intractable, we consider the linear
programming relaxation, where we allow fractional solutions. Since an integer solution is in
particular a fractional solution, the value of the linear program gives a lower bound to the
original extremal problem. Crucially, we can then apply duality, and the task of finding lower
bounds translates to finding feasible solutions to the dual linear program. We refer the reader
to [20] for further background on linear programming.

To start with this plan of action, we need to recast the covering problem as an integer
linear program. Given a grid Γ = Γ(S1, S2), for some finite sets S1, S2 ⊆ R containing 0, we
wish to determine covk(Γ), the minimum number of lines in a k-cover of Γ. We shall assume
|S1|, |S2| ≥ 2, as the problem is otherwise trivial.

For every possible line ℓ not containing the origin, we introduce a variable z(ℓ) indicating its
multiplicity in the k-cover. We thus wish to minimise

∑

ℓ z(ℓ), the size of the cover. In order to
ensure that the solution returned by the integer program is a k-cover, we need to require that
each nonzero point of Γ be covered at least k times while the origin be omitted altogether. The
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latter constraint is easily seen to be satisfied. Hence, for each (x, y) ∈ Γ \ {(0, 0)}, we require
that the sum of z(ℓ) over all origin-avoiding lines ℓ containing (x, y) be at least k.

The one catch is that there are infinitely many lines in R
2. To obtain a finite program, we

observe that we may restrict our attention to lines that contain at least two nonzero points in
Γ. Indeed, in any minimal k-cover of Γ, every line must contain at least one nonzero point, and
if a line contains only one point (x, y), then we can replace it by a different origin-avoiding line
passing through (x, y) and at least one other point of Γ. Thus, we need only consider lines from
the set L = L(Γ) of origin-avoiding lines containing at least two points of Γ. Since there are
fewer than |Γ|2 pairs of nonzero points in Γ, each of which determines a unique line, it follows
that L is finite.

In summary, covk(Γ) is the solution to the following integer linear program I = I(Γ, k).

minimize
∑

ℓ∈L

z(ℓ)

subject to
∑

ℓ∈L:
(x,y)∈ℓ

z(ℓ) ≥ k for all (x, y) ∈ Γ \ {(0, 0)}

z(ℓ) ∈ Z≥0 for all ℓ ∈ L

The final constraint, that the variables z(ℓ) be integral, renders solving the program com-
putationally infeasible. Instead, to obtain a polynomial-time solvable problem, we can relax the
variables to be real-valued. Now that we are no longer constrained to the integers, we can also
divide through by k, removing the dependence of the program on this parameter. We therefore
obtain the linear program P = P(Γ) with the normalised variables u(ℓ) for ℓ ∈ L.

minimize
∑

ℓ∈L

u(ℓ) (5)

subject to
∑

ℓ∈L:
(x,y)∈ℓ

u(ℓ) ≥ 1 for all (x, y) ∈ Γ \ {(0, 0)}

u(ℓ) ≥ 0 for all ℓ ∈ L

Let us denote by Φ(Γ) the solution to P(Γ). The following result shows that Φ(Γ) describes
the asymptotic behaviour of covk(Γ) when k is large with respect to the dimensions of the grid.

Proposition 1. For any grid Γ and integer k ≥ 1 we have

kΦ(Γ) ≤ covk(Γ) ≤ kΦ(Γ) + |L|.

Proof. As previously established, covk(Γ) is the value of the integer linear program I(Γ, k). If
we let (z(ℓ) : ℓ ∈ L) be a solution to the program, then setting u(ℓ) = 1

kz(ℓ) yields a feasible
solution to the linear relaxation P(Γ), with value

∑

ℓ u(ℓ) =
1
k

∑

ℓ z(ℓ) =
1
k covk(Γ). As Φ(Γ) is

the minimum possible value of a feasible solution to P(Γ), the first inequality follows.
For the upper bound, let (u∗(ℓ) : ℓ ∈ L) be an optimal solution to the linear program P(Γ),

with value Φ(Γ). If we then set z(ℓ) = ⌈ku∗(ℓ)⌉ for all ℓ ∈ L, we obtain a feasible solution to
I(Γ, k). Thus,

covk(Γ) ≤
∑

ℓ

z(ℓ) =
∑

ℓ

⌈ku∗(ℓ)⌉ ≤
∑

ℓ

(ku∗(ℓ) + 1) = kΦ(Γ) + |L|.

We remark that in practice one often obtains better error bounds; for instance, the |L| term
can be replaced by the size of the support of the optimal solution u∗. Furthermore, for an infinite
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sequence of multiplicities k, we can do away with the error term altogether. Indeed, since all the
coefficients of P(Γ) are integral, there is a rational optimal solution u∗ (the one returned by the
Simplex Algorithm, for example). If k is divisible by the common divisor of the fractions u∗(ℓ),
then we can set z(ℓ) = ku∗(ℓ) without needing any rounding, thereby obtaining a solution to
I(Γ, k) of value precisely kΦ(Γ).

Therefore, asymptotically as k tends to infinity, the problem reduces to determining Φ(Γ).
We can provide upper bounds by finding feasible solutions to P(Γ) or, better yet, constructing
k-covers of Γ. To obtain lower bounds, we appeal to the theory of duality. The dual of P(Γ),
which we denote by D(Γ), is the following linear program, where we have a variable w(x, y) for
each point (x, y) ∈ Γ \ {(0, 0)}, which we call the weight of the point.

maximize
∑

(x,y)∈Γ\{(0,0)}

w(x, y) (6)

subject to
∑

(x,y)∈Γ\{(0,0)}:
(x,y)∈ℓ

w(x, y) ≤ 1 for all ℓ ∈ L

w(x, y) ≥ 0 for all (x, y) ∈ Γ \ {(0, 0)}

For convenience, given a set S ⊆ Γ\{(0, 0)}, we write w(S) =
∑

(x,y)∈S w(x, y) for the weight
of S. The dual program thus asks for the maximum possible weight of the grid, provided every
line in L has weight at most 1. By the duality theorem for linear programming (see [20, Section
6.1]), the programs P(Γ) and D(Γ) have the same optimal objective value Φ(Γ). We shall thus
prove our lower bounds on covk(Γ) by finding suitably large feasible weights on the grid Γ.

3 Wide rectangular grids

In this section we will prove Theorems 1.1 and 1.2, establishing precisely when the Ball–Serra
bound is tight for all grids of given dimensions. Our first result establishes the value of covk(Γ)
for all n×m grids Γ whenever n ≥ (k − 1)(m− 1) + 1.

Proof of Theorem 1.1. The Ball–Serra bound (2) provides the requisite lower bound, as substi-
tuting |S1| = n and |S2| = m gives covk(Γ) ≥ k(n − 1) + m − 1. To prove a matching upper
bound, we provide an explicit construction of a k-cover containing this many lines.

Write S2 = {0, t1, . . . , tm−1}, and let P1 ∪ · · · ∪ Pm−1 be an arbitrary partition of S1 \ {0}
such that |Pi| ≥ k − 1 for all i ∈ [m− 1]; such a partition exists since n− 1 ≥ (k − 1)(m− 1).

Now, consider the following collection of lines:

(i) the line y = ti for all i ∈ [m− 1];

(ii) k − 1 copies of the line x = s for all s ∈ S1 \ {0};

(iii) the line connecting (0, ti) and (s, 0) for every i ∈ [m− 1] and s ∈ Pi.

In total, this collection contains m − 1 + (k − 1)(n − 1) + n − 1 = k(n − 1) +m − 1 lines.
It remains to verify that these lines form a valid k-cover of Γ. Note first that no line in this
collection passes through the origin (0, 0).

Any interior point of Γ is covered k times by the lines in (i) and (ii), leaving us to check the
boundary points. A point of the form (s, 0), where s ∈ S1 \ {0}, is covered k − 1 times by the
lines in (ii) and once by the lines in (iii). Finally, a point (0, s) for s ∈ S2 \ {0} is covered once
by the lines in (i) and at least k − 1 times by the lines in (iii) since each Pi has size at least
k − 1. Hence, every nonzero point of Γ is covered at least k times, as required.
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We remark that the above construction can be generalised to higher dimensions to show
that, for any n1 × · · · × nd grid Γ(S1, . . . , Sd) containing the origin, if n1 ≥ n2 ≥ · · · ≥ nd

and n1 ≥ covk−1(Γ(S2, . . . , Sd)) + 1, then the Ball–Serra bound is tight for covk(Γ(S1, . . . , Sd)).
Indeed, write S1 = {0, s1, . . . , sn1−1} and let H = {H1, . . . ,Hn1−1} be any collection of n1 − 1
hyperplanes in R

d−1 containing a (k − 1)-cover of Γ(S2, . . . , Sd). We then form a k-cover of
Γ(S1, S2, . . . , Sd) consisting of the following hyperplanes in R

d:

(i) one copy of the hyperplane xi = t for all i ∈ {2, . . . , d} and t ∈ Si \ {0};

(ii) k − 1 copies of the hyperplane x1 = s for all s ∈ S1 \ {0};

(iii) the hyperplane spanned by {0} ×Hi and (si, 0, . . . , 0) for all i ∈ [n1 − 1].

It is not difficult to check that this is indeed a k-cover of Γ(S1, . . . , Sd), and it consists of
∑d

i=1 ni + (k− 1)n1 hyperplanes, which matches the Ball–Serra lower bound (2). However, it is
not clear how good the lower bound on n1 is; that is, how large n1 needs to be with respect to
the other dimensions ni in order to ensure that the Ball–Serra bound is tight.

In our next result, we show that the bound on n1 in Theorem 1.1 is best possible, since
for generic grids that are slightly less wide, the Ball–Serra bound is no longer tight. In fact,
we a give a general lower bound for covk(Γ) when Γ is a generic n × m grid, and prove that
this bound is tight for infinitely many choices of k. While we will not pursue this question
further for higher dimensions in this paper, we remark that it was shown in [14] that for the
grid {0, . . . , n1− 1}×{0, . . . , n2− 1}×{0, . . . , n3 − 1} with n1 ≥ n2 ≥ n3, the Ball–Serra bound
is already tight when n1 ≥ (k− 1)(n2 − 1) + 1, which is an improvement on the bound given by
the above construction.

Proof of Theorem 1.2. We wish to show that if Γ = Γ(S1, S2) is a generic grid, where S1, S2 ⊆ R

satisfy 0 ∈ S1 ∩S2 and |S1| = n ≥ m = |S2|, then we have covk(Γ) ≥ k(n− 1)+ k
n+m−2 (m− 1)2.

Appealing to the linear programming framework developed in Section 2, it suffices to show

Φ(Γ) ≥ (n− 1) + (m−1)2

n+m−2 , which can be done by defining a weighting on the nonzero points of Γ
with this total weight in which every line in L has weight at most 1.

To that end, define the weighting w : Γ \ {(0, 0)} → R by

w((x, y)) =











n−1
n+m−2 if y = 0;
m−1

n+m−2 if x = 0;
1

n+m−2 otherwise.

We start by computing the total weight of the grid:

w(Γ \ {(0, 0)}) = (n− 1)
n− 1

n+m− 2
+ (m− 1)

m− 1

n +m− 2
+ (n− 1)(m− 1)

1

n +m− 2

= (n− 1)
n− 1 +m− 1

n+m− 2
+

(m− 1)2

n+m− 2

= n− 1 +
(m− 1)2

n+m− 2
,

and so, provided this weighting is feasible, it gives the desired lower bound.
To establish its feasibility, let us consider a line ℓ ∈ L(Γ). First suppose ℓ contains two

boundary points, say (x, 0) and (0, y). Since Γ is generic, ℓ cannot contain any other points,
and hence w(ℓ) = w((x, 0)) + w((0, y)) = n−1

n+m−2 + m−1
n+m−2 = 1. Next, suppose ℓ is a horizontal

line of the form y = s for some s ∈ S2 \ {0}. The line ℓ then contains one point on the y-axis
and n− 1 interior points, and thus w(ℓ) = m−1

n+m−1 + (n− 1) 1
n+m−2 = 1. Finally, any other line ℓ

can contain at most one boundary point and at most m− 1 interior points (x, y), one for each
choice of y ∈ S2 \ {0}. For such lines, we therefore have w(ℓ) ≤ n−1

n+m−2 + (m− 1) 1
n+m−2 = 1.

7



Hence, the weighting w is indeed feasible for the dual linear program D(Γ), and has total

weight n− 1 + (m−1)2

n+m−2 , which proves covk(Γ) ≥ k(n− 1) + k
n+m−2(m− 1)2.

Now, given an arbitrary n × m grid Γ = Γ(S1, S2), we provide a construction of a k-cover
of Γ that matches the bound proven above for an infinite sequence of multiplicities k, thereby
determining covk(Γ) for generic grids Γ and such multiplicities k.

Defining a = n−1
gcd(n−1,m−1) and b = m−1

gcd(n−1,m−1) , we are given that k is divisible by a + b.

We further define d1 =
bk
a+b and d2 =

ak
a+b , noting that our divisibility assumption ensures these

are integers and that d1 + d2 = k. Let B be an arbitrary biregular bipartite multigraph with
parts S1 \ {0} and S2 \ {0} with degrees d1 in the first part and d2 in the second. Note that
such a multigraph exists, since d1(n− 1) = d2(m− 1), and we can assign d1 half-edges to each
s1 ∈ S1 \ {0} and d2 half-edges to each s2 ∈ S2 \ {0}, and then take an arbitrary matching
between the two sets of half-edges.

Next, consider the following collection of lines:

(i) d2 copies of the line x = s1 for each s1 ∈ S1 \ {0};

(ii) d1 copies of the line y = s2 for each s2 ∈ S2 \ {0};

(iii) for each {s1, s2} ∈ E(B), a copy of the line connecting (s1, 0) to (0, s2).

To see that these lines form a k-cover of Γ, observe that every interior point is covered by d2
vertical lines from (i) and d1 horizontal lines from (ii), and is thus covered d1 + d2 = k times in
total. For the boundary points, a point of the form (s1, 0) for s1 ∈ S1 \ {0} is covered d2 times
by the lines in (i), while the biregularity of the multigraph B ensures it is covered d1 times by
the lines in (iii). Similarly, each point of the form (0, s2) for s2 ∈ S2 \ {0} is covered d1 times by
the lines in (ii) and d2 times by those in (iii). Thus, the boundary points are also each covered
k times. Finally, none of the lines in our collection passes through the origin.

We thus obtain our upper bound by calculating the size of this cover, which yields

covk(Γ) ≤ d2(n − 1) + d1(m− 1) + d1(n− 1)

= (d1 + d2)(n− 1) + d1(m− 1)

= k(n− 1) +
bk

a+ b
(m− 1)

= k(n− 1) +
k

n+m− 2
(m− 1)2,

as required.

4 Square grids

In the previous section, we saw that the Ball–Serra bound is tight when the grid is much wider
than it is tall, and proved a lower bound for generic grids that becomes much larger than the
Ball–Serra bound as the dimensions grow closer in size. Therefore, for the rest of this paper, we
focus on n × n grids. In Section 4.1 we prove Theorem 1.3, which provides general lower and
upper bounds on covk(Γ) for arbitrary n × n grids Γ. In Section 4.2 we focus on the standard
grid Γn = Γ({0, 1, . . . , n− 1}, {0, 1, . . . , n− 1}), proving Theorems 1.4 and 1.5.

4.1 General results

We start by restating our general bounds for square grids.

Theorem 1.3. Let Γ = Γ(S1, S2) ⊂ R
2 be a grid with |S1| = |S2| = n and 0 ∈ S1 ∩ S2. Then,

for any integer k ≥ 2, we have:

8



(a) covk(Γ) ≤
⌈

3
2k

⌉

(n− 1).

(b) covk(Γ) ≥ (10− 4
√
5 + o(1))k(n − 1), where the asymptotics are for n → ∞.

(c) if Γ is ∆-generic for some ∆ ≥ 0, then covk(Γ) ≥
[

2− n−1
2(n−1)−∆

]

k(n− 1).

We will prove the upper bound of (a) via an explicit construction of a k-cover, and use the
linear programming framework of Section 2 to establish the lower bounds of (b) and (c).

Proof. (a) Note that when k is even, the upper bound covk(Γ) ≤ 3
2k(n − 1) follows from the

upper bound in Theorem 1.2 when m = n. We will obtain the upper bound for odd k with some
appropriate rounding, and present a unified construction below.

Let {x1, x2, . . . , xn−1} be the nonzero elements of S1, and let {y1, y2, . . . , yn−1} be the nonzero
elements of S2. We form a k-cover of Γ consisting of the following lines:

(i)
⌈

1
2k

⌉

copies of the lines x = xi and y = yi, for each i ∈ [n− 1];

(ii)
⌊

1
2k

⌋

copies of line connecting (xi, 0) to (0, yi), for each i ∈ [n− 1].

There are 2
⌈

1
2k

⌉

(n−1) lines in (i) and
⌊

1
2k

⌋

lines in (ii), and hence we have a total of
⌈

3
2k

⌉

(n−1)
lines, and it is evident that none of these pass through the origin. To see that they form a k-
cover, observe first that each interior point is covered by

⌈

1
2k

⌉

horizontal lines and
⌈

1
2k

⌉

vertical
lines, and is thus covered at least k times in total. Meanwhile, each boundary point is covered
⌈

1
2k

⌉

times by the lines in (i) and
⌊

1
2k

⌋

times by the lines in (ii), and so is incident to exactly k
lines. These lines therefore indeed form a k-cover, showing covk(Γ) ≤

⌈

3
2k

⌉

(n− 1).

(b) To prove lower bounds, we appeal to the dual linear program D(Γ). Our goal is to define
a weighting w of the nonzero points of Γ of large total weight in which no origin-avoiding line has
weight more than 1. The key observation is that these lines can contain at most two boundary
points, and so we can hope to get away with assigning large weights to the boundary points.

We shall first try a simple weighting w′, where all boundary points obtain a weight of α,
and all interior points a weight of β, for α and β to be chosen later. Unfortunately, this initial
attempt does not work. Indeed, we have w′(Γ) = 2(n−1)α+(n−1)2β = (2α+ (n− 1)β)(n−1).
Since there could be lines containing two boundary points and n − 2 interior points, we must
have 2α + (n − 2)β ≤ 1. Hence, w′(Γ) ≤ (1 + β)(n − 1). As lines parallel to the axes contain
an boundary point and n − 1 interior points, we must also have α + (n − 1)β ≤ 1, which in
particular implies β ≤ 1

n−1 . Thus, w
′(Γ) ≤ n, and so the best lower bound we can hope for from

such a weighting is covk(Γ) ≥ kn, which is worse than the Ball–Serra bound (2) for n ≥ k + 2.

To salvage this idea, we will instead only assign weight to some of the boundary points, with
the aim of ensuring that any origin-avoiding line containing two positively-weighted boundary
points cannot contain too many interior points. For this, we use the following claim, bounding
the number of points contained in certain lines.

Claim 1. Suppose we enumerate the members of S1 as x1 < x2 < . . . < xn and those of S2 as
y1 < y2 < . . . < yn, and suppose i0 ∈ [n] is such that xi0 = 0. Let j ∈ [n] and ℓ be a line passing
through (0, yj). If ℓ has positive slope, then ℓ contains at most n− |j − i0| points of Γ. If ℓ has
negative slope, then ℓ contains at most n− |(n − j)− i0| points of Γ.

Proof of Claim 1. Suppose first that ℓ is a line of positive slope passing through (0, yj). We
define S−

1 = {x ∈ S1 : x ≤ 0} and S−
2 = {y ∈ S2 : y ≤ yj}, observing that |S−

1 | = i0 and
|S−

2 | = j. Since ℓ is of positive slope, it follows that, if (x, y) ∈ ℓ for any x ∈ S−
1 , we must have

y ∈ S−
2 .

If j ≥ i0, then, since each value in S−
1 can correspond to at most one value in S−

2 , it follows
that there will be at least j − i0 coordinates in S−

2 , and thus in S2, that are not mapped to by
ℓ, and so ℓ can contain at most n − (j − i0) points of Γ. Similarly, if j < i0, since each value
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in S−
2 corresponds to at most one value from S−

1 , there will be at least i0 − j values in S1 not
covered by ℓ, and so ℓ contains at most n − (i0 − j) points from Γ. This shows that lines of
positive slope through (0, yj) can contain at most n− |j − i0| points of Γ.

For lines of negative slope, we can reflect the grid in the x-axis, considering S′
2 = {−y : y ∈

S2}. This reverses the ordering of the elements, so y′i = −yn−i. The line ℓ then corresponds to
a line ℓ′ of positive slope passing through (0, y′n−j), and thus contains at most n− |(n− j)− i0|
points of the grid.

With this claim in mind, we now define an improved weighting of the points of Γ. As in the
claim, enumerate the elements of S1 as x1 < x2 < . . . < xn and those of S2 as y1 < y2 < . . . < yn,
and let i0, j0 ∈ [n] be such that xi0 = 0 and yj0 = 0. Given parameters α, β and t, to be chosen
later, we define the weights on Γ \ {(0, 0)} as follows:

w((xi, yj)) =











α if i 6= i0 and j 6= j0;

β if j = j0, or if i = i0 and min{|j − i0|, |n − j − i0|} ≥ t;

0 otherwise.

That is, we assign weight α to all interior points and weight β to all boundary points except
those in intervals around yi0 and yn−i0 on the y-axis.

For the weighting to be valid, we require that each origin-avoiding line have weight at most
1. If the line ℓ contains two boundary points with positive weight, then let it pass through (0, yj)
on the y-axis. By definition of w, we must have |j − i0|, |(n − j)− i0| ≥ t, and so by Claim 1, ℓ
contains at most n− t points of Γ, and hence at most n− t− 2 interior points. Thus, the weight
of any such line is at most 2β + (n− t− 2)α.

Otherwise, the line ℓ can contain at most one weighted boundary point and at most n − 1
interior points, giving a total weight of not more than β+(n−1)α. Hence, our parameters must
satisfy 2β + (n− t− 2)α ≤ 1, β + (n− 1)α ≤ 1, α, β ≥ 0, and t ∈ N.

With regards to the objective function, we note that there are at most 2(2t − 1) boundary
points with weight zero, and thus w(Γ) ≥ 2(n − 2t)β + (n − 1)2α, and we wish to maximise
this quantity subject to the constraints above. Some routine calculations then yield that we

should set t =
⌈

1
2

√

(5n + 1)(n− 1)− n
⌉

, α = 1
n+t and β = t+1

n+t , for which we have w(Γ) =
(

10− 4
√
5 + o(1)

)

(n− 1). Proposition 1 gives the desired lower bound:

covk(Γ) ≥ kΦ(Γ) ≥ kw(Γ) =
(

10− 4
√
5 + o(1)

)

k(n− 1).

(c) For the final part of the theorem, we assume the grid Γ is ∆-generic, meaning that any
line through two boundary points can contain at most ∆ interior points. In the framework of
part (b), where we assign a weight of α to all interior points, and a weight of β to all boundary
points, we then obtain the constraint β+(n−1)α ≤ 1 from the lines with at most one boundary
point, and the constraint 2β + ∆α ≤ 1 from the lines with two boundary points. The total
weight, which we seek to maximise, is 2(n − 1)β + (n− 1)2α.

This optimisation problem is solved by taking β = 1 − n−1
2(n−1)−∆ and α = 1

2(n−1)−∆ . It is
readily verified that both constraints are then satisfied with equality, and the total weight of the

grid is
[

2− n−1
2(n−1)−∆

]

(n−1), whence the result follows by once again applying Proposition 1.

A few remarks are in order at this point. First, we note that the lower bound of part (b)
can be improved if we have additional information about where the origin is in the grid. For
example, suppose the origin is in the lower-left corner; that is, minS1 = minS2 = 0. Then any
line containing two boundary points must be of negative slope, and hence when we apply Claim 1,
we see that it is enough to leave only the largest values on the y-axis unweighted. When one
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solves the corresponding optimisation problem, we find that covk(Γ) ≥
(

4− 2
√
2 + o(1)

)

k(n−1)

for such grids Γ, a considerable improvement in the constant factor, as 4− 2
√
2 ≈ 1.1716.

Second, as explained in the introduction, almost all grids Γ are generic, and parts (a) and (c)
of Theorem 1.3 determine covk(Γ) precisely when k is even and asymptotically when k is odd
and large. However, even when the grid Γ is not generic but only ∆-generic, provided ∆ = o(n),
part (c) is robust enough to resolve the problem asymptotically. We give some natural examples
of this below.

Corollary 2. Given n ∈ N, let Γexp,n = Γ(E,E), where E = {0, 1, 2, 4, . . . , 2n−2}, and let
Γquad,n = Γ(S, S), where S = {0, 1, 4, . . . , (n − 1)2}. Then, if Γ ∈ {Γexp,n,Γquad,n}, we have
covk(Γ) =

(

3
2 + o(1)

)

k(n− 1) as k, n → ∞.

Proof. By Theorem 1.3(a), we know covk(Γ) ≤
⌈

3
2k

⌉

(n − 1), which is
(

3
2 + o(1)

)

k(n − 1) as
k → ∞, and so we need only demonstrate the lower bound. By Theorem 1.3(c), it suffices to
show Γ is ∆-generic for some ∆ = o(n).

We begin with Γ = Γexp,n, and show that is 1-generic. Indeed, suppose ℓ is a line containing
two boundary points of Γ, say (0, 2i) and (2j , 0). It is then a straightforward calculation to see
that, for any r, the line ℓ passes through (2r, 2i − 2i−j+r). In order for this to be an interior
point of the grid Γexp,n, we require that 2

i − 2i−j+r is a positive power of 2 strictly smaller than
2i, which only happens for r = j − 1. Thus, the line ℓ contains exactly one interior point, and
hence Γexp,n is 1-generic.

The quadratic grid Γquad,n requires somewhat more delicate treatment. Again, let us suppose
ℓ is a line containing the boundary points (0, a2) and (b2, 0), and let (r2, s2) be an interior point

lying on ℓ. We then have s2 = a2
(

1− r2

b2

)

, or (ab)2 = (ar)2 + (bs)2. Thus, we can bound the

number of interior points on ℓ by the number of ways of writing (ab)2 as a sum of squares.
Following Beiler [6], if Q is the set of prime divisors of ab that are congruent to 1 modulo 4, and
if βq is the multiplicity of q ∈ Q in the prime factorisation of (ab)2, then there are

∏

q∈Q(βq + 1)

ways to write (ab)2 as a sum of squares.
To simplify the notation in the calculation below, we shall assume q = 5, 13 and 17 are

included in Q, setting βq = 0 in case they do not divide ab. Now observe that we have

∑

q∈Q

(βq + 1) = 3 + β5 + β13 + β17 +
∑

q∈Q,q≥29

(βq + 1)

≤ 3 + β5 + β13 + β17 +
∑

q∈Q,q≥29

2βq

≤ 3 +
∑

q∈Q

βq log5 q = 3 + log5





∏

q∈Q

qβq



 ≤ 3 + log5
(

(ab)2
)

,

and so
∑

q∈Q(βq + 1) ≤ 3 + 4 log5 n.

Now, given some natural numbers mi, it is simple to show that
∏

imi ≤ 3
1
3
∑

i mi , and hence

the number of ways to express (ab)2 as a sum of squares is at most 3
1
3
∑

q∈Q(βq+1) ≤ 3 ·3
4
3 log5 n =

3n
4
3 log5 3. It thus follows that Γquad,n is ∆-generic for ∆ = 3n

4
3 log5 3 = o(n).

4.2 Standard grids

While the results of Section 4.1 resolve the problem asymptotically for very many grids, there
is no questioning the fact that the most natural case to consider is that of the standard grid
Γ(S, S), where S = {0, 1, . . . , n−1}. For convenience, we denote this grid by Γn. By considering
the line x + y = n − 1, we see that Γn is not ∆-generic for any ∆ < n − 2, which means the
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lower bound of Theorem 1.3(c) is worse than the Ball–Serra bound for n > k. By tailoring our
methods for this specific grid, though, we will obtain much better bounds. We begin by showing
that a strict k-cover of the standard grid requires far fewer lines than the upper bound given
by Theorem 1.3, which, as shown in the previous subsection, is asymptotically tight for most
grids.

Proof of Theorem 1.4 (upper bound). We construct a k-cover of Γn of size (
√
2 + o(1))k(n − 1).

Let t ∈ [n − 1] be a parameter, to be determined later, and consider the following collection of
lines:

(i)
⌈

i
n+t−1k

⌉

copies of the lines x = i and y = i for each i ∈ [n− 1];

(ii) k −
⌈

i
n+t−1k

⌉

copies of the line x+ y = i for every 1 ≤ i < n+ t− 1.

We begin by showing that the above collection of lines gives a k-cover of Γn. First, it is
clear that no line passes through the origin. Now consider a point (s1, s2) ∈ Γn \ {(0, 0)}. If

s1 + s2 < n+ t− 1, then (s1, s2) is covered
⌈

s1
n+t−1k

⌉

+
⌈

s2
n+t−1k

⌉

times by the lines in (i) and

another k −
⌈

s1+s2
n+t−1k

⌉

times by those in (ii), and thus at least k times in total. On the other

hand, if s1 + s2 ≥ n + t − 1, then lines in (i) alone cover the point
⌈

s1
n+t−1k

⌉

+
⌈

s2
n+t−1k

⌉

≥ k

times, as required. Calculating the size of this k-cover, we obtain

covk(Γn) ≤ 2
n−1
∑

i=1

⌈

i

n+ t− 1
k

⌉

+
n+t−2
∑

i=1

(

k −
⌈

i

n+ t− 1
k

⌉)

≤ k



2

n−1
∑

i=1

i

n+ t− 1
+

n+t−2
∑

j=1

j

n+ t− 1



+ 2n

≤ k

[

2

n+ t− 1

(

n

2

)

+
1

n+ t− 1

(

n+ t− 1

2

)]

+ 2n

= k

[

n(n− 1)

n+ t− 1
+

n+ t− 2

2

]

+ 2n. (7)

The upper bound given by (7) is valid for any t ∈ [n− 1]; we now want to choose a value of

t that makes the right-hand side as small as possible. The function g(t) = n(n−1)
n+t−1 + n+t−2

2 has

its minimum at t0 =
√

2(n− 1)n− (n− 1). Since our parameter must be an integer, we choose

t =
⌈

√

2(n− 1)n − (n− 1)
⌉

= (
√
2− 1 + o(1))(n − 1), and substituting this value of t into (7)

yields the claimed upper bound of (
√
2 + o(1))k(n − 1) on covk(Γn).

We now turn our attention to the lower bound.

Proof of Theorem 1.4 (lower bound). By Proposition 1, it suffices to find a feasible solution to
the dual linear program D(Γn), that is, a weighting of the nonzero points of Γn in which every
origin-avoiding line has weight at most 1, that has total weight at least (2−e−1/2+o(1))(n−1).

Let t be the largest integer such that
∑t

i=1
1

n−i ≤ 1
2 and consider the following weighting on

the points of Γn \ {(0, 0)}:

w((x, y)) =











1
2 if xy = 0;
1

n−i if x+ y = n− 1 + i for some i ∈ [t];

0 otherwise.

We first show that (w((x, y)) : (x, y) ∈ Γn) gives a feasible solution to the dual linear program
D(Γn). Clearly w((x, y)) ≥ 0 for all (x, y) ∈ Γn \ {(0, 0)}. Now, let ℓ ∈ L be any line. If ℓ
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contains two boundary points, then any interior point (x, y) on ℓ satisfies x + y ≤ n − 1, and
thus has weight zero. It follows that w(ℓ) = 1. Otherwise, if (x, y) 7→ x + y is constant on ℓ,
then ℓ = {(x, y) : x+ y = n− 1 + i} for some i ∈ [n− 1]. Then all points on ℓ have weight zero,
unless 1 ≤ i ≤ t, in which case ℓ contains n− i points of weight 1

n−i each. Thus w(ℓ) ≤ 1 in this
case. Finally, if (x, y) 7→ x + y is not constant on ℓ, it must be injective. Then, ℓ contains at
most one boundary point, which has weight 1

2 , and the weight from the remaining points is at

most
∑t

i=1
1

n−i , which by the choice of t is at most 1
2 . So in total we again have w(ℓ) ≤ 1.

To compute the total weight of the grid, observe that each diagonal line of the form x+y = i
has weight one if 1 ≤ i ≤ n − 1 + t and zero otherwise. Thus, the total weight of the grid is
n− 1 + t.

It remains to estimate t. Note that t ≤ n
2 , since

∑t
i=1

1
n−i ≥

∑t
i=1

1
n = t

n , and so both n− 1
and n− 1− t go to infinity linearly with n. It is well known that, as m → ∞, the partial sums
Hm of the Harmonic series satisfy Hm =

∑m
j=1

1
j = logm + γ + o(1), where γ is a constant.

Hence,

t
∑

i=1

1

n− i
= Hn−1 −Hn−1−t = log

(

n− 1

n− 1− t

)

+ o(1).

Thus, we must have log
(

n−1
n−1−t

)

= 1
2 + o(1), or log

(

1− t
n−1

)

= −1
2 + o(1). This gives

1− t
n−1 = e−1/2+o(1), or t =

(

1− e−1/2 + o(1)
)

(n−1), which results in the claimed bound.

The cover we constructed for the upper bound only uses lines of slope 0, ∞, and −1. This
may seem rather limited, and it is natural to wonder if one can do better by making use of
other lines as well. However, we verified by computer search that for small values of n and k,
one is always able to build an optimal k-cover consisting only of these three types of lines. This
motivated us to further study this restricted class of k-covers, and in our final result we prove
that the smallest k-cover of this form has size

(√
2 + o(1)

)

k(n− 1).

Proof of Theorem 1.5. For convenience, we will hereon call lines of slope −1 diagonals. Since
the cover constructed for the upper bound in Theorem 1.4 only uses horizontal, vertical, and
diagonal lines, it also provides the same upper bound of

(√
2 + o(1)

)

k(n − 1) in this restricted
setting.

To obtain a matching lower bound, we will again appeal to the linear programming approach.
Recall that previously we obtained lower bounds by assigning weights to the points, whose sum
was as large as possible, provided that the total weight along every origin-avoiding line was at
most 1. In this restricted setting, since we are only able to use horizontal, vertical, and diagonal
lines, the dual linear program only has constraints on the weights along these lines. This gives us
much more freedom in choosing the weights, and thus we may hope to find a feasible weighting
with a larger sum.

Observe that in our search for an optimal weighting, we have n2 − 1 degrees of freedom (the
weights of the individual nonzero points) but only 4(n− 1) constraints (the horizontal, vertical,
and diagonal lines). In order to reduce the search space and simplify our task, we shall impose
the following additional conditions on the weighting w.

• The weighting is symmetric across the main diagonal; that is, w(x, y) = w(y, x) for all
(x, y) ∈ Γn \ {(0, 0)}.

• On each diagonal, every interior point has the same weight.

• Every vertical line avoiding the origin has weight one (and hence so does every horizontal
line).
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• There is some t ∈ [n−1] such that the weight of the diagonal x+y = i is 1 if 1 ≤ i ≤ n+t−1,
is at most 1 if i = n+ t, and is 0 if i ≥ n+ t+ 1.

Some remarks are in order now. First, note that the requirement of symmetry is with-
out loss of generality, since if w is any feasible weighting, then w′ defined by w′(x, y) =
1
2(w(x, y) + w(y, x)) is a symmetric feasible weighting of the same total weight.

With regards to the total weight, by summing along the diagonals, we see that w(Γn\{(0, 0)})
is at least n + t − 1 and at most n + t. Thus, our goal is to maximise the value of t for which
we can find such a feasible weighting.

Now, for some fixed t, observe that the weights of approximately half the points are already
determined by the conditions. Since the diagonals x + y = i, for i ≥ n + t + 1, have weight 0,
we must have w(x, y) = 0 whenever x + y > n + t. On the other hand, if n ≤ i ≤ n + t − 1,
then we know the diagonal has weight 1. Since the diagonal consists entirely of 2n − 1 − i
internal points, all of which must have the same weight, we have w(x, y) = 1

2n−1−(x+y) whenever

n ≤ x + y ≤ n + t − 1. Finally, when x + y = n + t, we must have w(x, y) = z for some
0 ≤ z ≤ 1

n−t−1 to ensure the diagonal has weight at most 1.
We now turn our attention to the lower triangular points of the grid; that is, (x, y) with

1 ≤ x+ y ≤ n− 1. In our previous weighting, we assigned weight 1
2 to the boundary points and

left the interior points unweighted. Now that we have some more freedom, we will look to spread
the weight throughout the grid. With that in mind, we introduce parameters αi, 1 ≤ i ≤ n− 1,
such that w(i, 0) = w(0, i) = 1

2 − αi. Since the diagonal x+ y = i has total weight 1, it follows

that w(x, y) =
2αx+y

x+y−1 for the x+ y − 1 interior points (x, y) with x+ y = i, x, y 6= 0.
Thus, using the symmetry and the conditions along the diagonals, we have shown that our

weighting takes the form

w((x, y)) =































1
2 − αx+y if x = 0 or y = 0;
2αx+y

x+y−1 if x, y 6= 0 and 1 ≤ x+ y ≤ n− 1;
1

2n−1−i if x+ y = i for some n ≤ i ≤ n+ t− 1;

z if x+ y = n+ t;

0 if x+ y ≥ n+ t+ 1.

for some parameters α1, . . . , αn−1, z ∈ R≥0. To finish, we will use the condition that the vertical
lines have total weight 1 to solve for αi.

Indeed, by considering the line x = n− 1, we have 1
2 −αn−1+

∑n+t−1
i=n

1
2n−1−i + z = 1, which

yields

αn−1 =

n+t−1
∑

i=n

1

2n− 1− i
+ z − 1

2
. (8)

Now compare the weights of the points on the lines x = n − 2 and x = n − 1. Since the
diagonals are constant along their interior points, we have w(n − 2, y) = w(n − 1, y − 1) for all
2 ≤ y ≤ n − 1. Hence the differences are that w(n − 2, 0) and w(n − 2, 1) replace w(n − 1, 0)
and w(n − 1, n − 1). Thus,

w({x = n− 2})− w({x = n− 1}) = w(n − 2, 0) + w(n − 2, 1) − w(n− 1, 0) − w(n − 1, n− 1)

= 1
2 − αn−2 +

2αn−1

n− 2
−
(

1
2 − αn−1

)

− 0,

and since both vertical lines have weight 1, this gives αn−2 =
(

1 + 2
n−2

)

αn−1. Repeating this

argument for the lines x = i − 1 and x = i for each 2 ≤ i ≤ n − 1, we obtain the following
recurrence relation:

αi−1 =

(

1 +
2

i− 1

)

αi − z1i=t+1 −
1

n− i
1i≤t, (9)
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where 1A is the indicator function of the event A defined as

1A =

{

1 if A is true;

0 if A is false.

For the initial condition, observe that the line x+ y = 1 has no interior points, and so for it
to have weight 1, we must have α1 = 0. Combining this with (9), we obtain:

αi =
1

i(i + 1)

min{t,i}
∑

j=1

j(j − 1)

n− j
+ 1i≥t+1

t(t+ 1)

i(i+ 1)
z for all 2 ≤ i ≤ n− 1. (10)

Substituting the value of αn−1 from (10) into (8), we can then solve for z to obtain:

z =





1

2
−

t
∑

j=1

1

n− j

(

1− j(j − 1)

(n− 1)n

)





n(n− 1)

n(n− 1)− t(t+ 1)
(11)

=
(n− 1)n

(

1
2 −

t(2n+t−1)
2(n−1)n

)

(n− 1)n − t(t+ 1)
, (12)

where the second equality is due to the fact that

t
∑

j=1

1

n− j

(

1− j(j − 1)

(n− 1)n

)

=
1

n(n− 1)

t
∑

j=1

(n+ j − 1) =
t(2n+ t− 1)

2n(n− 1)
.

Recall that feasibility dictates 0 ≤ z ≤ 1
n−t−1 . If n > 1, we have z ≥ 0 when 0 ≤ t ≤

1
2

(√
8n2 − 8n + 1− 2n+ 1

)

and z ≤ 1
n−t−1 for 1

2

(√
8n2 − 8n + 1− 2n− 1

)

≤ t < n−1. Taking

t to be an integer satisfying 1
2

(√
8n2 − 8n + 1− 2n− 1

)

≤ t ≤ 1
2

(√
8n2 − 8n+ 1− 2n+ 1

)

, we

have t = (
√
2−1+o(1))(n−1). It follows that the total weight of the grid is

(√
2 + o(1)

)

(n−1).
We are not quite done, as there is one final condition to verify — to ensure that all our

weights are non-negative, we must have 0 ≤ αi ≤ 1
2 for all 1 ≤ i ≤ n− 1. From (9) we have:

αi =
i− 1

i+ 1

(

αi−1 +
1

n− i

)

if 2 ≤ i ≤ t.

αi =
i− 1

i+ 1
(αi−1 + z) ≤ i− 1

i+ 1

(

αi−1 +
1

n− i

)

if i = t+ 1

αi =
i− 1

i+ 1
αi−1 < αi−1 if t+ 2 ≤ i ≤ n− 1

Thus, it suffices to show that αi ≤ 1
2 for all 2 ≤ i ≤ t+1. We will do so by showing that for

1 ≤ i ≤ t+ 1, we have αi ≤ i−1
2(n−i−1) by induction on i. We know that α1 = 0, so the base case

is clear. Let i > 1 and assume the induction hypothesis; then

αi ≤
i− 1

i+ 1

(

αi−1 +
1

n− i

)

≤ i− 1

i+ 1

(

i− 2

2(n − i)
+

1

n− i

)

≤ i− 1

2(n − i− 1)
.

We have i−1
2(n−i−1) ≤ 1

2 whenever i ≤ n− i, which is true since i ≤ t+1 = (
√
2− 1+ o(1))(n− 1).

Hence our weighting is indeed feasible and w(Γn \ {(0, 0)}) =
(√

2 + o(1)
)

(n − 1). It thus
follows that any k-cover of Γn using only horizontal, vertical, and diagonal lines must have size
at least

(√
2 + o(1)

)

k(n− 1).
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5 Conclusion

In this paper, we studied line coverings with multiplicities for two-dimensional real grids. We
determined the minimum size of a cover in several cases, but some natural and interesting
questions remain open, and we highlight them below.

In Section 3, we investigated for which grids the Ball–Serra bound is tight. We proved that,
when n is sufficiently large with respect to m and k, the Ball–Serra bound is tight for any n×m
grid. Moreover, we showed that the threshold value for n given by Theorem 1.1 is tight for most
grids. It can be shown, however, that this bound on n is not best possible for all grids. For
example, for the grid Γ(S1, S2), where S1 = {0, 1, 2, . . . , n − 1} and S2 = {−1, 0, 1}, and any
k ≥ 3, we can show that the Ball–Serra bound is tight already for n = 2(k − 1), as opposed to
the lower bound n ≥ 2k − 1 of Theorem 1.1. However, in this grid the omitted point (0, 0) is
not a corner point, while, as in the square grid setting, it is more natural to consider grids in
which (0, 0) is a corner. For such grids, one could investigate when the Ball–Serra bound holds.

Question 1. Let Γ be the grid {0, 1, 2, . . . , n− 1}× {0, 1, 2, . . . ,m− 1} and k ≥ 2 be an integer.
How large must n be with respect to m and k to have cov(Γ) = k(n− 1) + (m− 1)?

Our main result for standard grids establishes reasonably good asymptotic lower and upper
bounds on covk(Γn). It would be of interest to close the remaining gap.

Question 2. What is the true asymptotic value of covk(Γn)?

We tend to believe that covk(Γn) = (
√
2+ o(1))k(n− 1). In Theorem 1.5, we showed this to

be the case when we only use lines of slope 0, ∞, and −1. However, for the weighting we used
to establish the lower bound, one can show that lines of slope 1 near the origin (e.g., y = x+1)
have weight larger than 1 when n is large. We believe that these are the only problematic lines,
and so as an intermediate step one could attempt to verify that our weighting remains feasible
if one only forbids lines of slope 1. This would imply that any k-cover of Γn of size smaller than
(√

2 + o(1)
)

k(n − 1) must contain many lines of slope 1. To show that such a construction is
unlikely to exist, it might be helpful to consider what happens if we restrict ourselves to lines
of slope 0, ∞, −1, and 1.

In our work thus far we observed that the standard grid Γn requires many fewer lines to
cover than any other n× n grid we considered. Our general lower bound from Theorem 1.3(b)
(and the improvement for grids in which (0, 0) is a corner discussed after the proof) is not strong
enough to establish this fact, and we propose the following problem.

Question 3. Is it true that covk(Γn) ≤ covk(Γ) for any n×n grid Γ in which (0, 0) is a corner?

More broadly, it would be of interest to improve the lower bound from Theorem 1.3(b),
which we do not believe to be best possible.

Another direction that might lead to interesting findings is to consider translates of the
standard grid in which the omitted point is not in the lower-left corner. How does the position
of the origin then affect the value of covk(Γ)? For instance, what are the asymptotics of covk(Γ),
where Γ = Γ({−⌊n/2⌋, . . . , ⌈n/2⌉}, {−⌊n/2⌋, . . . , ⌈n/2⌉})?

While we mainly focused on two-dimensional real grids, it would be natural to investigate
the problem in higher dimensions as well. For example, in Section 3, we remarked that the
Ball–Serra bound can be tight for higher-dimensional grids as well, provided that one of the
sides is much longer than the others. How much longer does that side need to be for the bound
to be attained? Some first results in this direction were shown in the bachelor’s thesis of the
fourth author [14]. Once again, it would be particularly interesting to investigate covk(Γ

(d)
n ) for

the standard d-dimensional grid Γ
(d)
n = {0, . . . , n− 1}d.
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Finally, while all of our results are stated for grids over R, the questions we considered
and our general framework extend to grids over any field. Some of our results, for example
Theorem 1.1, extend to arbitrary fields. It will be interesting to prove similar results for other
fields, and in particular for fields of positive characteristic.
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