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Abstract

Verifiable Computing for

Approximate Arithmetic

Dongwoo Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

Verifiable Computing (VC) is a complexity-theoretic method to secure

the integrity of computations. The need is increasing as more computa-

tions are outsourced to untrusted parties, e.g., cloud platforms. Existing

techniques, however, have mainly focused on exact computations, but not

approximate arithmetic, e.g., floating-point or fixed-point arithmetic. This

makes it hard to apply them to certain types of computations (e.g., ma-

chine learning, data analysis, and scientific computation) that inherently

require approximate arithmetic.

In this thesis, we present an efficient interactive proof system for arith-

metic circuits with rounding gates that can represent approximate arith-

metic. The main idea is to represent the rounding gate into a small sub-

circuit, and reuse the machinery of the Goldwasser, Kalai, and Rothblum’s

protocol (also known as the GKR protocol) and its recent refinements.

Specifically, we shift the algebraic structure from a field to a ring to better

deal with the notion of “digits”, and generalize the original GKR proto-

col over a ring. Then, we represent the rounding operation by a low-degree
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polynomial over a ring, and develop a novel, optimal circuit construction of

an arbitrary polynomial to transform the rounding polynomial to an opti-

mal circuit representation. Moreover, we further optimize the proof genera-

tion cost for rounding by employing a Galois ring. We provide experimental

results that show the efficiency of our system for approximate arithmetic.

For example, our implementation performed two orders of magnitude bet-

ter than the existing system for a nested 128ˆ128 matrix multiplication of

depth 12 on the 16-bit fixed-point arithmetic.

Key words: Verifiable Computing, Approximate Arithmetic

Student Number: 2013-20228
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Chapter 1

Introduction

Outsourcing computation has becoming omnipresent in recent technologies

such as cloud computing and distributed computing, since it can facilitate

effective distribution and utilization of computational power and storage

beyond the physical limits of various devices. However, an inherent prob-

lem is that due to errors or corruptions caused by communications, mistake

of a delegatee, or a malicious adversary, the result of delegated compu-

tation is not always guaranteed to be correct. To resolve this problem,

various solutions exploiting several delegatees [CRR11, CLS12] or trusted

hardwares [SSW10] have been proposed, but they relied on imperfect as-

sumptions that at least one delegatee or the trusted hardware is always

correct. The fundamental solution to this problem: securing integrity of

delegated computation, has been studied and proposed under the name

verifiable computing in the realm of complexity theory and cryptography.

1



CHAPTER 1. INTRODUCTION

1.1 Verifiable Computing

Given a computation to be outsourced, we call a delegator a verifier, and

a delegatee a prover. In Verifiable Computing (VC) scheme [GGP10] (or

protocol [IKO07, GKR08]), the prover provides a proof that his claimed

result is correct, and the verifier given that proof and the result, efficiently

checks if the result is correct or not. The fascinating property of VC is that

prover can not deceive the verifier with wrong result, and that verifier can

check the correctness with much less computational cost than the cost of

executing the computation by itself. With this properties, VC is regarded

as a genuine solution to secure the integrity of outsourced computation.

After splendid theoretical constructions [BFLS91, Mic94, IKO07, GKR08,

GGP10, GGPR13], existing literature has demonstrated the feasibility

of several basic primitives, such as addition, multiplication, comparisons

[VSBW13], set operations [KPP`14], and key-value store retrieval [SAGL18].

Using these primitives, VC was shown feasible for a number of tasks, in-

cluding matrix multiplication [Tha13a, PHGR13, SBV`13], certain SQL-

like queries [ZGK`17], and state-machine updates [BFR`13].

However, all existing VC targets computations represented by an arith-

metic circuit over a finite field which captures all NP problems in theory

(with boolean circuit), but incurs significant blowup of size when represent-

ing many kinds of computations in practice. An approximate arithmetic

which will be described more precisely in the next subsection is one of

such computations suffering substantial blowup of cost when transformed

to an arithmetic circuit over a finite field, and has been excluded from the

domain of practical verifiable computation.

2



CHAPTER 1. INTRODUCTION

1.2 Verifiable Approximate Arithmetic

The existing VC has mainly focused on exact computations. For example,

they deal with verifying 1.11ˆ 2.22 “ 2.4642, but not 1.11ˆ 2.22 « 2.46,

although t1.11ˆ 2.22s2 “ 2.46 (where t¨s2 denotes rounding to two deci-

mal places). Not supporting approximate arithmetic (e.g., fixed-point or

floating-point arithmetic), the existing techniques are hard to apply to

diverse types of computations (e.g., machine learning, data analysis, and

scientific computation) that require approximate arithmetic. In particular,

an approach to deal with approximate arithmetic in the existing VC sys-

tems over a finite field Fp is to use the integer scaling method. Specifically,

in the integer scaling method, fractional number inputs are multiplied by

some scaling factor to be regarded as an element in Fp (e.g., from 1.23

to 123), and the size of prime p is set to be bigger than all intermediate

values during the computation. Then, plain multiplication over Fp can be

used for the approximate arithmetic multiplication, where the computa-

tion results need to be interpreted as fractional numbers by dividing them

by their accumulated scaling factor. Note, however, that in this approach,

the bitsize of intermediate values grows exponentially in the depth d of an

arithmetic circuit, and thus the bitsize of p should be exponential in d.

Therefore, this integer scaling method incurs roughly Op2dq cost blowup,

which is far from being practical.

1.2.1 Problem: Verification of Rounding Arithmetic

We can formalize the approximate arithmetic which is a target of our

study as follows. Suppose we are given an arithmetic circuit on fixed-

point arithmetic with η fractional bits. For simplicity of description, we

3



CHAPTER 1. INTRODUCTION

assume that all inputs and intermediate values during computations are

contained in r0, 1q, i.e., unsigned fixed-point numbers with no integer bits.

Then, the fixed-point arithmetic can be translated to an arithmetic over

Z22η :“ Z{22ηZ (i.e., a ring of integers modulo 22η) with an additional

rounding operation, as follows: (i) Every input P r0, 1q is multiplied by 2η

to be regarded as an element of Z22η ; (ii) The fixed-point addition and

multiplication translate to usual addition and multiplication over Z22η fol-

lowed by rounding, respectively; (iii) The rounding operation follows each

multiplication to extract η most significant bits, i.e., xÑ tx{2ηu.i Now, the

problem of verifiable computing for fixed-point arithmetic can be reduced

to verifiable computing for arithmetic circuit over Z22η with the rounding

gates. We note that the difficulty of verifiable approximate arithmetic origi-

nates from the rounding operation which can not be represented efficiently

by a polynomial over a finite filed F, and our study is focused on this

rounding operation.

1.2.2 Motivation: Verifiable Machine Learning (AI)

We end this section introducing our vision on verifiable machine learning

or AI which motivated this study. Specifically, consider a Deep Neural Net-

work (DNN) training task: it is a computation that takes a set of samples,

and produces an output model represented as one or more matrices. The

computation often takes hours or even days. Should the training set be

poisoned or the training machine(s) be compromised, the output model

would have potentially devastating hidden behaviors. Unlike programming

iHere, the most significant bits are extracted considering the output of multiplication
as 2η-bit element. Indeed, the proper rounding is xÑ tx{2ηs which is easily expressed
with t¨u as xÑ tpx` 2η´1q{2ηu, and we use t¨u for simple description.

4



CHAPTER 1. INTRODUCTION

bugs or malicious code, compromised AI models are extremely difficult to

detect, because the models are nothing but some matrices. However, if

verifiable AI computation is achieved, we will be able to trust a model by

only trusting the fundamental mathematics, not any other factors such as

human operators, program, or platform doing the training.

AI computations are many orders of magnitude heavier and involve

more challenging operations than the aforementioned primitives in the VC

literature, so it could be a long journey to fully realize the vision. Specif-

ically, DNN training processes mainly consist of an overwhelmingly large

amount of computing matrix multiplication and a relatively small amount

of computing various non-linear functions such as ReLU, max-pooling, and

softmax, where all the operations are performed using approximate arith-

metic such as fixed-point or floating-point arithmetic.

1.3 List of Papers

This thesis contains the results of the following paper.

• [CCKP19] Shuo Chen, Jung Hee Cheon, Dongwoo Kim, Daejun Park:

Verifiable Computing for Approximate Computation. IACR Cryptol-

ogy ePrint Archive, 2019.
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Chapter 2

Preliminaries

In this chapter, we review a number of basic concepts about Verifiable

Computing (VC). Specifically, we recall interactive proof and interactive

argument; Schwartz-Zippel lemma [Sch80] and sum-check protocol [LFKN92].

Finally, we review Goldwasser, Kalai, and Rothblum’s interactive proof

protocol (the GKR protocol [GKR08]) for an arithmetic circuit over a fi-

nite field. The GKR protocol and several refinements [CMT12, VSBW13,

Tha13a, XZZ`19] of it constitute the state-of-the-art VC systems based

on interactive proof or argument, and our proposed VC system for approx-

imate computation also stems from it.

2.1 Interactive Proof and Argument

We start with the definition of an interactive proof and an interactive

argument for a function f as follows.

Definition 1. (Interactive Proof (or Interactive Argument) for f [CMT12,

Tha13a]) Consider a prover P and a verifier V who wishes to compute a

6



CHAPTER 2. PRELIMINARIES

function f : X Ñ Y . A pair pP ,Vq of interactive algorithms is called

interactive proof for f if the following holds. For an input x P X chosen

by V , P gives the claimed output y to V . Then, they exchange a sequence

of messages and V accepts or rejects.

• Completeness. For all inputs x P X, if P follows the protocol and

y “ fpxq, PrrV acceptss “ 1.

• δ-Soundness. For all inputs x P X, and for all (malicious) P 1 inter-

acting with V , if y ‰ fpxq, PrrV acceptss ă δ.

We will call δ the soundness probability bound. If P and V exchange r

messages in total, we say the protocol has tr{2s rounds. If the δ-Soundness

condition only holds for a computationally bounded prover P 1b, we call the

pair pP ,Vq interactive argument for f .

2.2 Sum-Check Protocol

Before we introduce the sum-check protocol, we recall the Schwartz-Zippel

lemma as follows.

Lemma 1. (Schwartz-Zippel [Sch80]) Let F be a field, and f : Fν Ñ F be

an ν-variate nonzero polynomial of total degree (the sum of degrees of each

variable) D. Then on any finite set A Ď F with D ď |A|, Pr~xÐAν rfp~xq “

0s ď D
|A|

.

Note that the lemma implies that two different polynomials can coincide

at only tiny fraction of points. It contributes to the soundness of follow-

ing sum-check protocol and the GKR protocol described later. Now, we

introduce the sum-check protocol [LFKN92] as follows.

7



CHAPTER 2. PRELIMINARIES

Theorem 1. (Sum-Check Protocol [LFKN92]) Let F be a finite field. Let

f : Fν Ñ F be an ν-variate polynomial of degree at most d ă |F| in each

variable. The Sum-Check protocol is an interactive proof protocol (P ,V)

with soundness νd
|F| for the function:

Spfq :“
ÿ

x1Pt0,1u

ÿ

x2Pt0,1u

¨ ¨ ¨
ÿ

xνPt0,1u

fpx1, x2, . . . , xνq.

The computational costi of P is Opd2νqOpfq, and the cost of V is Opdνq`

Opfq where Opfq is the cost to evaluate f on one point. The communication

cost which counts the number of field elements transferred is Opdνq.

Protocol description: The protocol proceeds in n rounds. We explain

the case where P is honest, and the proof shows that if P is not honest,

he can not convince V .

In the first round, P sends the value Spfq, and a polynomial

f1ptq :“
ÿ

px2,x3,...,xνqPt0,1uν´1

fpt, x2, x3 . . . , xνq.

V checks if f1p0q ` f1p1q “ Spfq, and rejects otherwise.

In the i-th (2 ď i ď ν) round, V chooses ri´1 randomly from F, and

sends it to P . In response, P sends a polynomial

fiptq :“
ÿ

pxi`1,...,xνqPt0,1uν´i

fpr1, . . . , ri´1, t, xi`1, . . . , xνq.

V checks if fi´1pri´1q “ fip0q ` fip1q, and rejects otherwise.

After the final ν-th round, V chooses rν randomly from F, and accepts

iThe cost counts the number of field operations (`,ˆ) required.

8



CHAPTER 2. PRELIMINARIES

if fνprνq “ fpr1, r2, . . . , rνq, and rejects otherwise.

Proof. The completeness condition and the cost of P ,V , and communi-

cation directly follows from the protocol description. The main idea for

showing soundness condition can be summarized as follows (see [GKR08]

or [LFKN92] for the full proof). Assume that a (dishonest) P 1 sends an

incorrect result Spfq1 ‰ Spfq to V . Let us distinguish the values claimed by

P 1 from the values which would be claimed by an honest P by adding the

prime (1) symbol. Then f1ptq
1 ‰ f1ptq. Otherwise, V will reject immediately

by checking if Spfq1 “ f1p0q
1 ` f1p1q

1. When V chooses a random r1 from

F, by the Schwartz-Zippel lemma (Lemma 1), f1pr1q
1 ‰ f1pr1q with the

high probability (1´ d
|F|) since f1ptq is a polynomial of degree at most d. If

f1pr1q
1 ‰ f1pr1q, P 1 must send f2ptq

1 ‰ f2ptq because of the same reasoning

as before. Continuing this, P 1 must send fνptq
1 ‰ fνptq “ fpr1, . . . , rν´1, tq,

and will be rejected with the high probability by V who finally checks

if fνprνq
1 “ fpr1, . . . , rνq for a randomly chosen rν in F. The soundness

probability bound is derived from the probability 1 ´ p1 ´ d
|F|q

ν that at

least one of the above high probability events does not occur during the

protocol.

As the proof shows, the soundness of sum-check protocol is based on

Schwartz-Zippel lemma (Lemma 1). Note that the sum-check protocol en-

ables V to reduce the verification task on the correctness of Spfq to that

on the correctness of evaluation of f on one random point. It is the core

utility of sum-check in the following GKR protocol.

9



CHAPTER 2. PRELIMINARIES

2.3 The GKR Protocol

Before introducing the GKR protocol, we recall the multilinear extension

(MLE).

Lemma 2. (Multilinear Extension [CMT12]) Given a function V : t0, 1uµ Ñ

F, there exists a unique multilinear polynomialii Ṽ p~xq : Fµ Ñ F extending

V , i.e., Ṽ p~xq “ V p~xq for all ~x P t0, 1uµ. We call Ṽ the multilinear exten-

sion (MLE) of V over F.

Proof. The existence of multilinear extension Ṽ is guaranteed from the

following construction.

Ṽ px1, x2, . . . , xµq :“
ÿ

~bPt0,1uµ

V p~bq ¨
µ
ź

i“1

rp1´ biqp1´ xiq ` bixis.

The uniqueness follows from an observation that any multilinear polyno-

mial Ṽ px1, x2, . . . , xµq can be represented by
ř

bPt0,1uµ Cpbqxb, where xb :“

ΠiPIxi with I :“ ti | bi “ 1u, and Cpbq P F is a coefficient correspond-

ing to each monomial xb. Then, Cpbq is uniquely determined by Ṽ pbq’s for

b P t0, 1uµ. Specifically, for a zero vector ~0, Cp~0q “ Ṽ p~0q. For an elemen-

tary vector ei whose i-th component is 1 and all others are 0, Cpeiq “

Ṽ peiq´Cp~0q. For a vector ei,j P t0, 1u
µ pi ‰ jq whose i-th and j-th compo-

nents are 1 and all others are 0, Cpei,jq “ Ṽ pei,jq´Cpeiq´Cpejq´Cp~0q. Con-

tinuing this process with increasing the weight of each vector b P t0, 1uµ, we

can see that every Cpbq for b P t0, 1uµ is uniquely determined by Ṽ pbq.

In GKR protocol, the output of each layer in the circuit gives rise to the

unique multilinear extension. Now, we describe the GKR protocol which

iiAn µ-variate polynomial fpx1, . . . , xµq : Fµ Ñ F is called multilinear if it is linear
in each variable, e.g., fpx1, x2, x3q “ ax1x2x3 ` bx2x3 ` cx3.

10



CHAPTER 2. PRELIMINARIES

is an interactive proof protocol for the evaluation of a layered arithmetic

circuit over a finite field F.iii We only give an overview of the protocol, and

a detailed description can be found in [GKR08, Tha13b] or in Section 4.2.2.

Overview of the GKR protocol. Assume we are given a layerediv

arithmetic circuit (over F) of depth d, of size (the number of gates) S, and

of fan-in 2 (i.e., each gate has 2 input). Each layer is composed of addition

gates and multiplication gates outputting addition and multiplication of

two inputs, respectively. The layers are numbered in a way that output

layer is 0, input layer is d, and gates of i-th layer take as input the output

of gates in i` 1-th layer. Let Si denotes the size of i-th layer, and assume

it is a power of 2, i.e., Si “ 2si for simplicity. We can number each gate

of i-th layer with a binary string in t0, 1usi , and it defines a function Vi :

t0, 1usi Ñ F relating the given binary string to output of the corresponding

gate. Let Ṽi be the MLE of Vi, then there exists an interesting relation

between MLEs defined from adjacent layers as follows [Tha15]: (We omit

the vector notation, e.g., ~z, ~ω1, ~ω2 are denoted by z, ω1, ω2.)

Ṽipzq “
ÿ

pω1,ω2qPt0,1u
2si`1

r ˜addipz, ω1, ω2qpṼi`1pω1q ` Ṽi`1pω2qq

` ˜multipz, ω1, ω2qpṼi`1pω1qṼi`1pω2qqs

(2.3.1)

where ˜addi (or ˜multi) is a MLE of a function addi (or multi) which is 1

only if the input binary strings indicate an addition (or multiplication) gate

iiiIn particular, we describe the recent refinement [CMT12, Tha13a, Tha15] of the
GKR protocol that our technical development later will be based on.

ivEvery circuit can be transformed to layered form increasing the circuit size at most
d (depth of the circuit) times.

11



CHAPTER 2. PRELIMINARIES

and its corresponding two gates providing inputs, and 0 otherwise. More

precisely, the function addipz, ω1, ω2q is 1 only if the gate indicated by z

at i-th layer is an addition gate whose left input and right input are the

output of the gates indicated by ω1 and ω2 at i`1-th layer, respectively. The

function multipz, ω1, ω2q is defined similarly for the multiplication gate. We

call ˜addi (and ˜multi) wiring predicates as in [CMT12].

Now, the GKR protocol proceeds in layer by layer, starting from the

output layer. V having an output of the circuit, gets a claim Ṽ0pz0q “ v0

evaluating Ṽ0 on random point z0 (recall that the output layer corresponds

to 0-th layer). Then, she reduces this claim to Ṽ1pr1q “ v1 and Ṽ1pr2q “

v2 where r1 and r2 are randomly chosen by V executing the sum-check

protocol on the relation of MLEs (equation 2.3.1) we described above.

The claims Ṽ1pr1q “ v1 and Ṽ1pr2q “ v2 can be reduced to one as

follows. V asks P to send hptq :“ Ṽ1plptqq where lptq is the line such that

lp0q “ r1 and lp1q “ r2 (note the line is uniquely determined). Then, given

hptq, V checks if hp0q “ v1 and hp1q “ v2, then samples a random point

r P F to get the claim Ṽ1plprqq “ hprq, and proceeds to the next layer with

this claim.

Continuing this process layer by layer, V finally gets a claim that

Ṽdpzdq “ vd, and checks if it is correct by evaluating Ṽ0 defined with her

inputs.

Wiring predicates. In the process of GKR protocol, V must evaluate

wiring predicates ˜addipz, ω1, ω2q and ˜multipz, ω1, ω2q by itself. When the

circuit is log-space uniform, computing the wiring predicates can be done

in OppolyplogSqq cost, which is much less than the circuit evaluation cost

OpSq. In general circuit, however, the cost of computing the wiring pred-
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icates can be ΩpSq. In this case, that high cost of V can be amortized by

batching [VSBW13], i.e., the wiring predicates are computed at once before

the GKR protocol, and V carries the protocol on many input-ouput pairs

simultaneously (with the same random values) exploiting that predicate

values. In this thesis, we assume that the circuit is highly regular, so that

the wiring predicates can be efficiently computable by OplogSq cost.

Computational cost. In the original GKR protocol, the computational

cost OppolypSqq of P was a main bottleneck. It was improved to OpS logSq

in [CMT12] exploiting sparsity of wiring predicates, and further improved

to OpSq in [Tha13a] using reusing work technique motivated by [VSBW13]

when the circuit has highly regular wiring patterns. Finally, Xie et al.

[XZZ`19] showed that the cost of P can be OpSq for all general circuits

using clever bookkeeping method motivated by previous workv.

Therefore, the computational cost of P and V , and the communication

cost C in the number of operations or elements over F are as follows:vi

P : OpSq, V : Opn` d logSq, C : Opd logSq (2.3.2)

where n is the number of input and output values.

We note that P ’s cost can be broken down into the circuit evaluation

cost and the proof generation cost. They are asymptotically the same in

general, but later we will show certain circuits for which the proof gener-

ation cost is smaller than the circuit evaluation cost (Section 4.4.3).

vIn fact, they also exploit Chiesa et al. [CFS17]’s approach using random linear
combination to reduce P’s cost for reduction to verification at a single point step (see
Section 4.2.2) to OpSq from OpS logSq.

viWe assume that the wiring predicates of circuit can be efficiently com-
putable [Tha13a], or the cost can be amortized by batching [VSBW13] or data-parallel
computations [Tha13b, WJB`17].

13
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The GKR protocol can be summarized as follows.

Theorem 2.3.1. (GKR Protocol [GKR08, CMT12, Tha13a, XZZ`19])

Let C : Fn Ñ F be a layered arithmetic circuit over a finite field F. Let S

and d be the size and depth of C, respectively, and n be the number of input.

The GKR protocol (with recent refinements) is an interactive proof protocol

pP ,Vq for C with soundness Opd logS`logn
|F| q. The computational cost of P

and V is OpSq and Opn`d logSqvii, respectively, while the communication

cost is Opd logSq.

Proof. The soundness can be similarly proved as that of the sum-check pro-

tocol (Theorem 1). For detailed proof, see [GKR08] or [Rot09]. Derivation

of cost can be found in [Tha13a] for highly regular circuit, or in [XZZ`19]

for a general circuit.

2.4 Notation and Cost Model

In this paper, Z, ZN , and F denote the ring of integers, the ring of integers

modulo a positive integer N , and a finite field, respectively. Also, all loga-

rithms are of base 2. When we say the (time) cost of P or V , it counts the

number of arithmetic operations over the corresponding domain, such as F
or ZN . Similarly, the communication cost measures the number of elements

of the corresponding domain. Hereafter, we use MLE for an abbreviation

of multilinear extension (Lemma 2), P for prover, and V for verifier.

viiWe assume that the wiring predicates of circuit can be efficiently com-
putable [Tha13a], or the cost can be amortized by batching [VSBW13] or data-parallel
computations [Tha13b, WJB`17].
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Chapter 3

Related Work

The problem of delegating computation with securing integrity has been

extensively studied in both theory and practice perspectives. In this chap-

ter, we review some general-purpose protocols and systems that aim to

be practical. The systems can be divided into two categories: interactive

proofs and (non)-interactive arguments.

3.1 Interactive Proofs

Goldwasser, Kalai, and Rothblum [GKR08] proposed an interactive proof

protocol (also known as GKR protocol) that runs in polynomial time. For a

layered arithmetic circuit of size S and depth d, the prover of their protocol

runs in time polypSq, and the verifier runs in time polypd, logSq. Several

refinements of the GKR protocol have been proposed to improve the cost

of the protocol, especially the prover’s cost. Cormode, Mitzenmacher, and

Thaler [CMT12] presented a refinement of the GKR porotocol (hereafter,

CMT) that allows the prover to run in OpS logSq. Thaler [Tha13a] fur-
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ther improved the protocol, which allows the prover to run in OpSq for

a circuit with a “sufficiently” regular wiring pattern. Subsequently, it has

been shown that the prover’s cost can be reduced when a circuit is com-

posed of many parallel copies of subcircuits. Specifically, the prover’s cost

is reduced to OpS logScq in [Tha13b, ZGK`17], and further reduced to

OpS ` Sc logScq in [WJB`17], where Sc is the size of a subcircuit. Re-

cently, Xie et al. [XZZ`19] proposed a refinement that allows the prover

to run in OpSq for an arbitrary circuit. Although being asymptotically

equivalent, Thaler’s refinement [Tha13a] still performs better than Xie et

al.’s [XZZ`19] for a regular circuit.

On the other hand, substantial efforts have been made to support more

operations than the plain field arithmetic. Vu et al. [VSBW13] proposed

an extension of CMT that supports inequalities by augmenting a circuit

with additional verification logic and auxiliary inputs to be fed by the

prover. However, their approach suffers from a significant overhead of the

verifier due to the irregularity of their augmented circuit, which needs

to be amortized by batching verifications (i.e., verifying the same circuit

against many different inputs at the same time) for practical purposes.

Zhang et al. [ZGK`17] improved this by combining CMT with a verifiable

polynomial delegation scheme, and showed that an arithmetic circuit with

auxiliary inputs can be efficiently verified.

There are other lines of refinement work such as supporting “streaming”

verifiers [CCM09, CTY11] that run in a limited space; employing hardware

accelerators such as ASICs and GPUs [WHG`16, WJB`17, TRMP12]; and

supporting zero-knowledge proofs [WTS`18, XZZ`19].

Note that, however, no existing interactive proof systems support a ver-

ifiable rounding operation efficiently, to the best of our knowledge, which is
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critical to deal with an approximate arithmetic circuit with a large depth.i

Though Vu et al. [VSBW13]’s approach with auxiliary input can support

rounding operation in principle, it forces verifier’s cost to be linear in the

number of rounding operations, since the verifier must check the auxiliary

input which is at least as many as the number of rounding operations.

Therefore, it does not provide efficient verification of rounding operations.

Zhang et al. [ZGK`17]’s approach resolves this problem using polynomial

commitment scheme. However, due to the use of the polynomial commit-

ment, their system became an argument that is secure only against com-

putationally bounded dishonest prover. In particular, their system does

not provide post-quantum security due to the specific polynomial commit-

ment scheme employed in their system. Also, the polynomial commitment

scheme is quite slow in practice when the size |w| of witness is large, since

the cost of prover is Ωp|w| log2
|w|q.

3.2 (Non-)Interactive Arguments

Argument systems are different from interactive proofs in that they are

secure only against computationally bounded dishonest provers. Employing

cryptographic primitives, they can provide versatile properties such as non-

interactiveness, public verifiability, and zero-knowledge proofs. However,

the use of expensive cryptographic primitives incurs a significant overhead

to the prover’s cost.

There have been substantial efforts [Kil92, Mic94, BSS08, BSCGT13b]

of developing argument systems based on probabilistically checkable proofs

iAlthough, in theory, the existing work can support rounding by degenerating to
much verbose Boolean circuits, it is highly inefficient to implement such Boolean circuits
in practice.
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(PCPs) [AS98, ALM`98], especially ones called “short” PCPs. Although

being asymptotically similar to their counterparts (that we will explain

below), the PCP-based arguments involve large constants, being too ex-

pensive to be practical.

On the other hand, there have been much efforts on developing ar-

gument systems without using the short PCPs. Setty et al. [SMBW12,

SVP`12, SBV`13] proposed argument systems based on linear PCPs [IKO07],

where their systems were shown to achieve a practical performance in the

batch verification setting. Gennaro et al. [GGPR13] introduced quadratic

arithmetic programs (QAPs), a novel efficient encoding of computations,

and proposed a zero-knowledge succinct non-interactive argument sys-

tem (zkSNARK). Much of improvements have been proposed [PHGR13,

BSCG`13, BSCTV14, Gro16], but these argument systems suffer from a

trusted setup cost that needs to be amortized to be practically efficient.

The trusted setup issue, however, has been largely addressed in recent

work [BSBHR18, BSCR`18, BBB`18, WTS`18, AHIV17, Set19]. Still, in

these work, prover’s cost is quasi-linear Op|C| log |C|q or verifier is not ef-

ficient, in contrasts to the latest refinement [XZZ`19] of GKR protocol

providing linear prover cost Op|C|q and efficient verifier (in certain types

of circuits).

There also has been substantial work [BSCGT13a, BSCG`13, BSCTV14,

BFR`13, WSR`15] to extend the coverage of verifiable computing to

a more generalized form of computations. Essentially, they developed a

“compiler” that translates C-like programs (with e.g., memory accesses

and control flows) into corresponding arithmetic circuits (or algebraic con-

straints). However, their approaches often do not efficiently scale, due to

the blowup in the size of generated circuits. On the other hand, [SVP`12,

18



CHAPTER 3. RELATED WORK

SBV`13] presented an encoding of rational numbers in a finite field, but

still did not support rounding, suffering from the same problem (i.e., the

exponential blowup of the field size) with the integer scaling method de-

scribed in Section 1.2.
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Chapter 4

Interactive Proof for

Rounding Arithmetic

In this chapter, we describe our interactive proof for rounding arithmetic.

We first show that the GKR protocol can be made valid over a ring which

is a more general oboject than a field. Then, from the observation that

rounding operation can be efficiently representable by arithmetic in certain

rings, we propose an efficient interactive proof for rounding arithmetic.

4.1 Overview of Our Approach and Result

We begin by providing an overview of the technical details of our approach

and result. Our goal is to construct an interactive proof for fixed-point

arithmetic circuits (i.e., arithmetic circuits with rounding gates). The idea

is to reduce the rounding gate into a small sub-circuit without rounding,

and reuse the machinery of the GKR protocol on it. Specifically, we con-

sider an arithmetic circuit over a ring Zpe “ Z{peZ (i.e., integers in a base p
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system of e digits), where p is a prime and e ą 1, and the (floor) rounding

operation, x ÞÑ tx{pu. (Note that proper rounding, tx{ps, can be repre-

sented using floor rounding, i.e., tx{ps “
X

px` p´1
2
q{p

\

.) Below we explain

each of our main technical developments.

Reducing rounding to a combination of the plain ring operations

(Section 4.3). We present a sub-circuit representation of the rounding

gate over the base p system. At first, we employ the lowest digit removal

polynomial, ldr [CH18]. The polynomial ldr sets the least significant digit

to zero, i.e., ldr : x ÞÑ tx{pu ¨ p, and thus we can have the floor rounding

operation by ldrpxq{p. We exploit the fact that ldr is the polynomial whose

degree is ă ep, while the degree of such a polynomial could be as large as

pe if it is generated by using the general interpolation technique.i Then, we

construct an optimal arithmetic sub-circuit over Zpe that computes ldr by

using our optimal circuit construction method that we will explain below.

Optimal circuit construction for arbitrary univariate polynomial

(Section 4.4). In the GKR protocol (as well as our generalized one), a

computation of interest needs to be represented in the form of an arithmetic

circuit, and the performance of the protocol could be largely affected by

the structure of a circuit. Now that we have the aforementioned rounding

polynomial, it is important to carefully construct a circuit of the polyno-

mial to achieve good performance. To this end, we devised a novel, optimal

circuit construction of an arbitrary polynomial for the GKR protocol. A

constructed circuit is regular with depth Oplog dq and size Opdq where d is

the degree of the polynomial. The circuit construction is optimal in that

iMoreover, when e ą 1 or p is not a prime, such polynomials may not even exist,
where the interpolation techniques are not applicable.
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the proof generation complexity is linear in d. Moreover, in case that the

same polynomial is evaluated on m inputs, our circuit construction yields

a circuit of size Opmdq and depth Oplog dq, for which the proof generation

cost is Opm
?
d ` dq, which is sublinear in the circuit size (i.e., the proof

generation is faster than even the circuit evaluation!), while the previously

best known result is linear [XZZ`19]. This improvement of the proof gen-

eration cost is critical, since such a single-polynomial-multiple-inputs com-

putation is common in data-parallel computing as well as neural network

training (e.g., the activation function of each layer is pointwisely applied

to a weight vector/matrix).

To achieve this, we analyze the Paterson-Stockmeyer polynomial eval-

uation method [PS73], and carefully design the circuit by exploiting the

linear-sum gate, px1, ¨ ¨ ¨ , xnq ÞÑ a1x1` ¨ ¨ ¨ ` anxn, and the fused multiply-

add gate, px, y, zq ÞÑ xy ` z, which can be efficiently verified via the Sum-

Check (and GKR) protocol.

Generalization of the GKR protocol over a ring (Section 4.2).

While the original GKR protocol is valid over a finite field, since the do-

main Zpe we consider is no longer a field for e ą 1, we identify a minimal

modification to the original protocol to admit a ring (Section 4.2.2), and

present its construction for a specific family of rings, i.e., Zpe and its ex-

tension rings.

Specifically, the GKR protocol is based on the Sum-Check protocol that

in turn is based on the Schwartz-Zippel lemma. However, the Schwartz-

Zippel lemma does not hold for a ring in general. To extend the original

protocol, we first employ the generalized Schwartz-Zippel lemma [BCPS18]

over a ring, which restricts the (randomness) sampling set to a subset of
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the domain such that the difference between any two elements of the sub-

set is not a zero divisor. Then, we show that the Sum-Check protocol as

well as the GKR protocol can be extended over a ring by restricting the

(verifier’s randomness) sampling set to a subset satisfying the aforemen-

tioned property. Moreover, we further identify a stronger condition for the

sampling set (Remark 4.2.1), the “unit difference” property [MP12], that

is, that the difference between any two elements of the sampling set has

an inverse. This stronger condition allows us to employ the cost reduc-

tion technique [Tha13a] proposed for the original GKR protocol to our

extended protocol.

The extended protocol enjoys the same complexity with the origi-

nal, provided that the unit difference property holds for the sampling set

A. Specifically, given a circuit of size S and depth D, the prover’s cost

is OpS logSq,ii and the verifier’s cost is Opn ` D logSq, where Opnq is

the additional cost (for generating the multi-linear extension) at the in-

put/output layer, and n is the number of input/output values. The commu-

nication cost is OpD logSq. The soundness probability, however, becomes

bigger (i.e., worse) than that of the original. That is, it is bounded by

p7D logS ` log nq{|A|, where the denominator is the size of the sampling

set A, while it was the size of the entire domain for the original proto-

col. Note that, however, for practical purposes, the soundness probability

can be quickly improved by simply having multiple prover-verifier pairs in

parallel, which does not affect the overall throughput.

Optimization of proof generation cost for rounding (Section 4.5).

Consider an approximate computation on Zpe . The underlying ring Zpe
iiThe prover’s cost becomes OpSq if the generalization is made on top of the latest

GKR variant [XZZ`19].

23



CHAPTER 4. INTERACTIVE PROOF FOR ROUNDING
ARITHMETIC

can be replaced by another ring Zqde with a much smaller prime q » d
?
p,

via base conversion, that is, converting numbers in the base-p system to

the corresponding numbers in the base-q system.iii Here the advantage of

employing Zqde is that the size of the rounding polynomial in Zqde is much

smaller than that of Zpe , which in turn significantly reduces the proof gen-

eration cost for rounding. However, employing Zqde leads to sacrificing the

soundness of the protocol. To mitigate this dilemma, we proposed a tech-

nique that allows us to employ Zqde without compromising the soundness,

by exploiting an interesting property of a Galois ring.

Specifically, we employ a Galois ring, Zpqdqerts{fptq, where fptq is a

monic irreducible polynomial, in the proof generation and verification phases,

while we keep using Zpe in the circuit evaluation phase. This allows us to

employ a smaller prime q „ d
?
p where d is the degree of fptq. Employing

a smaller prime leads to further reducing the size of the rounding cir-

cuit, since the degree of the lowest digit removal polynomial drastically

decreases from ep into edq » ed d
?
p. Note that the soundness probability

is not compromised at all with the smaller prime q, because the extension

ring yields a sampling set of similar size, qd » p, to that of the original one

(Theorem 4).

However, there is a cost overhead when employing a Galois ring, since

the operations on a Galois ring become more expensive as its dimension

increases. Thus, having a too small prime q may offset the aforementioned

cost benefit. Nevertheless, one can find an optimal q given a set of parame-

ters, and our experiment showed that two orders of magnitude performance

improvement can be made by finding such a sweet spot (Section 5.2.1).

iiiThe converted number may be marginally different from the original, but such an
inaccuracy is acceptable in approximate computation such DNN training.
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Our Result. We briefly summarize the cost of our interactive proof for

a rounding arithmetic circuit. The complexity of our interactive proof pro-

tocol for an arithmetic circuit with the rounding gates is described in the

following theorem.

Theorem 4.1.1. Let C : Zn22η Ñ Z22η be a layered arithmetic circuit

over Z22η where the multiplication gate performs regular multiplication fol-

lowed by rounding, i.e., px, yq ÞÑ tpxyq{2ηu. (Thus, C corresponds to a

fixed-point arithmetic circuit with η fractional bits only.) Let us fix η.

Let S be the size of C, d be the depth of C, and n be the number of

inputs. Then, our interactive proof protocol pP ,Vq for C has soundness

Oppd log d log dSq{2λq. The computational cost of P is OpdSq, the cost of

V is Opn`d log d log dSqiv, and the communication cost is Opd log d log dSq.

Here the unit cost is MpλqMpdq where Mp`q denotes the cost of an arith-

metic operation on `-bit elements (or polynomials of degree `). Note that

we do not take into account the η factor in the asymptotic costs, since η is

fixed to a small constant.

Our protocol is based on Goldwasser, Kalai, and Rothblum’s interactive

proof system (GKR protocol) [GKR08] and its recent refinements [CMT12,

Tha13b, XZZ`19]. The costs of the latest GKR protocol variant [XZZ`19]

(that do not support fixed-point arithmetic) are OpSq, Opn`d logSqiv, and

Opd logSq for P , V , and communication, respectively. Thus, the additional

cost to support fixed-point arithmetic in our protocol is roughly quadratic

in the depth of the circuit.

Below we compare the asymptotic complexity of our protocol with the

integer scaling method applied on top of the latest GKR variant. The

ivWe do not take into account the V’s cost for computing wiring predicate [CMT12],
or we assume that the circuit is highly regular [Tha13a].
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integer scaling method incurs exponential overhead in circuit depth to

deal with fixed-point arithmetic, as mentioned earlier.

Integer Scaling Method Ours (Theorem 4.1.1)

Circuit eval. Mp2dqOpSq MpdqOpdSq

Proof gen. Mp2dqOpSq MpλqMpdqOpdSq

Verification Mp2dqOpn` d logSq MpλqMpdqOpn` d log d log dSq

Soundness Oppd logSq{22dq Oppd log d log dSq{2λq

We also conducted experiments to quantify the performance of our proto-

col. In a moderate laptop, for 212 number of 16-bit rounding operations, the

proof generation took a second, while the proof verification took less than

a millisecond. We also experimentally show that our protocol is much more

efficient than the integer scaling method. Given a nested 128ˆ 128 matrix

multiplication of depth 12 over fixed-point numbers with 16-bits below the

decimal point, our refinement took 3 minutes to generate a proof for each

matrix multiplication, while the integer scaling method took 2.5 hours for

the same task (Section 5.3). The gap between the two will increase ex-

ponentially as the depth of multiplication increases (e.g., the depth often

increases to hundreds or thousands in neural network training).

4.2 Interactive Proof over a Ring

In this section, we show that the GKR protocol can be applied to an

arithmetic circuit over a ring, a more general algebraic structure than a

field.
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Notation and preliminary. Throughout this thesis, we refer a ring R

to a finite commutative ring with the multiplicative identity 1. It is similar

to a field in that it has two operations, i.e., addition and multiplication that

is distributive over addition, an additive identity 0, and a multiplicative

identity 1. It also has an additive inverse for every element, but does not

necessarily have a multiplicative inverse, in contrast to a field. A zero

divisor of a ring R is an element x P R which divides 0, i.e., there exists a

nonzero element y P R such that xy “ 0. An integral domain is a ring that

has no zero divisors other than 0. Typical examples of ring are Z (integers)

and ZN (integers modulo N). Note that Z is an integral domain, and ZN
is a field if N is a prime, but is not even an integral domain otherwise.

4.2.1 Sum-Check Protocol over a Ring

Since the original GKR protocol is based on the Schwartz-Zippel lemma

(Lemma 1), the starting point of generalization is also the lemma. Here we

exploit more generalized form given by Bishnoi et al. [BCPS18] as follows.

Lemma 3. (Generalized Schwartz-Zippel [BCPS18]) Let R be a ring, and

f : Rn Ñ R be an n-variate nonzero polynomial of total degree (the sum

of degrees of each variable) D over R. Let A Ď R be a finite set with

|A| ě D such that @x ‰ y P A, x´ y P R is not a zero divisor. Then,

Pr~xÐAnrfp~xq “ 0s ď D
|A|

. We will call A a sampling set.

Proof. It follows from the induction on the number of variables n as the

original Schwartz-Zippel lemma (Lemma 1), provided that it holds in the

single variable case. Let a1 P A be a root of fptq. By the division algorithm

with a monic polynomial pt ´ a1q, fptq “ pt ´ a1qf1ptq and the degree of

f1ptq is less than that of fptq. Note that another root, if exists, a2 P A
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(a2 ‰ a1) must be a root of f1ptq since pa2 ´ a1q is not a zero divisor and

fpa2q “ 0. Then, the division algorithm with a monic polynomial pt´ a2q

on f1ptq gives fptq “ pt ´ a1qpt ´ a2qf2ptq and the degree of f2ptq is less

than that of f1ptq. Continuing this process, we conclude that fptq cannot

have more roots in A than the degree of fptq.

This lemma guarantees that the identity check of a polynomial over R

can be done similarly as in a field if we sample the random points from a

sampling set A Ď R.

Example 4.2.1. Let R “ Zpe for an odd prime p, and A “ t0, 1, 2, . . . , p´ 2,

p´ 1u. Then, A is the sampling set of Lemma 3, since @x ‰ y P A, x´ y P

t´pp´ 1q, . . . ,´1, 1, . . . , p´ 1u is not a zero divisor. Note that zero divi-

sors of R are exactly the nonzero multiples of p. The set A is maximal in

that a P A implies a` np R A for any nonzero integer n.

Now we can naturally extend the sum-check protocol (Theorem 1) over R,

only restricting the random points chosen by V .

Theorem 2. (Generalized Sum-Check Protocol) Let R be a finite ring,

f : Rn Ñ R be an n-variate polynomial of degree at most d in each variable.

Let A Ď R be a sampling set of Lemma 3 such that d ă |A|. Then, the

Generalized Sum-Check protocol where V chooses each random point ri

from A, is an interactive proof protocol with soundness nd
|A|

for the function:

Spfq :“
ÿ

x1Pt0,1u

ÿ

x2Pt0,1u

¨ ¨ ¨
ÿ

xnPt0,1u

fpx1, x2, . . . , xnq.

Proof. The proof is almost the same as that of the original sum-check

protocol. The gerenalized Schwartz-Zippel lemma (Lemma 3) implies that

any two distinct univariate polynomials of degree ď d over R agree on at
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most d points among A. Following the proof of the original Sum-Check

protocol (Theorem 1), the soundness probability of the generalized sum-

check protocol is bounded by nd
|A|

.

Note that the soundness probability is nd
|A|

in contrast to nd
|F| in Theorem 1.

Remark 4.2.1 (Additional condition for efficient specification of fiptq).

In the i-th round of the Sum-Check protocol, (honest) P should provide

fiptq :“
ÿ

pxi`1,...,xnqPt0,1un´i

fpr1, . . . , ri´1, t, xi`1, . . . , xnq

to V. While the fiptq is specified by evaluations of it on degif ` 1 distinct

points from A, the distinct points must satisfy the condition that all of their

differences have inverses in R for Lagrange interpolation to be available.

It is a stronger condition than that of A. Note that, in all specific rings we

use in this paper, the sampling set A also satisfies that stronger condition.

Example 4.2.2. Let R “ Zpe for an odd prime p, and A “ t0, 1, . . . , p´ 2,

p´ 1u as Example 4.2.1. Then, A also satisfies the stronger condition men-

tioned above, i.e., @x ‰ y P A, x´ y has a multiplicative inverse in R. It

follows from the fact that all elements of R “ Zpe other than multiples of

p have a multiplicative inverse in R “ Zpev.

4.2.2 The GKR Protocol over a Ring

Now we present a generalized GKR protocol over R. We can see that the

original GKR protocol can be applied to an arithmetic circuit over R by

restricting random points required in the protocol to the sampling set A

vIf x P Zpe is not a multiple of p, gcdpx, peq “ gcdpx, pq “ 1, and ax ` bpe “ 1 for
some a, b P Z, i.e., a pmod peq P Zpe is a multiplicative inverse of x.
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of Lemma 3. Below we clarify and validate the modification made in each

step of the protocol.

Multilinear extension & Initial step. We first need to ensure that

the existence and uniqueness (Lemma 2) of Multilinear Extension (MLE)

Ṽ : Rn Ñ R extending a function V : t0, 1un Ñ R. It follows from the fact

that the proof of Lemma 2 is valid in R since it exploits only properties

(i.e., commutativity and distributivity of addition and multiplication, and

existence of the multiplicative inverse 1) that hold in R as well. At the

initial step, V reduces the task of checking output values to that of check-

ing Ṽ0pz0q “ v0 where Ṽ0 is a MLE of the output values. In the original

protocol, the reduction is valid by Lemma 1. In the generalized protocol,

the reduction is valid by Lemma 3, provided that V samples the random

point z0 from the set A of Lemma 3.

Applying sum-check protocol. We already have shown that the Sum-

Check protocol is valid in R as well by Theorem 2. Therefore, reducing the

task of checking Ṽipziq “ vi to that of checking both Ṽi`1pω
˚
1 q “ vi`1,1 and

Ṽi`1pω
˚
2 q “ vi`1,2 can be done using the generalized Sum-Check protocol.

Note that V samples each random point from the set A in the generalized

Sum-Check protocol.

Reduction to verification at a single point & final step. Reducing

the task of checking both Ṽi`1pω
˚
1 q “ vi`1,1 and Ṽi`1pω

˚
2 q “ vi`1,2 to that of

checking Ṽi`1pzi`1q “ vi`1 requires the generalized Schwartz-Zippel lemma

(Lemma 3), and V must evaluate the polynomial hptq :“ Ṽi`1plptqq on ti`1

that is randomly sampled from the set A, to compute Ṽi`1pzi`1q “ hpti`1q.

Finally, V having Ṽdpzdq “ vd checks if it is correct by evaluating the MLE
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Ṽd of the input values on zd by herself.

Complexity & soundness. Note that the computational cost of the

generalized protocol is the same with that of the original protocol (Equa-

tion 2.3.2) except that the cost is measured by the number of operations

or elements of R instead of F. The cost reduction techniques [CMT12,

VSBW13, Tha13a, XZZ`19] proposed in refinements of GKR protocol are

also applicable if R satisfies the additional condition introduced in Re-

mark 4.2.1.

Soundness of the generalized GKR protocol follows from that of the

generalized Sum-Check protocol. Hence, it has the same soundness with the

original one except that |F| is substituted by |A| (see following Theorem 3).

Theorem 3. (GKR protocol over R) Let C : Rn Ñ R be an arithmetic

circuit over a finite ring R. Let S and d be the size and depth of C, re-

spectively, and n be the number of input. Let A be the sampling set of R

in Lemma 3. The generalized GKR protocol described above is an interac-

tive proof protocol for C with soundness Opd logS`logn
|A|

q. The computational

cost and communication cost of the generalized GKR protocol is the same

as that of the original GKR protocol (Theorem 2.3.1), except that we use

number of operations or elements of R for the unit cost.

4.3 Verifiable Rounding Operation

In this section, we explain how to support the rounding operation on top of

the generalized GKR protocol described in Section 4.2.2. As explained in

Section 1.2.1, we consider an approximate arithmetic circuit over a ring Zpe
(i.e., integers in the base-p system) where p is a prime and e ą 1, and the
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rounding gate that performs the (floor) rounding: x ÞÑ tx{pu.vi Like closely

related previous work [GKR08, CMT12, Tha13a, XZZ`19], we assume that

the given circuit is layered. For the simplicity of the presentation, we also

assume that the given circuit is structured to have rounding layers each of

which consists solely of rounding gates, while the other layers have only

addition and multiplication gates.vii

The idea is to replace each rounding gate with a combination of plain

arithmetic gates, and use our generalized GKR protocol over Zpe . Specifi-

cally, we employ a low-degree polynomial ldrpxq such that tx{pu “ ldrpxq{p,

where ldrpxq can be represented as a circuit over addition and multiplica-

tion gates. (Later, in Section 4.4, we will provide an optimal circuit con-

struction for arbitrary polynomials including ldrpxq.) Then, the rounding

gate can be replaced with the circuit of ldrpxq followed by a division-by-p

gate, x ÞÑ x{p. Below we will explain what is the polynomial ldrpxq, and

how to verify the division-by-p gate in our generalized GKR protocol.

4.3.1 Lowest-Digit-Removal Polynomial over Zpe

Chen and Han [CH18] recently showed the existence of a polynomial over

Zpe that sets the input’s lowest-digit to zero. They also provided an exact

construction of such polynomial.

Lemma 4. (Lowest-digit-removal polynomial [CH18]) Let p be a prime

and e ě 1 be a positive integer. Then there exists a polynomial ldrpxq of

degree at most pe ´ 1qpp ´ 1q ` 1 such that for every integer 0 ď x ă pe,

viAs mentioned earlier, the proper rounding, tx{ps, can be represented using the floor
rounding, i.e., tx{ps “

X

px` p´1
2 q{p

\

.
viiAn arbitrary circuit can be adjusted to satisfy this assumption by adding dummy

gates (i.e., a multiplication-by-p gate followed by a rounding gate) for each non-rounding
gate.
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we have

ldrpxq ” x´ px mod pq mod pe,

where px mod pq P t0, 1, . . . , p´ 1u.

Remark 4.3.1. In fact, ldrpxq can be represented by
řp´1
i“0 px´iqp1´px´iq

dq

where d is a positive integer such that td “ 1 if t P Zpe is not divisible by p,

and 0 otherwise. However, such d is quite large (pe ´ pe´1), and Lemma 4

provides a more compact form of ldrpxq with degree less than ep. We also

note that the bound of degree is in fact trivial, since every polynomial over

Zpe is reduced to a polynomial of degree ă ep using the relation pxp´xqe “ 0

in Zpe. Refer to [Car64, JPSZ06, BH17] for the characteristic of functions

that are representable by a polynomial over Zpe (or a finite commutative

ring with 1).

Remark 4.3.2. Note that the degree of ldrpxq is small: roughly logarithmic

in the size of Zpe. It provides us an efficient representation of rounding as

a combination of additions and multiplications.

Example 4.3.1. ([CH18]) For e “ 2, we have:

ldrpxq “ ´xpx´ 1q ¨ ¨ ¨ px´ p` 1q

4.3.2 Verification of Division-by-p Layer

As mentioned earlier, the rounding operation (x ÞÑ tx{pu) can be repre-

sented as x ÞÑ ldrpxq{p. Here the problem is that division is not admitted

in an arithmetic circuit over a ring (thus not in the generalized GKR pro-

tocol over a ring) in general. However, in ldrpxq{p, the division is always

well-defined, since the result of ldrpxq is guaranteed to be a multiple of p,
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where p is constant. Also, as mentioned earlier, the given circuit is assumed

to have a separate rounding layer that consists solely of rounding gates.

Thus, the reduced circuit will have a separate division-by-p layer that also

consists solely of the division-by-p gates, and we have the following equa-

tion:

Ṽipzq “ Ṽi`1pzq{p (4.3.1)

where Ṽi (and Ṽi`1) denotes the MLE of outputs (and inputs, resp.) of the

division-by-p layer. Now, in the generalized GKR protocol, the verifier ver-

ifies the outputs of the division-by-p layer by reducing the verification task

of Ṽiprq “ v, to the verification task of Ṽi`1prq “ pv. This reduction enjoys

perfect soundness, since for Ṽ 1i prq ‰ Ṽiprq, we have Ṽi`1prq “ pṼiprq ‰

pṼ 1iprq “ Ṽ 1i`1prq pmod peq.

Remark 4.3.3 (Modulus change at division-by-p layer). Note that the

codomain of Ṽi is Zpe´1, while the codomain of Ṽi`1 is Zpe. That is, the

outputs of each rounding layer should be regarded as an element of Zpe´1

while the inputs are elements of Zpe. This is because t “ ap ` b P Zpe
represents pap ` bq ` npe P Z for some n P Z where 0 ď b ă p, while

tt{pu ” a` npe´1 P Z is represented by a P Zpe´1.

4.4 Delegation of Polynomial Evaluation in

Optimal Cost

In this section, we present a novel, optimal circuit construction of an arbi-

trary polynomial for the GKR protocol. The circuit has an optimal depth,

and is regular so that a prover (and a verifier) enjoys an optimal cost

(and high efficiency) when proving (and verifying) the circuit via the GKR
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protocol. It has an additional advantage when applied to the parallel eval-

uation of the same polynomial on multiple inputs, in which case, once a

prover has evaluated the circuit, the proof generation cost becomes sub-

linear in the size of the circuit (i.e., the proof generation is much faster

than even the circuit evaluation!), which is better than the previously best

known results [WJB`17, XZZ`19].

4.4.1 Overview of Our Circuit Construction

Our circuit construction is inspired by the Paterson-Stockmeyer algorithm

[PS73] evaluating a polynomial gptq of degree N in Op
?
Nq non-constant

multiplications.viii Specifically, for a given polynomial gptq “
řN
i“0 ait

i,

our circuit is constructed to first compute
?
N sub-polynomials gk’s (for

1 ď k ď
?
N) where gkptq “

ř

?
N

j“1 aj`
?
Npk´1qt

j, and then compute a0 `
ř

?
N

k“1 gkptq¨t
?
Npk´1q, which gives gptq. For example, for a polynomial gptq “

a0 ` a1t ` ¨ ¨ ¨ ` a16t
16 of degree 16, the constructed circuit (as shown in

Figure 4.1) computes the polynomial as follows:

a0`
`

pa1t` ¨ ¨ ¨ ` a4t
4
q ` pa5t` ¨ ¨ ¨ ` a8t

4
q ¨ t4

˘

`
`

pa9t` ¨ ¨ ¨ ` a12t
4
q ` pa13t` ¨ ¨ ¨ ` a16t

4
q ¨ t4

˘

¨ t8

Here we note two properties of the above evaluation method that con-

tributes to our optimal circuit construction. First, not all powers of t are

needed, but only, for example, t, t2, t3, t4, and t8 are. In general, only

p
?
N ` log

?
Nq powers of t, that is, t, t2, ¨ ¨ ¨ , t

?
N , t2

?
N , t4

?
N , t8

?
N , ¨ ¨ ¨ ,

tN{2, are needed to compute gptq in the above evaluation method. Also,

viiiFor the simplicity of the presentation, let N “ 22n be the smallest power of four
such that N ě degpgq.
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every sub-polynomial gk is computed using the same small subset of pow-

ers of t, that is, t, t2, ¨ ¨ ¨ , t
?
N . These properties contribute to reducing the

circuit size, and increasing the circuit regularity.

Now we describe certain observations that led us to our circuit construc-

tion. The first observation is that the GKR protocol admits any efficiently

computable gate with fan-iną 2 without affecting the asymptotic complex-

ity of the protocol, as long as the fan-in is constant. Also, the GKR protocol

can admit a layer that solely consists of the linear-sum gates, ~x ÞÑ
ř

aixi,

at no cost overhead, by exploiting its nice evaluation structure, even if its

fan-in is not constant (see Section 4.4.2 for more details). These observa-

tions give us more flexibility in constructing a circuit, and we utilize the

linear-sum gate for the evaluation of gk’s, and the fused multiply-add gate,

px, y, zq ÞÑ xy` z, for the summation of gk’s. This yields a circuit of width

2
?
N and depth (3` logN) with a regular wiring pattern.

Figure 4.1 shows our circuit construction of a single polynomial gptq.

The circuit is composed of four parts. The first part referred to as poly-

gen, consisting of log
?
N layers with multiplication gates, takes as input

t and computes its powers, t, t2, ¨ ¨ ¨ , t
?
N . The second part referred to as

eval, consisting of a single layer over the linear-sum gates, computes the

sub-polynomials gkptq’s. The third part referred to as unify, consisting of

log
?
N layers over the fused multiply-add gates, computes the summation

of the sub-polynomials, gptq ´ a0. Note that the unify part also computes

the square-powers, t2
?
N , t4

?
N , t8

?
N , ¨ ¨ ¨ , tN{2 by the side of the main

computation, where the same multiply-add gate is used along with intro-

ducing dummy gates, to achieve a regular wiring pattern. The last part

referred to as extract, consisting of a single layer of a constant-addition

gate, computes the final result gptq. More details and a precise definition
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Figure 4.1: Our circuit construction of a polynomial of degree 16, gptq “
ř16
i“0 ait

i. The value of each gate denotes the output of the gate, where
gk “

ř4
j“1 aj`4pk´1qt

j. The green arrow denotes the linear-sum gate wiring.
The gates computing zero are dummy gates that are added to achieve a
regular wiring pattern and thus admit an optimal prover and an efficient
verifier. The presence of the dummy gates does not affect the asymptotic
cost.

of our circuit construction are provided in Section 4.4.2.

In case that multiple inputs need to be evaluated on the same poly-

nomial, our circuit construction simply puts multiple copies of the same

circuit shown in Figure 4.1 side-by-side. This yields a circuit that has a

larger width OpM
?
Nq but the same depth OplogNq, where M is the

number of inputs.

4.4.2 Our Circuit for Polynomial Evaluation

Notation. Assume we are given a polynomial g over a finite ring Zpe .
(Our representation is also valid with a polynomial over a finite field F.) Let
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us fix N “ 22n to denote the smallest power of four such that N ě degpgq.

Let us index each layer where the input layer is indexed by 0.ix Let us also

index each gate in a layer where the left-most gate is indexed by 0, and the

index value is represented in the binary form. We write Ṽi to denote the

MLE of the output values of the ith layer as usual. For the simplicity of the

presentation, we assume that the number of inputs denoted by M “ 2m is

a power of two, in multi-input case. We write βspx, yq : Zspe ˆ Zspe Ñ Zpe
to denote the MLE of Bspx, yq : t0, 1us ˆ t0, 1us Ñ t0, 1u where Bspx, yq

is the comparison function that returns 1 if x “ y, and 0 otherwise. We

write ~1s “ p1, 1, . . . , 1q P t0, 1u
s, and χspxq :“ Bspx,~1sq : t0, 1us Ñ t0, 1u.

We omit s when it is obvious.

Description. Now we present the circuit representation for the poly-

nomial gptq “
řN
i“0 ait

i. The circuit is composed of four parts, each of

which is called polygen, eval, unify, and extract, respectively, as illustrated

in Figure 4.1. We note that, as we will explain below, the eval and unify

layers consist of two sub-circuits placed in parallel, where the left-hand

side sub-circuit computes the sub-polynomials gi and gi,j, while the right-

hand side one computes the power terms ti. Although the two sub-circuits

compute different types of values, we design them to have the identical

wiring pattern by introducing the dummy gates (i.e., the gates computing

zero), so that the overall circuit becomes regular, allowing the verifier to

be efficient. Here, the dummy gates affect only the width of the circuit,

not the depth, and thus their effect on the verifier’s cost is negligible, i.e.,

asymptotically zero, as the verifier’s cost is logarithmically proportional to

the circuit width. We first describe the single-input case (Figure 4.1).

ixIn the GKR protocol, the output layer is indexed by 0.
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The polygen part corresponds to the sub-circuit between the layers 1

and n, where for each ith layer, the input values are ttju2
i´1

j“1 , and the output

values are ttju2
i

j“1. Now we have the following relation between Ṽi`1 and Ṽi

(for 0 ď i ă n) as follows.

Ṽi`1pzq “ Ṽipz´0qrp1´ z0q ` z0Ṽip~1qs

where z “ pz0, z1, . . . ziq, z´0 “ pz1, z2, . . . ziq, ~1 “ p1, 1, . . . , 1q, and Ṽ0 “ t.

The validity of this equation is derived from the fact that both sides of

the equation are MLEs in z agreeing on t0, 1ui`1, and the uniqueness of

MLE (Lemma 2) that holds for an arbitrary ring (Section 4.2.2). Recall

that the gate index value is represented in a bit vector, e.g., Ṽ2p0, 0q “ t,

Ṽ2p0, 1q “ t2, Ṽ2p1, 0q “ t3, and Ṽ2p1, 1q “ t4 denote the output value of

the first, the second, the third, and the fourth gate of the second layer,

respectively, as shown in Figure 4.1.

The eval layer, i.e., the pn ` 1qth layer, produces 2
?
N output values

which consists of g1ptq, ¨ ¨ ¨ , g?Nptq, 0, 0, ¨ ¨ ¨ , 0, t
?
N , from the input values

ttju
?
N

j“1. Each gk (for 1 ď k ď n) is a polynomial of degree at most
?
N ,

defined by gkptq “
ř

?
N

j“1 aj`
?
Npk´1qt

j. The zeros are the outputs of dummy

gates as explained earlier. Now we have the following relation between the

two MLEs.

Ṽn`1pzq “
ÿ

qPt0,1un

αpz, qq ¨ Ṽnpqq where z “ pz0, z1, . . . , znq,

αpz, qq :“ MLE of

$

&

%

arpz,qqs, if z0 “ 0

χ2n, if z0 “ 1

where rvs denotes the integer value represented by the binary vector v,
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e.g., rp1, 1, 0, 1qs “ 13.

The unify part follows the eval layer, corresponding to a sub-circuit of

depth log
?
N from the pn`2qth layer to the p2n`1qth layer, as shown in Fig-

ure 4.1. Each layer of the unify part takes as input, g1ptq, . . . , giptq, 0, . . . , 0, t
j,

and produces g1,2ptq, . . . , gi´1,iptq, 0, . . . , 0, t
2j, where gk,k`1 “ gk ` gk`1t

j.

The final layer of the unify part will produce pgptq ´ a0q and tN . Now we

have the following relation between two adjacent MLEs.

Ṽi`1pzq “ Ṽipz, 0q ` Ṽipz, 1q ¨ Ṽip1, 1, . . . , 1q

where z “ pz0, z1, . . . , z2n´iq.

Note that the above equation makes no distinction between the two

sub-circuits, i.e., one that computes g1,2ptq, . . . , gi´1,iptq and another that

computes 0, . . . , t2j, which significantly reduces the prover’s cost that oth-

erwise would have been very large. This is achieved by introducing the

dummy gates that compute zero, as explained earlier.

Finally, the extract layer, i.e., the p2n ` 2qth layer, takes two inputs

pgptq ´ a0q and tN , and simply returns gptq by adding the constant a0 to

the first input. The relation is as follows:

Ṽ2n`2 “ Ṽ2n`1p0q ` a0

The multi-input case with M “ 2m number of inputs follows naturally

from single-input case described so far (see Figure 4.2).

4.4.3 Cost Analysis

Let us consider the case of multiple inputs being evaluated on the same

polynomial. The following lemma shows the complexity of the GKR proto-
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• polygen layer, Ṽipw, zq : Zmpe ˆ Zipe Ñ Zpe (0 ď i ď n´ 1),

Ṽi`1pw, zq “
ÿ

qPt0,1um

βpw, qqṼipq, z´0qrp1´ z0q ` z0Ṽipq,~1iqs

where z “ pz0, z1, . . . ziq P Zi`1pe , and z´0 “ pz1, z2, . . . ziq P Zipe .

• eval layer, Ṽn`1pw, zq : Zmpe ˆ Zn`1pe Ñ Zpe ,

Ṽn`1pw, zq “
ÿ

qPt0,1un

αpz, qq ¨ Ṽnpw, qq

• unify layer, Ṽj`1pw, zq : Zmpe ˆ Z2n`1´j
pe Ñ Zpe (n` 1 ď j ď 2n),

Ṽj`1pw, zq “
ÿ

qPt0,1um

βpw, qqrṼjpq, z, 0q ` Ṽjpq, z, 1q ¨ Ṽjpq,~12n`2´jqs

• extract layer, Ṽ2n`2pwq : Zmpe Ñ Zpe ,

Ṽ2n`2pwq “ Ṽ2n`1pw, 0q ` a0

Figure 4.2: Construction of (sub-)circuit representation of a polynomial
evaluation that consists of M “ 2m inputs. Here we consider operations
over Zpe , and the polynomial in the form of gptq “

řN
i“0 ait

i for the small-

est N “ 22n ě degpgq. We write ~1k “ p1, . . . , 1q P Zkpe , and αpz, qq :

Zn`1pe ˆ Znpe Ñ Zpe to denote the MLE of a boolean hypercube function
Apxq : t0, 1u2n`1 Ñ Zpe that represents pa1, . . . , aN , 0, . . . , 0, 1q P Z2N

pe . For
example, Ap0, 0, . . . , 0q “ a1, Ap0, 1, . . . , 1q “ aN , and Ap1, 1, . . . , 1q “ 1.
We also write βpw, pq : Zmpe ˆ Zmpe Ñ Zpe to denote the MLE of a compari-
son function Bpx, yq : t0, 1um ˆ t0, 1um Ñ t0, 1u where Bpx, yq returns 1 if
x “ y, and 0 otherwise.
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col (precisely, the variants [Tha13a] or [XZZ`19, Section 3]) on our circuit

construction for such a case. (The complexity for the single-input case is

an instance of that of the single-polynomial-multiple-inputs case.)

Lemma 5 (Complexity of Protocol on Our Circuit Construction). Let C

be a circuit generated by our construction for the case of M inputs being

evaluated on the same polynomial of degree N . Then, the complexity of the

GKR protocol on C is as follows:

• Circuit evaluation: OpMNq

• Proof generation: OpM
?
N `Nq

• Verification: OpM ` logN logMNq

• Communication: OplogN logMNq

• Soundness: OpplogN logMNq{Aq

where A is the size of the sampling set, and the verification cost excludes

the offline precomputation cost OpNq. The complexity for the single input

case is simply the one having M “ 1 in the above.

Proof.

Prover’s cost. The circuit representation is composed of four parts;

polygen, eval, unify, extract, and division as described before, and the depth

is 2n ` 3 “ OplogNq. We first estimate the cost of P for evaluating the

circuit. It is simply M times of the cost for evaluating the circuit of a single

polynomial evaluation, and we only estimate the single case (Fig.4.1). The

i-th layer in polygen requires 2i´1 multiplications resulting in Op2nq total

for polygen part. The eval layer requires Op2n ¨ 2n`1q “ Op22nq operations,
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since evaluating each fiptq given ttju2
n

j“1 requires Op2nq operations. The

j-th layer in unify requires 22n`3´j operations resulting in Op2nq total for

unify part. Since extract and division part is of negligible cost, the total

cost for evaluation is Op2n ` 22n ` 2nq “ OpNq, resulting in OpNMq for

M rounding gates.

Now we estimate the cost of P for proving the evaluation given all

output of gates in the circuit. We assume Thaler [Tha13b]’s Reusing Work

reducing P ’s cost for evaluating all βmpw, pq, Ṽ pqq, and αprq values required

for sum-check to be only Op2mq, Op2sq, and Op2tq respectively, where m,

s, and t are the number of variables constituting p, q, and r, respectivelyx.

Thus, for estimation of the cost, it suffices to count the number of vari-

ables appear in summands of the relation of MLEs in multi rounding case

(Figure 4.2).

In polygen part, reducing from Ṽi`1 to Ṽi requires Op2m ` 2m`iq cost

for sum-check, and additional Opi ¨ 2iq cost for reducing to single point,

resulting in total Op2m`n ` n ¨ 2nq cost. In eval layer, sum-check requires

Op22n`1 ` 2m`nq cost. In unify part, reducing from Ṽj`1 to Ṽj requires

Op2m ` 2m`2n`2´jq cost for sum-check, and additional Opp2n ` 2 ´ jq ¨

22n`2´jq cost for reducing to single pointxi, resulting in total Op2m`n`n¨2nq

cost. The extract and division layer doesn’t affect P ’s cost since it does not

require sum-check. Overall, the cost of proving is Op2m`n ` 22n ` 2m`n `

n ¨ 2nq which is Op
?
NM `Nq.

xThere is a procedure computing the inverse of each component zi of z for efficient
computation of βpz, pq, but we can deviate from it without asymptotic increase of
the cost. More precisely, Cpjqrppj`1, . . . , psiqs in [Tha13b, equation (7)] (Full ver. of
[Tha13a]) can be calculated by rjC

pj´1qr1, pj`1, . . . , psis`p1´rjqC
pj´1qr0, pj`1, . . . , psis

without z´1
j .

xiIn fact, we perform two consecutive processes of reducing to single point, Ṽjpp, z, 1q

& Ṽjpp, z, 0q to Ṽjpp, z, r1q, then Ṽjpp, z, r1q & Ṽjpp, 1, 1, . . . , 1q to Ṽjpp, rq.
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Verifier’s cost. Note that αpz, qq can be precomputed in cost OpNq,

using memoization [VSBW13], and will not be considered in the following

estimation. Each βm can be evaluated in cost Opmq due to its simple

form [Tha13b, Section 4.3.1], without affecting the asymptotic cost of V .

Also, as the original GKR protocol, V ’s cost for the initial an final step is

OpM logMq, since there are OpMq input and output.

Now, we can estimate the cost of V based on that in the sum-check

(Theorem 1). Recall that in sum-check, the cost of V depends on the

number of variables managed by summation. In polygen layers, reducing

from Ṽi`1 to Ṽi requires V to perform Opmq operations for sum-check, and

Opiq for reducing to single point. Therefore, the cost for polygen layers is

Opmn ` n2q. In eval layer, Opnq cost is required. In unify layers, reduc-

ing from Ṽj`1 to Ṽj requires V to perform Opmq operations for sum-check,

Op2n`2´jq for reducing to single point, resulting in Opmn`n2q cost total.

Since the cost for extract and division layers are negligible, the total cost

of V without initial and final step is Opmn`n2q “ OplogN logMNq. The

bound of soundness probability and communication cost can be estimated

similarly.

Remark 4.4.1. Here we note that our proof generation cost is better than

the previously best known result. Specifically, let C be the circuit described

in Lemma 5, and C 1 be a circuit that is equivalent to C with the same size

OpMNq and the same depth OplogNq, but is constructed in a standard way

(i.e., computing all the powers of t using the exponentiation-by-squaring

method, computing all the monomials, and adding all the monomials in a

binary tree fashion). Then, the proof generation cost of Giraffe [WJB`17]

and Libra [XZZ`19] on C 1 are OpMN`N logNq and OpMNq, respectively,

while ours is OpM
?
N ` Nq. Their other costs (i.e., circuit evaluation,
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verification, and communication) on C 1 are the same with ours.

4.5 Cost Optimization

In this section, we present an optimization technique that can significantly

reduce the prover’s cost for the rounding layers described in Section 4.3.

4.5.1 Galois Ring over Zpe and a Sampling Set

A Galois ring Zperts{pfptqq over Zpe for a monic irreducible polynomial

fptq P Zprts is a natural generalization of the Galois field GFppnq over a fi-

nite field Fp. The representation of elements and operations in Zperts{pfptqq
is similar to that of GF ppnq modulo the difference between Zpe and Fp. Let

d be the degree of fptq “ td ` fd´1t
d´1 ` . . . ` f0, where fi P Zp. Then,

the dimension of Zperts{pfptqq is d, and each element is represented as a d-

dimensional tuple in Zdpe whose standard basis corresponds to 1, t, t2, . . . , td´1.

Thus, the addition corresponds to the component-wise addition in Zdpe ,
and the multiplication by an element a “ pa0, a1, . . . ad´1q corresponds

to the matrix multiplication by its corresponding matrix according to

the multiplication rule t ¨ pa0, a1, . . . , ad´1q “ p0, a0, a1, . . . , ad´2q ´ ad´1 ¨

pf0, f1, . . . , fd´1q.

A nice property of the Galois ring Zperts{pfptqq is that every nonzero

element whose coefficients are in t´pp ´ 1q, . . . ,´1, 0, 1, . . . , p ´ 1u is in-

vertible, which leads to the following theorem.

Theorem 4. [McD74] Let p be an odd prime, e be a positive integer,

and R be a Galois ring Zperts{pfptqq of dimension d. Then, all nonzero

elements in ta0 ` a1t ` . . . ` ad´1t
d´1 | ai P r´pp´ 1q, p´ 1s X Zu Ď R,

are invertible (hence are not zero-divisors) in R. Therefore, the subset A “
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ta0 ` a1t ` . . . ` ad´1t
d´1 | ai P r0, p´ 1s X Zu Ď R is a valid sampling

set for the generalized Schwartz-Zippel lemma (Lemma 3) as well as the

generalized GKR protocol (Theorem 3).

Note that the cardinality of the sampling set A in Theorem 4 is pd "

p, which is maximal.xii. Moreover, A satisfies the additional condition of

Remark 4.2.1.

Irreducible Polynomial in Zprts. To construct a Galois ring Zperts{pfptqq,
we need an irreducible polynomial in Zprts. Indeed, there exist many irre-

ducible polynomials fptq P Zprts for any degree d, but a sparse polynomial

(where most of its coefficients are zero) is desired for the efficiency of mul-

tiplication in Zperts{pfptqq. Below we provide examples of such a sparse

irreducible polynomial. (More irreducible polynomials can be systemically

found using Lemma 7 in the following proof.)

Lemma 6. Let p be a prime number. All of the following polynomials are

irreducible in Zp:

i. Φ4pxq “ x2 ` 1 when p ” 3 mod 4.

ii. Φ5pxq “ x4 ` x3 ` x2 ` x` 1 when p ” ˘2 mod 5.

iii. Φ9pxq “ x6 ` x3 ` 1 when p ” 2 or 5 mod 9.

iv. x3 ´ a for some a when p ” 1 mod 3.

v. x4 ´ 2 when p ” 5 mod 8.

xiiA set containing more than pd elements has distinct elements x and y such that
x´ y “ pn0p, n1p, . . . , nd´1pq P Zperts{pfptqq by the Pigeonhole principle where ni’s are
integers, and pn0p, n1p, . . . , nd´1pq is a zero-divisor.
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vi. x4 ´ 3 when p ” 5 mod 12.

Proof. We exploit following Lemma whose proof can be found in [Mil18].

Lemma 7. [Mil18, Lemma 5.9] An n-th cyclotomic polynomial Φn of

degree ϕpnq is irreducible if and only if p is a primitive root modulo n (i.e.,

p does not divide n), and its multiplicative order modulo n is ϕpnq, where

ϕ is the Euler’s totient function.

(i), (ii), (iii) directly follows from the above lemma and the fact that each

prime p is a primitive root modulo 4, 5, or 9, respectively. More algebraic

proof can be found in [Gar07].

For (iv), note that if x3´ a is reducible, it has monic factor and x3´ a

has a solution in Zp. We show that there exists an a such that x3 ´ a

has no solution in Zp which is equivalent to the claim that the function

tÑ t3 : Zp Ñ Zp is not injective. Note that the multiplicative group Zˆp of

Zp has order p´ 1, and the order is multiple of 3 when p ” 1 mod 3. Now,

by Sylow theorem, there exists a group of order 3 in Zˆp , and there exists

at least 3 elements in Zp whose cube is 1. Therefore, the claim follows.

(v), (vi) follows from general irreducibility results on quartic polyno-

mials [DLW05, Theorem 3.(iv)].

Note that above Lemma 7 implies that we can find many irreducible

cyclotomic polynomials (with few non-zero coefficients) of higher degree,

if needed.

4.5.2 Optimization of Prover’s Cost for Rounding

Layers

Now we explain how to optimize the prover’s cost for the rounding layers.

Let Cp be a given approximate arithmetic circuit over Zpe , and q be a
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prime such that p » qd. First, we convert Cp to an approximately equiv-

alent circuit Cq over Zqde , by the base-p-to-base-q conversion, where each

base-p rounding gate (x ÞÑ tx{pu) in Cp is replaced with d-consecutive

base-q rounding gates (x ÞÑ tx{qu) in Cq. Then, we apply the generalized

GKR protocol over a Galois ring Zqderts{pfptqq where fptq is a monic ir-

reducible polynomial of degree d. Here, we employ the sampling set given

in Theorem 4, whose cardinality is qd » p, which affects the soundness.

Moreover, in the process of the protocol, we have the circuit evaluation to

be performed over Zqde , and the proof generation and the verification to be

conducted over Zqderts{pfptqq. This is valid, since Zqderts{pfptqq naturally

embeds Zqde as constant terms.

Now we analyze the complexity of the protocol for a rounding layer that

consists of r rounding gates. First, note that the degree of the rounding

polynomial (ldr) of Cp is ep, while that of Cq is deq » de d
?
p, which is

much smaller than ep for some d. On the other hand, the cost of the

individual addition (and multiplication) operation in Zqderts{pfptqq is Opdq

(and Opd2q, resp.) times larger than that of Zpe . Based on these facts

and Lemma 5, the complexity of the unoptimized protocol on Cp and

the optimized protocol on Cq can be summarized as follows (the two are

equivalent when d “ 1):

Cp Cq

Circuit eval. Opeprq 2d2e d
?
pr

Proof gen. Opeprq 32d4e d
?
p` 70d3

a

de d
?
pr

Verification Oplog2 eprq d3plog de d
?
pqplog de d

?
pr10q

Soundness Op log
2 epr
p
q dplog de d

?
pqplog de d

?
pr6q{4p
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Here the optimization problem is to find d such that the costs for Cq

are minimized. In particular, given p, the term d4 d
?
p is minimized to

ppe ln pq{4q4, which is much smaller than p, when d “ pln pq{4, where e

is Euler’s number. In Section 5.2.1, we will present an experimental re-

sult where two orders of magnitude cost reduction was made by finding a

proper d.
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Experimental Results

We present experimental results that quantify the efficiency of our proto-

col. Specifically, we conducted experiments that show how efficiently our

protocol support rounding, and how effective the optimization technique

is. Also, to show the importance of rounding, we compare our protocol

(with rounding) to the original GKR protocol (without rounding) on deeply

nested matrix multiplications. We consider matrix multiplication since it is

a well-experimented subject considered by all of the existing GKR protocol

variants, making it easier to compare with them. More importantly, matrix

multiplication constitutes about 90% of DNN training workloads [War].

5.1 Experimental Setup

We implemented our generalized GKR protocoli over a ringR “ Zperts{pfptqq
where fptq is a monic irreducible polynomial over Zpe . The modulo oper-

iSpecifically, the generalization was made on top of Thaler’s variant [Tha13a], since
we considered Thaler’s variant to compare ours to the original GKR protocol as ex-
plained in Section 5.3.
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ations of Zpe are implemented using the Montgomery modular multiplica-

tion [Mon85]. The code is written in C++11 using the GMP library, and

compiled with the LLVM GCC compiler 9.1.0 (with -O3). All the experi-

ments were performed on a laptop machine with Intel Core i5 CPU run-

ning MacOS (64-bit) at 2.9GHz processor and 8GB memory. Throughout

this section, we report the verification cost excluding the cost of evaluat-

ing MLE of input/output layers, since they are not involved in verifying

rounding layers placed in the middle of a circuit.

5.2 Verifiable Rounding Operation

We first presents the performance of verifiable rounding operations in our

protocol.

5.2.1 Effectiveness of Optimization via Galois Ring

To show the effectiveness of the optimization technique described in Sec-

tion 4.5.2, we instantiated our scheme with different Galois rings and com-

pared their performance. Specifically, given an original ring, R1 “ Zp65537q7 ,
we took two Galois rings, R2 “ Zp271q14rts{pt2`1q and R3 “ Zp17q28rts{pt4´
3q, where |R1| » |R2| » |R3| » 2112. Then, we instantiated our optimized

protocol (Section 4.5.2) with the three different rings, and experimented

with them for a rounding layer that consists of 214 rounding gates, where

each rounding gate performs, roughly speaking, the 16-bit rounding, i.e.,

truncating the least-significant 16 bits.ii

Figure 5.1 shows the performance of the protocol over the different

iiMore precisely, each rounding gate takes as input x, and outputs tx{65537u,
X

x{p2712q
\

, and
X

x{p174q
\

, respectively, for each R1, R2, and R3.
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p log p e fptq d λs

R1 65537 „16 7 N/A 1 0.020

R2 271 „8 14 x2 ` 1 2 0.011

R3 17 „4 28 x4 ´ 3 4 0.007

(a) Galois ring structures Zperts{pfptqq

 1

 10

 100

 1000

1 2 4

Pr
ov

er
 T

im
e 

(s
)

Dimension of Galois Ring

Circuit Evaluation
Proof Generation

215.7

3.6

1.1

11.5

4.2

13.4

 0.0001

 0.001

 0.01

 0.1

 1

1 2 4

Ve
rif

ie
r 

Ti
m

e 
(s

)

Dimension of Galois Ring

Verification

(b) Performance of protocol over different Galois rings

Figure 5.1: Performance of our protocol over different Galois rings
Zperts{pfptqq, for a rounding layer consisting of 214 gates. The table de-
scribes three different rings R1 “ Zp65537q7 , R2 “ Zp271q14rts{px2 ` 1q and
R3 “ Zp17q28rts{px4 ´ 3q, where d denotes the dimension of a Galois ring,
and λs denotes the soundness probability bound of the protocol over the
ring. Each rounding gate performs x ÞÑ

X

x{ppdq
\

, i.e., roughly the 16-bit
rounding.

rings. The circuit evaluation cost drastically decreases as the dimension of

a Galois ring increases. This is because the size of the rounding circuit for

R3 is much smaller than that of R1, since the size depends on ep. How-

ever, the proof generation cost is not the case, since the cost of individual
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ring operations quadratically increases as the dimension of a Galois ring

increases, thus it offsets the benefit of a smaller rounding circuit when the

dimension is too high. In our experimental setup, the protocol over R2 of

dimension two performed best in generating proofs. On the other hand,

the verification cost increases as the dimension of a Galois ring increases,

since the verification cost logarithmically depends on the rounding circuit

size, thus the benefit of a smaller rounding circuit is insignificant, but the

cost of individual ring operations dominates. In general, the optimal di-

mension varies depending on the set of parameters of the protocol and the

characteristics of computation of interest. Also, we note that the circuit

evaluation cost does not involve the cost overhead of individual operations

of a Galois ring, since the circuit evaluation is performed over a base ring

Zpe instead of its Galois ring Zperts{pfptqq, as mentioned in Section 4.5.2.

This is why the proof generation cost is bigger than the circuit evaluation

cost when the dimension is greater than one, although our optimal circuit

construction offers the proof generation cost that is asymptotically smaller

than the circuit evaluation cost, as described in Section 4.4.3.

5.2.2 Efficiency of Verifiable Rounding Operation

To quantify the efficiency of our scheme for rounding, we applied our

scheme for a single rounding layer that consists of multiple rounding gates.

Specifically, we will consider our generalized GKR protocol over R2 “

Zp271q14rts{pt2 ` 1q, and the rounding operation x ÞÑ tx{p2712qu, roughly

the 16-bit rounding. Figure 5.2 shows the performance of our protocol

for a rounding layer of various sizes, from 28 to 219. As described in Sec-

tion 4.4.3, the cost of circuit evaluation and proof generation is linear in

the number of rounding gates, while the cost of verification and communi-
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Figure 5.2: Performance of our protocol for a rounding layer of various
sizes. The protocol is over R2 “ Zp271q14rts{px2 ` 1q, and the rounding
operation is x ÞÑ tx{p2712qu, roughly the 16-bit rounding.

cation is logarithmic in the number of rounding gates. We also note that

the verification becomes even faster than the native evaluation (i.e., per-

forming the rounding operation directly in the native processor, without

going through the arithmetic circuit) when the number of rounding gates

is more than 218.

5.3 Comparison to Thaler’s Refinement of

GKR Protocol

Now we compare our protocol (that supports rounding) to the original

GKR protocol (that does not support rounding) on deeply nested matrix

multiplications. The most important value of rounding is that it controls

the number of digits within the limit of the underlying system, which is

especially necessary for AI computations. This is the most fundamental
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advancement of our approach, compared to the original GKR. Moreover,

in order to understand the end-to-end performance of our approach, we

conducted a performance comparison with the original GKR as follows.

We considered the Thaler [Tha13b]’s implementation for the original

GKR protocol since it shows the best performance for matrix multiplica-

tion among other variants (e.g., [WJB`17, XZZ`19]). To be a fair compar-

ison, we modified the Thaler’s implementation to employ the same GMP

library we used in our protocol implementation.iii

Moreover, we consider a nested multiplication of depth n, p¨ ¨ ¨ pM2q2 ¨ ¨ ¨ q2 “

M2n , where M is a 128ˆ 128 matrix whose elements are fixed-point num-

bers with 16 fractional bits (i.e., 16 bits below the decimal point), and no

overflow occurs during the computation.iv

In the original GKR protocol (over a finite field Zq) that does not

support rounding, the above nested multiplication over the fixed-point

numbers is represented as the integer-scaled nested multiplication, i.e.,

p¨ ¨ ¨ ppp216Mq2q2q2 ¨ ¨ ¨ q2 “ p216q2
n
M2n . This means that the prime q must

be taken to be larger than p216q2
n
, that is, the bit-size of field elements (in

Zq) exponentially grows in the multiplication depth n. In our protocol (over

a ring Zpe), however, the nested multiplication is represented as the integer-

scaled nested multiplication with rounding, i.e., tp¨ ¨ ¨ tptptp216Mq2sq2sq2s ¨ ¨ ¨ q2s »

216M2n , where t¨s denotes x ÞÑ tx{p216qu. Thus pe can be only larger than

216 ¨ 216n (the additional term 216n is due to the modulus change by round-

ing as described in Remark 4.3.3). That is, the bit-size of ring elements (in

Zpe) is linear in the multiplication depth.

iiiWhile we experimented with matrix multiplication, we considered Thaler’s general-
purpose machinery instead of the special-purpose scheme for matrix multiplication, for
the generality of experimental results.

ivFor simplicity, we consider M such that the elements of M and M2n are positive
fixed-point numbers less than 1, i.e., being represented in 16 bits.
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Figure 5.3: Performance comparison of ours to Thaler [Tha13a]’s on a sin-
gle 128ˆ128 matrix multiplication (over fixed-point numbers with 16 frac-
tional bits) in the context of different multiplication depths. The domain of
each protocol is chosen to be large enough to admit a given multiplication
depth. That is, our protocol is over Zp271qerts{pt3`2q, where e “ 14, 18, 22,
and 26, respectively. Thaler’s is over Zq, where q “ p21279´ 1q, p24253´ 1q,
p219937 ´ 1q, and p286243 ´ 1q, respectively. The performance of Thaler’s on
the multiplicative depth 12 is extrapolated.

In our experiment, we considered nested matrix multiplications of depth

n “ 6, 8, 10, and 12. Depending on the multiplication depth, we took

different sized fields or rings. That is, for the original GKR protocol over

Zq, we took the smallest Mersenne prime q ą p216q2
n
, i.e., p21279 ´ 1q,

p24253´1q, p219937´1q, and p286243´1q, respectively, while for our protocol

over Zperts{pt3 ` 2q, we took p “ 271 » 28 and the smallest e such that

pe ą 216pn`1q, i.e., pe “ 27114, 27118, 27122, and 27126, respectively, for each

multiplication depth n “ 6, 8, 10, and 12.

In Figure 5.3, we compare the performance of our protocol to that of

Thaler’s on nested matrix multiplication of different depths. To highlight
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the net effect of rounding, we report the cost for a single matrix multipli-

cation in the context of different multiplication depths. That is, the cost

for the entire nested multiplication is the one in Figure 5.3 multiplied by

the number of matrix multiplications.

Figure 5.3 shows that the cost of Thaler’s exponentially increases in

the multiplication depth, while ours is linear in the depth. When the mul-

tiplication depth is small (e.g., depth 6), the cost of our protocol could be

bigger than Thaler’s, due to the overhead of rounding. However, when the

multiplication depth is greater than a certain amount (e.g., depth 8), ours

is much better than Thaler’s (e.g., two orders of magnitude better when

depth is 12), and the difference will be exponential as the depth increases.

This experimental result confirms that it is critical to support the round-

ing operation for verifiable computing of an approximate arithmetic circuit

with a large multiplication depth.

5.4 Discussion

We want to note that there is still room for improvement of our implemen-

tation, since in this work, we have mainly focused on the proof-of-concept

evaluation of our approach. In particular, the implementation of the indi-

vidual operations of a Galois ring can be further improved. While those

operations are sequentially executed in our current implementation, they

can be easily broken down into multiple independent subroutines, being

suitable for parallelization [CT65, FPV`09] or hardware acceleration. This

optimization will drastically reduce the overhead of increasing the dimen-

sion of a Galois ring, which in turn will allow us to employ a much smaller

prime p, further improving the overall performance of the protocol.
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On the other hand, the soundness probability of our protocol in Fig-

ure 5.3 is set to 2´14, which is not high, but sufficient in certain contexts.

Moreover, it can be quickly improved by simply running n parallel pairs of

the prover and the verifier, which yields p2´14qn soundness, without affect-

ing the throughput performance. For example, running only four prover-

verifier pairs in parallel will achieve 2´56 ă 10´16 soundness,v which is

similar to the soundness probability (2´45 to 2´20 [Tha13b, SVP`12]) of

existing verifiable computing scheme experiments.vi

We can compare our result with GKR protocol on boolean representa-

tion, i.e., representing all operations in bitwise so that rounding is also rep-

resentable efficiently. In fact, our method incurs blow up of cost quadratic

in multiplicative depth and rounding bits for each rounding gate, while

boolean representation incurs that quadratic in input bits for each multi-

plication gate. Therefore, our method is efficient when number of rounding

gates is smaller than that of the multiplication gates, i.e., when lazy round-

ing strategy is applicable such as matrix multiplication. Also, our method

can be applied with (asymptotic) cost reduction technique derived from

higly regular wiring pattern, e.g. Thaler [Tha13a]’s protocol for matrix

multiplication or ours for polynomial evaluation. In contrasts, it seems

quite hard to apply them for Boolean representation of such circuit.

We can also compare our result with recent work [ZGK`17, WTS`18]

which combine commitment scheme with interactive proof. In these cases,

prover’s cost for rounding gate is dominated by that of the commitment

with as many messages as bitsize of the input. Though it seems (asymptot-

vFor comparison, 10´16 to 10´13 is the uncorrectable bit error rate of a typical hard
disk [GvI07].

viPinocchio [PHGR13] offers roughly 2´128 soundness, but it is based on strong cryp-
tographic assumptions.
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ically) efficient than ours in the bitsize, the cost of commitment shows that

ours can be better or comparable in some cases. The experimental result

of [ZGK`17] on commitment implies that proving rounding gate with their

commitment would require at least 0.11ˆ rounding bits (ms) per gatevii,

resulting in 214 ˆ 16ˆ 0.11 (ms) » 29 (sec) for 214 gates, which is about 7

times costly than our prover (4 sec) in Figure 5.2. On the other hand, the

commitment in [WTS`18] viii is asymptotically costly in verifier cost than

that of ours.

viiOn Amazon EC2 c4.8xlarge running Linux Ubuntu 14.04, with 60GB of RAM, Intel
Xeon E5-2666v3 CPUs with 36 virtual cores at 2.9 GHz.
viiiIt requires verifier’s cost to be Op

?
# of gatesˆ rounding bitsq.
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Conclusions

We presented a verifiable computing scheme that supports rounding which

is essential for approximate computations. Based on the (latest variant of)

GKR protocol that is most efficient in generating proofs among existing

verifiable computing protocols, our scheme consists of the following ele-

ments: generalization of the GKR protocol over a ring, reduction of the

rounding operation to a low-degree polynomial in a ring, optimal circuit

construction of arbitrary polynomials, and optimization of proof generation

for rounding via a Galois ring. We implemented our scheme, and presented

experimental results that show the efficiency of our scheme for approximate

computations. For example, ours performed two orders of magnitude better

than the existing GKR protocol for a nested matrix multiplication of depth

12 on the 16-bit fixed-point arithmetic. We end this section introducing

our vision and future plan of research from this work.
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6.1 Towards Verifiable AI

We believe that this work is an important step toward the vision of verifi-

able AI computations. Specifically, the DNN training iterates the forward

and backward passes over the sequence of layers, where each layer com-

putation (in both forward and backward passes) consists of matrix mul-

tiplication and nonlinear function application on approximate arithmetic.

Without the ability of rounding, the number of digits of the computation

results will keep increasing and exceed the limit. Thus the existing VC ap-

proaches are not capable in the AI space. Our approach gives a theoretical

feasibility for these computations. In addition, it also sheds light on the

real-world performance – as shown in Chapter 5, matrix multiplication on

the fixed-point arithmetic can be efficiently supported by our scheme.

Among the nonlinear functions, the ReLU and maxpooling functions

can be represented in an (approximate) arithmetic circuit by using the

comparison operation [VSBW13, ZGK`17]. The sigmoid and tanh func-

tions were shown to be effectively approximated as a polynomial [HTG17]

with achieving a sufficient accuracy, while such a polynomial can be effi-

ciently represented in a circuit by using our optimal circuit construction.

The softmax function requires to compute the natural exponentiation func-

tion ex, which can be also approximated as a polynomial for x ď 0, using

the input normalization [Vie].

Moreover, multiple iterations can be “squashed” [WJB`17] into a wide

and shallow circuit by laying identical subcircuits of a single iteration

side by side. This squashing can drastically reduce the depth of a cir-

cuit, which can significantly improve the protocol’s performance [Tha13b,

WJB`17] at the cost of communication overheads. Finally, the protocol

performance can be further improved by using hardware accelerators such
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as GPUs [TRMP12, Tha13b] and ASICs [WHG`16, WJB`17].

6.2 Verifiable Cryptographic Computation

The individual technical results that we developed for the verifiable round-

ing operation have their own applications as well. First, our generalized

GKR protocol can be used in other settings where rounding is not neces-

sarily involved. For example, a ring Zpe has a nice property that addition

and multiplication on Zpe are equivalent to that of the e-bit machine integer

arithmetic when p “ 2, including the “wrapping-around” behavior in case

of overflow (e.g., “4`4 ” 0” in both Z23 and the 3-bit (unsigned) machine

integer arithmetic). Thanks to this property, for certain computations that

inherently require the modular arithmetic (e.g., ones in cryptography im-

plementations), one can construct arithmetic circuits of such computations

at no extra cost.i Note that to admit such computations with the original

GKR protocol, one needs to additionally develop a circuit representation

of the modulo reduction, i.e., x ÞÑ x mod 2e, which incurs additional over-

heads in protocol performance due to the circuit size blowup.

On the other hand, our optimal circuit construction is applicable to

the original GKR protocol (and its variants) as well, since it is not specific

to the underlying algebraic structure. That is, when a given computation

involves evaluation of certain polynomials, our circuit construction scheme

can be used to optimize the protocol performance.

iIn this case, the optimization via a Galois ring (Section 4.5.1) is needed to secure
a sampling set that is large enough for the protocol soundness. Moreover, the same
technique is applicable to a more general ring Zn for an arbitrary integer n by using
the Chinese remainder theorem, i.e., reducing operations on Zn to that of

ś

i Zpeii
where

ś

i p
ei
i is the prime factorization of n. Note that the modular arithmetic on Zn

is commonly used in, e.g., the lattice-based cryptography [Mic11].
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국문초록

계산검증 기술은 계산의 무결성을 확보하기 위한 계산 복잡도 이론적 방법이다.

최근 많은 계산이 클라우드 플랫폼과 같은 제3자에게 외주됨에 따라 그 필요성이

증가하고있다.그러나기존의계산검증기술은비근사 연산만을고려했을뿐,근사

연산 (부동 소수점 또는 고정 소수점 연산)은 고려하지 않았다. 따라서 본질적으로

근사 연산이 필요한 특정 유형의 계산 (기계 학습, 데이터 분석 및 과학 계산 등)에

적용하기 어렵다는 문제가 있었다.

이 논문은 반올림 게이트를 수반하는 산술 회로를 위한 효율적인 대화형 증명

시스템을 제시한다. 이러한 산술 회로는 근사 연산을 효율적으로 표현할 수 있으

므로, 근사 연산에 대한 효율적인 계산 검증이 가능하다. 주요 아이디어는 반올림

게이트를 작은 회로로 변환한 후, 여기에 Goldwasser, Kalai, 및 Rothblum의 프

로토콜 (GKR 프로토콜)과 최근의 개선을 적용하는 것이다. 구체적으로, 대수적

객체를유한체가아닌 “숫자”를보다잘처리할수있는환으로치환한후,환위에

서 적용 가능하도록 기존의 GKR 프로토콜을 일반화하였다. 이후, 반올림 연산을

환에서 차수가 낮은 다항식으로 표현하고, 다항식 연산을 최적의 회로 표현으로

나타내는 새롭고 최적화된 회로 구성을 개발하였다. 또한, 갈루아 환을 사용하여

반올림을 위한 증명 생성 비용을 더욱 최적화하였다. 마지막으로, 실험을 통해 우

리의 근사 연산 검증 시스템의 효율성을 확인하였다. 예를 들어, 우리의 시스템은

구현시, 16비트고정소수점연산을통한깊이 12의반복된 128ˆ128행렬곱셈의

검증에 있어 기존 시스템보다 약 100배 더 나은 성능을 보인다.

주요어휘: 계산 검증, 근사 연산

학번: 2013-20228
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